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LIST OF SYMBOLS

a; = estimated parameters for regression

a; = exponent for objective function term i and variable j

a; = exponent for term i, variable j, in constraint 1

A = spacecraft space debris area

A, = acceleration factor of primal penalty function for constraint 1
B = spacecraft orientation factor

¢, = coefficient for objective function term i

c, = coefficient for termi in constraint ]

c, = coefficient for posyseparable term i

C  =bumper material speed of sound

d,D = projectile diameter

DOD = geometric programming degree of difficulty
f  =non-normalized impact velocity distribution
f,  =normalized impact velocity distribution

F = space debris flux

F, = fraction of hyperspace for random search

g,  =constraint]

h = spacecraft altitude

i = spacecraft inclination
k = number of independent variables
K, =righthand side of primal constraint 1
L, =wall material constant
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m  =projectile mass

m, = number of random search points

m, =number of terms in constraint 1

n = number of terms in objective function or number of plates (bumpers and wall)
n = positive integer value corresponding to variable j

N  =cumulative space debris flux or number of "walls" penetrated (including witness plates)
N, =number of walls penetrated (normal impact)

N, = total meteoroid flux

p = number of constraints

P = space debris growth rate

P, =required confidence for random search

P, = spacecraft probability of no penetration

q  =number of discrete variables

r, = discrete availability factor for variable j

D) = solar flux

S,S; = bumper/wall separation
t,,t, =bumper thickness
t,,t, = wall thickness

T  =mission duration

V = projectile impact velocity

V_,, =maximum space debris impact velocity

W = structure mass per unit area or weight

a, = acceleration factor of primal penalty function for discrete constraint 1

§,  =dual variable corresponding to objective function term i
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5;‘ = dual variable corresponding to term j in constraint 1

5, = binary factor of primal penalty function for constraint 1

81,. = first dual variable for discrete constraint of variable j

3, = second dual variable for discrete constraint of variable j

A, = binary factor of primal penalty function for discrete constraint 1
€ = convergence parameter for penalty function

g, = initial exploratory step size for Hooke and Jeeves

g, =final exploratory step size for Hooke and Jeeves

0 = impact angle from surface normal

y, =dual objective function variable in constraint 1

v = dual objective function

() = primal penalty function

p,,p; = bumper density

p,,p, = wall density

p, = projectile mass density

y = spacecraft inclination factor

[ 1. =nearest integer of quantity in brackets
A 0 subscript denotes optimal value for a primal variable.
A * superscript denotes optimal value for a dual variable.
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1 INTRODUCTION

1.1 Problem Statement

Spacecraft designers have been concerned since the 1960’ s about the effects of meteoroid
impacts on mission safety. Recent concerns have extended to the space debris environment,
which typically displays more massive particles than the meteoroid environment for the same
risk level. Additionally, the higher exposure area-time product of future space missions (e.g.,
Space Station) poses a more critical design problem than current short term missions. Finally,
the inherent uncertainties in projectile mass, velocity, density, shape, and impact angle make
the traditional deterministic design approach impractical.

The engineering solution to this design problem has generally been to erect a bumper or
shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. This
passive measure has resulted in significant structural weight savings relative to a single wall
concept with the same protective capability. The problem, then, is how to efficiently design
these protective structures so that the bumper disrupts the projectile without posing a lethality
problem to the wall protecting the crew and equipment.

Spacecraft designers have a number of tools at their disposal to aid in the design process.
These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic
codes. Perhaps the most widely accepted of these tools is impact testing, which has the advantage
of providing actual spacecraft design verification. On the other hand, maximum test velocities
are currently limited (8 kmy/sec) relative to maximum space debris (about 15 km/sec) and
meteoroid (about 72 km/sec) velocities. Also, extensive testing is required to develop statis-

tically significant trends for the large number of parameters associated with hypervelocity
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impact. Hydrodynamic code analysis can overcome the velocity limitation problem. However,
this method is very computer (and time) intensive, and there is a fair amount of controversy
involved in the selection of appropriate codes and code-specific parameters.

Analytic impact predictors generally provide the best quick-look estimate of design -
tradeoffs. Their use is constrained by the limitations of the testing from which they are
experimentally derived, the assumptions used in their theoretical derivation, or the regression
analysis used in their statistical formation. However, analytic predictors may provide infor-
mation that is clearer than that obtained from the examination of experimental results.

The most complete way to determine the characteristics of an analytic impact predictor
is through (nonlinear) optimization of the protective structures design problem formulated with
the predictor of interest. Optimization techniques provide analytic or numerical solutions
depending on the nature of the predictor, the problem formulation, and the technique used.
1.2 Contract Purpose

The purpose of this contract is to provide Space Station FREEDOM protective structures
design insight through the coupling of design/material requirements, hypervelocity impact
phenomenology, meteoroid and space debris environment sensitivities, optimization techniques
and operations research strategies, and mission scenarios. Major findings from contract

inception to the beginning of this study are detailed in References 100-105 and are shown below:
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1.3 Study Goals

The goals of this study are to:

The period of performance for this effort is 7-1-91 through 6-30-92.
1.4 Study Results
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1.5 Major Findings of This Study
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2 MONTE CARLO SIMULATION DEVELOPMENT TASK

2.1 Monte Carlo Simulation Purpose

The purpose of this simulation is to provide a statistical tool to address and quantify
protective structures design risks, uncertainties, and options, and to address system-level issues
relevant to designer decision-making and possible implications. The system of initial interest
is the structural configuration of WP01, including the Core Module Configuration. "Grow-to"
systems include module internal configurations and external structures (trusses, solar arrays,
etc.) as specified in the redesign.

Initial investigations of interest include statistical analyses of primary impacts, penetra-
tions, and vulnerable areas. "Grow-to" investigations include interior effects, secondaryricochet
effects, and SSF element interrelations.

Risk considerations include environment particle velocity, impact angle, and component
probability of impact. Uncertainty considerations include SSF IOC/FOC, particle diameter,
mass-density, shape, and uncertainties in particle velocity and impact angle distributions.

2.2 Monte Carlo Simulation Development Approach

The tool development approach is to define the current SSF mission parameters and design
configuration, and interpret the geometry mathematically using FASTGEN. The mission
parameters drive requirements specification, including environment definitions. These con-
siderations, combined with appropriate random number modules and the FASTGEN results,
produce the necessary shotline time histories and intersecting body calculations. Survivability
assessments follow and employ deterministic models for hypervelocity penetration prediction.

Statistical assessments follow to supply answers to the questions of interest.
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2.3 Particle Time-Arrival Process for Monte Carlo Simulation Development

Several algorithms have been developed for the particle time-arrival process. The standard
assumption in this area is that arrival times are Poisson distributed. This means that the inter-
arrival times are exponentially distributed, and sorting of arrival times is not required. Mean
data is derived from the environment flux and appropriate spacecraft areas. This algorithm
leads to a terminating simulation defined by the mission profile.

Realistically, however, the meteoroid and debris environments are both nonstationary
Poisson processes, at best, since the mean arrival rates vary in time over the mission profile.
An approximation algorithm has been developed which alters the mean arrival rate to represent
the time period under consideration. However, this algorithm is not exact, since a period of
high arrival rates could be neglected using a low arrival rate corresponding to the previous
period, or vice versa. Thus, a more exact (continuous) algorithm should be developed. The

approximating algorithm for the space debris environment is given as:
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and minimum particle diameters of interest and the associated particle step size. The maximum
particle of interest is generally that particle size above which protective structures designers

reasonably assume no liability in their considerations. For instance, there is a small but nonzero
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probability that the Space Station will be impacted by a truck-size particle. However, designers
could not be reasonably expected to defeat that particle size given weight constraints. Under
current environment expectations, the choice of maximum particle diameter could reasonably
be in the 10-1000 cm range. The choice of maximum particle diameter affects result accuracy
and run time. The minimum particle diameter of interest is generally considered to be that size
below which impacts are highly unlikely to lead to perforations, contamination, or any other
measure of effectiveness which is of interest to the protective structures designer. This value
is very much a function of the ballistic limit curves of interest. Reasonable values for current
design scenarios might be found below 0.1 or 0.2 cm. The designer may wish to vary this value
to investigate the sensitivity of designer measure of performance to this input. A sufficiently
low value for this parameter would be one below which no appreciable difference resulted in
design measure of effectiveness. It should be noted that the minimum diameter should be
carefully selected due to its strong effect on run time and result accuracy. The diameter step
size is also a critical factor in these two areas. This value determines the fidelity of the resulting
flux-diameter distributions. The smaller this value is, the more accurate will be the distribution
in a continuous sense. However, the run time increases with decreasing step size, since the flux
distributions are being evaluated at each event time. (The requirement for re-evaluation of flux
distributions at each event is due to the nonstationary Poisson characteristic of the space debris
process. Generally, the diameter step size is chosen to be some fraction, say 10-20%, of the
minimum particle diameter. The maximum, minimum, and step size values for the particle
diameter are tuning parameters whose optimal values will vary depending on mission, con-
figuration, and design measure of effectiveness. Thus, it is highly recommended that these

values be adjusted before final results are displayed for each individual analysis.
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10

In step 2, the flux-diameter distribution is developed at the given mission time as a function
of the tuning parameters. This distribution is then transformed to a cumulative flux-diameter
distribution, which is normalized to achieve a valid probability distribution from which random
numbers may be drawn. The file size of this distribution is completely determined by the tuning
parameters. A switch in the program input file allows the user to print out these distributions
throughout the mission. This option should be carefully used for long missions or large dis-
tribution sizes due to the potentially large files that would be created.

In step 3, a uniform random variate is drawn. This variate is compared in step 4 with the
normalized cumulative flux-diameter (probability) distribution to determine the particle
diameter at the next event. The (absolute) value of the flux is then inverted in step 5 to determine
the exponential (interarrival) parameter. A second uniform random variate is drawn in step 6
for determining the interarrival time for the particle diameter determined from step 4. Step 7
uses the exponential distribution and the results of steps 5 and 6 to determine the particle
interarrival time. In step 8, the mission clock is updated and compared with the final mission
time in step 9. If the clock is past the end of the mission, the mission is terminated and statistics
are gathered. Otherwise, the process reverts to step 2 for creation of new distributions and
events.

If independent mean and variance data for arrival rates are available, a uniform arrival
process may be used as an alternative to Poisson arrivals. To compare this approach with the
Poisson process, the variance may be set equal to the square of the mean. An algorithm has

been developed for independent mean and variance data.
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11

Augmentation/repair times may be modelled using a number of distributions, if this
modelling is of interest. If mean data only for time to repair is available, an exponential service
model may be used. If independent mean and variance data are available, the gamma, weibull,
lognormal, or beta distributions may be appropriate.

2.4 Simulation Status

To date, the following items have been completed:
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2.5 Selected Results

A greatmany sensitivities may be generated using this simulation. Figures 2.5-1through
2.5-21 provide examples of a few possible results. The following tables provide the input values
for these example cases. (Results are for the enveloping geometry only.) Figures2.5-22 through

2.5-25 show results for the current baseline configuration, shield design and mission.
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SINGLE RUN STATISTICS
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Figure 2.5-1. Cumulative Debris Impacts vs. Mission Time

SAIE

14

international Corporation

An Employee-Owned Company



Debris Particle Diameter
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Figure 2.5-2. Debris Particle Diameter vs. Impact Time
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Figure 2.5-5. Debris Impacts vs. Change in Time
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Figure 2.5-7. Debris Impacts vs. Change in Time
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Figure 2.5-13. Meteoroid Impacts vs. Particle Mass
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Figure 2.5-18. Debris Flux at Beginning and End of Mission
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MULTIPLE RUN STATISTICS

Average CPU Time = 278.61 secs (Fidelity = 0.01 cm)

Average CPU Time = 319.13 secs (Fidelity = 0.02 cm)
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3 ADVANCED SHIELDING CONCEPTS TASK

3.1 Introduction

The development of advanced shielding concepts presented in this section includes a
preliminary theoretical modification of the Wilkinson and ballistic PEN4 predictors to multiple
bumper situations and nonlinear regression of multibumper test data from the MSFC Hyper-
velocity Impact Test Database.
3.2 Extension to Multiple Bumpers for Wilkinson Predictor

A number of different approaches have been attempted to modify the Wilkinson predictor
theoretically for multiple bumper systems. The one successful approach (physically) found
from these approaches is given as follows:

Modify the Wilkinson form in a product sense as:

0.364D°p,V cos(0 D
= 220D R,V c00) ¢ DPe oy [32-1]
L,,(_l:[1 S,-z)p, [[1 pit;
_0.364D"p,V cos(®) Dp,

t = > 1. [3.2-2]

n n-1 n-1 0 a-1
Ln(l:ll Szz)(l:ll Piti)pn 1:11 piti
If our goal is to minimize system mass per unit area subject to the total separation between first

bumper and last wall equal to some desired value, we may write this as

»-1  0.364D°p2V cosO

minW=_§_‘, m;+——7— — [3.2-3]
i)
i=1 i=1
a-1
s.1. 25 =Spr [3.2-4]
Where m" = piti [3.2 - 5]
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S1or is the total separation between the first bumper and the wall, and n-1 is the total number of
bumpers (n is the total number of plates).

Under condition [3.2-2], the dual Geometric Programming objective function is given by

a-1 5, 5, Hn—l 1 8).
maxv(®) = [1(1/5)" K/8,) "w," I1 - [3.2-6)
i=1 Jj=1 51015,‘
.364D*p>V cos(@
g = 2384D°p,V cos6) [3.2-7]
L,
$5=1 32-8)
5-8,=0, i=12,..,n—1 [32-9]
-28,+8,=0, j=1,2,..,n-1 [3.2-10]
n-1 ,
ul=.218j [3.2-11]
i

Note that the degree of difficulty is 0, with 2n-2 independent variables corresponding to the n-1
bumper areal densities and the n-1 separations.
Equations [3.2-9] and [3.2-10] together imply
8,=9,=1/n, i=12,...,n-1 [3.2-12]
§=28,=2n, j=12,.,n-1 [3.2-13]

The minimum weight and globally areal densities are given by

364D*0*Vcos@®) " (n~-1)"
Wo=n|:0 P,V cos( )] L [3.2-14]
Ln SToT
0.364D*p2V cos(8) " (n—1 -
m,-o-|: L s > s 1,2,...,n [3.2-15]
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The optimal individual separations are given by

Sts
S =1L j=1,2,..,n-1 (3.2 - 16]

The optimal separations are equal and uniformly distributed over the total available separation.
Thus, the globally optimal algorithm for the multi-bumper Wilkinson Predictor is

3.3 Results
Several results using the development of Section 3.2 are givenin this section. The baseline
assumptions are a particle density of 2.8 gm/cm’, velocity of 9 km/sec, diameter of 1 cm,
impacting normally into a configuration with a total bumper/wall separation of 10 cm.
Figures 3.3-1 and 3.3-2 show how the optimal protective structures design configuration

varies with number of bumpers for projectile diameters of 1 and 3 cm, respectively. Note that
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fora 1 cm particle diameter, the optimal number of bumpers is 2, while for 3 cm, itis 3 bumpers.
Also, note the significant penalty for choosing the wrong number of bumpers in these cases, as
well as the lack of symmetry of these penalties about the optimal number of bumpers.

Figure 3.3-3 shows the optimal protective structures design configuration including
optimal number of bumpers as a function of particle diameter. Increasing particle diameter
results in an increasing optimal number of bumpers to defeat the particle. Note the optimal
transition regions between 1 and 2 bumpers (corresponding to particle diameters between 0.75
and 1 cm) and 2 and 3 bumpers (corresponding to particle diameters between 2.25 and 2.5 cm).
Also, note the very linear minimum system areal density, showing the stabilizing effect of
increasing the number of bumpers in the configuration.

Figure 3.3-4 shows the optimal protective structures design configuration including
optimal number of bumpers as a function of particle velocity. The most striking feature of this
trade is the relative insensitivity to velocity for a dual bumper system.

Figure 3.3-5 shows the optimal protective structures design configuration as a function
of total bumper/wall separation. As in previous studies, there is a large weight incentive for
increasing the total separation. Furthermore, increased separation allows for more bumpers to
disrupt the incoming particle.

Figure 3.3-6 is a replica of Figure 3.3-5, except that the optimal individual separations

are included.
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Figure 3.3-1. Determining Optimal Number of Bumpers for Multibumper Wilkinson
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Figure 3.3-2. Determining Optimal Number of Bumpers for Multibumper Wilkinson
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3.4 Extension to Multiple Bumpers for Ballistic PEN4 Predictor

The multiple bumper recursion equations are given by:

T
V,=4100, <04

021
T
V,= 4986(T ) , -D-‘>04
y 0. 6T 1/0.31 2S
x (ml?p’ cos(6) P»

The first bumper is penetrated if

V>V

J=1

The residual velocity (from the first bumper) is

o [ 133VRip, ~(85, T Y cos®) |
5 1.33R%p, +R,T,p,/ cos(6)

The second bumper is penetrated if

Ve, > Vs,

The residual velocity (from the second bumper) is

-0.0003125V, 12
Ve = 1.33VzR2p, - (85)27'23 ")/cos(e)
1.33R2p, + R, T,p,/ cos(6)

The third bumper is penetrated if

SAIE
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[3.4-7]

Science Applications
International Corporation

An Employee-Owned Company



51

Ve,>Vio, [3.4-8]

The residual velocity (from the (n-1)st bumper) is

133V _R%p, - (gs T *"m‘”v"--z)/ cos(®) |
Ve,.. = s s S ainiad [3.4-9]
1.33R%p, + R, T, _1Px -1/ c0s(6)
The nth bumper is penetrated if
Ve > Vo, .. [3.4-10]

3.5 Advanced Shielding Task For Projectile Shatter (Multibumpers)

The database used for regression is the MSFC Hypervelocity Impact Test Database
Developed by the Materials & Processes Lab. Database filtering was performed by Bill Jolly
of Sverdrup Technology Inc. Data constraints include metallic configurations with velocities
greater than 2.5 km/sec and no MLI present. The database filtering resulted in 234 single bumper
tests, 72 double bumper tests, and 7 triple bumper tests. A preliminary investigation using
various posynomial regression forms was performed. The fact that Space Station Freedom has
sufficiently low curvature in primary areas needing protection allows for the assumption of
minimizing system mass per unitarea. The "best" intrinsically linear posynomial form resulting
from this preliminary investigation is given by:

s %

— r 6 Bt YeS(at  NED e ek
N+1=Kd ppV“‘[cos(g(n_l))] (‘_I;IIS,T (I_I;Ilpit,T p,t) (n—1°[35-1]
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A linear least squares analysis results in:
K =3.8010, a,=1.0301, a,=0.3892, a,=0.2879,
a,=03288, a;=-0.4876, a,=-0.3464,a,=-02929, a,=-0.6137 [3.5-2]
with optimal bumper scaling functions (found through search) of
gn-D=n-1, h(n-1)=@-1)* [3.5-3]

Table 3.5-1 shows the resulting analysis of variance.

Table 3.5-1. Analysis of Variance

Source Degrees of Sum of Mean Square F Value
Freedom Squares
Total
(uncorrected) 313 284.03 0.9074 —mee-
Mean 1 185.81 185.81 ——--
Total
(corrected) 312 98.22 0.3148 —ee-
Regression 8 29.56 3.695 16.363
Residual 304 68.66 0.2258 ceeee
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The correlation coefficient is given by
R*=0.301 (3.5-4]

R =0.549 [3.5-3]

The residual plots are shown in Figures 3.5-1 through 3.5-9. The only suspicious plot
appears to be the one for residuals vs. number of bumpers. This correlation could be due to the
fact that a single term posynomial does not sufficiently represent the hypervelocity impact

phenomena over potentially complex differences between 1, 2, and 3 bumpers.
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Least Squares Residuals
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Figure 3.5-1. Residuals vs Particle Diameter for Shatter Region
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Least Squares Residuals
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Least Squares Residuals
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Figure 3.5-9. Residuals vs Predicted Values for Shatter Region
The designer problem statement is given by:
Minimize system mass per unit area:
a-1
[3.5-6]

minW= g' mi+ 1 15647 K 1 1.1827
= s e
i=1

i=1
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=9°5466d351$p:,3mV°'m{co s( %1_ )]1.1226

(N + 1) ( — 125 [3.5-7]

K

subject to the following constraint: The total separation (first bumper to wall) is limited to a

prespecified value
a-1
s.t. "_V_‘,l S; =Sror

We must determine the optimal values of the mass per unit area for the bumper(s) and wall,
the optimal individual separations, and the minimum system mass per unit area. (Stor is the
total separation between the first bumper and the wall, and n-1 is the total number of bumpers

(n is the total number of plates).)

The problem solution is developed using Geometric Programming. The dual Geometric Pro-

gramming objective function is given by

a-1 81' 5- Hn-l 1 5,-
maxv(8) = [T(1/5,)" (K/3,) "n, Il ; [3.5-10]
i=1 i=1 Smsj
$5=1 [35-11]
1.1827 .
m;: ,-—(’1—__—1)075' n=0, z=1,2,...,n—l [3.5‘-12]
-1.6647 . .
S,-: mﬁn+8j=0, _}=1,2,...,n—1 [3.5—13]
n-1 ,
J=
S - q '- !a ®
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These equations imply
1.1827 .
i=m n z=1,2,...,n—l [35“15]
=3, = . [3.5-16]
" 1.1827(n - 1% +1 |
=9, = 1.1827 YT i=12,...,n-1 [3.5-17]
1.1827(n - D)+ (n - 1)~
1.6647
S.= i=1,2,...,n~-1 35-18
7 1.1827(n - D+ (n - 1)°% / 8 [ :
1.6647(n —1) [3.5-19]

b= 1827 - D+ (n - 1S

The minimum weight and globally optimal areal densities are given by

1.1827(n 1)

1.1827(n — 1) + (n — 1)25 )= -iwe™™
Wy=| =
° ( 1.1827 )

1
118270~ 41

[K(1.1827(n — 1)** +1)]

1.6647(n 1) 166470 —1)

_ 1.6647(n — 1) et (1 189900 — 1)+ (n — 1)°6 "‘“"""“'[';"’:_ 20
1.1827(n — 1)+ (n — 1)*% 1.6647Sr,r '

m_=8W, [3.5-21]
m, =[1-(n-15W, [3.5-22]

The optimal individual separations are given by

S _ SToT ._1 2 1
Pt Jj=12,...,n— [3.5-23]
s - wo !0 ®
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Baseline Parameters

The baseline parameters for an impact systemic parameter sensitivity study are given in

Table 3.5-1.

Table 3.5-1. Baseline Systemic Impact Parameters

Figure 3.5-10 shows the sensitivity of the optimal protective structures design mass per
unit area to the number of bumpers in the configuration for a particle diameter of 1 cm and
velocity of 5 km/sec. The optimal number of bumpers is one. Figure 3.5-11 shows the same

sensitivity except for a particle diameter of 2 cm. In this case, the optimal number of bumpers
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is2. Thus, the optimal number of bumpersis clearly a function of the systemic impact parameters.

Figure 3.5-12 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to particle diameter. A transition region is found between
1 and 1.25 cm. In this region, the optimal number of bumpers changes from 1 to 2 due to
increases in diameter penetrability.

Figure 3.5-13 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to particle velocity. The significant conclusion here is
the lack of sensitivity of the design over a fairly wide velocity range (3-7.5 km/sec).

Figure 3.5-14 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to total bumper/wall separation. A transition region is
found between 15 and 20 cm total separation. In this region, the optimal number of bumpers
changes from 1 to 2 due to increased spacing availability. Thus, as the allowable spacing from
first bumper to pressure wall increases, the more incentive there is to add bumpers.

Figure 3.5-15 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to particle impact angle from surface normal. No
transition region is found in this sensitivity. The optimal number of bumpers remains at 1.

Figure 3.5-16 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to particle density. A transition region is found between
4.5 and 5 gm/cm®. In this region, the optimal number of bumpers changes from 1 to 2 due to
increases in particle density penetrability.

Figure 3.5-17 shows the sensitivity of optimal protective structures design variables
(including optimal number of bumpers) to wall penetration factor (1 being ballistic limit). A

transition region is found between 50% and 60% penetration. In this region, the optimal number

An Employee-Owned Company
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Figure 3.5-10. Determining Optimal Number of Bumpers for Shatter Region
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Figure 3.5-13. Optimal Protective Structures Design Values vs. Particle Velocity
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vs. Total Bumper/Wall Separation (Shatter Region)

35

SAIC.

Science Applications
international Corporation

An Employee-Owned Company



14
L
1.2 [
o i
= X% > > % e — A ——H——— ¢
> i
c
Ry
(72 \
4]
D *ﬁ
R “‘*\“\‘
£ - e : A \
Q Tl
O "-.__.\é \
N
5
A
.\
| | ]
40 60 80
Impact Angle From Normal (Degrees)
Particle Density = 2.8 gm/cm3

Particle Velocity = 5 kimv/sec, Diameter = 1 cm
Total Bumper/Wall Separation = 10 cm, B.L.

Figure 3.5-15. Optimal Protective Structures Design Values vs. Impact Angle
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Figure 3.5-16. Optimal Protective Structures Design Values vs. Particle Density
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Figure 3.5-17. Optimal Protective Structures Design Values vs. Wall Penetration
(Shatter Region)

3.6 Multibumper Protective Structures Design Trades

The baseline parameters and assumptions for an orbital debris analysis of multibumper

systems is shown below. The parametric sensitivities investigated are also shown.
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Figure 3.6-1 shows the sensitivity of the optimal protective structures design mass per
unit area to the number of bumpers in the configuration for the baseline parameters. The optimal
number of bumpers is one.

Figure 3.6-2 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to mission start date. A three year slip in the mission start
date results in a 33% increase in protective structures design weight. The optimal number of

bumpers remains constant at one for mission start dates through 2005.
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Figure 3.6-3 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to mission duration. A transition region from one bumper
to two is found in the 10-15 year duration range. The shape of this curve is partly reflective of
the space debris growth rate model and partly reflective of the solar flux effect.

Figure 3.6-4 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to average mission altitude. A transition region is found
between 400 and 500 km altitude. In this region, the optimal number of bumpers changes from
1 to 2 due to increased particle threat.

Figure 3.6-5 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to total mission probability of no penetration. A transition
from 2 bumpers to one is found in the region between 0.9733 and 0.98 PNP. This corresponds
to element PNP’s between 0.9955 and 0.9966.

Figure 3.6-6 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to total mission debris area. A transition region is found
between 700 and 800 m®. In this region, the optimal number of bumpers changes from 1 to 2
due to increases in particle threat size.

Figure 3.6-7 shows the sensitivity of optimal protective structures design variables (in-
cluding optimal number of bumpers) to total bumper/wall separation. No transition region is
found from 5 to 30 cm total separation. An increase in total separation from 10 to 15 cm results
in a 33% reduction in weight.

Figures 3.6-8 through 3.6-11 show ballistic limit curves for the combined (shatter and
0.8-Wilkinson) multibumper predictor. Seven curves are shown in each figure corresponding

to seven different first bumper thicknesses. The baseline Space Station protective structures

design is found behind the first bumper. The separation bc%ﬂd bumpers is
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varied from 2 to 8 inches across the four curves. The transition region from projectile shatter
to vaporization is assumed to be in the 7-8 km/sec region and is not well understood. Curves

like these are useful in determining protective structures measures of performance for advanced

shielding systems.
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Figure 3.6-1. Determining Optimal Number of Bumpers
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Figure 3.6-2. Optimal Protective Structures Design Values vs. Mission Start Date
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Figure 3.6-5. Optimal Protective Structures Design Values vs. Total Mission PNP
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Figure 3.6-8. Ballistic Limit Curve for Front Separation of 5.08 cm
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Figure 3.6-9. Ballistic Limit Curve for Front Separation of 10.16 cm
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Figure 3.6-10. Ballistic Limit Curve for Front Separation of 15.24 cm
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3.7 Intrinsically Nonlinear Regression For Multibumper Projectile Shatter

The intrinsically nonlinear regression form is given by

L a a & 0 * (n—l )(--n""‘
N=XY&d 'p,'V S.
E’l( 4 Pp {COS( (n_l)‘s.- I' jIJl ¥
a-1 (-—1;"" . _
’(jl;ll ijj) @) (=1 " [3.7-1]
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To date, the addition of posynomial terms has not shown significant advantages or
improvements over a single term posynomial for the combined multibumper database. Multiple
term posynomial predictors, multiple databases, and separation of variables are approaches

currently under investigation (but beyond the scope of this effort).
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3.8 Conclusions and Recommendations

Conclusions
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4 PROJECTILE SHAPE EFFECTS TASK

SAIC developed posynomial regression techniques and combined them with posynomial
optimization techniques for application to this area. These techniques are available for immediate
application to the test data resulting from projectile shape effects testing. Currently, limited test
data produces unclear results when attempts are made to correlate data from various projectile
shapes. Results are inconclusive. Further investigation of the projectile shape effects includes
methodologies found in sources such as "A Preliminary Investigation of Projectile Shape Effects
In Hypervelocity Impact of a Double-Sheet Structure,” by R. H. Morrison, NASA-TN-6944, August
1972, but will remain inconclusive until further test are performed. A summary of literature in this
area follows.

Burch reasoned that for multiplate systems, both projectile geometry and material play a
significant role in terms of the characterization of hypervelocity impact damage. More specifically,
Piekutowski provides visual confirmation of the effect that cylinder inclination at impact has on
debris cloud features and rear wall damage severity. Shockey reports that provided the cylinder
length exceeds both its diameter and the target plate thickness, at least part of the projectile will
remain solid, independent of velocity. He also states that disk-type projectiles (L/D < 1) tend to be
more completely vaporized, and that rod-like projectiles tend to remain in the solid state. Backman
adds that pointed penetrators pierce, while blunt-shaped projectiles plug.

Morrison considered cylinders of various L/D ratios fired at near 0 degree inclination, and
found that cylinders were generally, and often considerably, better penetrators than spheres. (This
is due to the lack of vaporization and shatter of the entire rod, the spike in the debris cloud, and the
fact that the debris cloud front for cylinders travels about 14% faster than for spheres.) Specifically,
Morrison found that on an equal mass basis, cylinders with L/D of 3/2 were the most damaging to

double sheet structures, followed by L/D ratios of 1/2 and 1, respectiig pkept a constant
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L/D of 1/2, decreased L and D simultaneously, and found that a cylinder could achieve the same
penetrability as a sphere at 1/3 the mass. Next, he kept the cylinder diameter constant, decreased
the length systematically, and found that the same penetrability could be achieved with 1/7 the mass
of the sphere. Counterintuitively, he discovered that for L/D ratios between 1/7 and 1/2, the lower
ratios are more effective penetrators of 2-sheet structures, given equal mass. To quote Morrison,
"Thus, the use of only spherical projectiles in testing double-sheet structures can be misleading. In
fact, this practice has yielded nonconservative empirical equations now in use in the design of
impact-resistant spacecraft structures. Although cylinders are no more typical of meteoroid shapes
than spheres, the damage incurred by actual meteoroids is undoubtedly being underestimated by a

significant factor.” Obviously, this conclusion is even more pertinent for space debris impacts.
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PAGE: 1

C

C SPIES

C SPacecraft Impact Environment Simulation

C

C L1 21 Robert A. Mog P22 14

Cc s#s%  SAIC Huntsville bk

C

C

C Program to model space debris and meteoroid environments
C for the analysis of in-orbit spacecraft survivability.
Cc

C

C s*exsxsrss REVISION JAN 14,1992 s#ssss
C K FACTORS AND SURFACE AREA DIFFER FOR THE BOX
C THEREFORE ADDED SAM & SAD (SURFACE AREA METERIOD & SURFACE AREA DEBRIS)

C
C
DOUBLE PRECISION T,DELTAT
REAL INCL,K.D.H,TLTF ET,S,SA ,SAD,SAM,PVIX150,3),
1 DIADENMASS,VEL,ANGLE,MVEL(100,2),MFL(0:1000,5)
INTEGER N
COMMON /ARRAYS/SOLARFLX(0:150),FL(0:1000,0:3)
C
C INITIALIZE PARAMETERS AND ENVELOPING GEOMETRY
C
CALL GET_PARAMETERS(TLTF,DMIN_D,DMAX_D,D_D,DV,
DMIN_M,DMAX_M,D_M,H,INCL,
2 NSEED,IDISTFLAG,IMFLAG)
CALL GEOMETRY(SAD,SAMK)
C
C
CALL GETSLRFLX(TLTF)
CALL GET_INCL_FACTOR(INCL.PSD
CALL DEB_VEL(INCL,PVD,DV IMAX_PVD)
C
IMAX = INT(DMAX_D - DMIN_D) / D_D)
C
C  #*%+* QUTPUT BEGIN AND END MISSION FLUX DISTRIBUTIONS ****
C *»&s [F IDISTFLAG IS SET b
C
IF (IDISTFLAG .EQ. 1) THEN
OPEN(UNIT=9,STATUS=NEW' FILE="VELDIST.OUT)
T=TI
CALL FLUX_DIAMETER(SAD,DMIN_D,DMAX_D,D_D,K.HPSLT, T}
WRITE(9,525) T
DO 15 1=0,IMAX
15 WRITE(9,530) (FL(LII),I1=0,3)
T=TF
CALL FLUX_DIAMETER(SAD,DMIN_D,DMAX_D,D_D,K HPSLT,TT)
WRITE(9,525) T
DO 16 1=0,JMAX
16 WRITE(9,530) (FL(L1II),11=0,3)
WRITE(9,527)
DO 17 I=1JMAX_PVD
17 WRITE(9,520) (PVIX1,IN),II=1,3)
ENDIF
C
C OPEN(UNIT=8,STATUS='NEW" FILE="SPIES_D.OUT")
OPEN(UNIT=11,STATUS="NEW',FILE=PEN%9.0UT’)
C
C
T=T1
10 CALLFLUX_ DIAMETER(SAD,DMIN_D,DMAX_D,D_D.KHPSLT.TI)
C
C
C LOOK UP DIAMETER
C
X = RAN(NSEED)

0

CALL LKUP_DIAMETER(X,DIA,IMAXN)




SPIESFOR

PAGE: 2

C

C

C CALCULATE DENSITY AND MASS
C

DEN = DENSITY(DIA)
MASS = CALC_MASS(DIA)

LOOK UP VELOCITY AND CALCULATE IMPACT ANGLE

[eNeNeKoXe!

X=RAN(NSEED)
CALL LKUP_VEL(PVD,JMAX_PVD,X,VEL,ANGLE)

whdkhkbh s kk kR kR

REVISION JAN 14,1992 - JANEIL HILL
SURVIVABILITY MODULE
BASED ON VELOCITY

SRkhgiok kb bk bk

CALL SURVIVE_HIT(VEL,DIA,DEN,ANGLE)

NOOONOO

CALCULATE CHANGE IN TIME

[sXeXe]

X=RAN(NSEED)

B = 1./[FL(N,1)

DELTAT = LOG(X) * (-B)
T=T+ DELTAT

WRITE(8,500) T,DELTAT,DIA,DEN,MASS,VEL ANGLE

IF (T.GE.TF) GOTO 150

G 0nN0n

GOTO 10

150 CONTINUE
CLOSE(8)
CLOSE(11)

sezepisansinsresess METEOROID ENVIRONMENT

000

IF (IMFLAG .NE. 1) GOTO 200
OPEN(UNIT=10,STATUS="NEW" FILE='SPIES_M.OUT")
T=TI

IMAX = INT((DMAX_M - DMIN_M) / D_M))

BUILD METEOROID FLUX AND VELOCITY DISTRIBUTION TABLES

naoon

CALL METEOROID_FLUX(SAM,H.DMIN_M,DMAX_M,D_M,MFL)
CALL GET_METEOROID_VELOCITY(MVEL,IVELMAX)

N0

IF (IDISTFLAG EQ. 1) THEN
WRITE(9,525) T
DO 155 1=0,]MAX
155  WRITE(9,535) MFL(1,1),MFL(1,3),MFL(I,4),MFL(L5)
WRITE(9,537)
DO 156 I=1 JVELMAX
156  WRITE(9,538) I, MVEL(I,1),MVEL(I,2)
CLOSE(9)
ENDIF

LOOK UP DIAMETER

X=RAN(NSEED)
CALL LKUP_MET_DIAMETER(MFL X,DIA IMAX,N)

—=0nNn
<
[V

Oo0nn

#+2+ DENSITY IS CONSTANT, SET MASS AND DENSITY *##*
MASS = MFI(N,2)
DEN = 0.5
IF(MFL(N,2).LE.1E-06)DEN=2.0
IF(MFL(N,2).LE.0.01. AND.MFL(N2).GT.1E-06)DEN=1.0
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LOOK UP VELOCITY

noon

X=RAN(NSEED)
CALL LKUP_MET_VEL{MVEL.IVELMAX X,VEL)

s+t ANGLE IS FIXED ****
ANGLE = 90.0

CALCULATE CHANGE IN TIME

aONO0OnO 000

X=RAN(NSEED)

B = 1./MFI(N,3)
DELTAT = LOG(X) * (-B)
T =T + DELTAT

WRITE(10,510) T,DELTAT,DIA ,DEN,MASS, VEL,ANGLE

IF (T.GE.TF) THEN
CLOSE(10)
CALL SORT_MERGE
GOTO 200

ENDIF

GOTO 175

200 CONTINUE
STOP
500 FORMAT(2X, D '2F13.8,2(2X F6.3),2X,F10.7,2(2X F6.3))
510 FORMAT(2X, M '2F13.8,2(2X F6.3),2X,F10.7,2(2X F6.3))
520 FORMAT(2X,3(2X,F6.3))
525 FORMAT(//2X /F13.8)
527 FORMAT(//2X,' Debris Velocity Distribution’)
530 FORMAT(2XF6.3,2X,F10.3,2(2X,F6.3))
5§35 FORMAT(2XF6.3,2X F10.3,3(2X F6.3))
537 FORMAT(//2X,'Meteoroid Velocity Distribution’)
538 FORMAT(2X,14,2(2X,F6.3))
END

REAL FUNCTION CALC_MASS(D)

CALC_MASS =3.1416 * DENSITY(D) * D ** 3. /6.
RETURN

END

REAL FUNCTION DENSITY(D)
IF (D.LT.0.62) THEN
DENSITY = 4.0

ELSE
DENSITY =2.8/D ** 0.74

ENDIF
DENSITY =2.8

[oNeXeNoKe!

RETURN
END

REAL FUNCTION FLUX(K,D,H,PSI.T,S)
REAL PHIF1,F2,G1,G2,PSLK

C *#+ FIXED GROWTH RATE P ***
P = 0.05

Q=0.02
QP=0.04

PHI = 10.*%(H/200.-S/140.-1.5)/(10.*%(H/200.-S/140.-1.5)+1.)
F1 = 1.22E-05 * D ** (-2.5)

F2 = 8.1E10 * (D + 700.) ** (-6.)

Gl = (1 + Q) ** (T-1988.)

IF(T.GE.2011)THEN

Gl=(1+Q) **(23)

G1 = G1*(1 + QP) ** (T-2011.)
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ENDIF

G2 = (1 + (P *(T-1988.)))
HD=(10.0**(2.71828%*((-1.0%(LOG(D)-0.78)**2.0)/0.405769)))**0.5

FLUX =K * HD*PHI * PSI * (F1 * Gl + F2* G2)

RETURN

BD

SUBROUTINE LKUP_DIAMETER(X,DIA JIMAX,N)
COMMON fARRAYS/SOLARFLX(0:150),FL(0:1000,0:3)
I=0
IF (X.LT.FL(0,3)) GOTO 100
DO 50 I = 1, IMAX
50 IF ((X.GEFL(I-1,3)) .AND. (X.LT.FL(L,3))) GOTO 100
100 CONTINUE
DIA = FL(1,0)
N=1I
RETURN
END

SUBROUTINE FLUX_DIAMETER(SA,DMIN,.DMAX,D X HPSLT,TD)
COMMON /ARRAYS/SOLARFLX(0:150),F1(0:1000,0:3)
REAL FLTOT,PROB,SA,DMIN,DMAX,D K HPSL,T,TI
S = SOLARFLX(INT((T-TD)*12))
FLTOT = 0.0
PROB = 0.0
IMAX = INT((DMAX-DMIN)/D)
IF (IMAX .GT. 1000) WRITE(*,*) 'DATA IS TOO LARGE FOR ',
1 'DEBRIS FLUX ARRAY: FL'
DO 100 I = 0,IMAX
DIAMETER = DMIN + I*D
F1(1,0) = DIAMETER
FL(1,1) = SA * FLUX(K,DIAMETER H,PS],T,S)
FLTOT = FLTOT + FL(I,1)
100 CONTINUE
DO 110 I = 0,IMAX
FL(1.2) = FL(L1) / FLTOT
PROB = PROB + FL(1,2)
FL(1,3) = PROB
110 CONTINUE
C *+* INDICES FOR FL. ARE AS FOLLOWS:
C 0 - DIAMETER / 1 - IMPACTS/YEAR / 2 - NORMALIZED / 3 - CUMULATIVE

RETURN
END

SUBROUTINE GET_INCL_FACTOR(INCL PSI)
REAL INCL
OPEN(UNIT=12, FILE=FLUXFAC.DAT STATUS="OLD' READONLY)
X=0
DO 10 WHILE (IX .LT. INCL)
10 READX12,*END=20) IX,PSI
GOTO 30
20 WRITE(*,*) ERROR READING FLUXFAC.DAT
30 CLOSE(12)
RETURN
END

SUBROUTINE GETSLRFLX(TL,TF)
COMMON /ARRAYS/SOLARFLX(0:150),F1(0:1000,0:3)
OPEN(UNIT=12 FILE='SOLAR1.FLX' ,STATUS="OLD' READONLY)
11 = INT((TI-1988.)*12.)
DO 10 I=1,11
10 READ(12,*)
11 = INT((TF-TD*12.)
DO 20 I=0,11
READ(12,* ERR=25) 8
SOLARFLX(I) =S
20 CONTINUE
GOTO 30
25  WRITE(*,*)' ERROR READING SOLAR1.FLX'
30 CLOSE(12)
RETURN
END
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10

20

[sXeXe]

30

ks Ke Xe]

100

110
210
215
220
225
230
232
235
300

SUBROUTINE GEOMETRY(SAD SAMK)
REAL RL W HPLK

PI = 3.141593

WRITE(*,100)

READ(*,110) 1

IKILT.1 .OR. .GT.3) THEN
WRITE(*,*) ' Invalid Choice. '
GOTO §

ENDIF

GOTO (10,20,30).1

WRITE(*,210)

READ(*215) R

SAD=4*PI*R*R

SAM=4*P[*R*R

K=27

GOTO 50

WRITE(*,220)

READ(*215) R

WRITE(*,225)

READ(*.215) L

SAD=2*PI*R*(L+R)

SAM=2¢PI*R*(L +R)

*+¢ NEED TO CALCULATE K ***

GOTO 50

WRITE(*,230)
READ(*,215) L
WRITE(*,232)
READ(*215) W
WRITE(*,235)
READ(*215) H

Ki=26

K2=16

SAD = K1*W*H + 2*K2*L*H
SAM = 2*L*W + 2*W*H + 2*L*H
K=1.

**+ WITH BOX A DOUBLE K FACTOR IS NEEDED ***
FOR NOW IT IS HARD WIRED IN K1 = 2.6 (FRONT) K2 = 1.6 (SIDE)

WRITE(*,300) SAD,SAM
RETURN

FORMAT(2X, Input type of enveloping geometry:/10x,'l - Sphere’/
1 10X,2 - Cylinder'/10X,'3 - Box.'/2X,'Choice?",$)
FORMAT(12)

FORMAT(4X, Sphere:'/6X,Enter Radius (m) :.$)
FORMAT(F7.2)

FORMAT(4X, Cylinder:'/6X,Enter Radius (m) :'.5)
FORMAT(6X,Enter Length (m) :.$)

FORMAT(4X, Box:'/6X, Enter Length (m) :.$)
FORMAT(6X,Enter Width (m) :'$)

FORMAT(6X,Enter Height (m) ')

FORMAT(4X, Surface Area is 'F19.2,' m2'F19.2, m2)
END

SUBROUTINE DEB_VEL(XINCL XPV,DV IMAX)
REAL XPV(150,3)
YG=250.0
YF=0.0
YC=0.0125
YE=0.55+0.005*(XINCL-30.0)
YH=1.0-0.0000757*(XINCL-60.0)**2.0
YA=25
YB=0.3
YD=1.3-0.01*(XINCL-30.0)
YV0=7.7
IRXINCL .LE. 60.0)THEN
YB=0.5
YG=18.7
YV0=7.25+0.015*(XINCL-30.0)
ENDIF
IF(XINCL LE. 80.0 .AND. XINCL .GT. 60.0)THEN
YB=0.5-0.01*(XINCL-60.0)
YG=18.7+0.0289*(XINCL-60.0)**3.0
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ENDIF

IF(XINCL .GT. 100.0)THEN
YC=0.0125+0.00125*(XINCL-100.0)

ENDIF

IF(XINCL .LE. 50.0)THEN
YF=0.3+0.0008*(XINCL-50.0)**2.0

ENDIF

IF(XINCL .GT. 50.0 .AND. XINCL .LE. 80.0)THEN
YF=0.3-0.01*(XINCL-50.0)

=1.
XPV(IV,1)=XV
XPV(IV,2)=YG*2.7183**(-1.0*((XV-YA*YV0)/(YB*YV0))**2.0)
XPV(IV,2)=XPV(IV,2)+YF*2.7183**(- 1.0%((XV-YD*YV0)/
1 (YE*YV0))**2.0)
XPV(IV,2)=XPV(IV,2)*(2.0*XV*YV(-XV**2.0)
XPV(IV,2)=XPV(IV 2+ YH*YC*(4.0*XV*YVO0-XV**2.0)
[F(XPV(1V,2) .LE. 0.000)THEN
XPV(IV,2)=0.000
IVMAX=IV
GO TO 150
ENDIF
XSUMIV=XSUMIV+XPV(IV.2)
IV=IV+1
XV=XV+DV
GO TO 100
PROB = 0.
DO 200 I=1]JVMAX
XPV(1,2)=XPV(1,2)/XSUMIV
PROB = PROB + XPV(1,2)
XPV(1,3) = PROB
CONTINUE
ssssnsnsnrssns [NDICES ARE: $#3 s+ #ssssnsisns

1- VELOCITY 2 - NORMALIZED 3 - CUMULATIVE

IMAX = IVMAX

RETURN
END

SUBROUTINE LKUP_VEL(XPV,IMAX,R XV,A)
REAL XPV(150,3)
XV = XPV(1,1)
DO 10 I = 1,IMAX-1
IF ((R.GEXPV(I,3)) .AND. (RLT.XPV(I+1,3))) THEN
XV = XPV(I+1,1)
GOTO 20

A = ACOSD(XV/15.4)
RETURN
END

SUBROUTINE GET_PARAMETERS(TI,TF,DMIN_D,DMAX_D,D_D,DV DMIN_M,
1 DMAX_M,D_M,H,INCL,NSEED,IDISTFLAG,IMFLAG)
REAL TLTF,DMIN,DMAX,D,DV,H,INCL
INTEGER NSEED
OPEN(UNIT=12,FILE="SPIES99.IN' STATUS="OLD',READONLY)
READ(12,*) TI
READ(12,*) TF
READ(12,*) DMIN_D
READ{(12,*) DMAX_D
READ(12,*) D_D
REAIX12,*) DV
READ(12,*) DMIN_M
REAIX12,%) DMAX_M
READ(12,*) D_M
READ(12,*) H
READ(12,%) INCL
READ(12,*) NSEED
READ(12,*) IDISTFLAG
READ(12,%) IMFLAG
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CLOSE(12)
RETURN
END

SUBROUTINE METEOROID_FLUX(SA,H,DMIN,DMAX.D,MFL)
REAL DMIN,DMAX,D,DIAMETER LOGM MASS H,GNETA MFLTOT,
1 MFL(0:1000,5)
*s3 CALCULATION FOR G USES 6378 KM RADIUS FOR EARTH ***
G = 1.0+6478./(6378.+H)
NETA = (1 + COS(ASIN(6478. / (6378. + H)))) / 2
IMAX = INT((DMAX-DMIN)/D)
IF (IMAX .GT. 1000) WRITE(*,*) 'MUST RE-DIMENSION METEOROID ',
1 FLUX ARRAY. DATA IS TOO LARGE.'
MFLTOT = 0.
PROB =0.
DO 10 1=0,IMAX
*#* MASS CALCULATION USES AVERAGE DENSITY OF .5 G/CM3 #**
DIAMETER = DMIN + I*D
DEN = 0.5
[F(MFL(N,2).LE.1E-06)DEN=2.0
IF(MFL(N,2).LE.0.01. AND.MFI(N,2).GT.1E-06)DEN=1.0
MASS = 3.141593 * DEN * DIAMETER ** 3.0/ 6.0
MFL(1,1) = DIAMETER
MFL(1,2) = MASS
LOGM = LOG10(MASS)
IF (MASS .LE. .000001) THEN
MFL(],3) = 10**(-14.339 - 1.584*LOGM - 0.063 * LOGM ** 2)
ELSE
MFL(1,3) = 10*%(-14.37 - 1.213 * LOGM)
ENDIF
C0=3.156E07
C1=2.2E03
C2=15.
C3=1.3E-09
C4=1.0E11
C5=1.0E27
C6=1.3E-16
C7=1.0E06
MFL(1,3)=C6AMASS+C7*MASS**2.0)**0.85
MFL(I,3)=MFL(1,3)+C3/XMASS+C4*MASS**2.0+ C5*MASS5**4.0)**0.36
MFL(I,3)=MFL(L,3)+1.0(C1*MASS**0.306+C2)**4.38
MFL(1,3)=CO*MFL(1,3)
s+=s MULTIPLY BY G,NETA, AND NO. OF SEC/YEAR ***
MFL(1,3) = SA * MFL([,3) * G * NETA * 31536000.
MFLTOT = MFLTOT + MFL(L,3)
QONTINUE
DO 20 I=0,IMAX
MFL(1,4) = MFL(1,3) / MFLTOT
PROB = PROB + MFL(1 4)
MFL(],5) = PROB
CQONTINUE
*+* INDICES ARE :
1-DIAMETER 2 - MASS 3 . IMPACTS/YEAR
4 - NORMALIZED 5 - CUMULATIVE
RETURN
END

SUBROUTINE GET_METEOROID_VELOCITY|
REAL MVEL(100,2),PVEL PVTOT PVCUM
OPEN(UNIT=8 FILE="METVEL.IN',STATUS='OLD' READONLY)
PVCUM = 0.
PVTOT = 0.
READ(8,* END=100)] PVEL
MVEIL(],1) = PVEL
IF(I.LT.11)MVEL(I,1)=0.0
IF(I.GE.11.AND.LLE.16)MVEL(1,1)=0.112
IF(1.GT.16.AND.L.LT.55)MVEL(1,1)=3.328E05/(FLOAT(I)**5.34)
IF(I.GE.55.AND.L.LE.72)MVEL(1,1)=1.695E-04
PVTOT = PVTOT + MVEL(L,1)
GOTO 10
IMAX =1
DO 110 I=1IMAX
MVEL(,1) = MVEL(L,1) / PVTOT
PVCUM = PVCUM + MVEL(],1)
MVEL(1,2) = PVCUM
CONTINUE



SPIESFOR
PAGE: 8

CLOSE(8)
RETURN
BD

SUBROUTINE LKUP_MET_VEL(MVEL,IMAX R,VEL)
REAL VELMVEL(100,2)
VEL = 1.0
DO 10 I = 1,IMAX-1
IF (R.GE.MVEL(],2)) .AND. (R LT.MVEL(I+1,2))) THEN
VEL = FLOAT(I)
GOTO 20
ENDIF
10 CONTINUE
20 CONTINUE
RETURN
END

SUBROUTINE LKUP_MET_DIAMETER{MFLX,DIA IMAX N)

REAL MFL(0:1000,5)

I=0

IF (X.LT.MFL{0,5)) GOTO 100

DO 50 I = 1 JMAX
50 IF ((X.GE.MFL(I-1,5)) .AND. (X LT.MFL(L,5))) GOTO 100
100 CONTINUE

DIA = MFL(L,1)

N=1

RETURN

END

SUBROUTINE SORT_MERGE
CHARACTER*S8 DDATA2 MDATA2,DDATA1*3,MDATA1*3
REAL TD,TM
OPEN(UNIT=8,STATUS="OLD' FILE='SPIES_D.OUT READONLY)
OPEN(UNIT=9,STATUS='OLD' FILE='SPIES_M.OUT READONLY)
OPEN(UNTIT=10,STATUS="NEW FILE="SPIES_BOTH.OUT")
READ(8,500,END=100) DDATA1,TD,DDATA2
REAIX9,500, END=200) MDATA1,TM , MDATA2
50 DO 60 WHILE (TD .LE. T™)
WRITE(10,500) DDATA1,TD,DDATA2
REAIX8,500 END=100) DDATA1,TD,DDATA2
60 COONTINUE
DO 70 WHILE (TD .GT. TM)
WRITE(10,500) MDATA1,TM,MDATA2
READX9,500,END=200) MDATA1,TM MDATA2
70 OONTINUE
GOTO 50
100 READ(9,500,END=300) MDATA1,TM,MDATA2
WRITE(10,500) MDATA1,TM,MDATA2
GOTO 100
200 REAIX8,500,END=300) DDATA1,TD,DDATA2
WRITE(10,500) DDATA1,TD,DDATA2
GOTO 200
300 CLOSE(8)
CLOSE(9)
CLOSE(10)
RETURN
500 FORMAT(2X,A3F13.8,A58)
END

SUBROUTINE SURVIVE_HIT(VEL,DIA,DEN,THETA)
REAL VEL
Ott““‘“‘tu“‘”‘
C SURVIVABILITY MODULE JAN 14,1992
C JANEIL HILL
C VEL VELOCITY OF PARTICLE
C BIGN PERFERATION LEVEL
C DIA DIAMETER OF PARTICLE
C DEN PARTICLE DENSITY
C THETA ANGLE OF IMPACT
C SI  ARRAY OF SEPERATION OF BUMPER
C RHO! ARRAY OF DENSITY OF BUMPER
C THI BUMPER THICKNESS
C N NUMBER OF BUMPERS
C
C

FOR NOW ALL THE VARIABLES THAT WILL BE READ IN ARE HARDWIRED HERE
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REAL SI(10),RHOI(10),THK(10),LN

LN = .401
N=2

THI(1) = .127
THI(2) = 3175
SK1) = 10.16
RHOK1) = 2.71
RHOI(2) = 2.81

IF (VEL LE. 7.5) THEN
TEMP1 = 1.0
TEMP2 = 1.0
DO [=1(N-1)
TEMP1 = TEMPI1 * SK(I)
TEMP2 = TEMP2 *(RHOI(}) * THI(D)

END DO
BIGN =( ( 3.801*DIA**1.0301 * DEN**.3892 * VEL**.2879 *

& (COSD(THETAXN-1))**.3288)) /
& (TEMP1*%(.4826 / (N-1)**.65) * TEMP2**(.3464/(N-1)**.65) *

& (RHOI(NY*THI(N))**.2929 * (N-1)**.6137) ) - L.

WRITE(11,%) BIGN
ELSE
C *»** [F VELOCITY >7.5)
TEMPI = 1.0
TEMP2 = 1.0
DO I=1,(N-1)
TEMP1 = TEMP1 * SKI)**2.
TEMP2 = TEMP2 *(RHOI(I) * THI(D))
END DO
RMPUA = (1.25*DIA * DEN) / TEMP2
IF (RMPUA .GT. 1.0000) THEN
TN = (364 * (1.25*DIA)**4. *DEN**2. * VEL * COSD(THETA)) /

& (LN * TEMP1 * TEMP2 * RHOI(N))

ELSE

C**** RMPUA <=1
TN = (.364 *(1.25*DIA)**3.#+ DEN* VEL * COSD(THETA)) /

& (LN * TEMP1 * RHOI(N) )
ENDIF
IF (TN .GE. THI(N)) THEN
WRITE(11,*) * 1.500
ELSE
WRITE (11,*) ' 0.000'
ENDIF

ENDIF

RETURN
END






