
/

/

-18G8

Combining Constraint Satisfaction and Local Improvement Algorithms to
Construct Anaesthetists' Rotas

Barbara M. Smith Sean Bennett

Division of Artificial Intelligence

School of Computer Studies

University of Leeds

Leeds LS2 9JT, U.K. /"
J

/
Abstract

A system is described which has been built to com-
pile weeldy tutus for the anaesthetists in a large hospi-
tal. The rots compilation problem is an optimization
problem (the number o-f tas_ which cannot be assigned
to an anaesthetist must be minimized) and has been
.formulated as a constraint satisfaction problem.

The .forward cheel_ing algorithm is used Xo find a
.feasible rota, but because o/ the size o/ the problem, iX
cannot find an optimal (or even a good enough) so-
lution in an acceptable time. Instead, an algorithm
has been devised which mates local improvements to a
.feasible solution. The algorithm mates use o� the con-
attaints as ezpressed in the CSP to ensure that.feasibil-
ity is maintained, and produces reef good rotas which
are being used by the hospflal involved in the project.

It is argued that .formulation as a constraint sat-
isfaction problem ma_/ be a good approach to solving
discrete optimization problems, even if the resulting
CSP is too large to be solved ezactly in an acceptable
time. A CSP algorithm may be able toproduee a feasi-
ble solution which can then be improved, giving a good,
if not provably optimal, solution.

The Rostering Problem

Leeds General Infirmary (L.G.I.)is s large teaching
hospital in the centre of Leeds. The anaesthetics de-
partment consists of 19 consultant anaesthetists and
24 other full-time anaesthetists in more junior grades,
who are referred to collectively as junior anaesthetists.
The junior grades are primarily training grades, and
part of the junior anaesthetists' training is to work
alongside s consultant anaesthetist. However, in the
U.K., junior anaesthetists also do some work on their
own. At the L.G.I., there is a set of operating lists,
referred to as junior lists, which are always covered
by junior anaesthetists working on their own. Junior
anaesthetists may also be required to cover consul-
rant lists on their own if the consultant is sway. The
consultants work the same pattern of operating lists
every week, but a weekly rots is required for the ju-
niors, showing what each will be doing in each of ten
weekly sessions (Monday to Friday, a.m. and p.m.).

Department of Anaesthetics

The General Infirmary at Leeds

Great George Street

Leeds LS1 3EX, U.K.

There are three grades of junior anaesthetist: Se-
nior Registrar (SR), Registrar and Senior House Offi-
cer (SH0), in descending order of seniority. The SRs
and half the Registrars are assigned for a month or
more at s time to a training block, which is a spe-
cialty such as paediatrics, in order to improve their
skills in that area. Most of the SRs work to a fixed
timetable in their own specialty for most or all of the
week, assistings consultant.The Registrarswho are
on a trainingblock should also work with the consul-
tant in theirtrainingspecialtyfor much of the week,
although they do not have a fixedtrainingtimetable.
The remaining Registrars are assigned to General Du-
ties, and are available to cover junior lists, stand in for
absent consultants and so on, for most of the week, as
are the training block Registrars when not involved in
training. The SHOs are not assigned to a particular
specialty, but are doing general training in the spe-
cialties not covered by the training blocks; the least
experienced SHOs should spend most of their time

accompanyin_ s consultant, while those with more ex-
perience can uo some of the junior lists on their own,
or stand in for an absent consultant.

One of the SRs is assigned to the 'General Du-
ties/Admin' block, and the administrative part of this
is to compile the weekly rots. The Admin SR spends
half a day a week compiling the rots for the following
week. Since each SR spends a maximum of six months
on this block, the Admin SR is only becoming expert
at compiling the rots by the time that the next person
takes over. The job therefore takes much more time
than it would tithe same person did it all the time; it is
also difficult to ensure consistency. On the other hand,
the person compiling the rots needs to be an experi-
enced anaesthetist, in order to know what specialties
different people can cope with on their own, and so
on. The Admin SR is also responsible for making any
adjustments to the rots after it has been compiled,
for instance if someone is ill, and needs to be able to
judge whether s particular operating list will be rela-
tively straightforward, or requires someone with con-
siderable experience in the specialty. Hence it is not
appropriate to entrust the compilation of the rots to
a clerk, but it was felt that a system which could pro-
duce the initial rots automatically, under the control

136

W

. i

_w?.J

m

of the Admin Sit, Would be of great benefit. It would
also allow more strategic questions to be explored, for
instance, how many anaesthetists of each grade are
required to cover the operating workload.

The rots varies from week to week, partly because
of the on-call rots. This is compiled separately, for a
month at a time, and shows for each night of the week,
and the weekend, five junior anaesthetists who are on
call to deal with emergency work, for instance in ob-
stetrics or the Intensive Care Unit. For Registrars and
SHOs, being on call st night governs what they do on
the immediately previous and following days. The rots
also varies because of staff absences, which result in
changes to the work that needs to be allocated in the
week. If an SR is away, in many cases the work that he
or she would have done has to be assigned to someone
else, preferably to the ltegistrar working in the same
specialty, if there is one. If a consultant is absent,
sometimes no action need be taken, for instance if an
SR would normally assist the consultant, and can take
responsibility for the list instead. Often, however, sju-

:. : nior anaesthetist who is c_apable of doing the list alone
must be found. When junior anaesthetists are absent,
the work to be done has to be shared amongst fewer
people; in some weeks the level of absences means that
several operating lists have to be cancelled. Compiling
the rota therefore means solving a different problem
each week: the work to be done varies LFrom week to
week, as do the personnel available to do it.

.......... 71fthe opportunities for Registrar and SH0 training
.... _re included, it is not possible to compile a weekly rots

which covers all the work, and the Admln $1_ tries to
strike a balance between covering as many operating
lists as possible and allowing adequate training. The
first priority, however, is to cover those lists where the
consultant is absent; the junior lists can, if necessary,
be left uncovered, in which case the list is cancelled,
and it is not essential that juniors should be assigned
to all the training lists available.

Compiling the llota

The first step in compiling the rots for a given
week (whether manually or by computer) is to record
the planned absences of each junior anaesthetist and
their predetermined assignments, i.e. those due to reg-

,_ _ ul_ co_tmen_ or to the on-call rots. This gives
a partly completed rots, the gaps showing where the

_" juniors are still available to do the remaining work.
The Admln SIt then needs to know which other oper-

" Sting lists need to be covered and which training lists
are available in that week, given the planned absences
of both consultants and juniors. This gives a set of
tasks to be done in each session of the week, together
with a set of people available to do them. In addition,
some anaesthetists must be assigned an half day off
during the week: normally, an afternoon off is taken
following a night on call, but if an anaesthetist is not
on call duringthe week, an afternoon off has still to be
Kss_gned. _A half day for the compilation of the next
rots must also be set aside for the Admin SR.

The rots compilation system extracts the set of

m

tasks to be done, and the junior anaesthetists avail-
able, from its basic information about the department,
which does not change from week to week, and from
data on absences and the on-call rots, which does need
to be input each week. The departmental data in-
cludes, for each consultant operating list, the action
to be taken if the consultant is away: various strate-
gies are available, for instance, to assign s specific ju-
nior anaesthetist if they are available, and failing that
one of the different grades of junior, listed in order of
preference.

Compiling the rots then consists of assigning an
anaesthetist to each task, taking into account the re-
quirements of the different tasks, e.g. some operating
lists require a particular grade of anaesthetist, some
training lists are only appropriate for the anaesthetist
training in that specialty, and so on. At the same
time, the additional afternoons off must be assigned.
The rots must be optimized, in the sense that the
number of tasks left unassigned must be minimized,
while a satisfactory balance is kept between training
and covering the junior lists.

The number of tasks to be done varies from week
to week, but is normally about 90-100, and the num-
ber of anaesthetists who can do each task averages
about 5.5. The number of anaesthetists who need to
be given a half day off is about 4 or 5. The size of the
problem can be reduced if we recognize that some of
the training lists, i.e. the general training lists which
are principally for SHOs, rather than the specialized
training lists attached to the training blocks, are of
much lower priority than other tasks. Acceptable ro-

tas can be compiled by assignin_ the other tasks first,
and then fitting the general training lists into the re-
maining gaps. This reduces rots compilation to two
separate problems, the second of which is trivial. The
first problem then has about 75 tasks to be assigned.

Constraint Satisfaction Problems

The constraint satisfaction problem has been dis-
cussed extensively in the Artificial Intelligence litera-
ture [see references]; it can be used as a formulation of
many problems arising in OIL In a constraint satisfac-
tion problem there are a number of variables, each of

which has s discrete set of possible values (its domain/.
There are also s number of constraint relations, speci-
fying which values are mutually compatible for various
subsets of the variables: for instance, the assignment
of an anaesthetist to a task is incompatible with the
assignment of the same anaesthetist to another task
in the same session. A solution to the constraint sat-
isfaction problem is an assignment of values to the
variables which satisfies the constraints.

Although the definition of the CSP does not distin-
guish between solutions, so that all assignments which
satisfy the constraints are equally acceptable, it is pos-
sible to represent optimization problems as CSPs. The
objective is represented as an additional constraint,
which changes each time s new solution is found. For
instance, in a minimization problem, the constraint
is that the value of the objective must be less that its

137

value in the best solution found so far (or, initially, less
than some very large number). This ensures that each
solution is better than the previous one, and when all
the solutions to the CSP have been found, the last one
will be optimal. A similar scheme for representing dis-
crete optimization problems as CSPs is described by
van Hentenryck [3].

In general, constraint satisfaction problems are NP-
complete, so that although several algorithms exist for
solving them ([2], [4]), they are not guaranteed to find
a solution in a reasonable time unless the problem
is small or has special structure. However, in many
cases there is a good chance of finding a feasible as-
signment quite quickly. Optimization problems, on
the other hand, will almost certainly suffer from the
exponential worst-case performance, since the search
cannot be terminated when the first feasible solution

is found. Despite this difficulty, it may still be possi-
ble use a constraint satisfaction formulation as a basis

for finding good solutions to optimization problems,
as demonstrated below.

Nadel [4] surveys the available algorithms for the
CSP, and compares their performance on some stan-
dard problems. One of the best algorithms in these ex-

eriments is the forward checking algorithm, described
y Haraiick and Elliott [2], and this algorithm is used

by the rota compilation system.

The R.ota Compilation Problem as a CSP

As mentioned earlier, the first stage in compiling
the rota is to record the predetermined assignments
and the planned absences for the week. The CSP for-
mulation will only be concerned with the problem of
assigning the remaining tasks to those anaesthetists
who are still available after this first stage.

The variables of the CSP are used to represent the
tasks to be assigned in the given week, and the domain
of each variable is the set of anaesthetists who can do
that task. In addition, there is a small number of vari-
ables which represent a half day off for an individual
anaesthetist. The domain of such a variable is the list
of sessions in which the anaesthetist could take a half
day off.

The domain of each task variable is arranged in pri-
ority order, with the best choice of junior anaesthetist
for the task appearing first. The forward checking al-
gorithm selects values from the domain in the order
in which they appear, and hence the anaesthetist ap-
pearing first in the list is the one most likely to be
•_ssigned, if available. Although ordering the domains
is not guaranteed to give the overall best allocation of
anaesthetists to tasks, it does in practice give accept-
able results.

In order to express the relative priorities of the dif-
ferent types of task, they are divided into three cate-
gories: essential, preference and optional. The essen-
tial tasks are those arising from consultant absences:
an anaesthetist must be assigned to each of these in
order to achieve a feasible solution. (It is extremely
unlikely that a situation could arise in practice where
consultant absences could not be covered.)

The preference tasks correspond to the junior lists
and the Registrar accompanied lists, i.e. those training
lists which allow a Registrar to accompany a consul-
taut anaesthetist in their assigned specialty. To allow
the algorithm to leave the preference tasks uncovered
if necessary, an extra value, NONE, is added as the
final element in the domain of each of the correspond-
ing variables. When this variable is considered by the
algorithm, this value can be selected, if all the anaes-
thetists who could do this task have been assigned to
something else.

It has been found that a satisfactory balance be-
tween covering the junior lists and assigning the Reg-
istrars to training lists in their own specialty can be
achieved by covering as many of the preference tasks as
possible, i.e. the number of preference tasks assigned
the value NONE should be minimized. This can be

done by using an additional constraint to represent
this objective, as described in section 3.

The final category is the optional tasks: these are
the training lists for the SHOs, in which they accom-
pany a consultant. These also have the value NONE
as the last element of their domain. SHOs can be

assigned to these tasks if there is nothing of higher
priority which they could do instead; to reflect this,
the optional tasks are assigned only after a satisfac-
tory assignment of the essential and preference tasks
has been found. The current state of the rota is then

fixed and the optional tasks are assigned to those ju-
nior anaesthetists who have not so far been al]ocated

to do anything in that session.
The constraints of the CSP firstly arise from the

fact that an anaesthetist cannot do two things at once,
so cannot be assigned to two task variables in the same
session, or to have a half day off at the same time
as doing a task. These constraints may be thought
of as general rostering constraints; similar constraints
expressing the fact that no-one can be assigned to do
two tasks at the same time will occur in any rota com-
pilation problem. The anaesthetists' system also has
a constraint representing the objective, as already de-
scribed.

In addition, there are other constraints reflecting
particular rostering rules used at the L.G.I., which
have in fact changed several times during the course of
the project. Currently, for instance, there is a rule that
Registrars who are on a training block can be taken
off training, and assigned to a junior list instead, at
most once during the week. Constraints of this kind
are likely to vary from hospital to hospital and, as
experience at the L.G.I. has shown, to change over
time. The system has therefore been designed in such
a way that constraints are easy to express.

Improving a Feasible Solution

Having set up the variables and their domains, the
forward checking algorithm is used to find an assign-
ment of the essential and preference tasks and the half-
day variables. Very little backtracking is required to
find a feasible assignment, because most variables do
not represent essential tasks and so can if necessary

138

L--

z

.... !

be assigned the value NONE, which, at this stage,
does not conflict with any other assignment. The al-
gorithm therefore finds a first feasible solution very
quickly. However, because of the size of the problem,
finding the optimum solution would take a very long
time. Often, finding any improvement to the first so-
lution takes far longer than would be acceptable.

It is possible that improvements in the way that
the forward checking algorithm is used might achieve a
sufficient increase in speed to allow an optimal solution
to be found. For instance, there are variable and value
orderingheuristics, such as those discussed by Nudel
[5] which can be expected to give significant improve-
ments in appropriate cases. Value ordering heuristics
cannot be used in this case because the original order-
ing of the domains must be preserved, and the vari-
ables with smallest domains cannot be assigned first,
as is Commonly advised, because they do not represent
tasks which are hard to assign, but rather the Regis-
trar training lists, which should not be given higher
priority than other tasks. It is still conceivable that
variable ordering rules based on problem knowledge
could be developed. However, rather than pursuing
this possibility, we have used the forward checking al-
gorithm only to produce a feasible solution, and looked
for ways of improving such a solution. This approach

roduces good results very quickly, and it seems un-
ely that an improved forward checking algorithm

would be able to do any better.
In order to improve on the best solution that the

forward checking algorithm can find quickly, an algo-
rithm has been devised that considers each uncovered
task in turn and looks for reassignments of related
tasks which win anow it to be covered. This local

improvement algorithm was developed through exam-
ining feasible but non-optimal rotas, and looking for
reassignments that would improve them.

Suppose that there is an uncovered task that we
want to try to find an assignment for. This is a vari-
able which has been assigned the value NONE. All the
anaesthetists in the variable's original domain must
have been assigned to do something else in this ses-
sion (otherwise the assignment of NONE would not
have been made) but it may be possible to free one of
these anaesthetists by reassigning the task that they
are currently assigned to (a swap), or by moving a half
day off from this session to another session (a move).

The following example (adapted from an actual
rota) shows the kind of swaps within a session that
can be made in order to improve the solution.

Variable Original Domain Auigned
ORTHO-TBAUMA- (1t-4 11-6 11-5 SHO-1 11-4

THU-AM SH_O-2 NONE)
CW-II-THU-AM (11-4 R-6 R-5 SHO-1 11-6

s o-2No)
OBS-THU-AM (11-5i%-4I%-6NONE) 11-5
GAKD_11-THU-AM (1t-5 NONE) NONE
PSU-I/A-THU-AM (1%-4R-6 R-5 NONE) NONE

The variables are shown in the order in which the

forward checking algorithm considers them, so that
the value assigned is the first remaining value in the
domain. (Values assigned to other variables represent-
ing tasksin this session have been omitted.) The two
uncovered operating lists in this Thursday morning
session (GARDNER and PSU-I/A) can be covered by
making use of SHO-1 and SHO-2 who are so far unas-
signed in this session. The simpler swap is to assign
the OItTHO-TRAUMA list to SHO-1, thus allowing
11-4 to do the PSU-I/A list. Covering the GAP, J)NE11
list entails a chain of two exchanges: SHO-2 takes the
CW-II list, 11-6 takes the OBS list, and 11-5 can then
do the GARDNE11 list.

A simple example of a move is to move an anaes-
thetist's half day off from a session where there is an
uncovered task that this anaesthetist could do to an-

other session where they have not been assigned to do
anything. More complicated changes involve a swap,
of the kind illustrated above, combined with a move.
This is done if moving a half day off would allow an un-
covered task to be done by the anaesthetist concerned,
and the swap has to be done to free the anaesthetist
in the session that the half day off is being moved to.

The local improvement algorithm considers each
uncovered task in turn in the current solution, and
for each anaesthetist in the original domain of the
corresponding variable, each of the above changes is
tried, starting with the simpler changes, until a change
which will allow the task to be covered is found, or
the variable's domain is exhausted. This procedure
ensures that the first value in the domain which can
he assigned to the task is found, thus observing the
preference ordering of the values.

In all cases, potential changes to the current solu-
tion are checkedagalnst the constraints, so that even
when new constraints are introduced _.g. an upper
limit on the number of junior lists a Kegistrar on a
training block can do in a week, as mentioned above),
the algorithm still produces a feasible solution.

The local improvement algorithm works through
the list of uncovered tasks once, and then presents the
resulting solution as the best that it can achieve. The
combination of swaps and moves seems to be adequate
to produce an optimal rota; so far, we have not been
able to see any further scope for reducing the number
of uncovered tasks in the rotas produced, except by
relaxing the constraints.

Producing the Rota

At this point, the rota win have several gaps, where
an anaesthetist has not been assigned to do anything.
The final st a_e in constructing the rota is to assign
the optional hsts to fill these gaps. The resulting rota
is then printed out, with a note of any remaining un-
covered junior lists.

The Admin $11 may still wish to make changes to
the rota before it is issued. This is partly because
there may be places in the rota where an anaesthetist
has not been found anything to do; since the workload
varies so much from week to week, there are often ses-
sions where there are fewer tasks than available anaes-

139

tbetists, as well as sessions in the same week where ses-
sions have to be left unassigned. The Admin SIt can
assign spare anaesthetists to give additional assistance
at operating lists which have alrsa_ly been covered.
Occasionally, when there are outstanding unassigned
tasks, the Admin SR may be able to relax the con-
straints in order to allow them to be covered. Even
when the system does not produce immediately us-
'able rotas, the remaining tidying-up takes only a few
minutes: the difficult part of the job has been done.

Alternative Approaches

Dhar and Ranganathan [1] describe a similar prob-
lem to rota compilation (that of assigning teaching fac-
ulty to courses) and compare an integer programming
formulation to an expert system. In their expert sys-
tem, production rules are used to express both prob-
lem solving knowledge and constraint knowledge. In
the rots compilation problem, however, expert prob-
lem solving knowledge is not easily available. The Ad-
rain SR changes every few months, so that there is not
usually sufficient time to develop any great expertise
and there is little opportunity to pass on experience
from one incumbent to the next; each person therefore
evolves their own method of rots compilation, based
largely on trial and error. It seemed best, therefore, to
use an algorithmic approach to constructing the rots
and to use the successive Admin SRs only as a source
of constraint knowledge.

There is scope, however, for making more use of
problem solving knowledge in rots compilation. For
instance, at present there is no attempt to identify
the session which will be most diiScult to cover and
to assign the tasks in that session first. Hitherto, this
has not been important because there has been lit-
tle interaction between the different sessions; the con-
straints are for the most part between tasks in the
same session. If the interaction between sessions in-

creased, then it could become important to use this
kind of problem-solving knowledge, by using it to di-
rect the order in which the forward checking algorithm
considers variables.

Results and Conclusions

The rots compilation system has been developed in
Common LISP on a Sun 3/160; it is now also run-
ning on a PC. It can produce a weekly rots within 30
minutes, including entering the required data, com-
pared with the half day allocated to compiling the
rots manually. The system has been producing good
quality rotas for the L.G.I. for over a year, and has
coped with changes in the rots compilation rules. We
are currently improving the user interface so that the
system can be used by hospital staff. In future, we in-
tend to investigate similar problems in other hospitals
and to extend the system to deal with them.

..... Apart from the fact that the system saves the Ad-
rain SR several hours work each week, with less risk
that a task will be forgotten, another benefit is that
it can be used to evaluate different policies, reflected
in different sets of constraints. A series of rotas which

would result from the different policies can be pro-
duced and compared, using real data on absences, etc.,
from past weeks. Hitherto, there has been no way of
evaluating the effects of proposed changes in policy.

A common approach in Operational Research to op-
timization problems which cannot be solved exactly
is to find (somehow) a feasible solution and then to
look for local improvements which will hopefully pro-
duce an acceptable solution. Incorporating the two
stages, of finding a feasible solution and then improv-
ing it, into the constraint satisfaction framework has
s number of benefits. First, constraint satisfaction
seems a natural way of formulating many discrete op-
timization problems; there is a close correspondence
between the variables and values of the CSP and prob-
lem entities. In OR approaches, on the other hand,
especially those based on mathematical programming
formulations, there may be a significant translation

ap between the original problem and its formulation.
econdly, since there are already CSP algorithms, a

means of finding a feasible solution is readily avail-
able: it is not necessary to write a special-purpose
algorithm.

Finally, the local improvement algorithm can make
use of the constraints, as expressed in the CSP formu-
lation, to ensure that any changes maintain feasibility.
This has been demonstrated in the rots compilation
system, when a new constraint has been introduced.
Adding a constraint to the CSP requires only a few
lines of LISP; the local improvement algorithm needs
no modification at all, since it merely checks any po-
tential changes against the new constraint. Hence,
building the local improvement algorithm within the
CSP framework gives a very flexible and easily modi-
fied system, which would be hard to achieve otherwise.
Although the system described here is very special-
ized, the general approach of finding a feasible solution
and then improving it, all within the CSP framework,
is one that might be applicable to many optimisation
problems in scheduling.

References

[1] V. Dhar and N. Ranganathan (1990) Integer Pro-
gramming vs. Expert Systems: An Experimental
Comparison, Communications o/the ACM 33,
323-336.

[2] R.M. Haralick and G.L. ElLiott (1980) Increasing
Tree Search Efficiency for Constraint Satisfaction
Problems, Artificial Intelligence, 14, 263-313.

[3] P. van Hentenryck (1989) ConJtraint 5aria�action
in Logic Programming, MIT Press.

[4] B.A. Nadel (1989) Constraint Satisfaction Algo-
rithms, Comput. In,ell. 5, 188-224.

[5] B.A. Nudel (1983) Consistent Labeling Problems
and their Algorithms: Expected Complexities
and Tbeory-Based Heuristics, Artificial Intelli-
gence 21, 135-178.

140

