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The objective of the current research is to identify vibration

parameters, including frequencies, damping ratio and uncertainty
characteristics, of the Hubble Space Telescope from flight data

using an advanced system identification technique. The
Observer/Kalman Filter Identification (OKID) technique is used to

identify the vibration parameters. The OKID was recently

developed by the researchers in the Spacecraft Dynamics Branch

at NASA Langley Research Center.

OUTLINE

• Description of the Observer/Kalman Filter
Identification (OKID)

• Brief Description of the Hubble Flight Data

• Identification Results
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System Identification is to develop or improve a mathematical
model of a physical system using experimental data. The
development of a model can be performed by processing the data
in the frequency domain or time domain. The conventional
identification methods in the structures field use the

frequency-based transfer function matrix or the time-based
free-decay responses for model representation. The knowledge of
either the transfer function matrix or the free decay responses
makes it possible to construct a data matrix as the basis for the
identification of modal parameters including frequencies, damping
ratio and mode shapes at the sensor points. The Eigensystem
Realization Algorithm (ERA) or Eigensystem Realization Algorithm

using Data Correlation (ERA/DC) developed in the Spacecraft
Dynamics Branch was based on the data matrix from pulse
response to compute a state space discrete-time model or the
modal parameters. Recently, a time-based technique was
developed for computation of pulse response samples directly
from input and output data without using the frequency-based
transfer function. Because it is a time domain technique, data
periodicity is not needed as in most frequency-based procedures.

The pulse responses thus computed include information of not
only the system but also the characteristics of the system
uncertainties, which lead to separate identification of the system
model and its corresponding observer using ERA. This newly
developed technique is now called the Observer/Kalman Filter
Identification (OKID).

OBSERVER/KALMAN FILTER IDENTIFICATION
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• Identify a state space model and its corresponding
observer/Kalman filter directly from Input and
output data for modal parameter identification or
controller designs. ==
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There are basically two ways to stochastically
characterize system uncertainties including plant and
measurement noises. One way is to describe the input
and output uncertainties directly in terms of their
covariances. Another way is to specify the Kalman filter

equation with its steady state Kalman gain which is a
function of the Input and output uncertainty covariances.
In the OKID, an observer is identified to characterize the

input and output uncertainties. If the data length is
sufficiently long, and the number of identified observer
Markov parameters (pulse response time histories) is
sufficiently large, then the Identified observer of the

system order approaches the Kalman filter.

CHARACTERIZATION OF UNCERTAINTIES

I Process Noise Statlstlcs._ i I Measurement Noise Statistics I

Kalman Filter Gain
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The OKID has two ways of processing the input and output data for
system identification. One is the forward-in-time and the other is
the backward-in-time. The forward-in-time means that the current

output measurement can be fully estimated by the previous inputs
and outputs, and is commonly used for the system identification.
If one reverses time in the model to be identified, then what

were damped true system modes become undamped true system
modes, growing as the reversed time increases. Physically, It
implies that the current output measurement can be fully estimated

by the future inputs and outputs. On the other hand, the noise
modes in the forward and backward identification still maintain the

property that they are stable. This is Intuitively reasonable. If the
data set is sufficiently long, an unstable noise mode would predict

noise contributions to the pulse response data that grow
unbounded as the time step in the data set increases. This is
inconsistent with the expected contribution of noise in data.
Therefore, the backward identification has the advantage of

shifting from positive damping to negative damping of the true
system modes to distinguish these modes from noise modes. Real
experiences have shown that the backward identification may fail
to indicate certain system modes in experimental data, perhaps
due to the unmatched uncertainty levels in forward and backward
identification.
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Given a set of experimental input and output data, the
Identification algorithm proceeds as follows.

te___.j.: Choose a value of p which determines the number of
observer Markov parameters to be identified from the given

set of input and output data. The product of the number p
and the number of sensors is required to be larger than the
effective order of the system for identification of a state

space model.

Step 2: Recover the combined system and observer gain
pulse response samples from the identified observer Markov
parameters.

Step 3: Realize a state space model of the system and the
corresponding Kalman filter gain from the recovered pulse
response samples using ERA or ERA/DC.

OKID ROAD MAP
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There are six gyros located on the Optical Telescope Assembly
(OTA) and four torque wheels located on the Spacecraft Subsystem
Module (SSM). The OTA is fixed inside the SSM. The gyros are used
mainly to measure the motion of the primary mirror. Data from four
out of the six gyros are i:ec0rded _at a time. The measurement

resolution is 0.005 arcsec/sec which implies that the gyro data are
not adequate because the requirement is 0.007 arcsec pointing. The
angular rates, which are measured along thelour gyro directions, are
combTned and transformed using least-squares to recoverthethree
rates in vehicle coordinates. Least-squares is used to Smooth the
poor resolution of the data. The Input commands are given in terms
of angular acceleration in the three rotational vehicle coordinates
and then projected on the four torque wheel axes to excite the
telescope mirror and the spacecraft. The data are sampled at 40 Hz.
Pulses combined with sine-sweeping in the middle of an excitation
period (50.975 sec) were_USed _as input commandS to the torque
wheels. The excitation period was repeated six times for a (otai of
approximately 12,000 samples taken for each experiment. The
experiment was repeated three times for the other two vehicle
coordinates. As a result, there were three inputs and four outputs
for a total of three sets of 12,000 input samples and twelve sets of
12,000 output samples to be used for identification of vibration
parameters.
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The usual practice of modal parameter identification uses the
Fast Fourier Transforms (FFT) of the inputs and measured
outputs to compute the sampled pulse response histories. A
somewhat rich input is required to prevent numerical
ill-conditioning in the computation. Another approach is to

solve directly in the time domain for the pulse response
histories from the input and output data. The drawbacks of
this method include the need to invert an input matrix which

necessarily becomes particularly large for lightly damped
systems. Rather than identifying the pulse response
histories directly which may exhibit very slow decay, the
OKID uses an asymptotically stable observer to form a stable
state space discrete model for the system to be identified.
The primary purpose of introducing an observer is to
compress the data and improve system identification results
in practice. As shown in the figure, the input and output time
histories are several order longer than the observer pulse
response histories (observer Markov parameters). The
modal parameters which are excitable by the inputs and
measurable by the output sensors are embedded in the
identified observer Markov parameters.

COMPUTATION OF OBSERVER MARKOV PARAMETERS
(OKID - Step 1)
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From the identified observer Markov parameters, the system
pulse responses and the observer gain pulse reSponSes can
be easily computed using the formulations derived for the
OKID. Although the number of identified observer Markov

parameters is finite and generally very small, the number of
system pulse response samples can be as large as desired.
Note that the max_um number of |ndependent system pulse

response sampJes is equal to tile _number of identified
observer Markov-parameters. To solve for more system pulse
response sample_, than the number of identified observer
Markov parameters, simply set the extra observer Markov

parameters to zero.
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Knowledge of the actual system response samples allows
one to use the ERA or ERA/DC to obtain a state-space
realization of the system of interest. Modal parameters
including natural frequencies, damping ratios, and mode
shapes can then be found. In addition, the OKID can go
further to identify an observer gain using the Identified
observer gain pulse response samples. The identified
observer gain is related to the steady state Kalman filter
gain which may be used to characterize the system
uncertainties and measurement noises.

COMPUTATION OF SYSTEM MODEL BY ERA
(OKID - Step 3)
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A linear model and observer were identified for the Hubble

Space Telescope. The system order was chosen to be 30
for realization of the system matrices, using the identified
observer Markov parameters. Seven dominant modes were

identified. The Mod e SV=inthe table describes the singular
value contribution of each individual mode to the pulse
responses, It has been normalized relative tQ_he maximum

singular value. TheO.6_5 H_mode is be!ieved to be an
in-plane bending mode of the solar arrayi the 1.29 HZ mode is
a coupled solar and membrane mode; and the 2.45 Hz mode

is the first mode of the primary deployment mechanism with
the solar array housing attached. The identified dampings
are higher than expected because there is an attitude control
for maneuvering during testing and mechanical friction of
the solar array mechanism.

i
J

FORWARD AND BACKWARD IDENTIFICATION
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Forward Identification

Freq.

(Hz)

0.147

0.155

0.169

Backward Identification

Damping Mode SV Freq. Damping Mode SV

(%) (Hz) (%)

ss.6 0.76 0.161 4s.3 0.84
58.4 0.98 0.151 47.6 0.88

67.4 1.00 0.166 29.6 1.00

0.633 1 5.73 0.68

1.273 2 4.06 0.37

2.433 3 5.23 0.02

2.822 6.33 0.01

1 In-plane bending mode of the solar panel

2 Coupled solar and membrane mode

3 First mode of the primary deployment mechanism with the solar
array housing attached



The left figure shows the excitation input signal including
pulse combined with a sine-sweeping signal in the
middle of an excitation period (50.975 sec). The figures

on the right-hand side show a 50-second overlap of the
reconstruction from the identified forward and backward

system models, and the test data for the first vehicle axis.
There are some visible differences in the backward

identification between test and reconstruction, but overall

the map from the input to the output is reasonably we!!.
The forward identification is somewhat better than the

backward identification in damping estimation. The
damping ratio estimated from the backward approach
appears to be a little low. It is important that the system
model be accurate because it is this part that is used as a
model for control design.

COMPARISON OF REAL AND RECONSTRUCTED DATA
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The left figure shows the excitation input signal including
pulse combined with a sine-sweeping signal in the middle
of an excitation period (50.975 sec). The excitation signal
starting from approximately 60 seconds for the second
vehicle axis is identical to that for the first vehicle axis.
The figures on the right-hand side show a 50-second
overlap of the reconstruction from the identified forward

and backward system models, and thetest data for the
second vehicle axis. There are relatively more visible
differences in the backward identification between test

and reconstruction in comparison with the results shown
in the last chart for the first vehicle axis. The forward

identification is obviously better than the backward
identification in this case.
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The left figure shows 50 seconds of anexcitation input
signal including pulse combined with a sine-sweeping
signal in the middle of an excitation period (50.975 sec).
The excitation signal starting from approximately 150
seconds for the third vehicle axis is identical to that for

the first vehicle axis. The two figures on the right-hand
side show a 50-second overlap of the reconstruction

from the identified forward and backward system models,
and the test data for the third vehicle axis. There are only
very little visible differences between test and

reconstruction, implying that the input/output map is
excellent.
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The left figure shows the excitation input signal including
pulse combined with a sine-sweeping signal in themiddle
of an excitation period. The figures on the right-hand side
show a-50-second overlap of the-reConstruction from
the identified forward system models, and the test data
for the first vehicle axis. The figure in the right-hand

upper corner shows the predicted output in comparison
with the real output data. The figure in the right-hand
lower corner shows the estimated output in comparison
with tl_e-real output data. The predicted output is the
output reconstructed from the identified model only
whereas theestimated output-is_l_e=output reconstructed
from the identified observer. There are visibledifferences

in the predicted and estimated outputs. Comparison of
the observer output with the measured response shows
extremely good agreement, indicating that the observer is
correcting for the system uncertainties including
nonlinearities. The covariance of the estimated output
residuals is about three order less than the predicted
output residuals. Similar results of the predicted and
estimated outputs were obtained for the second and third
vehicle axes, and thus are not shown in this presentation.
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The identified system model obtained by this method
incorporates Information about unmodeled dynamics and
measurement noises into a system observer model. A system
observer identified from measured response data is available
for direct use in observer-based control law designs. Also the
identified observer can be used to characterize system
uncertainties and measurement noises which often require
considerable engineering Insight and judgement.

CONCLUDING REMARKS

The identified dampings are high due to an attitude
control for maneuvering during testing and mechanical
friction of the solar array mechanism.

-_ The response of the identified model has good
correlation with the measured response.

"_ Comparison of the observer output with the measured
response shows extremely good agreement, indicating
that the observer is correcting for the system
uncertainties.

"_ The identified observer model is available for direct
use in observer-based control law designs.

-k Further analysis of the existing Hubble flight data is
undertaken to simultaneously identify the attitude
controller and the open-loop system.
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