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Modem finite element methods (FEMs) enable the precise modeling of mass and
stiffness properties in what were in the past overwhelmingly large and complex structures.
These models allow the accurate determination of natural frequencies and mode shapes.
However, adequate methods for modeling highly damped and highly frequency dependent
structures did not exist until recently. The most commonly used method, Modal Strain
Energy!-2, does not correctly predict complex mode shapes since it is based on the
assumption that the mode shapes of a structure are real. Recently, many techniques have
been developed which allow the modeling of frequency dependent damping properties of
materials in a finite element compatible form. Two of these methods, the Golla-Hughes-
McTavish®4 method and the Lesieutre-Mingori56 method, model the frequency dependent
effects by adding coordinates to the existing system thus maintaining the linearity of the
model. The third model, proposed by Bagley and Torvik7, is based on the Fractional
Calculus method and requires fewer empirical parameters to model the frequency
dependence at the expense of linearity of the govemning equations. This work examines the
Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and
compares them to determine the plawsibility of using them for modeling viscoelastic
damping in large structures.
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THEMODAL STRAIN ENERGY MODEL

The most common method used for the modeling of viscoelastic damping in structures
presently is the Modal Strain Energy method suggested by Ungar and Kerwin2. This
method assumes that proportional damping (Rayleigh Damping) is an adequate model of
the damping mechanisms of a structure. This implies that the modes of the damped
structure are the same as that of the undamped structure.

Modal Strain Energy begins with the complex stiffness representation of matenal
damping properties. In this representation, the complex stiffness K* = K" + K"j where j
represents the square root of -1, and K" and K™ are the real and imaginary parts of the
complex stiffness, respectively. The ratio K"/K' is the material loss factor. A more
detailed description of the complex representation is given by Nashif, Jones and
Henderson3.

The loss factor of any mode i is given by the summation of the strain energy in each
element, multiplied by its material loss factor, and divided by the total strain energy of the
mode, i.e.,

. "V'jf.
= ) =L . 1
7 Zv (1)

The variable is the loss factor of the it mode ﬁi ;1 the loss factor of the J element
at the i* natural frequency, V! is the strain energy of the i mode ata given amplitude, and
V; is the strain energy in the jth element when the structure is deformed in the i mode

shape at the same amplitude. The strain energy V¥ in a structure or element with the
stiffness matrix defined by K and the deformation defined by x is

V=x"Kx 2
Since the ifnaginary part of ihe glot;a] stiffness matrix is the assembly of the imaginary
parts (K") of the elemental stiffness matrices, equation (1) may be written

i X K"x,
" x K'x,
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where K is the real part of the global stiffness matrix and is denoted as X for the
undamped and viscously damped systems. Note that this is precisely true in the case of the
single degree of freedom system. This is a useful representation of the modal strain energy
equation and will be referred to repeatedly.

Although intuitively the concept of using energy ratios weighted by element loss
factors is appealing, it has no theoretical basis. In the past there has not been an
explanation of why modal strain energy is correct when the imaginary part of the stiffness
matrix is proportional to the mass and stiffness matrices. It can be shown that modal strain
energy is nothing more than the modal decoupling of a viscoelastic system where it is
assumed that the imaginary part of the stiffness matrix must obey K"/w = C.

The equations of motion for an unforced viscously damped multiple degree of freedom
(MDOF) system may be written as

My+Cy+Ky=0
Assuming a solution of the form
y =ueiot
then substituting (5) into (4) gives
MaRAu+Ciou+Ku=0

The system equations written in terms of complex modulus corresponding to (4) are
then

My+(K'+K"i)y=0
Substituting (5) into (7) similarly gives
MaoPu+(K+K'i)u=0
Comparing (6) and (8), it is seen that for any given frequency, w,
C wy=K"

which is the multiple degree of freedom representation of c=kn/w.
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Likewise, substituting

y=Pv (10)

into (4), where P is the matrix of normalized eigenvectors of MK and premultiplying by
PT, equation (4) becomes

PTMPV +PTCPv + PTKPv
=diag (m,)[V + diag( 2z,w,)V + diag (w})v] =0 (11

where m; are the modal masses. This is true if and only if C is proportional to M and K.
Likewise, for the complex system, substituting (9) and (10) into (7), and premultiplying by
PT gives

PTMPV + PTK'Pv+PTCwPiv

= diag(m;) [ ¥ + ( diag(wf) + diag(2 & o) @ji )v] =0 (12)

again if and only if C is proportional. This is identical to requiring that K" be
proportional ( i.e., K"/w= a M+ BK). From (12) it can be seen that

(PTK'P)' (PTC oy P)=diag(2 &) = diag(r}) = H (13)

when wj = ;. However, using (9) gives

(PTK P)!(PTK" P)=diag(2 ) = diag(n)= H (14
Denoting the i eigenvector as x;, equation (14) may be written as

Tn
i X, K"x,

= 1
n XK X, (15

which is identical to equation (3). Therefore, the same rules which apply to decoupling
viscously damped systems apply to the proper use of modal strain energy. For non-
proportionally damped systems, the matrix H defined by (14) will be non-diagonal and will
give some indication of the non-proportionality of the system.



Thus, the modal strain energy technique is nothing more than the modal decoupling of
a system with complex modulus damping. Also, the criteria used to define whether or not
modal strain energy is a proper method for finding loss factors of a structure described by a
complex modulus have been shown to be identical to those for decoupling a viscously
damped system.

THE GOLLA-HUGHES-MCTAVISH MODEL

The Golla-Hughes-McTavish (GHM) model is based upon the generalized standard
linear model; however, it has been developed for direct incorporation into the finite element
method. In the GHM model, the material complex modulus is written in the Laplace
domain in the form

k

E*(S): E0(1+ h(S))Z E0(1+ 2& Sz +2Cn(‘ans (16)

"5t +28, 0,5+ !

where the hatted terms are free variables for curve fitting to complex modulus data and s is
the Laplace domain operator. From (16) it can be seen that EY(w) = Ep for jw = 0 which
means that no creep is allowed in this model. Also, the number of expansion terms, &,
may be maodified to represent the high or low frequency dependence of the complex
modulus. In general between two and four terms are adequate.

The finite element form of the GHM model for a single modulus and single expansion

ferm is
Mo 0 s, [ .0 |x
[0 —EA, L(s) $*lo 2LACEOA, [z(s)]s
w w
LA+ DER -GERA, {x(s)]z[F(s)] -
-aE, AR aE,A, ||Z$) 0

where M is the original mass matrix, E,,IE' is the original element stiffness matrix, A is

the diagonal matrix of the non zero eigenvalues of K, and R, is the matrix of the eigenvector
associated with the eigenvalues of A, Even for the most complex linear elements, the

GHM finite element remains linear and second order. Although the GHM system state
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equations are much larger than the original undamped equations, the GHM state matrix is
only slightly larger than the state matrix for a viscously damped system. Where the size of
the state matrix for a viscously damped system is 2n x 2n, the state matrix ol the GHM model

is m x m where

- Zk,.p,. (18)

Here n represents the number of viscoelastic elements, and pi and ; represent the number
of non-zero eigenvalues and number of expansion terms used in the ith element. One
drawback of this method which may be overcome simply is the addition of fictitious
overdamped modes. These should be recognized as fictitious and discarded.

FRACTIONAL CALCULUS - THEBAGLEY AND TORVIK MODEL

The Bagley and Torvik fractional calculus viscoelastic model has been proposed based
on the observations of Nutting?,Gemant!0.11, Caputo!2.13, Caputo and Minardi 14, and
Scott-Blairl3 that the mechanical properties of viscoelastic materials seem to vary as a
function of frequency raised to fractional powers. In the time domain, this represents
fractional derivatives as defined by

1 X7

F(l—a) a?f(t—r)" O<a<l (19)

where a represents the power of the derivative, I'is the gamma function, and Tis a
dummy variable of integration. This in turn can be represented in the Laplace domain as

£{£—;— x(t)} = 57x(s) (20)
d - -
where £represents the Laplace transform operator 'Trhe general form of the fractional
denivative model is then
>, d”
+2b —Fr0=Ec+ ;Emd—ﬁe @D



The experimental results of Bagley and Torvik demonstrated that, for many materials,
the stress-strain relation can be modeled well using only the first expansion term in each
series. In the Laplace domain, the Bagley and Torvik viscoelastic model is

_Ep+ E;s@

ofs) =g ofs)= u(s) el5) 22

where p(s) represents the complex modulus in the Laplace domain. In order to solve
the final equations, a and Bare restricted to fractional form. In the interest of brevity, no
derivation is shown. One may be found in Bagley and Torvik”.

The final form of the equations of motion are

{Bs'"™ + B,}y(s)= F(s) 3)

where m is the smallest common denominator of a and 8, By and B; are matrices of order
nm(2 + b) X nm(2 + b), and y(s) and F~‘(s) are the appropriate state vector and forcing
function vector respectively. Equation (23) may be posed as an eigenvalue/eigenvector
problem (setting F(s) =0) in order to solve for y(s) and s/, The system eigenvalues, s,
and the system eigenvectors, y (s), may then be found using (23). However, notice that
the order of the system is dramatically increased. For a second order viscously damped
system, the size of the eigenvalue problem is 2n. The size of the Bagley and Torvik
eigenvalue problem is [m(2+p)] n. For the simplest possible Bagley and Torvik
viscoelastic model, with a = b = 1/2, the order of the system is already 5n!. This will take
6.25 times more memory and about four times as much time to calculate. Note that in the
strictest sense this is not a finite element method, since no viscoelastic element has been
developed which could be assembled into an existing finite element model in order to create
a global FEM model. Another drawback of this method is the occurrence of unstable
eigenvalues as described by Bagley and Torvik”. Although these may be disregarded when
only interested in mode shapes and loss factors of modes, the forced response of this
model would be unstable, which does not agree well with the real behavior of viscoelastic
matenials.

It should be noted that much work has been done by Morgenthaler!6 of Martin
Marietta using the Bagley and Torvik Model on the PACOSS program. The essence of his
work is a numerical algorithm incorporating the accelerated subspace iteration technique to
the complex modulus problem. Although the initial form of the stiffness matrix is assumed
to be the fractional derivative, the algorithm’s first step is to evaluate the complex stiffness
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matrix at a frequency near the desired natural frequency. Then the desired natural
frequency is found, the complex stiffness matrix is evaluated at the new frequency, and the
desired natural frequency is found. The procedure iterates until the desired accuracy is
reached, although it is mentioned that one iteration may be enough in many cases. The
final state matrix is found by recoupling the eigenvalues and eigenvectors.

This method discards the benefit of the Bagley and Torvik model by evaluating the
frequency dependent stiffness matrix instead of solving the complete set of frequency
dependent equations derived by Bagley and Torvik?. This is not bad if all you are
interested in are the correct mode shapes and eigenvalues. However, if that is the only
goal, then there is no need to use the fractional denvative model. Any other Laplace
domain representation which fits the modulus in the frequency domain would work equally
as well. There is no reason not to simply use matenal data sheets directly to evaluate the
complex stiffness matrix and avoid the curve fitting altogether. The end result of this
method may model the system well, but it does not incorporate all of the frequency
dependence of the materials in the final model. Any structural modification requires the
complete recalculation of all of the desired eigenvalues and eigenvectors in order to find the
new state space matrix, where the GHM method simply requires the assembly of a new
element into the existing finite element model.

ANEXAMPLE - THE EVOLUTIONARY VISCO-STRUT

These three models have each been used to model a viscoelastic strut designed for use
in the evolutionary model at NASA Langley. The Visco-Strut is a load bearing member
capable of supporting tensile and compressive forces in excess of 2000 Ibs. In its present
configuration, it has a static stiffness on the order of 30,000 Ib/in. The viscoelastic material
used is G.E. SMRD, manufactured by the General Electric Astro Space Division. Both the
GHM and the Bagley and Torvik models have proven to be capable of modeling the

frequency dependent complex modulus of the Visco-Strut well, while the Modal Strain

Energy method simply uses the raw damping data for any element and therefore is not
constrained by the need to curve fit. The results of the curve fitting for the GHM and
Bagley and Torvik models are shown below in figures 1 and 2.



For the GHM model, Ko =3.11x10*. The remaining parameters are shown in Table

1.
|| =1 =2 =3
o 2.29 .520 319
&i 9.83x1014 2.58x1023 7.97x1020
of 1.91x1018 4.44x10%5 2.17x102
Table 1. GHM Parameters for the Visco-Strut.
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Figure 1. Comparison of the GHM model (solid line) of the complex modulus and test

data (dots).
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For the Bagley and Torvik model the parameters are Kp=2.86x10%, K1=3.6163x103,
b=1.9028x10-2, and a=p=1/2.
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Figure 2. Comparison of the Bagley and Torvik model (solid line) of the complex modulus
and test data (dots). '

Some first attempts have been taken to model the effects of the Visco-Strut when
placed in a small nine bay truss. To date, the only model which has been solvable is the
MSE model. The Modal Strain Energy method is simple and quick because it uses the
results from the dynamic model of the structure to find modal loss factors using equation
(1) or (3). It has been shown by Johnson and Kienholz! to correctly find loss factors
even when the damping is not proportional. Both the GHM and Bagley and Torvik model
solutions have encountered numerical difficulty. The GHM global FEM is ill-conditioned,
while the size of the Bagley and Torvik model (1185 x 1185) has caused significant
numerical errors. Neither method has yielded useful results for this problem.



CONCLUSIONS

The most robust method for determining modal loss factors is clearly the Modal Strain
Energy method. If the system is proportionally damped (as determined by the matrix H in
equation (14) being diagonal) then there is no need to use either the GHM or Bagley and
Torvik method. Even when the structure is non-proportionally damped, there is little
benefit to using either of the higher powered models unless there is a need to predictively
model the mode shapes of the damped structure, or model the response of the structure to
different excitations. However, if precise modeling of the response is necessary, one must
decide whether the GHM modal will become too ill-conditioned for solution, or whether
the large increase in the model size using Bagley and Torvik is acceptable.
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