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INTRODUCTION

In recent years the employment of active control techniques for improving the
performance of systems involving highly flexible structures has become a topic of
considerable research interest. Most of these systems are quite complicated, using multiple
actuators and sensors, and possessing high order models. The majority of analytical
controller synthesis procedures capable of handling multivariable systems in a systematic way
require considerable insight into the underlying mathematical theory to achieve a successful
design. This insight is needed in selecting the proper weighting matrices or weighting
functions to cast what is naturally a multiple constraint satisfaction problem into an
unconstrained optimization problem. Although designers possessing considerable experience
with these techniques have a feel for the proper choice of weights, others may spend a
significant amount of time attempting to find an acceptable solution. Another disadvantage
of such procedures is that the resulting controller has an order greater than or equal to that of
the model used for the design. Of course, the order of these controllers can often be
reduced, but again this requires a good understanding of the theory involved.

As an alternative to these synthesis procedures, some numerical techniques have been
proposed for achieving design constraints. One technique that appears to be effective is that
of Boyd and Barratt (ref. 1). Their approach is to cast the constraints for the design problem
into a form such that the optimization is convex over the set of controllers that stabilize a
given model of the system. Therefore, the solution is the global optimum and is obtained by
standard mathematical programming techniques. Unfortunately, some constraints cannot be
cast into a form that is closed loop convex; important ones being open loop controller
stability, controller order, and controller structure (e.g., diagonal). A mathematical model of
the plant is also required.

A method close in spirit to the technique presented here is that proposed by Newsom
and Mukhopadhyay (ref. 2). In their approach the singular value gradients of a return
difference operator are used to iteratively change the parameters of a nominal controller in
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order to improve the stability robustness properties of a system. The parameter correction
vector at each iteration is chosen to decrease a cumulative measure (sum of squares) of all
constraint violations. The disadvantage of this correction vector is that while the cumulative
measure may improve, the worst violation is not guaranteed to improve. Recently,
Mukhopadhyay (ref. 3) has extended the approach to incorporate other constraints, although
a cumulative measure is still employed to monitor each constraint’s improvement.

The algorithm employed here for synthesizing a controller for the Active Control
Technique Evaluation for Spacecraft (ACES) facility simultaneously includes performance
constraints and stability robustness constraints. It also has the advantage that the worst
constraint violations are improved at each iteration as long as the constraints are locally
feasible in the parameter space. The algorithm can use data generated from a system model
or, more importantly, data derived directly from the open loop plant.

SYMBOLS AND ABBREVIATIONS

1 = identity matrix

Cc = set of complex numbers

R = set of real numbers

Re[-] = real part of a complex quantity
[-1” = complex-conjugate matrix transpose
ou = matrix transpose

o = set of complex-valued n X m matrices

R*™ = set of real-valued n X m matrices
al-] = k™ largest singular value of a matrix
afla[ -] = a matrix with (i) entry equal to df7d[-];
|-l = Euclidean norm of a vector
ALGORITHM DESCRIPTION
Let
0 =77{7ij j=1,2,...,NG} 7 N (1)
be a set of frequencies at which the frequency response data of the plant is available. Let
T
p=lpipc ) ©)

denote a vector of controller parameters upon which the frequency dependent functions
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f(@):Q->R, i=12,..,N, 3)
depend. Define the design constraints by
flw:p) 2 cfw), Yo, €Q, i=12,..,N, 4

where each ¢,:Q->R is defined according to the desired shape of f,. Now define the set of
violations at the k* iteration by

S, = {G.D): flop) < cfw), i = 1,2,..,N, j = 1,2,..,N}. ®)
and let h(p) = f(w;p) if (i,)) € S,. Let N, be the total number of elements in S,. It
follows that if the partial derivative of f, with respect to p exists that

T

oh..  dh, oh,.
- i Bpy o o o O _ (6)
g,y _apl(p‘) _apz(pk) ap,,’(p")

A fundamental result from optimization theory states that to improve a single violation
h,(p,) a parameter correction vector d, must be chosen with the property gi(p)d, > 0.
Since, in general, there are many violations to be improved at any one iteration, d, should

be chosen to satisfy g,.j(pk)Tdk > 0, v ((,)) € S,. A sufficient condition for such a
direction to exist is that the system

i = w, )

be consistent, where J, is a matrix whose columns are the vectors g (p,) for all (i,j) € §,,
and w, is a vector such that each entry w,, > 0, n = 1,2,...,N,. Thisis an N, by N,

system of linear equations. In practice equation 7 is almost always underdetermined because
there are usually more free parameters than violations. Hence, there may be many solutions.

To obtain the solution having a minimum 2-norm, suppose that J, has rank r. Then J, has the
singular value expansion (ref. 4),

Jo = Y o, ®

where o, > 0, i = 1,2,...,rare the nonzero singular values of J,, and
Uy Vs I = 1,2,...,r are the associated left and right singular vectors. If w, is in the range

of J,|, then

do=3 a;'(uzwk)vﬁ. ©)

Although the above development indicates a general procedure for choosing an
acceptable correction vector, it does not indicate how to choose the precise entries of w, for
good algorithm performance. Since it is desired to improve all the violations simultaneously,
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it seems reasonable to choose w, such that each of the violations is considered to be equally
important. Following the development of Mitchell (ref. 5), if the elements of w, are chosen
such that

We = "J/m “, (10)

where J,, is the n* column of J, which is actually g (p,) for some (i,/) € S;. Then from
equation 7

gi0d, = lgwol, Jj=12...7, (h
Using the fact that
£lod, = laseol I4,1c056, = el 1)
where ©, is the angle between g,(p,) and d,, it is clear that
cos®, = |4, v @) € S, (13)

Therefore, this choice results in a correction vector that forms an equal angle between itself
and each g;,®,). The choice of other values for w, continues to be an area of research
interest.

Due to the nonlinearity of the parameter space, it is necessary to determine a
satisfactory step length for the correction vector at each iteration. In most iterative
algorithms the determination of the step length at each iteration is treated as an optimization
problem. Unfortunately, this optimization can require many constraint function evaluations
and would be computationally prohibitive in this ifééﬁthm Therefore, the choice of an
appropriate step length parameter at each iteration is based upon several other criteria: (1)
maintaining closed loop stability, (2) maintaining open loop controller stability properties,
and (3) improvement of the violated constraints. In order to maintain closed loop stability

using discrete frequency data (as opposed to a mathematical model) the multivariable Nyquist

criterion (ref. 6) is employed. Although it is not a reliable indicator of relative stability
margins, it has proven effective in this algorithm for maintaining closed loop stability.
Controller stability is achieved by simply monitoring the controller’s poles. Although
controller stability is not an absolute requirement, it is desirable in most applications, e.g.,
when loop failure is possible. As for the third criterion, the violated constraints are 51mp1y
checked for improvements at each iteration. If they have improved, the parameter vector is
updated and the step length is increased by a user defined factor for use at the next iteration.
If not, the step length is reduced and the constraints are checked again. This process is
repeated until improvements are registered or until the minimum step length allowed is
reached. If the minimum step length is reached, then either a violated constraint has reached
a local minimum or two gradients are in local opposition. In the case of a local minimum,
the de51gn can either be accepted or the constraint relaxed. The action to be taken if two
gradients are opposed is now discussed.

In the case of two gradients in local opposition, the matrix J, will be nearly rank
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deficient and the correction vector d,, although defined, will almost be orthogonal to all the
gradient vectors. Hence, improving the constraints with an acceptable step length is highly
unlikely. If one of the opposing gradients is not associated with the worst violation for that
particular constraint, the problem can be circumvented by dropping that gradient from J, at
the current iteration. If, however, both gradients are associated with the worst violations of
different constraints, then the constraints are not locally feasible and this technique will fail
to improve the constraints. Hence, the algorithm is not guaranteed to satisfy all the design
constraints, but it will improve the violated constraints until no further local improvement is
possible. It is also important to note that even if the constraints are satisfied, they are only
satisfied at the frequencies for which the design was performed. A flowchart of the complete
algorithm is given in figure 1. '

Input: frequency respo;lse data, constraints, initial controller

Input: starting step o, , minimum step amin

Setk =1
Compute S,
[

S

No

rCompute J. d, -l
|

s 4
[@ Py ™ Pyt “xdhl

Figure 1: Algorithm Flowchart.
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SELECTION OF A CONTROLLER REPRESENTATION

Two choices for a controller representation have been investigated. The most obvious
choice is a state-space representation, i. e.,

K = e - 4)'B + D, (14)
where K € C‘“"” A € R B € R""” C € R, and D € R for an n"-order

dxscrete-tlme control law with p inputs and ¢ outputs. "It can be shown that if AQ) € R,
Q= (A B C D,w) (w indicates a fixed frequency) is a function for which all the partials

with respect to the entries of 4, B, C, and D exist, then

P - Re[[(,j’—lf;(g)] H} T, 1s)
%(Q) = Re :@B[%(Q)] H: T, (16)
aa_g(Q) = Re :[aa—,j;(Q)] ch{ T, a7
and
%(Q) = Re [@B[;_If((g)] H@p} T, (18)

where ¢ = (ej“'TI )_1. An interesting property of this representation is that it is only
unique up to a similarity transformation on (4,B,C,D). Hence, the possibility exists that
by judicious selection of state coordinates the charactenstlcs of the parameter space may be
chosen to impact algorithm performance. This issue is a subject of current research.

As an alternative to a state-space répresentation, the so-called Gilbert realization,

X
Kem) = X, o y’ +D (19)
where \, € C, x, € €7, and yi'e 'é“”ﬁ,wﬁéiswalso been employed. An advantage of this
representation is that for a given control law the number of parameters is considerably less

than for a state-space representation. It has the disadvantage that the number of real poles
and complex-conjugate pairs must remain the same throughout the iteration process.
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ALGORITHM IMPLEMENTATION

At the present time the algorithm has been implemented in the FORTRAN
programming language on a personal computer. Standard subroutine libraries in the public
domain have been used extensively for singular value decompositions and eigen

decompositions. The algorithm has also been implemented in the language of a popular
matrix oriented software package.

CONTROLLER DESIGN FOR THE ACES STRUCTURE

A schematic of the NASA Marshall Space Flight Center ACES structure is shown in
figure 2. The ACES structure is suitable for the study of line-of-sight (LOS) and vibration
suppression control issues as pertaining to flexible aerospace structures. The primary
element of the ACES structure, a spare Voyager magnetometer boom, is a lightly damped
beam measuring approximately 45 feet in length and weighing about 5 pounds.

Single Structure
Control

5 Laboratory
. Base Excitation Table

. 3 Axis Base Acceleromelers
. 3 Axis Gimbal System

. 3 Axis Base Rate Gyros and
Counterweight ®
. 3 Axis Tip Accelerometers @

3 Axis Tip Rate Gyros

. Optical Deteclor

. Mirrors

. Laser

. 2 Axis Pointing Gimbal System

. LMED System @ ! !

~CoRNOAN AW~

-

I
®

VAN

<D

@

Astromast

3 Meter Antenna

Figure 2. Schematic of the ACES Structure.
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The goal of the control system design is to maintain the reflected laser beam in the
center of the antenna (location of the detector) in the presence of disturbances at the base
excitation table (BET). This is to be accomplished by use of the following actuators: Image
Motion Compensation (IMC) gimbals (2-axes), Advanced Gimbal System (AGS) (3-axes),
Linear Momentum Exchange Devices (LMED)’s (2 2-axes devices); and the sensors: base
rate gyros (3- axes), tip accelerometers (3-axes), tip rate gyros ‘(3-axes), LMED positions and
accelerations (2-axes each) and the optical position detector (2-axes). As explained
subsequently, our design only employed a subset of these sensors and actuators. The digital
controller is to be implemented on the HP9000 computer located at the fac111ty using the
fixed sampling rate of 50 Hertz and a fixed, one sample period computational delay. The
results of other controller designs for the ACES structure have been reported in the literature

(ref. 7).

The experimental open loop frequency response from the y-axis IMC gimbal to the x-
axis LOS error is shown in figure 3. The effect of the computational delay is quite apparent
from analysis of the phase characteristic. The frequency responses of the other axes of the
IMC-to-LOS are similar, although the cross-axis terms have less gain. The open loop
frequency response from the y-axis AGS gimbal to the y-axis base gyro is shown in figure 4.
This response reveals the numerous lightly damped modes of the structure. The frequency
responses of other elements of the AGS-to-base gyros transfer matrix are similar. It is noted

that the cross axis elements have considerable gains at some modal frequencies.

L L
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} 10 % -
o-1 16 100 T 1o 1o 10-1 I3 101 o
Frequency (Hz) f {H2)
200 200
g7l E|
2 _sob E -s0
T 10-1 I Vol 1or % 1ot 100 10! yor
Fre: ¥ (Hr) Frequency (Hx)
Figure 3: Experimental Frequency Figure 4: Experimental Frequency
Response from y-axis IMC Gimbal to x-axis Response from y-axis AGS Gimbal to y-axis
LOS Error. Base Gyro.

The basic design philosophy was to dampen the pendulum modes and the bending
modes of the beam by using feedback from the base gyros to the AGS while using the IMC
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gimbals with feedback from the detector to maintain the laser beam at the center of the
detector. Due to sufficient decoupling, each two-input, two-output subsystem (AGS and
IMC) was designed separately. One concern was the impact of disturbances that reach the
IMC gimbals through the connecting arm that is attached to the base (as opposed to
disturbances impacting the detector). Due to the inherently high optical gain from the IMC
to the detector these disturbances can have a significant impact on the LOS error. To
compensate for the effects of these disturbances it is not only necessary to maintain high loop
gain over the frequency band of interest, but to also maintain high IMC controller gain as
well. Analysis of figure 3 reveals that achieving high controller gain while also maintaining
acceptable stability margins is difficult because of the combination of the high optical gain
and the additional phase lag introduced by the computational delay. Fortunately, the impact
of these disturbances can also be reduced by increasing the damping of the modes of the
beam using the AGS; thereby reducing the motion of the base and the arm supporting the
IMC gimbals.

The first step of the design procedure was the determination of a set of precise closed

loop constraints such as those given in the first column of table 1. These constraints are
primarily stability robustness constraints.

Table 1. Summary of Multivariable Design Constraint Values.

Constraint Initial Final
0. 1+GK@),e > 0.5, F€(0,25) 0.2289 0.5090
0, [I+KG@)],e > 0.5, f€(0,25) 0.2276 0.5056
am[n(GK(z))"]m > 0.6, f€(0,25) 0.2827 0.6072
omm[n(KG(z))"]m > 0.6, f€(0,25) 0.2805 0.6112
0, I+GK@),e > 18, f=0.15 10.002 14.100
0, [I+GK@)],.s > 0.6, € (0,25) 0.3649 0.5996
o [I+KG@)],;c > 0.6, f€(0,25) 0.3585 0.5988
o l1+(6k@)" . > 0.7, F€ 0,25) 0.3600 0.6719
am[n(KG(z))"LGs > 0.7, f€ (0,25) 0.3589 0.6712

IMC represents IMC subsystem
AGS represents AGS subsystem

G represents plant
K represents controller
z=e? T =0.02 sec
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The fifth constraint, a performance constraint, is included in particular to suppress the effect
of a very lightly damped pendulum mode. Performance constraints were not included in the
algorithm for the AGS subsystem, because after the design of the initial controllers, the
primary concern for this subsystem was to guard against uncertainty. Analytical expressions
for the gradients of these constraint functions were calculated using results from ref. 8 and
equations 15-18.

Next, initial controllers were designed for the IMC-to-LOS and AGS-to-base gyro
subsystems using graphical one-loop-at-a-time techniques with experimental frequency
response data. Although the attempt was made to satisfy the constraints in designing the
initial controllers, they were not satisfied as can be observed by comparing the first and
second columns in table 1. The controller for each subsystem was 10™ order. It should be
noted that recently developed high fidelity models are 60® order for the AGS-to-base gyro
loops alone (ref. 9) Design techniques such as LQG and H* would yield controllers of at
least this order (not including weighting).

The multivariable design (i.e., taking cross-axis coupling within each subsystem into
account) for each subsystem was then performed using only experimental data and the
presented algorithm. The algorithm was started with the initial 10® order controllers (using
state-space representations) described above, with no restrictions other than stability placed
on the structure of the controllers. To illustrate typical results from the algorithm, figure 5

and figure 6 show the experimental singular value frequency responses of [I + GK],MC for the
initial and final controllers, respectively. The final values of all the constraint functions are
provided in the third column of table 1. The constraints for the AGS subsystem were not
satisfied because the algorithm reached a point such that these constraint functions were in
the condition of local opposition described previously.

40 T — T — T 40 T T — T — Ty

30+ . 30t

20+ 20F

Singular Values (dB)
=

Singular Values (dB)
o
T

_20 IS S U T L1 XII3d IV SRS TR U] _.20 N e B O B A N N S e
10-2 10-1 100 107 102 10-2 1071 100 10! 102
Frequency (Hz) Frequency (Hz}
Figure 5: Initial Singular Value Frequency Figure 6: Final Singular Value Frequency
Response of (I + GK) e Response of (I + GK)pc
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The resulting controller was implemented at the ACES facility. The open loop x-axis
LOS error due to an x-axis BET disturbance (figure 7) intended to simulate the effect of
spacecraft crew motion is shown in figure §. The dominant behavior in the response is the
lightly damped 0.15 Hz pendulum mode. After closing only the IMC-to-LOS loops the
steady-state error and the impact of the pendulum mode were reduced as shown in figure 9.
However, the first bending mode was still present. As shown in figure 10, closing the IMC-
to-LOS and the AGS-to-base gyro loops further reduced the impact of the pendulum mode
and almost eliminated the first bending mode. The y-axis LOS error was negligible.

0.1
0.05}F
G €
L
2
—0.05}
o . — — ~0.1 . . .
Q 50 100 150 Q 50 100 150
Time (sec) Time (sec)
Figure 7: The x-axis BET Disturbance. Figure 8: Experimental Open Loop x-axis
LOS Error.
a.1 . v v 0.1
0.05 ¢ 0.05|
G €
g o [
g g
-0.05 -0.05}
-0.1 . . -0.1 . —~ s
0 50 100 150 [¢] 50 100 150
Time (sec) Time (sec)
Figure 9: Experimental x-axis LOS Error Figure 10: Experimental x-axis LOS Error
with IMC Loops Closed. with all Loops Closed.
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To further indicate the effectiveness of the controller, x-y scatter plots of the LOS error are
provided in figure 11 and figure 12, respectively.
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Figure 11: Experimental Open Loop Xx-y Figure 12: Experimental Closed Loop x-y
LOS Error. LOS Error.

The same disturbance (figure 7) was applied to the y-axis of the BET. The open loop
response of the x-y LOS error is shown in figure 13. The closed loop x-y LOS error is

shown in figure 14.
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Figure 13: Experimental Open Loop x-y Figure 14:
LOS Error. LOS Error.
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CONCLUSIONS

The application of an iterative numerical technique to controller design for a large
space structure ground test facility has been presented, and the results appear to be very
promising. The resulting controller was 20™ order which was low compared to controllers
resulting from procedures such as H or linear-quadratic-Gaussian. The presented technique
has been shown to have the advantages that multiple closed loop design constraints can be
simultaneously considered without the need for weighting schemes; the design engineer can
have complete control over controller order and structure; the design can be performed with
or without the use of a parametric plant model; and locally feasible, violated constraints can
be improved at each iteration. Although the presented design example only involves
constraints on matrix singular value frequency responses, there is no reason that the
technique could not be applied to other constraints such as the shapes of individual elements
of frequency response matrices and root-mean-square measures when such constraints are of
interest.
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