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reduction was detected at lower temperatures. We consider these

contributions to the oxygen yield to be negligible.

The predicted output from a lunar oxygen plant thus depends on
the iimenite and TiO z contents of the soil. In most lunar soils almost

all the TiO 2 is incorporated in ilmenite [1]. The maximum oxygen

yield therefore will equal 20% of the TiO 2 content if only ilmenite is
reduced, and 25% if further conversion to Ti407 occurs. Lunar soil

78221 contains 3.84 we% TiO 2. The maximum predicted oxygen

output from a plant using this fe,edstock is just under 1% of the total

input mass. The output from a high-Ti soil such as 75061, with

18.02 wt% FeO and 10.38 wt% TiO 2 [4], is 2.6%.
Concentration or beneficiation of iimenite would increase the

process yield, but not the overall yield. An output of 2.6% means that

38 tons of lunar soil would be required to produce one ton of oxygen.

By terrestrial standards this is a small amount of feedstock. A single

medium -sized dump truck can hold 40 tons and can be loaded in under

10 rain with a front-end loader [6].
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V_ NORTH MASSIF LITHOLOGIES AND CHEMICAL

COMPOSITIONS VIEWED FROM 2-4-ram PARTICLES OF

SOIL SAMPLE 76503. Kaylynn M. Bishop, Bradley L. Jolliff,

Randy L. Korotev, and Lan'y A. Haskin, Department of Earth and

Planetary Sciences and McDonnell Center for the Space Sciences,

Washington University, St. Louis MO 63130, USA.

I_ ibiswo]_r_we identifythelithologicand compositionalcompo-
nentsof soil765{}"Jbased on INAA of 243 2---4-mmparticlesand 72

thinsectionsfrom theseand associatedl-2-mm particles(76502) [I"].

We present a statistical distribution of the major compositional types

as the first step of a detailed comparative study of the North and South

Massifs. The soil sample was collected well away from any boulder

and is more representative of typical North Massif material than any

single large rock or boulder sample. So far, our examination of the

76503 particles has provided a better definition of precursor igneous
fithologies and their pea-ogenetic relationships [2]. It has enabled us

to refine the natureof mixing components for the North Massif <l-

mm Vines [3"].It has confirmed the differences in lithologies and their

proportions between materials of the North and South Massifs; e.g.,
the North Massif is distinguished by the absence of a 72275-type

KREEP component, the abundance of a highly magnesian igneous

component, and the absence of certain types of melt compositions

found in the South Massif samples. _ b_
Results: On the basis of chemical compositions and binocular

microscope observations, sample 76503 comprises 30 we% dark
glassy-matrix breccias, regolith breccias, and agglutinates; 29%

highland igneous fragments and granulitic breccias; 24% noritic melt
breccias; 13% high-Ti mare basalt; 1.5% orange glass regolith

breccias and vilrophyre, 0A% (1 particle) VLT basaltic breccia, and

2% unclassified.

Impact melt lithologies (noritic breocias) are rich in incompatible

trace elements (ITE) (Fig. 1) and include very t-me-grained crystalline

and poikilitic impact-melt breccias, glassy matrix breccias, and

regolith breccias and agglutinates that include only impact melt
breccia lithologies. The latter may have developed in the regolith

higher on the North Massif or prior to the in_xluction of mare

materials into the soil. On the basis of Sc, Cr, Sin, and Eu concentra-

lions, noritic melt lithologies from 76503 and matrices from station

6 and 7 boulders differ significantly from those of stations 2 and 3,

except boulder 2, station 2. Among particles from sample 76503,
evidence of more than one melt group is lacking (Fig. 2). Most of the

melt breccias are tightly clustered compositionally and fall within the

field of North Massif melt breccia compositions defined by analyses

from the literature (Fig. 2). Those melt breocias having compositions

outside this field contain clasts of highland material having low
concentrations of ITEs; thus their compositions are displaced toward

those of highland igneous lithologies and granulitic breccias.

Highland lithologies that have low ITE concentrations include

fragments of shocked and tmshocked anorthositic troctolite, anortho-

sitic norite, gabbroic anorthosite, and granulitic breccias of generally

anorthositic-norite or anorthositic-gabbro compositions. Coarse single

crystals or clumps of several crystals of plagioclase are common in the

2--4-ram range. These are compositionally very similar to plagioclase
in 76535 troctolite [4]; however, we believe these, and perhaps 76535

also, are members of a more anorthositic body [2]. We f'md no igneous

particles whose compositions suggest aiTmity to ferroan-anorthositic

suite igneous rocks. Granulitic breccias are generally more pyroxene

rich than the samples having igneous textures, and, although they

have low ITE concentrations, many are substantially contaminated by

meteoritic siderophile elements.

Observations and Implications: Below, we summarize some

important features of the disl_ibution of lithologies and compositions

of panicles in 76503 by comparison to the model disuibution of

components determined for station 6 <l-ram soil by [3]. Several of

these features distinguish this soil from soils of the South Massif.

(1) The mass-weighted average composition of the regolith breccias

and agglutinates is very similar to the average composition of the

station 6 <l-mm f'mes [3] (Fig. 2). (2) The proportions of components
that have been used to model the station 6 soil [3] are similar to the

proportions of groups we find in sample 76503 (i.e., the regolith

breccias and agglutinates can be well accounted for as a mixture of
observed mare basalt and orange glass fragments, noritic melt brec-

cias, and ITE-poor highland lithologies).
The <l-nun t'mes can be modeled as 51% highlands [36% anortho-

sific norite and 14% MG component (norite/troctolite mix)], 21%
noritic breccia, 21% mare basalt, and 6% orange glass, whereas the

proportions of fragments in sample 76503 are43% highlands, 34.5%

noritic breccias, 19% mare basalt, 2% orange glass, and 0.6% VLT

basalt (by mass on an agglutinate/breccia-free basis). (3) The propor-
tion of noritic breccias in 76503 exceeds that determined as a mixing

component in <l-nun frees by [3]; however, we have included in our

particle count noritic breccias whose cornpositions are skewed toward

ITE-poor highland compositions (see Fig 1). Therefore, a portion of
the "MG" and "AN" highland components of [3] is taken up in our

proportion of noritic breccias. This portion consists of mineral and

lithic clasts that, on average, have a composition similar to magnesian

granulite or magnesian anonhositic norite [2]. (4) More orange glass

was found in the f'mes model than in the 2--4-mm particles because

orange glass particles have a mean size of 40 grn [5] and so
concentrate in the freer soilfractions. Particles with orange glass

composition in sample 76503 were orange/black glass regolith brec-

cias. not large, individual glass spheres. (5) Magnesian troctolitic
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anorthosite appears to be the dominmt lithology of the "MG"

component and granulific breccias, the dominant lithoiogy of the

"AN" component of [3]. The abundance of the Mg-rich component

coupled with the absence of a KREEP component distinguish North
Massif soils from South Massif soils.
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poikilitic or poikiloblastic textures_ Bickel and Warner [3] showed
that the "granulites" have bulk compositions that fall into the two

: major pristine rock groups: the Mg-sulte and ferrom anorthosites.
Lindsm_m and Lindslrom [4] further divided the grmulites into fo_

groupsbasedon compositionaldistinction(Table 1). All theseroci6
have high contents of siderophile elements, indicating meteoritic

contamination and indicating that impacts played a role in their

origin. The conventional wisdom for the formation of the grmulite

suite involves post_- "Apolionian" metamorphism of polymict brec-

cias at near-fofidus temperatures and low pressures, and for a

relatively short period of time [2,5]. Nevertheless, sorne anthors have

drawn aUention to the igneous appearance of some members of theGCA, 1703-1718.

REFINING THE GRANULITE SUITE.

G. Jeffrey Taylor, Marc D. Norman, and Klaus Keil. Planetary

Geosciences, Depmment of Geology and Geophysics, University of

_Hawaii at Manoa, 2525 Correa Rd.. Honolulu HI 96822, USA.

_,_¶_ _ Early studies of rocks retrieved fix_n the Moon during the Apollo
missions def'med a group of rocks as grmulites or _'granulitic

impactites_[t,2]. This included rocks with cataclastic, grmulitic, and

TABLE 1.

p _ grs_ulit_jtuite,.such as 77017 and 67955 [6]._ _.._ Petrographic studies indicate that the textures of _granulitic

Janet A. Cushing, -- I_w.cias'Care significantly varied so as to redef'tne the granulific suite
into at least two distinct groups. The first gnaup consists of rocks that

have lzue granulific textures: polygonaltorounded, equant grains that

are annealed and have lriplejunctions with smell dispersions from the

average 120 _. The second group o frocks have poikilific or poiki]obl asfic

textures, with subhedrel to euhedrel plagioclase and/or olivine grains

enclosed in pymxene oikocrysts. In some instances, the relationship
between the minerals resembles an orthocumu]ate texture. The recks

Classification and data for the granulite suite.

Comp. Equilibrated Mineral T(°C)

Rock Group [4]* Texture Minerals? Comps. Ref. (Kretz Ca)

60035 -- polk a no

67215 sf poik a no

67415 sm poik a yes

67955 sm polk a yes

76230 mm poik a yes

76235 mm polk a yes

77017 mf poika yes

72559 sm polk b yes

78527 sm poik b yes

15418 sf gram yes

67915 m grim no
78155 mf grim yes

79215 mm gran yes

-- n/a
n n/a

n/a n/a
Fo76__ 11 1097

EnnW%.l

Ea,9Wo,2
Angz_
n/a n/a
n/a n/a
Fo6t 10,15 1165

Fa_2Wos_
E_Wo3s

An_
Fosl 12 1031

EawWo_.7
: Ea_Wo.

An_gs
Fo. 12 1089

En76Wo4.1
F,naWoa

An_
Fo53 13 n/a

-- rffa

Fo62 14 1247
En_lWo9
E_Wo,_

Fo-a 1 1070
En75W°_ I

Ea47Wo,_
An_

* d: strongly ferrom; mf: moderately ferrmn; In: strongly maineJim; ram: modemmly nu_esim.
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