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INTRODUCTION

In recent years the employment of active control techniques for improving the

performance of systems involving highly flexible structures has become a topic of

considerable research interest. Most of these systems are quite complicated, using multiple

actuators and sensors, and possessing high order models. The majority of analytical

controller synthesis procedures capable of handling multivariable systems in a systematic way

require considerable insight into the underlying mathematical theory to achieve a successful

design. This insight is needed in selecting the proper weighting matrices or weighting

functions to cast what is naturally a multiple constraint satisfaction problem into an

unconstrained optimization problem. Although designers possessing considerable experience

with these techniques have a feel for the proper choice of weights, others may spend a

significant amount of time attempting to find an acceptable solution. Another disadvantage

of such procedures is that the resulting controller has an order greater than or equal to that of

the model used for the design. Of course, the order of these controllers can often be

reduced, but again this requires a good understanding of the theory involved.

As an alternative to these synthesis procedures, some numerical techniques have been

proposed for achieving design constraints. One technique that appears to be effective is that

of Boyd and Barratt (ref. 1). Their approach is to cast the constraints for the design problem

into a form such that the optimization is convex over the set of controllers that stabilize a

given model of the system. Therefore, the solution is the global optimum and is obtained by

standard mathematical programming techniques. Unfortunately, some constraints cannot be

cast into a form that is closed loop convex; important ones being open loop controller

stability, controller order, and controller structure (e.g., diagonal). A mathematical model of

the plant is also required.

A method close in spirit to the technique presented here is that proposed by Newsom

and Mukhopadhyay (ref. 2). In their approach the singular value gradients of a return

difference operator are used to iteratively change the parameters of a nominal controller in
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order to improve the stability robustness properties of a system. The parameter correction

vector at each iteration is chosen to decrease a cumulative measure (sum of squares) of all

constraint violations. The disadvantage of this correction vector is that while the cumulative

measure may improve, the worst violation is not guaranteed to improve. Recently,

Mukhopadhyay (ref. 3) has extended the approach to incorporate other constraints, although

a cumulative measure is still employed to monitor each constraint's improvement.

The algorithm employed here for synthesizing a controller for the Active Control

Technique Evaluation for Spacecraft (ACES) facility simultaneously includes performance

constraints and stability robustness constraints. It also has the advantage that the worst

constraint violations are improved at each iteration as long as the constraints are locally

feasible in the parameter space. The algorithm can use data generated from a system model

or, more importantly, data derived directly from the open loop plant.

SYMBOLS AND ABBREVIATIONS

I = identity matrix

C = set of complex numbers

R = set of real numbers

Re[. ] = real part of a complex quantity

[. 1n = complex-conjugate matrix transpose

[.]r = matrix transpose

O ×" = set of complex-valued n × m matrices

R "×" = set of real-valued n x m matrices

ak[. ] = k'h largest singular value of a matrix

aria[. ] = a matrix with (ig) entry equal to aria[.] U

I1" II -- Euclidean norm of a vector

ALGORITHM DESCRIPTION

Let

fl = {¢oj:j = 1,2,...,N } (1!

be a set of frequencies at which the frequency response data of the plant is available. Let

_o p_ ]rP -- i P2 " " "

denote a vector of controller parameters upon which the frequency dependent functions

(2)
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i-- 1,2,...,N, (3)

depend. Define the design constraints by

f(o_j;p) >_ c,(%), ¥ ¢oj E f_, i = 1,2,...,N, (4)

where each ck: _R is defined according to the desired shape offr Now define the set of

violations at the k'h iteration by

Sk = {(i,J): f,(%;Pk) < c,(oJj), i= 1,2,...,N, j = 1,2,...,N}.

and let h0(pk ) = f(o_j;pk ) if (i,j) E S k. Let N t be the total number of elements in S k.

follows that if the partial derivative of f with respect to p exists that

F Oho Oho 3h_ ] r

= ••

(5)

It

(6)

A fundamental result from optimization th_ry states that to improve a single violation
T

ho.(p k) a parameter correction vector d k must be chosen with the property go.(pk)d, > O.

Since, in general, there are many violations to be improved at any one iteration, d k should

be chosen to satisfy gO(pk)rdk > 0,

direction to exist is that the system

v (i,j) E Sk. A sufficient condition for such a

jrdk : w k (7)

be consistent, where Jk is a matrix whose columns are the vectors go(pk ) for all (i,j) E Sk,

and w k is a vector such that each entry w_, > 0, n = 1,2,...,N t. This is an N, by Np

system of linear equations. In practice equation 7 is almost always underdetermined because

there are usually more free parameters than violations. Hence, there may be many solutions.

To obtain the solution having a minimum 2-norm, suppose that Jk has rank r. Then Jk has the

singular value expansion (ref. 4),

Jk =

where o n > O, i = 1,2,...,r are the nonzero singular values of Jk, and

un, v_, i = 1,2,...,r are the associated left and right singular vectors.

of jr, then

(8)

If w k is in the range

(9)

Although the above development indicates a general procedure for choosing an

acceptable correction vector, it does not indicate how to choose the precise entries of w k for

good algorithm performance. Since it is desired to improve all the violations simultaneously,
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it seems reasonable to choose w k such that each of the violations is considered to be equally

Following the development of Mitchell (ref. 5), if the elements of w k are chosenimportant.

such that

w --llJ .ll,

where J_ is the n'h column of Jk which is actually gu(pk) for some (i,j) E S k.

equation 7

= 11go'P,)II, J= 1,2,...,N,.

Using the fact that

(10)

Then from

(11)

gur(P_dk = Ilg0(p,)lllldkllcosO0; llgv(p )ll, (12)

where 0 o is the angle between go(Pk) and d k, it is clear that

cos% = Ild l1-1v (i,]) s. (13)

Therefore, this choice results in a correction vector that forms an equal angle between itself

and each go(p_). The choice of other values for w k continues to be an area of research
interest.

Due to the nonlinearity of the parameter space, it is necessary to determine a

satisfactory step length for the correction vector at each iterati0n_ in most iterative

algorithms the determination of the step length at each iteration is treated as an optimization

problem. Unfortunately, this optimization can require many constraint function evaluations

and would be compu_tionally prohibitive in this a|gorithm. Therefore, the choice of an

appropriate Step length parameter at each iteration is based upon several other criteria: (1)

maintaining closed loop stability, (2) maintaining open !top controller stability properties,

and (3) improvement of flae violated constraints. In order to maintain closed loop stability

using discrete frequency data (as opposed to a mathematical model) the multivariable Nyquist

criterion (ref. 6) is employed. Although it is not a reliable indicator of relative stability

margins, it has proven effective in this algorithm for maintaining closed loop stability.

Controller stability is achieved by simply monitoring the controller's poles. Although

controller stability is not an absolute requirement, it is desirable in most applications, e.g.,

when loop failure is possible. As for the third criterion, the violated constraints are simply

checked for improvements at each iteration. If they have improved, the parameter vector is

updated and the step length=is increased 5)' a user defined factor for use at the next iteration,

If not, the stepiength is reduced and the constraints are checked again. This process is

repeated until improvements are registered or until the minimum step length allowed is

reached. If the minimum step length is reached, then either a violated constraint has reached

a local minimum or two gradients are in local opposition. In the case of a local minimum,

the design can either be accepted or the constraint relaxed. The action to be taken if two

gradients _e opp0sed is now discussed.

=

!

2
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deficientandthe correctionvector dk, although defined, will almost be orthogonal to all the

gradient vectors. Hence, improving the constraints with an acceptable step length is highly

unlikely. If one of the opposing gradients is not associated with the worst violation for that

particular constraint, the problem can be circumvented by dropping that gradient from Jk at

the current iteration. If, however, both gradients are associated with the worst violations of

different constraints, then the constraints are not locally feasible and this technique will fail

to improve the constraints. Hence, the algorithm is not guaranteed to satisfy all the design

constraints, but it will improve the violated constraints until no further local improvement is

possible. It is also important to note that even if the constraints are satisfied, they are only

satisfied at the frequencies for which the design was performed. A flowchart of the complete

algorithm is given in figure I.

Input: frequency response data. eonstraintn, initial ¢orttroller

Inlet: starting step a_, mlxximum step _mln

I Set kComputo

J_

_ Yt_. _

_tk--k÷ 1 I

[

Eigure 1: Algorithm Flowchart.
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SELECTION OF A CONTROLLER REPRESENTATION

Two choicesfor a controller representationhavebeeninvestigated. The mostobvious
choice is a state-spacerepresentation,i. e.,

K(e j_r) = C(eJ_rl - A)qB + D, (14)

where K E C q×p,A E R _×n, B E R _×p, C E R q×n,and D E R q×p for an n_h-order

discrete-time control law with p inputs and q outputs. It can be shown that if flQ) __ R,

Q = (A,B,_;_I_i) (% indicates a fixed frequency) is a function for which all the partials

with respect to the entries of A, B, C, and D exist, then

af(Q) = Re ff_fK(Q) (15)aD

Of (16)
fc(Q) = Re ,bB

and

Of "C_ ,
-_fB(Q) = Re -_-_(Q) (17)

}]af "CO ,
-_fA(Q) Re ,_B (18)

where # = (eJ_'rI - A) -_ . An interesting property of this representation is that it is only

unique up to a similarity transformation on (A,B,C,D). Hence, the possibility exists that

by judicious selection of state coordinates the characteristics of the parameter space may be

chosen to impact algorithm performance. This issue is a subject of current research.
£L

As an alternative to a state-space representation, the so-called Gilbert realization,

K(e'i'a) = _iio, xiyr + D (19)
eJo,r _ )xi

where Xi E C' x i _. C q, and Yi _ CP, has also been employed. An advantage of this

representation is that for a given control law the number of parameters is considerably less

than for a state-space representation. It has the disadvantage that the number of real poles

and complex-conjugate pairs must remain the same throughout the iteration process.
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ALGORITHM IMPLEMENTATION

At thepresenttime the algorithmhasbeenimplementedin the FORTRAN
programminglanguageon a personalcomputer. Standardsubroutinelibraries in the public
domainhavebeenusedextensivelyfor singularvaluedecompositionsandeigen
decompositions.The algorithmhasalsobeenimplementedin the languageof a popular
matrix orientedsoftwarepackage.

CONTROLLER DESIGN FOR THE ACESSTRUCTURE

A schematicof the NASA MarshallSpaceFlight CenterACES structureis shownin
figure 2. The ACES structureis suitablefor the studyof line-of-sight (LOS) and vibration
suppressioncontrol issuesaspertainingto flexible aerospacestructures. The primary
elementof the ACES structure,a spareVoyagermagnetometerboom, is a lightly damped
beammeasuringapproximately45 feet in lengthand weighingabout5 pounds.

Single Stmcture
Control

Laboratory
1. Base Excitation Table
2. 3AxisBaseAccelerometers = _1 _ 1(_ J
3. 3 Axis Gimbal System
4. 3 Axis Base Rate Gyros and _t

Counterweight

5. 3 Axis Tip Accelerometers (_)
6. 3 Axis Tip Rate Gyros
7. Optical Detector
8. Mirrors
9. Laser

10. I

11.
2 Axis Pointing Glmbat System jIL

LMED System (_(_

Light Path

3 Meter Antenna

O

ast

:L,

Figure 2: Schematic of the ACES Structure.
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The goal of the control systemdesignis to maintainthe reflectedlaserbeamin the
centerof the antenna(locationof the detector)in the presenceof disturbancesat the base
excitationtable(BET). This is to beaccomplishedby useof the following actuators: Image
Motion Compensation(IMC) gimbals(2-axes),AdvancedGimbal System(AGS) (3-axes),
Linear MomentumExchangeDevices(LMEi3)'s (2 2-axesdevices);and the sensors:base
rategyros (3-axes),tip accelerometers(3-axes),tip rate gyros (3-axes),LMED positionsand
accelerations(2-axeseach)andflaeopticalpositiondetector(2-axes). As explained
subsequently,our designonly employeda subsetof thesesensorsand actuators. The digital
controller is to be implementedon the HP9000computerlocatedat the facility usingthe
fixed samplingrateof 50 Hertz and a fixed, onesampleperiodcomputationaldelay. The
resultsof othercontroller designsfor the ACES structurehavebeenreportedin the literature
(ref. 7).

The experimentalopenloop frequencyresponsefrom they-axis IMC gimbal to the x-
axis LOSerror is Shownin figur_ 3. The effect10fthecomputationaldelay is quite apparent

from analysis of the phase characteristic. The frequency responses of the other axes of the

IMC-to-LOS are similar, although the cross-axis terms have less gain. The open l_p

frequency response from the y-axis AGS gimbal to the y-axis base gyro is shown in figure 4.

This response reveals the numerous lightly damped modes of the structure. The frequency

responses of other elements of the AGS-to-base gyros transfer matrix are similar. It is noted

that the cross axis elements have considerable gains at some modal frequencies.
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Figure 3: Experimental Frequency

Response from y-axis IMC Gimbal to x-axis
LOS Error.
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Figure 4: Experimental Frequency

Response from y-axis AGS Gimbal to y-axis

Base Gyro.

The basic design philosophy was to dampen the pendulum modes and the bending

modes of the beam by using feedback from the base gyros to the AGS while using the IMC

___-=
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gimbals with feedback from the detector to maintain the laser beam at the center of the

detector. Due to sufficient decoupling, each two-input, two-output subsystem (AGS and

IMC) was designed separately. One concern was the impact of disturbances that reach the

IMC gimbals through the connecting arm that is attached to the base (as opposed to

disturbances impacting the detector). Due to the inherently high optical gain from the IMC

to the detector these disturbances can have a significant impact on the LOS error. To

compensate for the effects of these disturbances it is not only necessary to maintain high loop

gain over the frequency band of interest, but to also maintain high IMC controller gain as

well. Analysis of figure 3 reveals that achieving high controller gain while also maintaining

acceptable stability margins is difficult because of the combination of the high optical gain

and the additional phase lag introduced by the computational delay. Fortunately, the impact

of these disturbances can also be reduced by increasing the damping of the modes of the

beam using the AGS; thereby reducing the motion of the base and the arm supporting the

IMC gimbals.

The first step of the design procedure was the determination of a set of precise closed

loop constraints such as those given in the first column of table 1. These constraints are

primarily stability robustness constraints.

Table 1. Summary of Multivariable Design Constraint Values.

Constraint _ Final

am_[l + GK(z)],uc > 0.5, fE (0,25) 0.2289 0.5090

tr_[l + KG(z)]tM c > 0.5, fE (0,25) 0.2276 0.5056

am_I1 +(GK(z))-l]afc > 0.6, fE (0,25) 0.2827 0.6072

am_II +(KG(z))-l]tuc > 0.6, fE (0,25) 0.2805 0.6112

tr_i,[l+GK(z)]tu c > 18, f = 0.15 10.002 14.100

tr_i.[l + GK(z)]aas > 0.6, fE (0,25) 0.3649 0.5996

a,m[l + KG(z)]Ac s > 0.6, fE (0,25) 0.3585 0.5988

am_[l+(GK(z))-lLcs > 0.7, fE (0,25) 0.3600 0.6719

i I

a,._[l +(KG(z))-I]Acs > 0.7, fE (0,25) 0.3589 0.6712

IMC represents IMC subsystem

AGS represents AGS subsystem

G represents plant

K represents controller

z -- e j_'_yr, T = 0.02 sec
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The fifth constraint,a performanceconstraint,is includedin particular to suppressthe effect
of a very lightly dampedpendulummode. Performanceconstraintswere not includedin the
algorithm for the AGS subsystem,becauseafter the designof the initial controllers, the
primary concernfor this subsystemwas to guardagainstuncertainty. Analytical expressions
for thegradientsof theseconstraintfunctionswere calculatedusingresultsfrom ref. 8 and
equations15-18.

Next, initial Controllerswere design_for theIMC-to-LOS andAGS4o2basegyro
subsystemsusinggraphicalone-loop-at-a-timetechniqueswith experimentalfrequency
responsedata. Although the attemptwasmadeto satisfythe constraintsin designingthe
initial controllers, theywere not satisfiedascanbeobservedby comparingthe first and
secondcolumnsin table 1. The controller for eachsubsystemwas 10thorder. It shouldbe
notedthat rec-enflydevelopedhigh fidelity modelsare60_ Orderfor the AGS-to-basegyro
loopsalone (ref. 9) DesigntechniquessuchasLQG and H_ would yield controllersof at
leastthis order (not includingweighting).

The multivariabledesign(i.e., taking cross-axiscouplingwithin eachsubsysteminto
account)for eachsubsystemwas thenperformedusingonly experimentaldataandthe
presentedalgorithm. The algorithmwas startedwith the initial 10_ Ordercontrollers (using
state-spacerepresentations)describedabove,with no restrictionsother than stability placed
on the structureof thecontrollers. To illustrate typical results from the algorithm, figure 5

and figure 6 showthe experimentalsingularvalue frequencyresponsesof [1 + GK]a_c for the

initial and final controllers, respectively. The final values of all the constraint functions are

provided in the third column of table 1. The constraints for the AGS subsystem were not

satisfied because the algorithm reached a point such that these constraint functions were in

the condition of local opposition described previously.
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The resulting controller was implemented at the ACES facility. The open loop x-axis

LOS error due to an x-axis BET disturbance (figure 7) intended to simulate the effect of

spacecraft crew motion is shown in figure 8. The dominant behavior in the response is the

lightly damped 0.15 Hz pendulum mode. After closing only the IMC-to-LOS loops the

steady-state error and the impact of the pendulum mode were reduced as shown in figure 9.

However, the first bending mode was still present. As shown in figure 10, closing the IMC-

to-LOS and the AGS-to-base gyro loops further reduced the impact of the pendulum mode

and almost eliminated the first bending mode. The y-axis LOS error was negligible.
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To further indicate theeffectivenessof the controller, x-y scatterplotsof theLOS error are
providedin figure 11and figure 12, respectively.
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The same disturbance (figure 7) was applied to the y-axis of the BET. The open loop

response of the x-y LOS error is shown in figure 13. The closed loop x-y LOS error is

shown in figure 14.
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CONCLUSIONS

The application of an iterative numerical technique to controller design for a large

space structure ground test facility has been presented, and the results appear to be very

promising. The resulting controller was 20 'h order which was low compared to controllers

resulting from procedures such as H °* or linear-quadratic-Gaussian. The presented technique

has been shown to have the advantages that multiple closed loop design constraints can be

simultaneously considered without the need for weighting schemes; the design engineer can

have complete control over controller order and structure; the design can be performed with

or without the use of a parametric plant model; and locally feasible, violated constraints can

be improved at each iteration. Although the presented design example only involves

constraints on matrix singular value frequency responses, there is no reason that the

technique could not be applied to other constraints such as the shapes of individual elements

of frequency response matrices and root-mean-square measures when such constraints are of
interest.
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