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Introduction

The Job-Shop Scheduling Problem (JSSP) deals with
the allocation of resources over time to factory oper-
ations. Allocations are subject to various constraints
(e.g., production precedence relationships, factory ca-
pacity constraints, and limits on the allowable number
of machine setups) which must be satisfied for a sched-
ule to be valid.

The identification of constraint violations and the
monitoring of constraint threats plays a vital role in
schedule generation both in terms of 0') directing the
scheduling process and (ii) informing scheduling de-
cisions. This paper describes a general mechanism for
ideatij_iag con_r_int violatio_ and meafloring tbreAls
to fAe #atis/a_ion of comrtroints throughout schedule

generation - __
• \}_ _\_)

Identifying eonsfraint violation To achieve a
valid result in which all constraints are satkfied, a
scheduler must be capable of distinguishing between
valid and invalid solutions. This involves, at minimum,
being able to identify constraint violations in fully-
generated schedules. Clearly, if the scheduler is on/_
able to identify constraint violations in fully-generated
schedules, backtracking can only be introduced after
considerable computational effort has already been ex-
pended. To avoid wasted effort, the scheduler should
be capable of identifying _//ed s/ateJ (i.e., states from
which it will be imponfible to achieve a valid solution)
during the process of generating the schedule. The
earlier that failed states can be identified, the leas un-
necessary work need be done.

Monitoring of threats to cmzstraints Given a
particul_ factory capacity, congraint violations may
be identified from the specification of the factory prob-
lem itself and could lead to a respecification of the
problem. Alternatively, constraint violations may be
(inadvertently) introduced by deckions taken by the
scheduler. To avoid taking such decisions, potential
threats to constraint violations may be tracked by a
lookahead analysis (e4., [Lin88, Sad91]). Potential
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constraint violations occur where the magnitude of the
estimated demand is close to the available capacity.
Monitoring constraint threats may be used to direct
the scheduhng process to the most critical constroints
and inform tAe decision mal:ing process.

Constraint Monitoring

Methods of constraint monitoring

assuming distributions of operation
demand

The monitoring of temporal-capacity constraints has
been a central aspect of a number of scheduling systems
(e.g., [Liu88, Sad91, Bergl]). Each of these systems has
been concerned with estimating demand on resources
over time to allow comparisons with available capacity
to be made.

Although there are important differences between
the methods adopted for monitoring temporal-capacity
constraints, the general approach adopted for estimat-
ing demand is based on assumptions as to the dernsnd
each operation imposes on a resource. In the case of
RESS-II [Liu88], operation demand is assumed to be
split equally across the valid timewindow of the op-
eration. In the case of MICItO-BOSS [Sad91], opera-
tion demand is assumed to be split across the valid
timewindow of the operation on essentially the inverse
proportion of the cost associated with different start
times.

Temporal-capacity analysis provides strategic infor-
mation to the scheduler by highlighting critical re-
source time periods. This information can then be
used during schedule generation to choose which par-
ticular resource time period to address next, to choose
which operation to allocate and when to allocate the
operation to effectively redistribute estimated resource
demand.

Limitations of making assumptions about
distributions of operation demand

It is in undertaking an analysis based on splittinf op-
eration demand into a atmber of #eparate time periods
that limitations are introduced in that:
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I. the estimated demand for resource over time in.
troducea uncertainties smoclated with assumptions
made regarding operation demand over time

2. contiguous time i_eriocb are not recognized as being
contigUOus

For schedulers undertaking an analysis of temporal-
capacity constraints based on splitting operation de-

mandover t_, capacity bottlenecks indicate regions

of high resource contention. As a result of the uncer-
tainties introduced by the assumptions made regarding
estimated operation demand, it is not pcmib]e to tell,
even where the estimated demand is greater than avail-
able capacity, whether a capacity constraint has been
violated or not. This is illustrated in the next section.

__Constraint monitoring in TOSCA

TOSCA analyses tempond-capacity and setup-capacity
constraints throughout the factory capacity hierarchy
across multiple time periods. Operation demand is rep-
resented down to the granularity where the operation
must legally occur, i.e., the full operation demand is
associated with the legal timewindow of the operation.
The operation demand _ no t__bdivided over the du-
ration of its legal timewindow, avoiding the need to
assign probabilities to the possible start times of each
operation. Normally the operation timewindow is set
by the release date and due date of the job and the
intra-lot temporal relationships. Aggregated demand
can be checked against available capacity both before
and during schedule generation.

An example

To distinguish the TOSCA approach, a small example is
considered using, in the first ease, a method based on
assumptions as to the distribution of operation demand
and, in the second case, the method adopted in TOSCA
which avoids such assumptions. The example involves
the allocation of three operations to a single resource
which is available for 7 hours per day. For the purpose
of capacity analysis, the schedule timeline is split into
periods of 1 day duration.

Demand:

Operation

opl

op2
op8

Earliest Latest
Duration Start End

(]in) (Day) (Day)
18 hrs 1 4
3hrs 2 5
12 hrs 2 $

Capacity:
7 hours per day

. . Figure 1: Sins]e resource example
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Method 1: Constraint monitoring

assuming distributions of operation
demand

Constraint monitoring typically involves:

• maintaining an up-to-date representation of the legal
timewindow of each operation throughout schedule

generation

• splitting the timeline into discrete periods for the
purpose of analysis

• for each operation, making assumptions about the
likelihood of start times across its legal timewindow

• for each operation, calculating an expected opera-
tion demand acro_ its legal timewindow

• aggregating demand for individual resources and
comparing it against available capacity

Resource bottleneck periods (i.e., periods where de-
mand is high relative to available capacity) indicate
potential threats to capacity constraints and are typi-
cally used to direct the scheduler to the most critical
parts of the remaining schedule.

Methods which split operation demand across the
operation timewindow assume that each operation ex-
erts a demand acrms escA of the discrete time peri-
ods under consideration that fall within the operation's
timewindow. For instance opl exerts a demand in pefi-
ode dayl, day2, day3 and day4. Every operation which
could pouibly be active over a particular time period
contributes to the overall aggregate demand over that
time period. In this example, the three operations
(opl, op2, op3) all contribute to the estimated resource
demand in day2.

Bottlenecks where estimeted demand exceeds avail-

able capacity cannot be used for the purpose of detect-
ing constraint violations. Where estimated demand ex-
ceeds available capacity, it may or may not be possible
to redistribute demand away from the bottleneck and
so avoid a constraint violation.

Figure 2 indicates a distribution of operation de-
mend based on an a_umed uniform probability distri-
bution of start tim_. Figure 3 shows the aggregation
of the demand of these operations, with the horizontal
dashed line indicating the available capacity. The vet-
tics] dashed lines indkate the granularity of capacity
analysis.

Method 2: Constraint monitoring without

assuming distributions of operation
demand

In TOSCA, the demand of an operation is associated
with its temporal constraints (i.e., its legal timewin-
dow), WSfhoaf _xmiBg anl/ sebdivizioa o/ fAat demand
acrou _e timew_ndow. An operation's demand is as-

sociated with a sinfle _ period. For instance, op2
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Figure 2: Individual operation demand assuming a uni-
form operation start time distribution

exerts a demand of 3 hours over the period [2, 5], no ns-
sumptions being made regarding the prohabillstic dis-
tribution of that demand within that period.

Only operations which are aeceuar//_ active, given
that their temporal constraints are to be satisfied, con-

tribute to the aggregate demand over the time period.
That is, demand arises from only those operations
whoee ]egal timewindow are subperiods of the period
under consideration. For instance, only the demand of
opl and op3 are associated with the time period [1,4];
the demand of op2 is not included.

Figure 4 shows the demand over time associated with

the individual operations, opl has a demand of 18
hours associated with the period [I, 4], op2 has a de-
mand of 3 hours associated with the period [2, 5]; and
oi)3 has a demand of 12 hours associated with the pe-
rio_ [2,3].
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Figure 4: Individual operation demand not suuming
an operation start time distribution

Figure 3: Estimated aggregate demand amuming a
uniform operation start time distribution

In estimating resource demand, temporally overlap-
ping operations are aggregated. The operations opl
and op2 together ({opl, op2)) have a demand of 21
hours over the period [I, 5], {opl, op3) have a demand

of 30 hours over the period [I, 4], {op2, op3} have

162



i..I¢

i .....

i _....

: -----

!

Tim _ [I,4]

._:_:_:i:_:-:_:_:_i:,_:!:_:_.:._:_"._:_:____-_'i-._;_.:._
_:'_t ,-__..._#:-:._:_ _@_, -.a_
::.. ,..5:_:::-:_.,:.-:.<:::.:_::::'..:_:,._:::::::_:::::.:;>:::::_.::_:':_:::. ,,

_.-_ -'._.'._::._:R_-'._.:-:-:: :'- :::_:._:.%::_:: :. "_:_%::: :::: :.
:...-.:.::_.:.:._:.:.:_::._:.:.:.:._ ...._... _"_,:::>,_...,.::_.::

! i ii i

2 $ 4

"llmePa'Jod _2,S3

i I
I I

/ -.- .._..:-._.:._,_- -.:.: ...;_::.:.:.:...-..- ._.-:::.:._.:..: ,,::.-._:

_.¢_::__._....'_:|
| i i I

1 2 3 4 $

o

!

v ".,m.

TimePm'Jod [1,S]

•_lm_n Demud S
Amwm Cmd_ S

._m J .L m

..-_:_..*_.>._:iii._!i_:._._:_.i:ii_.i_.!i._ii:;.:ii!._;::::_:_.i:ii:_:_i:i:_.._:i:i._._:i_i:i:_::i-:.t::_:_:;_:-;.i-::::!:_-.-.-.-_,

..-::.._:::.:_:_:_._:i:_" _, _ ..::::..::::..._.:.:_-::::_:.>'. _'. • • .
• ._._._.::._::_:.-_ :_:: :.:':¢-.._ _.>.._._:_ ..>::..:....-.. . :::.

__i____i:___:":.':_'::- ..._$i:_:'-:':._:::_:?:@_:_:_:::.:.:":........::""--:::'-'._/::_:_:-:..._:. _$_!::e.'.:_._.::_
• ---...:_ _`:.:.:.:._:...:.:_._...``:..:.:::..:::._.:_:.::_..::_::::.:::.:._.:_::_:_.$:.:_`:.:.._-_i::.. .

_._ _.,: <._.:_:::::..:..,:.:..__.._:_-_:-:-:.:::.::_::.-.-:-::_:_::::::::c:.:::: ..-::::""..:.:...>,.._i_.:_.`.`._::::..._.:_:_::.:_:_:_`:_..:;_._._:::::::_:>._:i_::.`.:-_/__:_:_ _::_ ":'::" "

I I I I

l 2 ,,. 3 4 .... 5 ....

Figure 5: Aggregate demand not ,.-.m;.g operation
start time distribution
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a demand of 15 hours over the period [2, 5] and all
three operations together have a demand of 33 hours

over the period [I, 5]. Where multiple sets of opera-
tions are associated with a time period, the demand
is that of the mazima[ sef of operations. This means
that the demand on the period [I, 5] is 33 hours, the
demand associated with {opl, op2, op3) rather than
{opl, op2).

The demand associated with any time period can
be directly compared with the available capacity -- in
this example, 7 hours per day -- to find constraint vi-
olations and threats. A capacity constraint violation is
indicated by the demand of {opl, op3}, its demand be-
ing greater than the maximum available capacity over
the period [1, 4]. Figure 9 shows the demand asso-
ciated with the maximal sets of operations associated
with the periods [1, 4], [2, 3], and [1, 5].

In that each timellne period is associated with a set
of necessary operations - assuming that the operation
timewlndow constraint holds - the operations impli-
cared in a constraint violation can be readily identified.
This can be used to inform constraint relaxations. In
this example, the timewindow and duration constraints
of opl and oi)3 introduce a constraint violation. One
of tlieir constraints will need to be re]axed to avoid

tlde constraint violation. Altering the constraints of
op2, another operation active over this period, will not
avoid the violation of the capacity constraint in the
period[I,4].

Scheduling in TOSCA involves the iterative refine-
meat of the timewindow of each of the operations.
Each decision to restrict the timewindow of am opera.
tiou has the effect of redistributing resource demand.
Before scheduling begins, opl has a demand associated
with the period [I, 4]. In deciding, for example, to re-
strict the timewindow of opl to end by the third day at
the latest, the operation demand becomes associated
with the period [I, 3]. The effect of these decisions is
monitored using I,a_o_rapi_,.

Constraint monitoring using
habograph- Habographs (Hierarchical Abstraction
for Balancing Objectives) axe two-dimensional datas-
tructures used within TOSCA to represent and monitor
temporal-capacity constraints. Habograph coordinates
are given as start-end pairs and refer to cells represent-
ing a time period at a respurce _. Eaci! operation's earli-
est start time is plotted on the y axis and its latest end
time is shown on the x axis. Since it does not make
any sense to have an earliest start time which is later

than a latest end time all of the cells above the leading
diagonal are always empty. The units of the axes are
problem-dependent.

In referring to hsbographs it is important to be clear
about the use of a couple of terms with respect to infor-

mation hdd at a barograph cell: localand a_fre_a_e. A
cell refers to s time period at a resource. Information

about a resource time period may or may not include
information about its sub-period.



Figures 7 and 9 present an illustration of local and
aggregate demand in hahographe on the example de-
scribed above.

o:

Local

Cell operations
I, 4 opl
2, 5 op2
2,3 op3

Local
Demand

18
3
12

Figure 6: Local demand

Start

5

4 0 0

3 0 0 0

2 0 12 0 3

1 0 0 0 18 0

1 2 3 4 5

End

Figure 7: Hal>ograph showing local demand

Figure 7 indicates the local operations over the pc-
riods: [1, 4], [2, 5] and [2, 3]. opl is local to [1, 4], op2
is local to [2, 5] sad op3 is local to [2, 3].

Aggregate Aggregate
Cell operations Demand

r

1, 4 topl,ol)3} 30
2, 5, {op2,op3} 15
2,s {op3) 12
I, 5] {opl,op2,op3) 33

Figure 8: Aggregate demand

Figure 9 indicates the aggregate set of operations
over three time periods. The aggregate set of opera-
tions includes all the operations which must be pro-
ceased in a particular period. In the period [I, 4], two
operations must be processed, these being: opl, which
must occur between [I, 4] (i.e., dayl through day4),
sad op3, which must occur in the subpe_iod [2, 3] (i.e.,
day2 through day3).

Start

5

4 0 0
|

3 0 0 0

2 0 12 12 15

1 0 0 12 30 33

1 2 3 4 5

End

Figure 9: Habograph showing aggregate demand

The contents of habograph cells Each cell within
a habogYaph has a representation of number of objects.
The main object within each cell is a list of the oper-
ations which are local to that ceil. Each of these op-
erations exerts a demand for capacity at that cell and
the sum of the demand exerted by all the cell's local
operations is stored as the cell's local demand. Each
cell alsohas an ag_a/e demlnd figure, a number ¢al-
cukted by summing all the local demands in all of the
ceik that are above and to the left of the current cell.

In addition to the demand associated with a set of
operations, information is also held as to the capac-
ity available over the time period represented by the
cell. As with demand, capacity information is repre-
sented by a local and an aggregate figure. Local ca-
pmcity is represented only over the leading diagonal of
the the habograph. In the example under consider-
ation, the capacity of 7 hours per day is represented
along the leading diagonal with zero's everywhere else,
as is shown in Figure I0. Aggnegate cal_cit_t, shown in
Figure 11, is calculated in the same manner as the sg-
gregate dema._nd,described above, except summing the
local capacity figures rather than the local demand.

Finally the cell also has a representation for demnd
pres_re (Figure 12). This is simply the ratio of the
aggregate demand st that cell, divided by the aggre-
gate capacity of that cell. Where the demand pressure
is greater than one, a constraint violation is indicated.
Where the demand pressure is close to but less than
one, a co_traint threat is indicated. In this example,
a constraint violation is indicated over the period [I,
4].

Conclusion

Most current approaches to capacity constraint moni-
toring involve assumptions regarding the probsbilistic
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Start

5

4

3

2

1 7

1

7 0

7 0 0

7 0 0 0

0 0 0 0

2 3 4 5

End

Figure I0: Habograph showing local capacity

Start

5

4

3

2

1

7

7 14

1 2

7 14

7 14 21

14 21 28

21 28 35

3 4 S

End

Figure 11: Habograph showing af_'egste capacity

Start

5

4

3

2

1 0

1

0

0 0

0 12/14 12/21

12/21 30'28

2 3 4

End

0

0

15/28

33/'35

5

Figure 12: Habograph showing demand pressure

distribution of operation start times. Such approaches
indicate resource bottleneck periods (i.e., periods of
potential constraint threat) but are unable to identify
constraint violations.

This paper describes habofraphs,a novel datastrue-
ture, used for capacity constraint monitoring in TOSCA.
The approach avoids a_umptions regarding the prob-
abilistic distribution of operation start times and has
the advantage of enabling the identification of resource
bottleneck periods which necessarily involve a con-
straint violation.

Habographs are currently being investigated within
the TOSCAproject as a unifying representation to sup-
port resource allocation, temporal allocation and setup
management.
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