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Abstract I

The planning problem has traditionally been treated separately
from the scheduling problem. However, as more realistic do-
mains are tackled, it becomes evident that the problem of de-
ciding on an ordered set of tasks to achieve a set of goals cannot
be treated independently of the problem of actually allocating
resources to the tasks. Doing so would result in losing the ro-
bustness and flexibility needed to deal with imperfectly mod-
eled domains. Completable scheduling is an approach which
integrates the two problems by allowing an a priori planning
module to defer particular planning decisions, and conse-
quently the associated scheduling decisions, until execution
time. This allows a completable scheduling system to maxi-
mize plan flexibility by allowing runtime information to be
taken into consideration when making planning and schedul-
ing decisions. Furthermore, through the criterion of achievab-
ility placed on deferred decisions, a completable scheduling
system is able to retain much of the goal-directedness and
guarantees of achievement afforded by a priori planning. The
completable scheduling approach is further enhanced by the
use of contingent explanation-based learning, which enables
a completable scheduling system to learn general completable
plans from example and improve its performance through ex-
perience. Initia] experimental results show that completable
scheduling outperforms classical scheduling as well as pure
reactive scheduling in a simple scheduling domain.

Introduction

The planning problem has traditionally been treated separate-
ly from the scheduling problem. Planning deals with the de-
termination of an ordered set of actions for achieving a set of
goals. In the context of scheduling domains, planning deals
with determining an ordered set of tasks for a set of jobs. In
contrast, scheduling deals with the actual assignment of tasks
tomachines and is generally concerned more with finding the
best of several alternative task-machine assignments than
with finding a particular task-machine assignment. As more
realistic scheduling domains have been addressed, however,
it has become apparent that planning and scheduling cannot
be treated independently. The complexity of real-world do-
mains makes perfect characterizations difficult to construct
and often unwieldy. Tothis end, researchers in both planning
and scheduling have investigated reactive approaches which
allow for decision—making during execution [Agre87, Fir-
by87, Kaelbling88, Muscettola®0, Ow88, Prosser89].
However, the classical approach of first doing planning and
then scheduling still remains a problem. Consider giving a
classical system ina process planning domain the job of man-
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ufacturing a particular part. Its planner must decide a priori
on an ordered set of actions or operations which will result in
the conversion of the raw material into the desired product.
Its scheduler is then given the responsibility of actually allo-
cating resources and carrying out the operations on the ma-
chines. However, because the planner commits the systemto
a particular set of operations, the scheduler may not execute
the best plan. For example, the planner may not be able to
guarantee that the efficient new milling machine will be avail-
able and sochoose the older, slower one. However, during ex-
ecution, the more efficient machine may turn out to be avail-
able, but the scheduler does not have the option to alter the
plan. Furthermore, an over—constrained classical plan may
prevent quick fixes to unpredictable runtime situations, For
example, achosen drill bit may turn out tobe unavailable, thus
rendering invalid those subsequent actions involving a corre-
spondingly sized bolt and wrench. A simple fix would be to
use a different drill bit, and switch to the appropriately sized
bolt and wrench, but a scheduler with a completely—deter-
mined plan does not have this capability.

A purely reactive approach, with no a priori planning, has
its own problems. Most manufacturing domains are fairly
well-behaved; there is much information available a priori
and fairly accurate predictions can be made about the behav-
ior of the world under particular circumstances. A purely
reactive approach which performs no projection cannot take
advantage of this information to constrain its actions and pre-
vent thrashing. With the planning problem and the scheduling
problem combined, the runtime decision-making problem
also becomes a larger and more complex one.

This research began as an attempt to address the problems
with classical, apriori planning and pure reactivity. In partic-
ular, completable planning was developed as an approach
which combined the goal—directedness and provably correct
plans of classical planning with the flexibility and ability to
utilize runtime information afforded by reactive planning.
This enabled a completable planner 10 more efficiently deal
with the problems arising from imperfect a priori information
while still retaining the benefits of planning beforehand in rel-
atively well-behaved environments. More recently, we have
been investigating scheduling, and we have found that many
of the techniques originally developed as part of the complet-
able approach to planning are also useful for solving some of
the problems which arise from scheduling in realistic do-
mains where perfect a priori information about the environ-
ment is unavailable. For example, in the scheduling scenario
above, a completable scheduling system could defer the deci-
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sion of which milling machine to use as well as the choice of
bit, bolt, and wrench sizes. During execution, it can then use
additional information regarding resource availability to ad-
dressthe deferred planning decisions and make the associated
scheduling decisions as well.

Inthis paper, we present an integrated approach toplanning
and scheduling called completable scheduling. We will first
give an overview of the main ideas behind completable plan-
ning, and then discuss the extension to scheduling. We will
then discuss how completable schedules are learned through
an explanation-based learning strategy called contingent
EBL. Finally, we will briefly discuss the implementation, in-
cluding some preliminary results and ongoing experiments.

COMPLETABLE SCHEDULING

Overview of Completable Planning

In completable planning [Gervasio90a, Gervasiod0b, Gerva-
8i091), aclassical planner is augmented with a reactive com-
ponent which provides it with the ability to defer planning de-
cisions until execution time. As an augmented classical
planning approach, completable planning retains the advan-
tages of classical planning while buying into the advantages
provided by reactivity. From classical planning, completable
planning borrows the ability to construct provably—correct
plans for providing goal-directed behavior. From reactive
planning, it barrows planning flexibility and the ability touti-
lize runtime information in making planning decisions. Com-
pletable planning achieves the integration through the achiev-

~ ability criterion, which requires every deferred goal to be

proven achievable. Proving achievability requires proving
that there exists a plan which will achieve the goal. Our re-
search has shown that proving the existence of a plan does not

* necessarily entail determining the plan itself, and the intuition

is that proving achievability requires much simpler and more

~ readily available a priori knowledge than full-blown plan-

ning. A completable planner is thus able to construct pro-
vably-correct plans in spite of incomplete a priori informa-
tion, and in doing so provide goal—directedness toits reactive

‘component while allowing itself to defer decisions and utilize

runtime information in addressing deferred goals.

Deferring Decisions

The deferment of schedulmg decnsxons isa powerful tool in
dealing with imperfect a priori information. The complexity
of real-world domains makes it difficult to construct perfect
models. Even when perfect models exist, their use often ex-
ceeds reasonable computational bounds. A realistic schedul-
ing system is thus left to contend with imperfect knowledge.
There are four types of incompleteness which can result from
usingclassical planning techniques on imperfect information.

First, aschedule may be incomplete due toan unspecifiable
parameter setting. With the Iack of a fine-grained and tracta-
ble world model, a scheduling system may not be able to de-
termine precise parameter settings a priori. For example, the
parameters of an operation may be dependent on the proper-
ties of a particular object, which may not be known prior to
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execution. Inattaching twoparts using a bolt, all that asystem
may know is that it will be given a bolt of some size, but it may
not know precisely what size. However, provided it has ac-
cesstodifferently—sized bits and wrenches, it can plan a drill-
ing operation followed by a bolting operation without speci-
fying the precise bit and wrench to use, During execution,
when it is given the bolt, it can then determine the appropriate
values for bit size and wrench size. Completable scheduling
allows the use of conjectured variables to act as placeholders
for unspecified parameter settings provided achievability
proafs can be constructed for their eventual instantiation. By
allowing deferred parameter settings, completable schedul-
ing enables a system to both plan ahead and yet remain flex-
ible encugh to deal with some uncertainty.

Second, a schedule may be incomplete due to an undeter-
minable number of iterations. Animperfect world model may
include incomplete characterizations of q)eranons and their
effects. Consequently, for an action that requires repetition to
achieve some goal, the precise number of iterations needed
may not be determinable prior to execution. For example, the
depth to which a milling operation cuts through a part is de-
pendent on the face cutter used. Priortoexecution, a system
may not know which face cutter will be set up on the machine,
However, it knows that regardless of whichface cutteris used,
the desired cut can be achieved by simply repeating the mill-
ing operation as many times as necessary. By not tying itself
toa particular face cutter and consequently a particular num-
ber of iterations, during execution the system can choose to
use the current set—up and save the cost of changing set-ups,
or it can elect to change to a more efficient set-up. Complet-
able scheduling permits the deferment of iteration decisions
provided incremental progress which converges to the goal
canbeproven. Throughthis deferment, acompletable system
can use imperfect operation descriptions as well as make opti-
mizations to a schedule based on runtime information.

Third, a schedule may be incomplete due to an unidentifi-
able operation choice ortask-machine assignment. This case
arises when there are multiple ways of achieving the same
goal from different states and the system lacks the necessary
apriori information for identifying which particular state will
bereached. This case alsoarises whenthere are multiple ways
of achieving a goal, with different situations resulting in dif-
ferent preferences among the various alternatives, and the
system does notknow apriori which situation will be reached.
For example, in planning to shape an object, a system might
use some or all of various cutting operations, such as milling,
planing, sawing, or grinding. Whetherthere are several possi-
ble states requiring different operations or multiple applicable
operations with unknown preferences, a system can use addi-
tional runtime information to make a more-informed opera-
tion choice. Completable scheduling allows asystem todefer
operation choice provided it can prove that there exists a way

“to reach the next state regardless of which of the possible

states is reached. This deferment is useful for two reasons.
First, it enables a system to use the same schedule toachieve
a goal from any of several different states. Second, it allows
a system to apply preferences to a set of possible operations
using more complete and accurate runtime information.



Fourth, a schedule may be incomplete due to an unorder-
able set of operations. Imperfect a priori information may re-
sult in insufficient constraints for completely ordering a set of
operations. Forexample, in the construction of twoparts, the
only precedence constraints may be between the milling,
drilling, and tapping operations for each part—i.e. the opera-
tions for the different parts can be ordered in any way. De-
pending upon a priori known factors such as the parts in-
volved and the difficulty of changing set—ups as well as a
priari unknown factors such as the initial set—up and machine
availability, particular orderings will be more desirable than
others. By deferring the decision until all the factars are
known, a system can utilize rantime information to make de-
cisions for more optimal orderings. Completable scheduling
permits the deferment of ordering decisions provided the dif-
ferent orderings are all capable of achieving the goal. Indoing
8o, a completable planner can utilize runtime information in
making more—informed ordering decisions for an uncon-
strained set of actions.

Proving Achievability
While imperfect a priori information is the primary reason for
deferring decisions, achievability is the primary criterion for
deferment in completable scheduling. By requiring thata def-
erred goal be proven achievable, completable scheduling en-
ables the construction of incomplete yet provably—correct
“plans. Previous work on achievability involved finding
proaofs for the existence of plans to achieve deferred goals.
Achievability proofs for deferred parameter settings and
_ number of iterations are discussed in [Gervasio90a, Gerva-
* §i090b], and for deferred ‘operator choice in [Gervasio91]. In
[Gervasio91), completable planning was also extended to
probabilistic domains by relaxing the original criterion of ab-
solute achievability to probable achievability.

Scheduling domains give rise to further new issues in ach-
ievability. In planning, the main focus is finding a plan, or se-
quence of actions, which achieves the goal from a given initial
state. In scheduling, the existence of several possible sched-
ules is taken as a given, and the focus is choosing one from
among them using some set of preference criteria, maximiz-
ing particular perfformance measures. Examples of perform-

_ ance goals are meeting deadlines and minimizing idle time.
Thus, simply defining a goal to be achievable if there exists
aplan for it is insufficient for scheduling. Achievability must
alsobe related tothe idea of optimization and relative prefer-
ences between possible courses of action. For example, prov-

ing the achievability of the goal associated with an unordered
set of actions is implicit in the construction of a nonlinear
plan—i.e. actions are left unordered if there are noconstraints
requiring precedence relations between them. Thus there ex-
ists aplan for achieving the goal. However, there is the inter-
esting issue of deciding on a complete ordering during execu-
tion. This involves seeking out additional information for
evaluating the different options as well as carrying out the op-
erations themselves. In tying the concept of achievability to
optimization, we can also better investigate a primary motiva-
tion for combining classical and reactive techniques: the abil-
ity toutilize runtime information in planning. Goal-directed,
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robust behavior in the face of uncertainty is one reason for
angmenting a classical planner with reactive abilities. How-
ever, another reason tointegrate the twoapproaches, is totake
advantage of the wealth of information which becomes avail -
able at runtime. This additional information facilitates plan-
ning by helping to focus the search for an appropriate action.

LEARNING COMPLETABLE SCHEDULES

Explanation-based learning [DeJong86, Mitchell86] has
been demonstrated tobe useful in improving the performance
of various planning systems [Bennett90, Chien89, Fikes72,
Hammond86, Minton85], and in {Gervasio90a, Gervasio91]
we present an explanation-based learning strategy called
contingent EBL for learning completable plans. Learning
completable schedules basically involves learning to distin-
guish between a priori planning decisions and decisions
which have to be made or are better made during execution,
Learning when to defer decisions involves first identifying
the deferred decision, then constructing an achievability
proof for the associated deferred goal. Then a completor for
making the deferred decision during execution must be incor-
porated into the learned general plan.

Identifying Deferred Decisions

A main difference between classical plans and completable
plans is the existence of deferred decisions in completable
plans. Inconstructing an explanation for how a given training
example achieves a target goal, an EBL system must explain
how each action is chosen for execution. In planning, this
usually means verifying that previous actions achieve the pre-
conditions necessary for the execution of an action. However,
with the addition of reactive abilities and the option to utilize
runtime information, a system needs to distinguish between
apriori satisfied preconditions and runtime-verified precon-
ditions. Our solution is toallow the system to distinguish be-
tween a pricri information and runtime—gathered information
andtoprefer a classical proof of carrectness to an explanation
of achievability. Thus, in explaining how an action is chosen
for execution, a system first attempts to explain its precondi-
tions with a priori available infarmation. If this is unsucces-
sful, then the action being explained is tagged as a potential
deferred decision, and the system attempts to construct an
achievability explanation for the precondition. Only if it is
successful is the learning process allowed tocontinue. The fi-
nal explanation will thus contain the identified deferred deci-
sions as well as their supporting achievability explanations.
Tying the concept of achievability tooptimization adds fur-
ther concerns. An explanation of executability is no longer
enough. Explanations for preferences may also need to be
constructed, and as with other deferred decisions, the asso-
ciated runtime verified conditions need to be distinguished
from a priori satisfied conditions. As with proofs of correct-
nessand explanations of achievability, explanations of prefer-
ences may also be constructed in standard EBL fashion.

Constructing Achievability Proofs

To construct provably—correct plans, a completable planner
must construct achievability proofs for the deferred goals of
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its incomplete plans. While the mechanics of constructing

- proofs of correctness vs. proofs of achievability are essential-
" ly the same—baoth use standard EBL on a given domain theo-

ry—there are some requirements needed for a domain theory

_ tobe used in proving achievability.

There are fourtypes of deferred decisions and each requires
particular kinds of information for proving achievability.
First, deferred parameter settings must be represented, and
this is done using conjectured variables. These variables may

- only be introduced in the context of the rules used toconstruct

their corresponding achievability explanations, thus guaran-
teeing that every conjectured variable in an explanation has
a supporting achievability proof. Second, a system must be
able to reason about the incremental progress achieved by a

- repeatéd action. This requires action characterizations to in-
_ clude statements regarding the changes made with respect to

some measurable quantity. This can then be used to reason

~ about progress towards the goal. Third, the incompletely

known situation requiring a deferred operator choice must be

. represented insucha way that the system can reason about the

space of possibilities. Achievability canthen be measured in
terms of the coverage provided by the alternative actions over
this space. Finally, proving achievability with respect to an
unordered set of operations is implicit in the absence of prece-
dence constraints between the operations, which means that
any of the possible total orderings will achieve the goal.

The second aspect of achievability, optimality, also im-
poses certain requirements on the domain theory used tocon-
struct explanations. The heuristics to be used in making dis-
patching or scheduling decisions must be built in to the
domain theory. These heuristics can then be used both for
constructing a priori explanations and making runtime deci-
sions. In explaining particular decisions made in a training
example a system can then construct explanations incorpo-
rating the heuristics and learn general completable plans
which will employ the heuristics in future applications.

Incorporating Completors

The final step in learning how to construct a completable
schedule is to incorporate completion steps into the learned
general plan. There are four types of completors correspond-
ing to the four different types of deferred decision. The first,
amonitor, finds a value toreplace aconjectured variable—i.e.
it determines a specific parameter setting. The second, a re-
peatloop, repeatedly executes an action until a particular exit
condition, the deferred goal, is reached. The third, a condi-
tional, evaluates the current state and determines an appropri-
ate action based on which conditions are satisfied. Finally, the
fourth, a dispatcher, determines a complete ordering for an
unordered set of operations, based on a given set of heuristics.
The achievability proofs constructed for the deferred deci-
sions addressed by these completors are incorporated into the
explanations supporting the learned plan. Thus the achievab-
ility conditions guaranteeing the existence of a completion
are also in the leamed plan. Provided these conditions, along
with other preconditions, are satisfied in future instances, a
completion is guaranteed to be found for the incomplete plan
yielded by the learned general plan.
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IMPLEMENTATION

A simple scheduling domain theory has been constructed to
compare the performance of acompletable scheduling system
with that of a purely classical scheduling system as well as a
purely reactive scheduling system. The domain involves a
single machine which can be set up in various ways, each set—
up of which is capable of performing some set of tasks. The
same task may take different processing times on different
set-ups. Furthermore, there is a set-up cost involved in
changing set-ups. A job consists of a partially ardered set of
tasks, and a scheduling problem involves a set of independent
Jjobs. Initially, the only ordering constraints between tasks are
based on deadlines. However, additional precedence con-
straints may be imposed between the tasks of a job if the a pri-
cori planning module of the system determines that one task is
needed toestablish the preconditions for ancther task. Uncer-
tainty enters into the picture through an unknown initial sta-
te—i.e. the system does not know a priori which set—up will
be on the machine when it starts executing its plan, Finally,
the goodness of a schedule is measured by the length of time
‘tdken by the system to finish a set of jobs.

Preliminary results show that a completable system’s abil-
ity toadapt tovarying initial states enables it to construct more
efficient plans/schedules than a classical scheduling, which
commits itself tospecific set-ups and complete task orderings
prior to execution. Furthermore, the completable system
needs less time both to learn a general completable schedule
as well as construct a specific completable schedule, although
it does incur the additional cost of runtime plan completion.
The completable system is also able to construct more effi-
cient plans than a reactive system because it is more focused
in its search for an applicable action, having determined as
many precedence constraints between tasks as it can prior to
execution. Although both use the same heuristics for choos-
ing between multiple applicable actions, the reactive system
has the additional burden of sorting out precedence relations
between tasks during execution. Furthermore, although the
completable system initially needs to construct a completable
schedule, the use of learning helps reduce the a priori planning
cost it incurs over the reactive scheduler. We are currently
running experiments to gather more data about the perform-
ance of the three approaches given different distributions and
different machine/set-up/task—processing profiles. The re-
sults are expected tohelp identify particular domain and prob-
lem characteristics which favor the different approaches.

SUMMARY AND CONCLUSIONS

This work integrates planning—the determination of an or-
dered set of tasks—and scheduling—the assignment of those
taskstoresource—through completable plans. Because com-
pletable plans are incomplete, additional planning is neces-
sary during execution, when scheduling has beguntodispatch
the tasks. Thus, this work differs from reactive approaches,
such as those discussed in [Ow88, Prosser89, Smith90, Zwe-
ben90], where planning is separated from scheduling, and the
main approach to uncertainty in the environment is to replan
when the constraints of the original plan are violated. While
replanning is a valuable tool which any real system will even-



tually need, our work first focuses on constructing plans
which are as flexible as possible tominimize the need for fail-
ure recovery. In this sense, it is similar to ideas presented in
[Drummond90, Martin90). Drummond and Bresina present
an algorithm for maximizing the probability of goal satisfac-
tion in the case of actions with different possible outcomes,
which is one of the problems the canditionals in completable
scheduling address. Martin and Allen also prove the achiev-
ability of goals deferred tothe reactive planner, but they doso
using empirical methods, in contrast tothe explanation—-based
methods we use. Completable scheduling may alsobe viewed
asashallow hierarchical planner, where runtime decisions are
at the lowest level. However, unlike other hierarchical plan-
ners and schedulers, such as ABSTRIPS [Sacerdoti74),
MOLGEN ([Stefik81), and ISIS [Fox84], a completable
scheduling system usesthe achievability constraint to guaran-
tee completability at lower levels. The ordered monotonic
hierarchies of ALPINE [Knoblock90] are a similar idea. The
difference is that ALPINE performs abstraction based on the
deletion of literals, while in proving achievability complet-
able scheduling uses explicitly, more general or abstract
knowledge regarding the deferred goals and their properties.

The idea of deferred decisions is not anovel ane—the least
commitment principle is a basic foundation of nonlinear plan-
ning, for example. What completable scheduling does is ex-
tend the least commitment principle to execution time and in
doing so, achieving a well-founded integration of planning
and scheduling. Unlike other reactive approaches, in which
all decisions are subject to deferment, in completable sched-
uling only achievable decisions may be deferred. This has
two main benefits. The first is that the cost of dynamic deci-
sion-making is minimized, since only some goals must be
planned for and scheduled during execution. The second is
that the robustness and flexibility afforded by reactivity is
gained without losing the goal-directedness and guarantees
of success afforded by a priori planning. Additionally,the use
of contingent EBL enables a completable scheduling system
toimprove its performance through experience. By learning
general completable schedules from example, the system can
amortize the cost of constructing a completable schedule over
the number of times the learned general schedule is applied
in future instances as well as reduce the planning cost incurred
by the system’s a priori planning module.
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