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Modem finite dement methods (FEMs) enable the precise modeling of mass and

stiffness properties in what were in the past overwhelmingly large and complex structures.

These models allow the accurate determination of natural frequencies and mode shapes.

However, adequate methods for modeling highly damped and highly frequency dependent

structures did not exist until recently. The most commonly used method, Modal Strain

F_rergyl, 2, does not correctly predict complex mode shapes since it is based on the

assumption that the mode shapes of a structure are real. Recently, many .techniques have

been developed which allow the modeling of frequency dependent damping lxoperties of

materials in a finite element compatible form. Two of these methods, the Golla-Hughes-

McTavish3, 4 method and the Lesieutre-MingoriS, 6 method, model the frequency dependent

effects by adding coordinates to the existing system thus maintaining the linearity of the

model. The third model, proposed by Bagley and Torvik 7, is based on the Fractional

Calculus method and requires fewer empirical parameters to model the frequency

dependence at the expense of linearity of the governing equations. This work examines the

Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and

compares them to determine the plausibility of using them for modeling viscoelastic

damping in large structures.
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THE MODAL STRAIN ENERGY MODEl,

The most common method used for the modeling of viscoelastic damping in structures

presently is the Modal Strain Energy method suggested by Ungar and Kerwin 2. This

method assumes that proportional damping (Rayleigh Dan_obzg) is an adequate model of

the damping mechanisms of a structure. This implies that the modes of the damped

structure are the same as that of the undamped sm.,cture.

Modal Strain Energy begins with the complex stiffness representation of material

damping properties. In this representation, the complex stiffness K* = K' + K"j wherej

represents the square root of - 1, and K' and K" are the real and imaginary parts of the

complex stiffness, respectively. The ratio K"//( is the material loss factor. A more

detailed description of the complex representation is given by Nashif, Jones and

Henderson 8.

The loss factor of any mode i is given by the summation of the strain energy in each

element, multiplied by its material loss factor, and divided by the total strain energy of the

mode, i.e.,

n "

,i-

i

The variable rg is the loss factor of the ith mode, r/j is the loss factor of theft h element

at the ith natu_ frequency, Vi is the strain energy of the i th mode at a given amplitude, and

V_ is the strain energy in the jth element when the structure is deformed in the ith mode

shape at the same amplitude. The strain energy _ in a structure or element with the

stiffness matrix defined by K and the deformation defined by x is

O)

V = x r K x (2)

Since the imaginary part of the global stiffness matrix is the assembly of the imaginary

parts (K") of the elemental stiffness matrices, equation (1) may be written

T rYfl

i X/_A X_
r/ = r (3)

x_ K' x_
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where K' is the real part of the global stiffness malrix and is denoted as K for the

undamped and viscously damped systems. Note that this is precisely true in the case of the

single degree of freedom system. This is a useful representation of the modal strain energy

equation and will be referred to repeatedly.

Although intuitively the concept of using energy ratios weighted by dement loss

factors is appealing, it has no theoretical basis. In the past them has not been an

explanation of why modal strain energy is correct when the imaginary part of the stiffness

matrix is proportional to the mass and stiffness malrices. It can be shown that modal strain

energy is nothing more than the modal decoupling of a viscoelastic system where it is

assumed that the imaginary part of the stiffness matrix must obey/("/to = C.

"The equations of motion for an unforced viscously damped multiple degree of freedom

(MDOF) system may be written as

then

M_+Cjt+Ky=O

Assuming a solution of the form

y = u e iwt

then substituting (5) into (4) gives

-Mw _ u+ Citou + Ku=O

The system equations written in terms of complex modulus corresponding to (4) are

M _ + (K' + K"i) y = 0

Substituting (5) into (7) similarly gives

-M o,'2 u + (K' + K"i) u = 0

Comparing (6) and (8), it is seen that for any given frequency, toy,

C _ = K"

which is the multiple degree of freedom representation of c=koAo.

(4)

(5)

(6)

(7)

(8)

(9)
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Likewise, substituting

y=Pv

into (4), where P is the matrix of normalized eigenvectors of M-1I_ and premultiplying by

pr, equation (4) becomes

(10)

pTMpi; + pTCp i, + PrKP v

=d/ag (m,)[i_ + diag( 2z, w, )i, + d/ag (w_)v] -- 0 (11)

where m/are the modal masses. This is true if and only if C is proportional to Mand K.

Likewise, for the complex system, substituting (9) and (10) into (7), and premultiplying by

pr gives

pTMpb" + pTK'p v + pTC _ P i

=diag(m9 [ _, + ( diag(o_2)+ diag(2 _ _) _i )v ] =0 (12)

again if and only if C is proportional. This is identical to requiring that K" be

proportional ( i.e., K"/w = a M + 13K). From (12) it can be seen that

( pTK' P )-, ( PTC ob.P )=diag(2 _i)=diag(_)= H (13)

when _- = o3/. However, using (9) gives

( p'r I_ P )-' ( pT ld' P ) = diag(2 _i) = diag(r/) = H

Denoting the ith eigenvector as xi, equation (14) may be written as

(14)

Z v!

x, K x, (15)
_ = x,rK ' x,

which is identical to equation (3). Therefore, the same rules which apply to decoupling

viscously damped systems apply to the proper use of modal strain energy. For non-

proportionally damped systems, the malrix Hdefined by (14) will be non-diagonal and will

give some indication of the non-proportionality of the system.
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Thus,the modal swain energy technique is nothing more than the modal decoupling of

a system with complex modulus damping. Also, the criteria used to define whether or not

modal swain energy is a proper method for finding loss factors of a structure described by a

complex modulus have been shown to be identical to those for decoupling a viscously

damped system.

THE GOkLA-HUGHES-MCTA VISH MOD_-_ _

The Golla-Hughes-McTavish (GHM) model is based upon the generalized standard

linear model; however, it has been developed for direct incorporation into the finite element

method. In the GHM model, the material complex modulus is written in the Laplace

domain in the form

E*(s)= Eo(1 + h(s))= Eo 1+ a,, s = +2_s +_f)
(16)

where the hatted terms are free variables for curve fitting to complex modulus data and s is

the Laplace domain operator. From (16) itcan be seen that E*(o_) =E0 for jo9 = 0 which

means that no creep is allowed in this model. Also, the number of exlxmsion terms, k,

may be modified to represent the high or low frequency dependence of the complex

modulus. In general between two and four terms are adequate.

The finite element form of the GHM model for a single modulus and single expansion

term is

[0 [: 0]a A 2____ A Ix(s)]s+ . t.)]s

+r(,: ]

whereMis the original mass matrix, F_/( is the original element sliffness matrix, Ae is

the diagonal matrix of the non zero eigenvalues of/_', and Re is the matrix of the eigenvector

associated with the eigenvalues of Ae. Even for the most complex linear elements, the

GHM finite element remains linear and second order. Although the GFIM system state

(17)
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equationsamm_h larger than the original undamped equations, the GHM state matrix is

only slightly larger than the state matrix for a viscously damped system. Where the size of

the state matrix for a'dscously damped system is 2n x 2n, the state matrix of the GHM model

is m x m where

rl

m= _ k,p, (18)

Here n represents the number of viscoelastic dements, and pi and ki represent the number

of non-zero eigenvalues and number of expansion terms used in the 1xh dement One

drawback of this method which may be overcome simply is the addition of fictitious

overdamped modes. These should be recognized as fictitious and discarded.

FRACTIONAL CALCULUS - THE BAGLEY AND TORVIK MODEL

The Bagley and Torvik fractional calculus viscoelastic model has been proposed lxtsed

on the observations of Nutting9,Gemantl0,11, Caputol2,13, Caputo and Minardi 14 and

Scott-Blair 15 that the mechanical properties of viscoelastic materials seem to vary as a

function of frequency mised=_fmctional powers. In the time domain, this represents

by ....

"_-zx(t) = r(1 a) dta0(t- .)"
O<a<l

where a represents the power of the derivative, Fis the gamma function, and _'is a

dummy variable of integration. This in turn can be represented in the Laplace domain as

£ x(t) = s%(s)

Where £represents the Laplace transform opem_' The general form of the fractional

derivative model is then

m-i

(19)

(20)

(21)
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The experimental results of Bagley and Torvik demonstrated that, for many materials,

the stress-strain relation can be modeled well using only the first extxmsion term in each

series. In the Laplace domain, the Bagley and Torvik visr.oelastic model is

_ Eo + E1 s a
o(s) - 1 + b st_ e(s) = Igs) e(s) (22)

where lgs) represents the complex modulus in the Laplace domain. In order to solve

the final equations, a and t_are restricted to fractional form. In the interest of brevity, no

derivation is shown. One may be found in Bagley and Torvik 7.

The final form of the equations of motion are

{l_s"'+B2}y(s)---F(s ) (23)

where m is the smallest common denominator of a and/_, B1 and B2 are matrices of order

nm(2 + b) x nm(2 + b), and y(s) and F'(s) are the appropriate state vector and forcing

function vector respectively. Equation (23) may be posed as an eigenvalueJeigenvector

problem (setting F'(s) =0) in order to solve for y (s) and s 1/m. The system eigenvalues, s,

and the system eigenvectors, y (s), may then be found using (23). However, notice that

the order of the system is dramatically increased. For a second order viscously damped

system, the size of the eigenvalue problem is 2n. The size of the Bagley and Torvik

eigenvalue problem is [m(2+fl)] n. For the simplest possible Bagley and Torvik

viscoelastic model, with a = b = 1/2, the order of the system is already 5n!. This will take

6.25 times more memory and about four times as much time to calculate. Note that in the

strictest sense this is not a finite element method, since no viscoelastic element has been

developed which could be assembled into an existing finite dement model in order to create

a global FEM model. Another drawback of this method is the cr,,currence of unstable

eigenvalues as described by Bagley and Torvik 7. Although these may be disregarded when

only interested in mode shapes and loss factors of modes, the forced response of this

model would be unstable, which does not agree well with the real behavior of viscoelastic

materials.

It should be noted that much work has been done by Morgenthaler 16of Martin

Marietta using the Bagley and Torvik Model on the PACOSS l:togram. The essence of his

work is a numerical algorithm incorporating the accelerated subspaee iteration technique to

the complex modulus problem. Although the initial form of the stiffness matrix is assumed

to be the fractional derivative, the algorithm's first step is to evaluate the complex stiffness
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matrixatafrequencynearthedesirednaturalfrequency.Thenthedesirednatural
frequencyis found,thecomplexstiffnessmalrixisevaluatedatthenewfrequency,andthe

desirednaturalfrequencyis found.Theprocedureiteratesuntilthedesiredaccuracyis
reached,althoaghit ismentionedthatoneiterationmaybeenoughin manycases.The
finalstatematrixisfoundbyrecouplingtheeigenvaluesandeigenvectors.

ThismethoddiscardsthebenefitoftheBagleyandTorvikmodelbyevaluatingthe

frequencydependentstiffnessmatrixinsteadof solvingthecompletesetof frequency
dependentequationsderivedbyBagleyandTorvik7. Thisisnotbadif all youare

interestedinarethecorrectmodeshapesandeigenvalues.However,if thatis theonly

goal,thenthemisnoneedtousethefractionalderivativemodel.AnyotherLapl_e
domainrepresentationwhichfitsthemodulusin thefrequencydomainwouldworkequally

aswell. Thereisnoreasonnottosimplyusematerialdatasheetsdirectlytoevaluatethe
complexstiffnessmalrixandavoidthecurvefittingaltogether.Theendresultof this
methodmaymodelthesystemwell,butit doesnotincorlxrateallof thefrequency

dependenceof thematerialsin thefinalmodel.Anystructuralmodificationrequiresthe
completerecalculationof allof thedesiredeigenvaluesandeigenvectorsinordertofindthe
newstatespacematrix,wheretheGHMmethodsimplyrequirestheassemblyof anew
elementintotheexistingfiniteelementmodel.

ANEXAMH.E-THEEVOLLrFIONARYVISCO-STRLrI"

Thesethreemodelshaveeachbeenused to model a viscoelastic strut designed for use

in the evolutionary model at NASA Langley. The Visco-Strut is a load beating member

capable of supporting tensile and compressive forces in excess of 2030 lbs. In its present

configuration, it has a static stiffness on the order of 30,000 lb/in. The viscoelastic material

used is G.E. SMRD, manufactured by the General Electric Astro Space Division. Both the

GI-IM and the Bagley and Torvik models have proven to be capable of modeling the

frequency dependent complex modulus of the Visco-Strut well, while the Modal Strain

Energy method simply uses the raw damping data for any element and therefore is not

constrained by the need to curve fit. The results of the curve fitting for the GHM and

Bagley and Ton, ik models are shown below in figures 1 and 2.
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For the GI--IM model, K0 = 3.1 lx 104. The remaining parameters are shown in Table

1.

Table 1.

i=2i=l

2.29 .520 .319

_i 9.83x 1014 2.58x 1023 7.97x 1020

1.91x1018oi

GHM Parameters for the Vi_.x_-Strut.

4.44x1025

i--3

2.17x 1022

Real Modulus

o 10................i1
IN 104 ...............

10o i;'l _'i_2 103

Frequency (Radians/sec)

105 Ima_.'nar_ Modul.us .......

104

103 , , ..............

100 161 102 103

Frequency (Radians/sec)

Figure 1. Comparison of the GHM model (solid line) of the complex modulus and test

data (dots).
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For the Bagley and Torvik model the parameters are K0=2.86x104, Kl=3.6163x103,

b=l._28x10 -2, and ¢x=lB=l/2.

v

105 Real Modulus
, , , ,, , , , 0 0 ,

J

04 ! | | | | . , il l i I i i • ¢ • q l | • | | • • •

100 101 102 103

Frequency (Radians/sec)

._ 105 ...... Im ,a_, ,Mod,ul,us, .....

104

103 .............
10o 101

. • • • | i i i • ° . . .

102 103

Frequency (Radians/sec)

Figure 2. Comparison of the Bagley and Torvik model (solid line) of the eomplex modulus

and test data (dots).

Some first attempts have been taken to model the effects of the Visco-Strut when

placed in a small nine bay miss. To date, the only model which has been solvable is the

MSE model. The Modal Strain Energy method is simple and quick because it uses the

results from the dynamic model of the structure to find modal loss factors using equation

(1) or (3). it has been shown by Johnson and Kienholz 1 to correctly find loss factors

even when the damping is not proportional. Both the GHM and Bagley and Torvik model

solutions have encountered numerical difficulty. The GHM global FF_NIis ill-conditioned,

while the size of the Bagley and Torvik model (1185 x 1185) has caused significant

numerical errors. Neither method has yielded useful results for this problem.
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CONCLUSIONS

Themc_trobustmethodfordeterminingmodallossfactorsisdeafly the Modal Strain

Energy method. If the system is proportionally damped (as determined by the matrix H in

equation (14) being diagonal) then there is no need to use either the GHM or Bagley and

Torvik method. Even when the structure is non-proportionally damped, there is little

benefit to using either of the higher powered models unless there is a need to predictively

model the mode shapes of the damped structure, or model the response of the structure to

different excitations. However, if precise modeling of the response is necessary, one must

decide whether the GHM modal will t_:w_ometoo ill-conditioned for solution, or whether

the large increase in the model size using Bagley and Torvik is _ceptable.
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