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® Model Refinement Necessary to Validate Analytical Models

o Comparison of Analytical and Experimental Eigensolution

Used to Assess Accuracy of Models

o Several Approaches Have Been Developed in R ecent Years,

but Performance Comparisons Have Not Been Available

Interactions between structure response and control of large flexible space systems have

challenged current modeling techniques and have prompted development of new techniques for

model improvement. Due to the geometric complexity of envisioned large flexible space structures,

finite element models (FEMs) will be used to predict the dynamic characteristics of structural

components. It is widely accepted that these models must be experimentally "validated" before their

acceptance as the basis for final design analysis. However, predictions of modal properties (natural

frequencies, mode shapes, and damping ratios) are often in error when compared to those obtained

from Experimental Modal Analysis (EMA). Recent research efforts have resulted in the

development of algorithmic approaches for model improvement [1], also referred to as system or
structure identification.
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MODEL REFINEMENT - METHODS

O Optimal Update Approach

- Methods are formulated as a constrained optimization
problem

- FEM property matrices (K,D, or M) are updated

O

o

O

Eigenstructure Assignment Approach

- Methods are formulated using pseudo-output feedback
eigenstructure assignment

- FEM property matrices (K,D, or M) are updated

Model Sensitivity Approach

- Methods are formulated usingdesign sensitivities

- Physical property parameters (areas, lengths, elastic

moduli, etc.) are updated

Other Approaches

Among others, three approaches for linear-system identification are; optimal-update [2-5],
eigenstructure assignment [6-9] and design sensitivity [lO, ii]_ OptirnaiSulMate identificafipn

techniques produce, through the solution of a consla-ained optimizati0n problem; updaied property
matrices (i.e., stiffness, damping or mass matrices) to more closely match the experimental modal

properiieS. Eigenstructure assignment techniqueS-f0r structure identification use a pseudo'output

feedback formulation to update the structure property matrices. Design Sensitivity techniques=use

parameter sensitivities from the initial model and use modal properties ffomthe test structure t0
detei:rnih_-phY_fhefer adji_stments. The adj-ugfed--p-_-arheters may represent physical or material

properties, like cross-section area or elastic modulus. Comparisons between techniques and
betweeh-general approaches_are not readily available, In this work, tWi_i_romising system

identification approaches are examined and compared through a study of flexible components that
are subassemblies of more complex structures.
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DAMAGE DETECTION

o

o

Some Model Refinement Techniques May Prove Useful

For Nondestructive Damage Detection

Damage Location is Analogous to Model Refinement
with a Localized Error

o An Initial Model Correlated to the Undamaged System

is Required

Undamaged Model

(Correlated)

Mass [

Damping
Stiffness
Matrices

Modal Parameters

Damage [

Experimental Results

Frequency

Response
Functions

or
Hankel

Matrices

Modal Parameters

Done I(Su'ucmre verified)

With the approaches that have been developed for model refinement, a similar framework can

be used to monitor slructural integrity. For damage location, an initial model that has been accepted

as an accurate representation of the undamaged structure is necessary. Predictions of dynamic

characteristics from this model are compared to modal characteristics that are determined

experimentally. Model refinement techniques employ differences between these characteristics to

produce adjusted models that are then compared to the initial correlated model to indicate the

location of possible damage. Structural damage is likely to occur at discrete locations, whereas

modelling errors may be either discrete or "smeared" or both, due to uncertainties in the material

properties, assumptions in the modeling process or errors in part fabrication, among others.

Therefore, different mathematical formulations may be required for the different situations of model

refinement and damage location.
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OPTIMAL UPDATE APPROACH

O For the Update, the Refined Model Must Satisfy

A Constrained Optimization P roblem

Formulation 1:

min IIA - Aa HF

subject to AS =Y, A=Atand other constraints

Formulation 2:

min IIAS - Y IIF

subject to A=Atand other constraints

O

O

Preservation of the Zero/Nonzero Pattern in the Update
Reduces the Amount of Data Required

Optimal-Update Techniques are Well-Suited for the

Identification of Sparse Truss Models

A recent work [4] separated techniques encompassed by the "optimal-update" classification into two

formulation viewpoints. These are based on the cost function and the constraints of the minimization problem
that is established to produce the update. The first view was used by Baruch and Bar Itzhack [2] and bySmith:
and Beattie [3] in their methods fors_ffness matrix adjustment_ Gefie_fffis View, tflecost function i§

formulated to rrdnimize the distance from the initial model. Additional constraints preserqce symmetry and

represent the imposition of the measured modal data, among others. Here, A is the nxn adjusted property
matrix, Aa is the nxn initial-model property matrix, and S and Y are the nxp matrices that define the

constraints with the measured data_ The matrix Frobemus norm isused for-the distance measure. Thegecond

view for framing the optimal-update problem follows aslightly different formulation allowing for the

probability of inconsistent data, modal data which cannot be matched exactly, due to noise and errors.
Generally in techniques from this viewpoint, the cost function minimizes the residual between the updated

property matrix and the measured data. Then additional constraints are imposed as well. Techniques in both
viewpoints have been developed to preserve the zero]nonzero pattern of the property matrix which reduces
the number of measured modes that are needed. These methods are especially suited for truss structures,

which have considerable sparsity in the FEM mass and stiffness matrices.
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O

O

O

EIGENSTRUCTURE ASSIGNMENT
APPROACH

For Stiffness Update, the Refined Model Must Satisfy

The Eigenproblem for Each Measured Mode

M'VdA d + KV d = AKdV d

= diag(_. 2 L 2Ad
\d i ' d2 _ "'" k2) (Measured Eigenvalues)

(Measured Eigenvectors)

Translate Perturbation Matrix into Pseudo-Output Feedback

MVdA d + KV d = AKdV d = (BoG)V d G = FC = HBoz

where Bo -" ]V[VdA d + KVd, the Control Influence Matrix

Required for Perfect Eigenstructure Assignment (B ° also
provides information concerning DOF damage)

The Perturbation Matrix

AK d = Bo(BoTVd) -1TBo

® Results in a Rank p Update of Model

Several Eigenstructure Assignment based approaches have recently been investigated. The

simplest, in both equation and computational complexity; involves the problem of an undamped

multi-degree-of-freedom (MDOF) system in which the mass matrix is assumed to be correct and

it is desired to determine a symmetric stiffness adjustment such that the updated model matches the

p measured eigenvalues/vectors [8]. The technique uses the mathematical framework of a

pseudo-output feedback eigenstructure assignment where the pseudo-outputs are the structural

positions. The conU-ol influence matrix Bo is chosen such that perfect eigenvector assignment is

achieved [9]. In Ref. 8, it is proven that: (i) the update is symmetric if the assigned eigenvectors

are mass orthogonal and (ii) that if the exact perturbation matrix (which is essentially what model

refinement procedures are attempting to estimate) is a rank p malrix, the calculated perturbation is

the exact matrix if p correct (i.e. no measurement errors) eigenvalues/vectors are measured. This

makes this technique especially well-suited for discrete model errors/damage. Techniques to

incorporate damping and mass changes have also been developed.
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EIGENVECTOR EXPANSION

Optimal Least Squares Technique Involves Both Expansion

and Projection Into Achievable Subspace

Achievable Subspace _ 4', /,, r. 1',
Li = (M_,i2 + D_'i + --1 'Vf , Via = LiLLiLij Livi

__ia _ t'omeasuredDOF's

0 Orthogonal Procrustes Expansion

V = = ope

u - measured DOF's eigenvectors

d- unmeasured DOF's eigenvectors

( )_ - experimental

( )a - analytical(FEM)

o Optimal Rotation of Analytical Into Experimental

min
wrt IIue- uaPopIIF subject to PorpPop = Ip
Pop

O Two Possible Expansions

v= da Pop v = daPop

Common to all model refinement algorithms, the dimension of the experimentally measured

eigenvectors is usually much less than that of the FEM eigenvectors due to practical EMA testing limitations.
One solution to this problem is to employ a model reduction technique so that the reduced dimension and
DOF's of the analytical model match that of the experimentally measured eigenv_tor. An alternative

approach, which is employed in this work, is to expand the measured eigenvector to the size of the analytical

eigenvector [1]. An examination of the eigenvalue problem reveals that the expanded eigenvector must lie

in the space spanned by the columns of Li, which depends both on the original FEM, the measured eigenvalue,

and an arbitrary matrix Bo. Two techniques have been investigated: one involves the expansion _d

projection of the eigenvectors into the achievable subspace. An alternate approach us_ _the math em___C_
framework of the classic Orthogonal Procrustes Pr9_b_lemtorotate aportion of the analytical modal m_x

into the experimental m_al matrix. It is then assumed that this rotation matrix can be used to rotate the

unmeasured components to provide an estimate of the complete eigenvector [12].
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CASE STUDIES

o

O

Q

8-Bay Laboratory Truss Structure

- a subassembly of the Dynamic Scale Model Technology

(DSMT) program at NASA Langley R esearch Center

- 96 dof model; 6 measured frequencies, 96 measured dofs

CASE I

- Model refinement for the undamaged truss

CASE H

- Damage location of a missing member

MB-2 Configuration

The 8-bay hybrid-scaled truss structure used for this investigation is part of a series of

structures designed for research in dynamic scale model ground testing of large space structures.

This truss, with the same number of bays as the primary smacture in the erectable Space Station

MB-2 configuration, is a focus structure in an ongoing effort to examine damage detection [13].
For testing, the truss was cantilevered and instrumented with 96 accelerometers to measure three

translational DOF's at each node. The number of acceleration measurements (at all degrees of

freedom of the model) is unusual, but provides an opportunity to select subsets of the measurements

in future studies of instrumentation placement schemes. Ttu'ee simultaneous excitation sources were

used. Six frequencies and corresponding mode shapes were extracted using the Polyreference
complex exponential technique. Each truss member was modeled as a rod element. Concentrated

masses were added at the nodes to represent the nodes and instrumentation. Tests were conducted

for an undamaged situation and a damaged situation, with truss element number 35 removed.
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CASE I
Undamaged 8-Bay Truss Structure

o Optimal-Update Approach

freeend
root

o Eigenstructure Assignment Approach

A mesh plot of the difference matrix (AKd = Kfinal - Kinitial) provides a visual representation

of the stiffness update. Here, the absolute values of the difference matrix are plotted for the two

approaches. An iterative, first-viewpoint, optimal-update approach [5] produced an adjusted
stiffness model which had the largest changes at thecantiievere_end of the truss, but numerous

changes at the free end. The sparsity preserving eigermtructtire assignment approach used 10

iterations to achieve its refined stiffness model. As can be seen from the mesh plot of the perturbation

matrix (AKd), this algorithm clearly focuses the majority of the changes at the cantilever end and

the free end. The model refinement is obviously correcting for the imperfect cantilever condition.
In addition, it should be noted that test shakers, which were not included in the analytical model,

were mounted near the free end.
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CASE I
Undamaged 8-Bay Truss Structure

® Eigenstructure Assignment Approach
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A frequency response function for one driving point of the truss is shown in the figure above.

In the figure, the solid line corresponds to the experimental measurement, the dashed line

corresponds to the initial FEM, and the dotted line corresponds to the refined FEM from the

eigenstructure assignment approach. Note that both FEM's have a zero damping matrix. The

importance of including a damping model is seen in Case Study HI. This comparison of the results

shows some discrepancy between the experimental frf and the updated model version. The

measured frequencies used for the update do not correspond exactly to the peaks of this function.

Even with that, the updated model is considerably improved.
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CASE II
"Case H" Damage for the 8-Bay Truss

o Optimal-UpdateApproach

Final Model Difference
L
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® Model Difference is AK d ; Difference Vector is Upper Triangle

of AKd

Typical Damage Pattern is Evident for Element from dof

62 to dof 74 - Member 35

"Case H" damage of the 8-bay truss is the removal of longeron member number 35. The

iterative optimal update approach produced an adjusted stiffness model for (he truss using the six

measuredfi:eque-nciesand mode shapes. The mesh plot of the difference between the reiSned model

and the model representing the undamagedtruss ind]cates the location of the damaged member. The

maximum difference occurs for the mataix off-diagon_al elements (62,74) and (74,62), indicating

the truss memb-eHffatconnects these two DOF's -/fi_e-m-_er number 35. A vecto r that stores the upper

triangle of the difference matrix, row by row, is plotted to examine the magnitude of the damage.

Here the maximum difference is of the same order as the stiffness of the removed member, indicating

the considerable loss of stiffness in this case. Detail plots show a typical damage pattern for a

damaged longeron or batten. At the root and free ends, the relatively small effects represent the

update for the undamaged situation, which was not incorporated prior to this case study.
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CASE II
"Case H" Damage for the 8-Bay Truss

® EigenstructureAssignment Approach
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o Upper Left is B o the Damage Vector; Upper Right is AK d

o Filtering of Experimental Measurements Making Use of

the Damage Vector Enhances AK a Estimate

In the eigenstructure assignment approach for damage detection, damage location and extent can be

decoupled. Inspection of the Bo vector (or matrix if more than one eigenvector is measured) gives a direct
indication of which degrees of freedom have been most affected by damage. In fact, when Bo is calculated

using noise-free measurements (perfect eigenvalue/eigenvector information), degrees of freedom that are not
directly influenced by damage will have a corresponding zero element in Bo. From the upper left plot, which

has the elements of Bo plotted versus degree of freedom, it is clear that two degrees of freedom (62 and 74)

have been most affected by damage. These are exactly the degrees of freedom that were coupled before the
truss member was removed. The small numerical elements at all other degrees of freedom can be attributed

to experimental measurement errors. Note that the damage location problem is performed independent of
the damage extent problem. The upper right figure shows AKd using the Bo of the upper left figure. To

improve the damage extent estimate, a filtering algorithm for Bo has been developed which sets to zero those
elements of Bo that are below a specified threshold (related to the maximum element of Bo). The results of

applying the filtering algorithm are shown in the lower two plots. Details of this decoupled damage location

and extent algorithm can be found in Zimmerman and Kaouk [9].
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CASE STUDIES

O

O

Tower Substructure

- a subassembly of the Multi-Hex Prototype Experiment
at Harris Corporation

- 57 dof model; 8 measured eigenvalues, analytical
eigenvectors

CASE IH

- Model refinement for the tower structure

The Harris Multi-Hex Prototype Experiment (MHPE) test structure design incorporates many of the

features and technology of the Harris Solar Dynamic Concentrator. Themajor structuralsubsys_ms include
the reflector surface (the seven panel array), the secondary tower (tripod) and the base plate/support system.

In this particular study, the secondary tower was removedfrom the reflector surface_uad hard mounted to
ground. Three linear precision actuators (LPACTS) Were used as excitation sources in i_effbrIr_ng the modal
survey of the tower. One leg of the tower was instrumented with 6 translational accelerometers. Velocity

beam elements (4 per strut). The tower top was modeled as 9 beam elements. Fittings connecting the tower

struts to the tower top and to the center panel were included as point masses, aswas the stationary part of

the LPAC'T_--The moving proof-mas s of each tower LPACT was modeled as a point mass attached to the
tower top by springs. The Eigensystem Realization Algorithm (ERA) was used to estimate the experimental

eigenv_-ues-_ad e__envectors. Because-of the fin:died-senso_: sp_al resolution, only -the exi_erimental

eigenvalues were used. It has been assumed that the original analytical eigenvectors match those that would
have been measured.
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CASE III
Model Refinement for the Tower Structure

Optimal-Update Approach
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In each figure above (showing results of the optimal-update approach) and for the next slide

(showing results of the eigensmacture assignment approach) the solid line corresponds to the

experimental measurement, the dashed line corresponds to the initial FEM (provided by Harris), and

the dotted line corresponds to the refined FEM. In the top pair of plots, both FEM's have a zero

damping malrix; the finite peaks at the resonant frequencies are only due to the frequency spacing

at which the frequency response functions have been calculated. It is obvious that there is

improvement in frequency matching; however the amplitude mismatch between experiment and
refined FEM is of some concern. Thereare_o main causes of this mismatch (i) using the original

mode shapes and (ii), not including the effects of damping. It should be noted that for both

approaches, the magnitude of the elements of the perturbation stiffness matrix was quite small. In
fact, the maximum element was of the order 10, whereas the original stiffness elements are several

orders of magnitude higher. This result is not surprising in that it is known from control theory that

moving eigenvalues requires less control effort than moving both eigenvalues and eigenvectors.
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CASE III
Model Refinement for the Tower Structure

Eigenstructure Assignment Approach
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In the second test for both approaches, a "modal" damping matrix was calculated using the

measured eigenvalue (2_COn) and the original eigenvectors. With the original eigenvectors mass

orthogonalized, a physical damping matrix was approximated by the following:

C = MU diag(2_.iOni ) UTM

whereMis the mass matrix, U is the orthonormal eigenvector matrix, and diag (2_io_) is a diagonal

"modal" damping matrix. The effect of introducing this damping matrix in the frequency response

calculation is shown in the bottom pair ofpl-ttffoi: each approach. Here, thtstfid line corresponds

to the experimental measurement, the dashed line corresponds to the initial FEM, and thedotted line

corresponds toth_ in which both the stiffness matrix la_-_enupdated and the experimental

damping matrix has been included. In comparing the two figures for both approaches, it is clear that

introduction of the damping model greatly enhances the amplitude matching of the resonant peaks,

as well as providing better matching throughout the frequency response.
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SUMMARY

o Two Promising Approaches for Model Refinement were
Examined andCompared with Data from R eal Structures

o timal-Update Methods are a Viable Approach for
del Improvement and Damage Location

- Refined analytical results agree with experiment

- Techniques are well-suited for sparse models

o

o

Output Feedback Approach P roduces Excellent Agreement
Between Analytical and Experimental R esults

- With p measured modes, produces a rank p update

- Algorithm computationally feasible for large FEM's
(inverse of a pxp matrix)

Continuing Studies Will Examine Other Structure Types,
Sensor Placement, and Model Refinement for Assemblies

To date, new techniques for model refinement have most often been presented with an

application to a simulated example, without a basis for comparison of different methods and

approaches. In this work, performance of techniques from two approaches were compared through

studies with real data via the updated stiffness matrix results, frequency response of the improved

models with respect to experimental measurements, and physical interpretation of the refinements.

Optimal-update and eigenstructure assignment approaches both demonstrate their viability for

model refinement and damage location. Differences in the approach formulations have been

examined. With these results, strengths and weaknesses of approaches and specific techniques are

more readily available for CSI applications of model improvement.
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