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INTRODUCTION

Increasingly complex spacecraft will benefit from integrated design and optimization of
structural, optical, and control subsystems. Integrated design optimization will allow
designers to make tradeoffs in objectives and constraints across these subsystems. The
location, number, and types of passive and active devices distributed along the structure
can have a dramatic impact on overall system performance. In addition, the manner in
which structural mass is distributed can also serve as an effective mechanism for
attenuating disturbance transmission between source and sensitive system components.
This paper presents recent experience using optimization tools that have been developed
for addressing some of these issues on a challenging testbed design problem. This
particular testbed is one of a series of testbeds at the Jet Propulsion Laboratory under the
sponsorship of the NASA Control Structure Interaction , SL) Program to demonstrate
nanometer level optical pathlength control on a flexible truss structure that emulates a
spaceborne interferometer.

o GOALS

Minimize wavefront/LOS error

Minimize total system mass

Minimize power consumption

Others

DESIGN VARIABLES

Structure parameters

- Control gains

- Optical design variables

Proposed Space Interferometer
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METHODOLOGY VALIDATION TESTBED

To demonstrate nanometer level optical pathlength control for the proposed
interferometer, the Phase B CSI testbed structure was designed and built to emulate the
dynamic characteristics of the interferometer. It consists of a vertical tower of length 2.5m
with two horizontal arms at right angles to each other attached at the top of the tower. The
tower and arms are trusses built from a total of 14 rectangular bays each with dimension
40.6 x 40.6 x 28.7 cm. Attached to one of the horizontal arms is the optical motion
compensation system which is encased in a flexure mounted frame. The system was
modeled using NASTRAN with beam elements for the individual struts. The resulting 666
degrees--of--freedom (dof) system was reduced by Guyan reduction to 252 dof.

The objective of the current study is to modify the structure using two methods: by
resizing truss element diameters and by strategically placing and selecting parameters for
passive dampers in the structure to attenuate motion at the optical compensation
subsystem attachment points to the trolley due to a colored noise input disturbance at the
location shown in the figure. An optimization approach is adopted to achieve this objective.
The resizing optimization problem employs a multiobjective cost functional consisting of
total structural mass and the H2 norm of the transfer function between the input
disturbance and the trolley attachment points. The multiobjective formulation generates a
family of optimal designs that allows trades to be made between the competing
components of the cost functional. In the damper placement and tuning optimization
problems several performance metrics were considered. These include the H2 metric
described above and various metrics for damping specific structural modes.

This paper addresses two main questions regarding the optimization approach. First, can
these methods be applied to the large scale applications that they are ultimately targeted
for? And secondly, is there substantial payoff to implementing them? A combination of
experimental and numerical simulation studies indicate affirmative answers to each of
these questions.

O

O
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Objective: DemonStrate nanometer leveYo_al pathiength control on a flexible structure
that emulates the proposed interferometer.

- Perf. measure:

Approach:

660 D,O.F, (252 mass O°O,F.) __M

22 modes < 100. Hz

7 modes < 30. Hz RESPON

186 possible locations for dampers s

Disturbance: shaker force at 412

along diagonal (xy)
DISTURBANCE _ I

Outputs: dlsp. at 8-attach pts. (trolley/truss) (d, _-- _r--,_,-,_,

L3w 
H= norm of TFJdamping of selected modes _
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Opt. placement of passive dampers, followed by tuning and resizing of truss
members



PLACEMENT/TUNING PHILOSOPHY

Passive damping is a highly effective means for Improving performance of both passively
and actively controlled systems, and is especially critica/for the problematic class of
lightly damped systems. Reducing peak responses in the vicinity of resonant frequencies
not only enhances the stability of the open loop system, but it also allows for the
Implementation of more aggressive control strategies. Furthermore, since many current
approaches to robust control design require a bound on the uncertainty in the model on
which the design is based, when models are obtained from an identification process the
resulting uncertainty (as measured by the H_= norm) can be reduced by first damping the
resonant peaks.

The effectiveness of viscous elements In Introducing damping is a function of several
variables Including their number, their location in the structure and their physical
parameters. The optimization studies to follow will treat the location and tuning problems
in an independent manner. Future work will address hybrid approaches for developing
strategies that combine these problems into a single framework.

O Introduce passive damping into structure to

- Passively and optimally attenuate disturbances

- Enhance plant identification process/robustness

- Improve closed loop system performance

O Determine

- Element locations

- Element stiffness/damping

- Number/combination of elements
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APPROACH
OPTIMAL PLACEMENT/TUNING

The viscous dampers are modeled as collocated position and velocity feedback elements
in the nominal structure. In the case of a single damper, the feedback gains are scalar

uantities corresponding to the damper spring and dashpot coefficients. In the multiple
amper case the same system model results, with the exception that the feedback gains

are now diagonal matrices with nonzero terms corresponding to the spring and dashpot
terms of the individual dampers.

The placement problem is to optimize the control influence matrix B over the set of
admissible locations for the dampers. The tuning problem is to optimize the matrices Kp
and Kv over the parameter range of feasible designs for the dampers.

O System Model:

Single Element:

M_ + Kx= Bu +f

u = -bT[kpx + k_]

M_ + k_bbT_ + (K + kpbbT)x = f

Multiple Elements:

x = _q; _TM_ = i; _TK_ = D = diag(_l,...,_,)

+ BK_BTcl+ (D + BI_BT)q = OFf,

M = Mass; K = Stiffness; B = Damping selection matrix;

u = Damper force; f = Disturbance force

k_ -- Damper spring coef.; k_ = Dashpot coef.; K,,, K_ = Diagonal damping/stiffness matrices.
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TECHNICAL APPROACH
OPTIMIZATION PROBLEM FORMULATION

The choice of performance metric in these optimization problems plays a central role in
the character of the solution. Criteria should simultaneously reflect the physical
objectives and be numerically tractable. For large scale problems this latter property is
especially important. Thus cost functional evaluation must Involve both numerically stable
and efficient computations. In addition, the availability of analytical gradients is another
very desirable feature. Two general sets of criteria meeting these requirements were
implemented---an H2 metric and a damping metric. The H2 functional evaluation requires
solving large scale Lyapunov equations, while computing the damping requires solving
large nonsymmetric ei_.envalue problems. Methods for accelerating these computations
were developed, and w=ll be discussed later.

Two distinct optimization strategies were used to solve the placement and tuning
problems. The placement problem involves discrete optimization over a finite (but large)
set, while the tuning problem can be treated in a continuous framework. A simulated
annealing program was developed for optimizing the control influence matrix B for the
placement problem, and a sequential quadratic programming (SQP) using the Stanford
Computer Science Laboratory's NPSOL software was used to tune the damper gain
matrices Kp and Kv.

O Determine placements and damper parameters by optimizing physically meaningful
performance criteria

Performance Functionals:

- Damping of selected modes
- Minimizing total system energy

- Optimizing H2 norm of transfer function from disturbance Inputs to outputs

Design Variables:

- Damper stiffness (Kp), damping coefficient (K_), location (B)

Optimization Strategies:

Sequential Quadratic Programming (SQP) for Kp, K_
Simulated annealing for B

O Challenges

Solving problems on big models
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OPTIMAL PLACEMENT WITH RESPECT TO DAMPING
OF SELECTED MODES

The ability to damp selected modes is very useful in control design applications where to
ensure robustness and closed loop stability it is necessary to damp modes in the loop gain
crossover region. Once these modes are targeted, a number of functionals can be
introduced for this purpose. Two typical functionals are shown below. The first functional
is simply the sum of the damping of the targeted modes, while the second is a weighted
sum of the exponentials of the individual damping values. Although these functionals
involve the same set of modes, they can lead to quite different results. For example if a
particular mode can be heavily damped, the first of these metrics would have the
propensity to find a solution that introduces large damping into this mode but ignores the
others. The second metric is an approximation to a minimax functional and is better suited
to more evenly distributing the damping in the individual modes. A possible problem that
can arise here is that there may be a mode that is not easily damped, and additional
damping in other modes may be sacrificed to introduce a modest amount of damping in
the problem mode.

Let E, = damping In I= mode of system

+ aKvSTq + (D + BKpBT)q = ¢)Tf

Optimization Problem

min,p,Kv,. g(_l,...,l_m)

where g Is a smooth function

Examples:

O) g(_,,...,_m) = _ _,,

(ii)

where I = set of targeted modes

g(_,,...,_,,) = 1 z._ i_,exp{y_,)
-_ I_I

*Solving large elgenvalue problem is difficult in optimization loop
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OPTIMAL PLACEMENT WITH RESPECT
TO H2 METRIC

The H2 norm of a transfer function is a general performance metric that can capture a
variety of physical objectives. Penalties on the velocities and displacements of various
nodal points can be accommodated by this formulation, as well as the total system energy.
More generally any quadratic functional of the system state can be expressed in these
terms. The stochastic physical interpretation of the H2 norm is as the steady state rms
error of the output due to a white noise input.

Computing the H2 norm of a transfer function requires putting the system into first order
form, and then solving a Lyapunov equation involving the state matrix, the control input
matrix and the intensity matrix of the input disturbance. The solution of this equation is
the covariance of the state. Obtainin_l the steady state value of a linear combination of
state variables then requires only matr,x multiply and trace operations.

o System: x = Ax + Bv

Z = CX,

where

[o , io]A= -D-BlaB' -BK, B ' B =

v = zero mean white noise, E(w T) = V

o H= Cost: min_.Kv.BJ = Iim,.., E{Iz(t)l=};

J = tr(CCTQ),

AQ+ QAT+ BVBT=0.

o Examples:

(i) C = selects displacement/velocity components at certain nodes
(ii)C = determines system energy

o=[o:o]
*Direct evaluation of J not tractable In optimization loop

379



COMPARISON OF METHODS FOR COST
FUNCTIONAL EVACUATION

Solving large unsymmetric eigenvalue problems or Lyapunov equations within an
optimization loop is extremely cumbersome, and can render the optimization routine
ineffective. Two methods were developed to circumvent these difficulties.

A Newton method for updatin@ specific eigenvalues as a function of the damper stiffness
and dashpot coefficient matr,ces, K 8 and Kv was developed. The method is based on
finding the roots of an associated ratmnal function whose zeros coincide with the system
eigenvalues. Within the optimization loop the scheme =s initialized by the current
eigenvalues corresponding to the values of Kp and Kv. As Kp and Kv are updated in the
optimization, the ejgenvalues are also updated. The method is highly accurate and very
efficient. To facilitate the solution of the large scale Lyapunov equation associated with
computing the transfer function H2 norm, a model reduction method based on augmenting
a modally reduced model with Ritz vectors to statically correct the reduced model transfer
function was implemented. This method also produces high fidelity approximations to the
damped system eigenvalues.

The tables below demonstrate the effectiveness of these two methods in approximating
the eigenvalues of the structure with three dampers placed. The full testbed model in this
study contains 249 modes and three dampers were inserted. The first column in the table
contains the frequencies of the undamped system. The other values correspond
respectively to the full order model, the Ritz reduction model containing the first twelve
undamped modes plus three Ritz vectors corresponding to the damper inputs, the Newton
method, and finally a modally reduced model obtained by retaining the first 15 undamped
modes. The conclusion here is that the Ritz reduction technique and the Newton method
yield high precision estimates with enormous reduction in operation count, while the
modally reduced model produces inaccurate results.

Mode No.

1

2

3

4

5

6

7

Undamped System

Frequency (Hz)

0.7427

5.4263

7.4564

11.6777

17.4248

20.8423

31.1387

249 Modes

(full order)

0.7420

5.2940

7.0376

10.4862

17.4386

20.8236

31.2231

Damped System

Frequency (Hz)

12 Modes

Plus

3 Ritz Vectors

0.7420

5.2940

7.0376

10.4862

17.4386

20.8236

31.2231

Newton

Method

0.7420

5.2940

7.0376

10.4862

17.4386

20.8236

31.2231

15 Modes

(truncation)

0.7425

5.3262

6.9540

10.4493

17.3444

20.7055

31.0481

Mode No.

Damped System

Damping (%)

249 Modes

(full order)

0.0179

4.5744

25.5358

32.6380

0.9033

1.3197

0.5013

12 Modes

Plus

3 Ritz Vectors

Newton

Method

0.0179

4.5744

25.5357

32.6379

0.9034

1.3197

0.5016

0.0179

4.5744

25.5358

32.6380

0.9033

1.3197

0.5013

15 Modes

(truncation)

0.0012

0.6125

2.3228

5.5664

0.4066

0.5709

0.5031
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SIMULATED ANNEALING SOLUTION COMPARISON
OF H2 AND DAMPING OPTIMIZATION

A simulated annealing algorithm was used to optimally place three dampers in the Phase B
Testbed structure. The algorithm was implemented twine. First, it was implemented with
an H2 metric with disturbance input generated by a sixth order low--pass filter with a
bandwidth of 25Hz. The second time it was implemented with a metric to maximally damp
the sum of the first seven modes. A comparison of the respective Bode plots of the
resulting transfer functions is given in the figure below. As observed, large damping is
introduced into the third and fourth modes as a result of optimizing the damping.
However, this is at a sacrifice to the damping attained in the other modes. The H2 norm
optimization metric distributes the damping across the modes in a more even fashion.
Values for the sum of the damping and H2 norms for both performance metrics are given
at the bottom of the page. This example indicates the disparity in performance that can
result from choosing various cost functionals.

t.)

w

r-

E

10-3

104
0

. , jundamped
damped - optimize H2-no

........... damped, opmmzedamping,,

H= Optimization:

Damping Optimization:

i

10 15 20 25

frequency (Iv.)

H2 error = 1.514 x 104; _,_ = .261

H 2 error = 2.143x104; _]_, = .655
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TUNING 3 DAMPERS

The optimal damping solution shown on the previous chart added very little damping to the
fifth, sixth, and seventh modes. To remedy this situation the simulated annealing
algorithm was implemented again, but with the performance metric g = exp(10_5)+
exp(10_6) + exp(10_7), where F_i=damping in the ith mode. A new damper configuration
emerges, and the resulting damping in these modes improves considerably. Furthermore,
because g represents a "minimax" approximation, the damping in these modes are all
within a factor of two of one another.

Once these damper locations were selected, we next optimized the damping coefficient
matrices K.p and Kv using the SQP algorithm. The figure below contains the Bode plots, for
the resultmng two closed loop systems, and the table at the bottom of the page contamns the
damping values for modes 5, 6, and 7 for the two solutions. As can be seen from these
values, significant improvement in damping is obtained by optimizing the coefficients. In
this case the solution called for reducing the spring constant of the damper to the
minimum allowed and simultaneously reducing the dashpot coefficient by a factor of 2/3.

The damping obtained in these modes by a combination of placement and tuning
optimization techniques demonstrates that very specific tailoring of the system response
is possible by these methods.

O Optimizing Kp, K_ with respect to

10-3.

10"

I0-_

10 4

10-"

10-=

7

exp {10_,}
1=5

undamped

cceffic*en= op0J_.ed

_°°o _ lo 15 _ 3o 35 4o

frequency (hz)

5 17.4248 17.2668 8.1733 16.1907 6.5787

6 20.8423 21.3353 3.9098 20.1644 8.0746

7 31.1387 32.1426 3.7256 30.5854 7.&840
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OPTIMAL PLACEMENT AND TUNING
OF PASSIVE ELEMENTS

The foregoing discussions centered around simulated data. The figure below presents
experimental data taken from the Phase B Testbed. The optimal placement of the damper
here was determined via the H2 performance metric with disturbance input and response
locations as shown. An exhaustive search over the 186 locations was performed using the
Ritz reduction technique to compute the solution to the associated Lyapunov equation.
The figure contains the open loop response, the response obtained by the optimally
placed damper, and finally an "average" response computed by averaging the transfer
functions over all possible locations of the damper. The experimental results indicate a 25
times improvement in damping in the first three modes over open loop, and 8 times
improvement in damping over the "averaged" locations.

.-----co_%,,,"%%,,,

R "J

• OBJECTIVE: OPTIMALLY PLACE/TUNE DAMPERS
FOR STRUCTURE QUIETING

EXPERIMENTAL RESULTS (ONE DAMPER)

10 3 , , _ .... , _ _ -

AVERAGE

| RESPONSE I _ _ OPENLOOP J

102 _ /_
E

i I O PLAC

10 0 DAMPER V

• 25X DAMPING IMPROVEMENT OVER OPEN LOOP

• FACTOR OF 8 BETTER THAN RANDOMLY PLACEO DAMPER

10-1 , I I ! I I , _._
4 5 6 7 O 9 10 II 12 t)

FREQUENCY (Hz)

• DEMONSTRATED ANALYTICAL TECHNIQUES ON
PRELIMINARY DESIGN PROBLEM

• WILL EXTEND TO MULTIPLE PASSIVE AND ACTIVE
ELEMENTS
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OPTIMAL RESIZING APPROACH

Given the optimum placement and characteristics of a number of passive dampers, the

objective here is to find the optimal sizes (_i) of the truss members. In this regard, one

may choose any one or combination of the listed criteria J1, ..., J6 as the objective function
for the resizing problem. The optimization can be achieved by varying design parameters
such as member sizes, control gains, and mirror geometry and relative pos,tion. The
challenge one faces in this type of multi-criteria problem is the potential conflict among
criteria, so that there is no single design that optimizes all criteria simultaneously. Here,
one must look for Pareto optimal solutions. A solution is said to be "Pareto optimal" if
there is no other solution that improves any criteria without making at least one
other criterion worse.

Statement: For given damper placement, optimize the structure.

Possible Criteria:

Design Variables:

Criteria:

J_: LOS error of chief ray at some D.O.F.

J2: RMS wavefront error of multiple rays at focal plane

J_: Strains/stresses In selected members

J4: Displacements at selected D.O.F.

Js: Total mass

Je: Control cost

Structural - Member sizes
Control - Gains

Optical - Mirror sizes, rel. position

Non-Commensurate and conflicting
Must look for Pareto optimal solutions
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OPTIMAL RESIZING APPROACH (CONT'D)

In the results that follow, two criteria were selected for optimization; the total mass, J1,
and the steady state mean square displacement, J2, (at the truss-to-trolley attachment
points) in response to a white noise disturbance. Designating the matrix that maps the
state variables x into the attachment points by H, we have J2 = tr (H Q HT), where Q is the
solution of the matrix Lyapunov equation shown, and A = A(_), B2 = B2(_), respectively,
are the plant matrix and the disturbance coefficient matrix. Pareto optimal solutions can
be found by determining the stationary values of the functional J(J1, J2, _.) for various
values of the weighting parameter _. c [0,1]. By allowing _. to take on discrete values at
small intervals from zero to one, one can propagate the solution along the Z path to
provide a subset of Pareto optimal designs.

O

O

O

O

Problem Statement: For a given damper placement, optimize cross sectional areas of
truss members to attenuate disturbance transmission from source to

output D.O.Fo

For testbed, let J_ = total mass

J2 -- steady state mean square displacements at trolley attach.

= tr(HIQ H1T)

Hi: Maps x into observed displacements at trolley attachment D.O.F.

Q: Solution of (AQ + QA T + B2B2x = 0)

Construct weighted criterion: J = (1-_.)J t +_. J=; _.e[0,1]

Z: TBD from system study of mission (not known in advance)

Starting with _.=0 ; i-,Find J'(_.) | ,till ,_=1

Will provide a set of feasible Pareto optimal designs to optimally trade mass vs.

performance
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CS! PHASE B TRUSS- MODEL REDUCTION

Optimization of large order models makes model reduction a required step due to the
need to solve one or more Lyapunov or Riccati equations. Model reduction consists of
applying a model reduction transformation, Tr, to a full-order model. The transformation
Tr is typically not recomputed for each parameterization of the model and hence the
transformation Tr computed for one set of parameter values may be a poor transformation
to use for another parameterization. The addition of a linear correction term to Tr,
constructed from eigenvector gradients (EGs), may extend the range of parameter
variations over which Tr is valid.

Our optimization program uses a "Parameter Variance Tolerance" (PVTol) to allow the user
to specify how much the parameters may vary before Tr is recomputed. The program also
allows the user to specify whether EGs are used in the construction of Tr. The
computation of Tr is a CPU time intensive task. Therefore, there exists a tradeoff between
added computation time and accuracy of the models used in optimization. Questions
which naturally arise are "What impact do these options have on run time?" and "What
impact do these options have on the results of the optimization?"

The left figure shows a plot of CPU time versus PVTol for a certain problem. The "x"-marks
show the timings for runs without EGs and the "+"-marks show timings for runs with EGs.
As one can see, the change in PVTol 0.10 to 0.50 causes roughly a factor of two in CPU
time. The use of EGs increased the CPU time by roughly a factor of four over not using
EGs.

The right figure illustrates how the optimal cost from several runs changed with varying
PVTol and whether or not EGs were used. For each PVTol (0.10, 0.25, and 0.50) three
optimization points were obtained both with and without use of EGs. All costs are shown
relative to the best (i.e. smallest) optimal cost for each of the optimization runs. As one
can see, the runs which used the EGs always produced the smallest optimal cost and the
results were consistent for all values of PVTol. The results for no EGs show that the
resulting optimal costs were not really optimal and varied somewhat with PVToI.

The conclusion drawn from this analysis was that using EGs is preferred. The timing was
brought down to a manageable size by setting the PVTol to a value of 0.50. The
computation time is about twice what would be obtained by using no EGs with a PVTol of
0.10.

What effect does

• parameter variation tolerance

• use/non-use of eigenvector gradients
Model Reduction and Timing

1400

1200

10(30

"_ 800

N

__ _0

400 x

200

O
0 0.2 0.4

Par. Vat. -r()].

0.6

have on ,.,

• CPU Time

• Optimal control (i.e., performance) cost
Model Reduction and Optim_ Co_t

2

1.8

1.6

1.4

1.2

I

0 0.2 0.4

Par. Var. Tol-

0.6
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OPTIMAL RESIZlNG APPROACH

An important step in the optimization process is the parameterization of the structure. The
parameters chosen for optimization of the truss were the rod member cross-sectional
areas. Independent parameterization of each member would have led to 186 parameters,
probably making the optimization run time quite long: we needed to reduce the number of

arameters. Choosing too few parameters, and thus a low order design space, would
ave lead to poorer results. A natural way to compromise is to take advantage of

symmetry in the structure. We did this in the following way:

1. Each bay in the tower was budgeted three parameters: one for the Iongerons, one for
the battens, and one for the diagonal elements. However, the bottom bay required
only two parameters because its Iongerons were attached to the base. Thus the tower
gave us 14 parameters.

2. The first, second and third pairs of bays of the two three-bay arms were budgeted
three parameters each as above. This gave us another 9 parameters.

3. The two single-bay arms were parameterized with one parameter.

4. The bay at the intersection of the tower and the arms was parameterized with one
parameter, giving a total of 25 parameters.

O Issues

Number of parameters

Distribution of parameters - symmetry

Solving large scale eigenvalue and Lyapunov equations

O Solution

Three parameters per bay for tower and three-bay arms

One parameter per bay for one-bay arms and intersection

Total of 25 design variables

- Ritz model reduction using eigenvectors/eigenvector derivatives
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CSI PHASE B TRUSS
OPTIMIZATION RESULTS

In this figure the results for four cases are depicted in the criteria space (J1, J2). The four
cases represent (1) no dampers are present, (2) one arbitrarily placed damper is used, (3)
one damper is optimally placed, and (4) two optimally placed dampers. For each case, the
performance of the nominal (initial) design is represented by a single point in the (J1, J2)
space, and the performance of the Pareto optimal design is represented by a curve joining
multiple points, each point corresponds to a Z-value _. _ [0,1]. A number of observations
can be made

(1) Considering the damper optimization alone, for a fixed mass an arbitrarily placed
damper shows only 25% improvement in transfer function over the no damper case,
while an optimally placed damper shows a factor of two improvement. When two
dampers are optimally placed, the improvement is Increased from a factor of two to
five.

(2) For the same mass (~17.001b), optimal resizing of the truss members results in
impressive improvement in the transfer function, where a reduction by a factor of 7 to
12 is achieved, depending on the number and location of the dampers.

(3) A definite corner point near the origin of the Pareto optimal curve is typical of non-
competitive criteria that admit a single optimal solution. Optimally placed dampers
tend to sharpen the (J1, J2) curve, and thereby make minimization of the mass and
rms response more achievable.
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CSI PHASE B TRUSS
OPTIMIZATION RESULTS

DISTRIBUTION OF MASS IN PARETO OPTIMAL SET

The chart illustrates the distribution of mass in the set of optimized structures for the
single optimally placed damper on the previous page. In the figure on the left each plot
shows variation of the structural mass of individual bays versus the total structural mass
of the optimized structure. The ordinate is a logarithmic scale covering the range of the
allowed bay mass (corresponding to the allowed variation of parameters). For this case
the parameters were allowed to vary in a range of plus-or-minus an order of magnitude
from nominal. For the two single-bay and two three-bay arms, the plots show the
combined structural mass of the corresponding bays on each arm.

As one can see, the majority of the mass for the optimized structures lies in the tower near
the base. A suitable explanation is that the mass is being added to stiffen the structure
between the disturbance input and the grounded base. There is also some mass added to
the three-bay arms, to make the structure near the trolley heavier, and hence more
resistant to vibration.

The general trend in the way mass was added within each buy was that the majority of
mass was added to the Iongerons and diagonals, implying that the battens play a small
role in the system performance.
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X
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BUCKLING OF OPTIMAL DESIGN UNDER ONE- "G"

During optimization, lower and upper bounds on the design vector (x, with components (_i,
were Imposed so that (5. x10-6) _<ai -< (5. x 10-4). As a result of the optimization, some
members were driven toward the lower bound where buckling instability may be of
concern. To check whether or not the resulting design is viable, a worst case buckling
analysis under one-g loading was conducted for the case of one optimally placed damper.
To simplify this analysis, instead of using 25 different cross sectional areas, the member
sizes were grouped in three intervals: (5. to 9.9)x10-6, (1.0 to 9.9)x10-5, and (1.0 to
5.0)x10-4. After computing the forces in all members under one-g, the maximum
compressive load (labeled Pmax) on any of the members belonging to a given group was
checked against the fundamental critical buckling load (labeled Pcr) for the member with
the smallest cross section and greatest length in that group. The smaller the ratio
(Pmax/Pcr) < 1.0, the greater the degree of conservatism of the design against buckling.

One damper optimal design at mass = 15.54 Kg
Considered 3-Intervals for x-sec, areas: (5.-9.) x 10_'; (1.-9.) x lO'; (1.-5.) x lO-'

PI,-, = 312.N; P,_,. = 544.N;
Ratio = 0.57

A=5.3x104; =0.41; R=5.xl0=; t=0.17x10"

P=_,, = 509.N; P== = 1,954.N
Ratio = 0.26

A=1.79x105; -0.41; R=5.xl0-=; t=0.6xl0 "=

P=,,., = 563.N; P_ = 150,000.N
Ratio = 0.004

A=4.67x104; =.575; R=12.5x10=; t=6.0xl0 "z
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SU M MAR Y/CO NC L U SlO NS

This paper has addressed several design optimization problems for the JPL testbed
structure. The two classes of problems considered were the optimal resizing of truss
element areas, and the placement and tuning of viscous dampers. Various measures of
performance were defined for these problems including minimizing RMS error due to input
disturbances and maximizing damping in selected structural modes.

The testbed structure is of sufficient complexity to expose the numerical challenges and
issues related to practically solving these optimization problems. A number of different
economizing techniques were introduced and validated to meet these challenges. Each of
these methods proved to be very well suited for their particular target optimization
application.

The resulting optimized design in each instance led to significant improvement in
performance. Although each optimization problem was attacked individually, future work
will focus on integrating the approaches.

O Developed and applied analysis/design tools for optimal placement/tuning of passive
dampers and optimal resizing of structural mass

o Developed efficient solution techniques for optimization problems

O Demonstrated significant improvement in performance both analytically and experimentally
on CSI testbed structure using optimization approach

o Established real benefits to the methods, and their applicability to large systems
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