
-18 85 ,
Completable Scheduling: An Integrated Approach to Planning and Scheduling

" Melinda 1". Gervasio and Gerald F. DeJong

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

405 N. Mathews Ave., Urbana, IL 61801

gervasio@_.uiuc.edu

/

Abstract

Theplanningproblemhas tradifionallybeentreat_dseperately
fromtheschedulingproblem. However,asmorerealisticdo-
mainsaretackled,it becomesevident that the problemof de-
cidingon anorderedsetof tasksto achievea setofguals cannot
betreatedindependentlyof the problemof actuallyallocating
resourcesto the tasks. Doing so wouldresult in losing the ro-
bustnessandflexFoilityneeded to deal with imperfectlymod-
eled doma_. Completable s_heduling is an approachwhich
integrates the two problems by allowing an a priori planning
module to defer pa_icular planning decisions, and conse-

quently the associatedschedulingdecisions, until execution
time. This allows a completableschedulingsystemto maxi-
mize plan flexibility by allowing nmtime informationto be
takeninto considerationwhen makingplanningand schedul-
ingdecisions. Furthermore,throughthe criterionof achievab-
ility placed on deferreddecisions, a completable scheduling
system is able to retain much of the goal--directednessand
guaranteesof achievementaffordedby a prioriplanning. The
completable scheduling approachis furtherenhancedby the
use of contingentexplanation-basedlearning,whichenables
acompletablescheduling systemto learngeneralcompletable
plans fromexample andimprove itsperformance throughex-
perience. Initialexperimental results show that completable
scheduling outperforms classical scheduling as well as pure
reactive scheduling in a simpleschedulingdomain.

Introduction

The planning problem hastraditionally been treated separate-
ly from the scheduling problem. Planning deals with the de-
termination of an ordered set of actions for achieving a set of
goals. In the context of scheduling domains, planning deals
with determining an ordered set of tasks for a set of jobs. In
contrast, scheduling deals with the actual assignment of tasks
to machines and is generally concerned more with finding the
best of several alternative task-machine assignments than
with f'mding a particular task-machine assignment. As more
realistic scheduling domains have been addressed, however,
it has become apparent that planning and scheduling cannot
be treated independently. The cornplexity of real-worlffdo-
mains makes perfect characterizations difficult to construct
and often unwieldy. To this end, researchers in beth planning
andschedulinghaveinvestigated reactive approachesWhich

allow for decision-making during execution [Agte87, Fir-
by87, Kaclblingg8, Muscettola90, Ow88, Prosser89].

However, the classical approach of first doing planning and
then scheduling still remains a problem. Consider giving a
classical system in a process planning domain the job of man-

dcjong@cs.uiuc.cdu

ufacturingaparticularpart.Itsplannermustdecideapriori

onanorderedsetofactions or operationswhichwillresultin
theconversion of theraw materialinto thedesiredproduct.
Itsscheduleristhengiventhe responsibilityofactuallyallo-

caring resources and carrying out the operations on the ma-
chines. However, because the planner commits the system to
aparticularsetofoperations,theschedulermay not execute
thebestplan.Forexample,theplannermay notbe ableto
guaranteethatthecfficientnew millingmachinewillbeavail-

ableandsochoosetheolder,slowerone.However,duringex-
ecution,the more efficient machine may turn out to be avail-
able, but the scheduler does not have the option to alter the
plan. Furthermore, an over--constrained classical plan may
prevent quick fixes to unpredictable runtime situations, For
example, a chosen drill bit may turn out robe unavailable, thus
rendering invalid those subsequent actions involving a cor_-
spondingly sized bolt and wrench. A simple fix would be to
use a different drill bit, and switch to the appropriately sized
bolt and wrench, but a scheduler with a completely-deter-
mined plan does not have this capability.

A purely reactive approach, with no a priori planning, has
its own problems. Most manufacturing domains are fairly
well-behaved; there is much informau'.on available a priori
and fairly accurate predictions can be made about the behav-
ior of the world under particular circumstances. A putely
reactive approach which performs no projection cannot take
advantage of this information to constrain its actions and pre-
vent thrashing. With the planning problem and the scheduling
problem combined, the runtime decision-making problem
also becomes a larger and more complex one.

This research began as an attempt to address the problems
with classical, a priori planning and pure reactivity. In partic-
ular, completable planning was developed as an approach
which combined the goal-directedness and provably correct
plans of classical planning with the flexibility and ability to
utilize nmtime information afforded by reactive planning.
This enabled a completable planner to more efficiently deal
with the problems arising from imperfect a priori information
while still retaining the benefits of planning beforehand in rel-
atively well-behaved environments. More recently, we have
been investigating scheduling, and we have found that many
of the techniques originally developed as part of the complet-
able approach to planning are also useful for solving some of
the problems which arise fron scheduling in realistic do-

where perfect a priori information about the environ-

ment is unavailable. For example, in the scheduling scenario
above, a completable scheduling system could defer the deci-

122



l_-----a

w

k_

sion of which milling machine to use as well as the choice of
bit, bolt, and wrench sizes. During execution, it can then use
additionalinformationregardingresourceavailabilityto ad-

dressthede.fcrredpian_n'gdecisionsandmaketheassociated
__hedulingdecisionsaswell.

Inthispaper,we presentanintegratedapproachtoplanning

andschedulingcalledcanplctablcscheduling.We willfLrSt

giveanoverviewofthemainideasbehindcctnplctableplan-
ning,andthendiscusstheextensiontoscheduling.Wc will

thendiscusshow completableschedulesarclearnedthrough
an explanation--basedlearningstrategycalledcontingent

EBL. Finally,we willbrieflydiscusstheimplementation,in-
cludingsomepreliminaryresultsandongoingexperiments.

COMPLETABLE SCHEDULING

Overview ofCompletable Planning

Incompletableplanning[Gcrvasio90a,C-ervasio90b,Gerva-

sio9!], a classical. planner is augmented with a reactive com-
poneat which provides it with the ability to defer planning de-
cisions until execution time. As an augmented classical
planning approach, canpletable planning retains the advan-
tages of classical planning while buying into the advantages
provided by reactivity. From classical planning, completable
planning borrows the ability to construct provably--correct
plansfor providing goal--direc_ behavior. From reactive
planning, R borrows planning flexibility and the ability to uti-
lize nmtime information in making planning decisions. Com-
pletable planning achieves the integration through the achiev-
ability criterion, which requires every deferred goal to be
proven achievable. Proving achicvability requires proving
that there exists a plan which will achieve the goal. Our re-
search has shown that proving the existence of a plan does na

' necessarily entail determining the plan itself, andthe intuition
isthatprovingachievabilityrequiresmuch simplerandmore

readilyavailableaprioriknowledgethanfull-blownplan-
ning.A complctablcplanneristhusabletoconstructpro-
vably-ccrrea plans in spite of incomplete a priori informa-
tion, and in doing so provide goal--dircctedness to its reactive

component while allowing itself todefer decisions and Utilize
runtime information in addressing deferred goals.

Deferring Decisions

The deferment of scheduling d_isions is'apowerful tool in

d.ealing with imperfect a priori information. The complexity
of re_-world domains makes it difficult to construct perfect
models. Even when perfect models exist, their use often ex-
ceeds reasonable computational bounds. A realistic schedul-
ing system is thus left to contend with imperfect knowledge.
There _ four types of incompleteness which can result from
using classical planning techniques ou imperfect information.

First, aschedule may be incomplete due toan unspecifmblc
parametersetting.Withthelackofafree--grainedandtracta-

bleworldmodel,aschedulingsystemmay notbeabletode-
terminepreciseparametersettingsapriori.Forexample,the

parametersofanoperationmay bedependentontheproper-

ticsofaparticularobject,whichmay na beknown priorto

123

execution. In attaching twopans using a bolt, all thata system
may know is that itwill be given a bolt of some size, but it may
not know precisely what size. However, provided it has ac-
cess to differently--sized bitsandwrenches,it can planadrill-
ing operation followed by a bolting operation without speci-
fying the precise bit and wrench to use. During execution,
when it is given the Ix/t, it can then determine the appropriate
values for bit size and wrench size. Complctable scheduling
allows the useofconjecturedvariablesto act as placcholders
forunspecifiedparametersettingsprovidedachievability
proofscanbeconstructedfortheireventual instantiation. By
allowingdeferredparametersettings,completableschedul-

ingenablesa systemtobah planaheadandyetremainflex-
ibleenoughtodealwithsome uncertainty.

Second,aschedulemay beincompleteduetoanundetcr-

mlnablcnumberofiterations.An imperfectworldmodelmay
includeincompletecharacterizationsofoperationsandtheir

effects.Consequently,for an action thatrequiresrepetitionto
achievesome goal,theprecisenumberofiterationsneeded

may notbedeterminablepriortoe,xecution.Forexample,the

depthtowhichamillingoperationcutsthroughapartisde-
pendentonthefacecutterused.Priortoexecutiou,asystem

may notknow whichfacecutterwillbesetupcathemachine.
However,itknowsthatregardlessofwhichfacecutterisused,

thedesiredcutcanbeachievedbysimplyrepeatingthemill-
ingoperationasmany timesasnecessary.By nottyingitself

toaparticularfacecutterandcomequentlyaparticularnum-
berofiterations,duringexecutionthesystemcanchooseto

usethecurrentset-upandsavethecostofchangingset-ups,

oritcanelecttochangetoamoreefficientset-up.Complct-
able scheduling permits the deferment of iteration decisions
provided incremental progress which converges to the goal
can beproven. Through this deferment, acompletable system
can use imperfect operation descriptions as well as make opti-
mizatiom to a schedule based on nmtime information.

Third, a schedule may be incomplete due to an unidentifi-
able operation choice or task-machine assignment. This case
arises when there are multiple ways of achieving the same
goal from different states and the system lacks the necessary
apriori information for identifying which particular state will
be reached. This case also arises when there are multiple ways
of achieving a goal, with different situatious resulting in dif-
ferent preferences among the various alternatives, and the
systemdoesnotknowaprioriwhichsituationwillbereached.

Forexample,inplanningtoshapeanobject,asystemmight
usesaneorallofvarionscuttingoperations,suchasmilling,

planing, sawing, or _ding, _ethc/there are several possi-
ble states requiring different operations ormultiple applicable
operations with unknown preferences, a system can use addi-
tional runtime information to make a mac-informed opera-
tion choice. Completable scheduling allows a system to defer
operation choice provided it can prove that there exists a way

to reach the next state rega/-dless of Which of the possible
states is reached. This defermem is useful for two reasons.
Fh'st, it enables a system to usethe same schedule to achieve

a goal from any of several different states. Second, it allows
a system to apply preferences to a set of possible operations
using more complete and accurate runtime information.

-, , = -, : = ==.=, ,



Fourth, a schedule may be incomplete due to an unorder-
able set of opexatious. Imperfect a priori information may re-
sult in insufficient constraints for completely ordering a set of
cpengions. For examp!e, in the construction of twoparts, the
only precedence constraints may be between the milling,
drilling, and tapplng cpemfic_ for each pan--i.e, the opera-
tions for the different pans can be ordered in any way. De-
pendingupon aprioriknown factorssuchasthepartsin-

volved and the difficulty of changing set-ups as well as a
prioriunknownfactorssuchastheinitialset-up andmachine
availability,particular orderings will be more desirable than
others. By deferring the decision until all the factors are
known, a system can utilize runtime information to make de-
cisions for more optimal orderings. Completable scheduling
permits the deferment of ordering decisions provided the dif-
fcw.nt orderings areall capable of achieving the goal. In doing
so, a completable planner can utilize nmtime infccmation in
making more-informed orderingdecisicm for an uncon-
strainedset of actions.

Proving Achlevability

While imperfect apriori information is the primary reason for
deferring decisions, achievability is the primary criteri_ for
deferment in ccmpletable scheduling. By requiring thata def-
e.n'edgoal be proven achievable, completable scheduling en-
ables the cc_-trucfion of incomplete yet provably-correct
plans. Previous work on achievability involved Finding
proofs for the existence c_ plans to achieve deferred goals.
Achievability proofs for defen'ed parameter settings and
number of itergi'onS are disc_u:sed in [Gervasiog0a, Gerva-
sio_b], and for deferred operator choice in [Gervasiogl]. In
[Gervasio91], ccxnpletable planning was also extended to
probabilistic domains by relaxing the original criterion of ab-
solute achievability to probable achievability.

Scheduling domains give rise to furthernew issues in ach-
ievabKity. In planning, the main focus is finding a plan, or se-
quence c_actkms, which achieves the goal from a given
state. In scheduling, the _ce of seve_ possible sched-
ulesis taken as a given, and the focus is choosing one from
among them using some set of preferencecriteria,maximiz-
ing particular performance measures. Examples of perform-
ance goals are meeting deadlines and minimizing idle time.
Thus, simply defining a goal to be achievable if there exists
aplan for it is insufficient for scheduling. Achtevability must
also be related to the idea of optimization and relative prefer-
ences between possible catrses of action. Forexample, prov-
ing the achievability ct the goalassociat_l with _ _oxdered
setofactionsisimplicitinthecc_tructionofa nonlinear
plan--i.e,actionsareleftunorderediftherearenoconstraints

requiringprecedencerelationsbetweenthem.Thusthereex-
istsaplanforachievingthegonLHowever,thereistheinter-

estingissueofdecidingonacompleteorderingduringexecu-

tion.This involves seeking out additional information for
evaluating the different options as well as carrying out the op-
erations themselves. In tying the concept of achievability to
optimization, we can also better investigate a primary motiva-
tion for combining classical and reactive techniques: the abil-
ity to utilize runtime information in planning. Goal-directed,

robust behavior in the face of uncertainty is one reason for
augmenting a classical planner with reactive abilities. How-
ever, another reason to integrate the two approaches, is to take
advantage cf the wealth of information which becomes avail-
able at runtime. This additional information facilitates plan-

ning by helping to focus the search for an appropriate action.

LFARNING COMPLETABLE SCHEDULES

Explanation-based learning [DeJong86,Mitchell86]has
been demonstrated to be useful in improving the performance
cf various planulng systems [Bennettg0, Chien89, Fikes72,
Hammond86, Minton85], and in [Gervasio90a, Gervasio91 ]
we present an explanation--based learning strategy called
contingent EBL for learning conpletable plans. Learning
completable schedules basically involves learning to distin-
guish between a priori planning decisions and decisions
which have tobe made or are better made during execution.
Learning when to defer decisi_ involves f_t identifying
the defened decision, then constructing an achievability
proof for the associated defen-ed goal. Then a completor for
making the deferred decision during execution must be incor-
IXrated into the learned general plan.

Identifying Deferred Decisions

A maindifference between classicalplans andcompletable

plansistheexistence of deferred decisionsincompletable
plans.Inconstructinganexplanationfor how agiventraining

exampleachievesatargetgoal,anEBL systemmustexplain
how each action is chosenfor execution. In planning, this
usuallymeansverifying thatprevions actions achievethepre-
conditionsnecessary for the execution of an action. However,
with the addition d reactive abilitiesand the option to utilize
runtime information, a system needs to distinguish between
a priori satisfied preconditions and nmtime--verified precon-
ditions. Oursolution is to allow the system to distinguish be-
tween apriori infccmation and runtime--gathered information
andto prefera classical proof of correctness to an explanation
_" achievability. Thus, in explaining how an acticm is chosen
for execution, a system fh'stattempts to explain its pr_ondi-
tions with a priori available information. If this is unsucces-
sful, then the action being explained is tagged as a potential
deferred decision, and the system attempts to construct an
achievability explanation for the precondition. Only ff it is
successfulisthelearningprocessallowedtocontinue.The fi-
nalexplanationwillthuscontaintheidentifieddeferreddeci-

sionsaswellastheirsupportingachievabilityexplanations.
Tyingtheconceptcfachievabilitytooptimizafionaddsfur-

therconcerns.An explanationofcxecutabilityisno longer

enough.Explanationsforpreferencesmay alsoneedtobe
constructed,andaswithotherdeferreddecisions,theasso-

ciatedruntimeverifiedconditionsneedtobe distinguished
fran a priori satisfied conditions. As with proofs of ca, rect-
ness and explanations of achievability, explanations of prefer-
ences may also be constructed in standard EBL fashion.

Constructing Achlevability Proofs

To construct provably-conect plans, a completable planner
mustconstructachievabilityproc£sforthedeferredgoals of

124



£

--=

w

w

LL"

its incomplete plans. While the mechanics of constructing
pro_s of e(xrectness vs. proofs of achievability are essential-
ly the same--bah use standardEBL on a given domain theo-

ry--there are some requLrementsneeded for a domain theory
to be used in proving achievability.

There arefonr types of deferred decisions and each requires
particular kinds of infommtion for proving achievability.
First, deferred parameter settings must be represented, and
this is done using conjectured variables. These variables may

: only be introduced in the context _the rules used toconslruct
their _ponding achievability explanations, thus guaran-
teeing that every c_jectured variable in an explanation has
a supporting achievability proof. Second, a system must be
able to reason about the incremental progress achieved by a

-_ _.repeated action. This requires action characterizations to in-
i c!ude statem_ents _garding the changes made with respect to

some measurable quantity. This can then be Used to reason
: _iiabbut=progress towards-the goai.= _tiie]ncompietely

known situation requiring a deferred operator choice must be
represented in such a way that the system can reason about the
space of possibilities. Achievab_ty can then be measured in
terms of the coverage provided by the alternative actions over
this space. Finally, proving achievability with respect to an
unordered set of operations is implicit in the absence of prece-
dence constraints between the operations, which means that
any of the possible total ordcrings will achieve the goal.

The secc_l aspect of adaievability, optimality, also im-
poses certain requirements on the domain theory used to con-
struet explanations. The heuristics to be used in making dis-
patching or scheduling decisions must be built in to the
d_ theory. Thee heuristics can theft be used bah for

constructing a priori explanations and making runtime deci-
sions. In explaining particular decisions made in a training
example, a system can then constract explanations incorpo-
rating dae hexes and learn general completable plans
which will employ the heuristics in future applications.

Incorporating Completors

The final step in learning how to constructa completable
schedule isto incorporatecompletion stepsinto thelearned
general plan. There are fonr types of completors correspond-
ing to the four different types of deferred decision. The first,
amonitor,f'mdsavaluetorcplaceaconjecturedvariable--i.e.
ff determines a specific parameter setting. The second, a re-
peat loop, repeatedly executes an action until aparticularexit
condition, the deferred goal, is reached. The third, a condi-
tional, evaluates the current state and determines an appropri-
ateactionbasedonwhichconditionsaresatisfied. Finally,the

fourth,a dispatcher,determinesa completeorderingforan
unordcredsetofoperations,basedonagivensetofheuristics.

The achievabilityproofsconstructedforthedeferreddeci-
sionsaddressedbythesecompletorsareincorporatedintothe

explanationssupportingthelearnedplan.Thustheachievab-

ilityconditionsguaranteeingtheexistenceofa completion

arealsointhelearnedplan.Providedtheseconditions,along
wi_ ocher preconditions, are satisfied in furore instances, a
completion is guaranteed to be found for the incomplete plan
yielded by the learned general plan.

IMPLEMENTATION

A simpleschedulingdomain theory has been constructed to
comparcthepcrformanccofacompletableschedulingsystem

withthatofapurelyclassicalschedulingsystemaswellasa
purely reactive schedulingsystem. The domain involves a

singlemachinewhich can be set up in various ways, each set-
up ofwhichiscapableofperformingsane set of tasks. The

same task may take diffaeat processing times on different
set-ups. Furthermore, there is a set-up cost involved in
changingset-ups.Ajobconsists of apartiallyorderedset of
tasks,andaschedulingprobleminvolvesasetofindependent

jobs. Initially,the_ly ordering constraints betweentasksare
basedon deadlines.However,additionalprecedencecon-

straintsmay beimposedbetween thetasksofajobifthea pri-
ori planningmoduleofthesystemdeterminesthatonetaskis
neededtoestablishtbepreconditionsforanothertask.Uncer-

taintyenters into the picture through an unknown initial sta-
te.--i.e, the system does not know a priori which set-up will
be on the machine when it starts executing its plan. Finally,
the goodness of a schedule is measured by the length of time
taken by the system to f'mish a set of jobs.

Preliminary results show that a completable system's abil-
ity to adapt tovarying initial states enables it to construct more
efficient plans/schedules than a classical scheduling, which
commits itself to specific set-ups and complete task orderings
prior to execution. Furthermore, the completable system
needs less time txXh to learn a general completable schedule
as well as construct a specific completable schedule, although
it does incur the additional cost of nmtime plan completion.
The completable system is also able to construct more effi-
ciem plans than a reactive system because it is more focused
in its search for an applicable action, having determined as
many precedence constraints between tasks as it can prior to
execution.Althoughbah usethesameheuristicsfor choos-
ingbetweenmultipleapplicableaction_,thereactivesystem

hastheadditionalburdenofsc_'g outprecedencerelations
baw_tasks dm'ingexecution.Furthermore,althoughthe

complctablesysteminitiallyneedstoconstructacompletablc

schcdulc,theuseof!cam_"ghelpsreducetheaprioriplanning
costitincursoverthereactivescheduler.Wc arecurrently
runningexperimentstogathermoredataabouttheperform-

anceofthethreeapproachesgivendifferentdistributionsand
differentmachine/set-up/task--processingprofiles.The re-

sultsareexpectedtohelpidentifyparticulardomainandprob-

lemcharacteristicswhichfavorthedifferentapproaches.

SUMMARY AND CONCLUSIONS

Thiswczkintegratesplanning---thedeterminationofanor-

deredset oflasks---and scheduling--the assignment of those
tasks to res_gh completable plans. Becanse com-
pletable plans are incomplete, additional planning is neces-
sary during execution, when scheduling has begun todispatch
the tasks. Thus, this work differs from reactive approaches,
suchasthosediscussedin[Ow88,Prosser89, Smithg0,Zwe-

beng0],whereplanningisseparatedfromscheduling,andthe

mainapproachtouncertaintyintheenvironmentistorcplan
when theconstraintsoftheoriginalplanarcviolated.While

rcplanningisavaluabletoolWhichanyrealsystemwilleven-

-- 125



tually need, our work fhst focuses on constructing plans

which are as flexible as possible to minimize the need for fail-

ure recovery. In this seuse, it Is similar to ideas presented in

[Dnunmondg0, _]. DrummondandBresinapresent
an algorithmfor maximizing the probabilityof goal satisfac-
tion in the case of actions with different possible outcomes,

which is one of the problems the conditionals in completabie

scheduling address. Martin and Allen also prove the achier-

ability of goals deferred to the reactive planner, but they do so

using empirical methods, in contrast tothe explanation-based

methods we use. Conpletable scheduling may also be viewed

as a shallow hierarchical planner, where runtime decisions are

at the lowest level. However, unlike other hierarchical plan-

nets and schedulers, such as ABSTRIPS [Sacerdoti74],

MOLGEN [Stefik81], and ISIS [Fox84], a cctnpletable

scheduling system uses the achievability constraint toguaran-

tee completability at lower levels. The ordered monotonic

hierarchies of ALPINE [Knoblock90] are a similar idea. The

difference is that ALPINE performs abstraction based on the

deletion of literals, while in proving achievability cc_nplet-

able scheduling uses explicitl_,more general or abstract

knowledge regardingthe defened goals andtheirproperties.
The idea of deferred decisions is not a novel one--the least

commitmentprincipleis abasic foundationofnonlinearplan-
ning,for example. Whatccmpletableschedulingdoes is ex-
tendthe leastcorumitmentprincipleto execution timeandin
doing so, achieving a well-fonnded integration of planning
and scheduling. Unlike other reactive approaches, in which

all decisions are subject to deferment, in completable sched-

uling rely achievabiedecisions may be deferred. This has
two main benefits. The ftrst is that the cost of dynamic deci-

sion-making is minimized, since only some goals must be
planned for and scheduled during execution. The second is

that the robustnessand flexibility afforded by reactivity is
gained without losing the goal-directedness and guarantees

of success afforded by a priori planning. Additionally, the use

of contingent EBL enables a completable scheduling system

to improve its performance through experience. By learning

general completable schedules from example, the system can

amortize the cost of constructing a completable schedule over

the numberof times the learnedgeneral schedule is applied
in futureinstancesas weUas reducetheplanningcost incurred
by the system's a prioriplanningmodule.

Acknowledgments. Thisresearchwassupported by theOf-
rice of Naval Research under grants N-00014--86-K-0309
and N--00014-91-J-1563. We would also like to thank Scott

Bennett, Steve Chien, JonGratch, and DanOblinger formany
interesting discussions, as well as Michael Shaw, for intro-

ducing us tothe domain of prccess planning and scheduling.

References

[Agre87] P. Age and D. Chapman, "Pengi: An Implementation of
a Theory of Activity," Proceedings of the National Conference oa
Artificial Intelligence, Seattle, WA, July 1987, pp. 268--277.

[Bennett90] S. Bennett, "Reducing, Real-world Failures of Ap-
proximate Explanatlon-based Rules, Proceedings Of the Seventh
International Conference on Machine Learning, Austin, TX, 1990,

. 226-234.
Often89] S.A. Chien, Using and Refining Simplificatiens:

Explanation-based Learning of Plansin Intractable Domains, Pro-

ceeding s of The Eleventh International Joint Conference on Artifi-
ciallntelligence, Detroit, MI, August 1989, pp. 590-595.
[DeJong86] G. E DeJongand R. J. Mooney,'_.xplanati_-Based
Learning: An Alternative V'tew," Machine Learaing I, 2 (April
1986), pp. 145-176. (Also appears as TechnicAl Report UILU--
ENG-86-2208, AI Research Group, Coordinated Science Labora-

tory, University of Illinois at Urbana--_ampaijgn.)
_dg01 M: ..Drun_mon...d and J. Bresma, "Anytime Syn-

thetic Projection: Maximizm' gthe ProbabilityofGoal Satisfaction,"
Proceedings of the Eighth National Conference on Artificial lntelli-

nc_, Boston, MA, August 1990, pp. 138-144.
72] R. E. Ftkes, P. E. Hart and N. J. N'dsson,"Leaming and Ex-

ecuting Genemliz_ Robot Plans," Artificial Intelligence 3, 4
(1972),pp.251-288.
[Firby87] R. J. F_u_o,y_"An Investigation into Reactive Planning in
Complex Doma.ins, ProceedingsoftheNationalConferenceonAv.
tificial Intelligence, Seattle, WA., July 1987, pp. 202-206.
[Fox84] M S. Fox and S. F. Smith, "ISIS---a knowledge-based
system for factory scheduling," Expert Systems 1, 1 (July 1984),.
[Gervasio90a] M. T. Gervasio, "I._rnJng General Completable
ReactivePlms,"Proceedings oftheEighthNational Conferenceon

Artificiallntelligence,Boston,MA, Au_,ust1990,pp. 1016-1021.

[Gervasiog0b]M. T. Gervasio,_I._tming,Completable Reactive
Plans Through Achievability Proofs,' Technical Report
UIUCDCS-R-90-1605, Department of Co mpmer Science, Univer-
sity of Illinois, Urbana, IL, May 1990.

[Gervasio91] M T. C,ervasio snd G. E DeJong, "Learning Prob-
ably Completable Plms," Technical Repc_
UIUCIX2S-R-91-1686, Department of Computer Science, Univer-
sity of Elinois, Urbana, IL, April 1991.
[Hammond86]K. Hammond, "CHEF: A Model of Case-Based
Planning," Proceedings of the National Conference on Artificial In-
telligence, Philadelphia, PA, August 1986, pp. 267-271.

[Kaelb!_g88] L. P. Kaelbling,"Goals as Parallel Program Specifi-
cations, ProceedingsofTheSeventhNationalConferenceonArtifi-
ciallntelligence, Saint Paul, MN, August 1988, pp. 60-65.
[Knoblock90] C. Knoblock, "Learning Abstraction I-fiera_hies for
ProblemSolving,"Proceedings of the EightNational Conference on
Artificial Intelligence, Boston, MA, 1990, pp. 923-928.
[Martln90] N.G. Martin and J. E Allen, "Combining Reactive
and Strategic Planning through Decomposition Abstraction," Pro-
ceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, San Diego, CA, November 1990, pp.
137-143.

[_fmton85] S. Minton, "Selectively Generalizing Plans for Pro-
blem-Solving,' Proceedings of the Ninth International Joint Con-

ference on Artificial Intelligence, Los Angeles, August 1985, pp.
596-599.

[M]u_hel186] T.M. Mitchell, R. Keller andS. Kedar-Cabelli,"Ex-

planation-Based Generalization: A Unifying View," Mach/ne
Lew-nin& 1, 1 (January 1986), pp. 47-80.
[Muscettola90] N. Muscettola and S. E Smith, 'ffntegrating
P¢lms__n,_gand Schedulin_ To Solve Space NEssion Scheduling Prob-

, Proceedings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, San Diego, CA, November
1990,pp. 220-230.
[Ow88] P.S. Ow, S. Smith and A. Thiriez, "Reactive Plan Revi-
ion," ProceedingsoftheSeventh NationaIConferenceon Artificial

lligence, St. Paul MN, August 1988, pp. 77-82.
[Prossor89] P. Prosse_, "A Reactive Scheduling Agent," Pro.
ceeding 8 of the Eleventh International Joint Conference on Artificial

Intelligence, Detroit, MI, August 1989, pp. 1004-1009.
[Sacerdoti74] E. Sacerdoti, '?lanning m a Hierarchy of Abstrac-
tion Spaces," Artificial lntelligence 5, (1974), pp. 115-135.
[Smithg0] S. E Smith, P. S. Ow, N. Muscettola, J. Potvin and D.
C. Matthys, "OPIS: An Integrated Framework for Generating and
Revising Factory Schedules" Proceedings of the Workshop on lnno-
vative Approaches to Planning, Scheduling and Control, San Diego,
CA, November 1990, pp. 497-507.

[Stefik81] M. Stet',k, "Planning and Metaplanning (MOLGEN:

Part 2)," Artificiallntelligence 16, 2 (1981), pp. 141=170.
[Zweben90] M_ Zweben, M Deal and R. Gargan, Anytime Re-
scheduling," Proceedings of the Workshop on Innovative Ap-
proaches to Planning,Scheduling and Control,San Diego, CA, No-
vember 1990, pp. 251-259.

126


