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Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky

survey element is considered as an example of a constant false alarm rate (CFAR)

signal detection problem. Order-statistic-based noise power estimators for CFAR

detection are considered in terms of required estimator accuracy and estimator dy-

namic range. By limiting the dynamic range of the value to be estimated, the

performance of an order-statistic estimator can be achieved by simpler techniques

requiring only a single pass of the data. Simple threshold-and-count techniques

are examined, and it is shown how severed parallel threshold-and-count estima-

tion devices can be used to expand the dynamic range to meet ttRMS system

requirements with minimal hardware complexity. An input/output (11/0) efficient

limited-precision order-statistic estimator with wide but limited dynamic range is

also examined.

I. Introduction

The purpose of this article is to examine I/O efficient

methods for dynamically estimating noise power in the

High Resolution Microwave Survey (HRMS) sky survey

element. One I/O efficient estimation method was sug-

gested during the development of the HRMS sky sur-

vey prototype system (SSPS) signal-processing subsys-

tem by Dr. Bernard Oliver at NASA Ames Research

Center. x At that time this technique, now called the

] B. Oliver, private communication, Deputy Chief of HRMS Office,
NASA Ames Research Center, Moffett Field, California, summer
1991.

threshold-and-count estimator, was labeled the "trun-

cated data" method. It was examined during the SSPS

development; 2,3'4 however, several relevant system param-

R. Brady, "An Alternative to Using Order Statistics for Deter-

mining the Mean Noise Power Estimate in the EDM," Interoffice
Memorandum, Jet Propulsion Laboratory, Pasadena, California,
April 14, 1988.

3 W. Deich, "Truncated Data and Background Estimation," Interof-
fice Memorandum, Jet Propulsion Laboratory, Pasadena, Califor-
nia, May 3, 1988.

4 M. F. Garyantes, "Seaxch For Extraterrestrial Intelligence Mi-
crowave Observing Project Sky Survey Element Subsystem Func-
tional Requirements and Design BECAT 1 Processor (Prototype),"
JPL D-7116, (internal document), Jet Propulsion Laboratory,
Pasadena, California, December 1, 1989.
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eters have since changed, and in an effort to save special-

purpose hardware complexity and cost, a new analysis of
this technique was undertaken. This article describes the

analysis and results.

HRMS sky survey signal detection will operate on the

output of a real-time, 640-MHz, 32-megachannel poly-
phase discrete Fourier transform (DFT) spectrum analyzer

[1]. In normal operation, the spectrum analyzer will accu-

mulate the power of from 2 to 10 spectra for input to the

signal-detection assembly. The signal-detection assembly

applies gain normalization and a five-tap finite impulse re-

sponse (FIR) matched filter to each accumulated spectral
channel. The matched filter outputs are then thresholded

at a probability of false alarm, PFA, of approximately l0 -5

to reduce the data rate for data input to a general-purpose

computer. Using adjacent scans across the sky, the com-
puter excises interference and combines data. After the

excision of interference, the data are passed through a

second threshold at a much lower PrA, and a relatively

small number of sky positions passing the threshold are

re-observed. Because of the large number of channels and

limited re-observation time, the false alarm rate due to

noise must be tightly controlled. False-alarm-rate control

is accomplished by normalizing the accunaulated power
spectra with estimates of the noise power as a function

of frequency.

Dynamic estimation of the noise environment is re-

quired for many signal-processing algorithms. Noise power
estimates obtained from order statistics are robust in the

presence of interference, and they can be adapted to vari-

ations in the statistical distribution of the noise samples

[2,3,4,5]. In general, computation of a fixed order statis-
tic requires that a sample population be sorted. Sorting

techniques require multiple passes on a data set and can

be I/O intensive. The advantages of the order-statistic
estimation approach can be obtained by fixing the order

statistic's value rather than fixing the rank of the order

statistic, provided that the value remains within certain

bounds. This article presents an analysis of the estima-

tor requirements and introduces an additional performance
requirement called the estimator dynamic range. A sim-

ple order-statistic-based estimator is analyzed, and sim-
ple modifications to extend the limited dynamic range of

the estimator are presented. An efficient estimator with

a wide dynamic range is formed by combining this sim-

ple estimator with a fixed-order-statistic technique. The
requirements for noise power estimation and the solutions

are discussed in the context of NASA's HRMS sky sur-

vey, although the approach is applicable to other constant

false-alarm-rate (CFAR) detection applications.

II. Summary of Requirements

There are two performance requirements on the estima-

tor. The first requirement is the obvious one of estimate

accuracy. For interference immunity, methods under con-
sideration in this article use an order statistic to estimate

the noise power. As a result, in the limit of large popula-

tion sizes (populations >1000), the error in the estimate

will be normally distributed and zero mean [4]. When
the estimate is used to control detection thresholds, as in

HRMS, errors in noise power estimates change the PFA for

the detection algorithms. By specifying the allowable vari-

ation in the PEA, the required estimator accuracy can be

determined. A new requirement considered here is the es-

timator dynamic range. This is defined as the variation in

noise power over which the estimator will perform within
the specified error. For example, if the estimator can meet

the accuracy requirement as the noise power varies over

a factor-of-two range, the estimator has a dynamic range

of 3 dB. This requirement depends on the variability in

the detection environment and the underlying probability

distribution. Thus, determination of the dynamic range
requirement is dependent both on the observations to be

performed and on the estimate accuracy requirement. Dy-

namic range is discussed following the discussion of esti-

mate accuracy.

A. Estimate Accuracy

The noise power estimator in the HRMS system is used

to control the data rate by setting detection thresholds. It

is not intended to be used for radio-astronomy-continuum-
measurement calibration. As a result, errors in the esti-

mate will only change the data rate out of the sky survey

signal-processing hardware, and will ultimately change the
PrA for the HRMS detection algorithms. The effect of er-
rors in the noise power estimate, T, on the data rate at the

output of the hardware has been previously addressed. 5
However, because an error in ]b changes where the data

rate-reducing threshold is located relative to the distri-

bution function of the noise, the sensitivity of the data

rate to estimate error is dependent on the position of the

threshold. At the time of W. Deich's memorandum: the

hardware threshold was to be positioned to provide a PFA
of 10-3; however, more recent analysis 6 has indicated that

this threshold should be set at a Pra ranging from 10 -5 to
10 -6. Therefore, a new look at the accuracy requirement
is needed.

5 W. Deich, "Baseline Ripple, Estimation Error in 7", and False
Alarms," Interoffice Memorandum, Jet Propulsion Laboratory,
Pasadena, California, February 14, 1989.

6 S. Levin, personal communication, Member of Technical Staff,
Space Physics and Astrophysics Section, Jet Propulsion Labora-
tory, Pasadena, California, spring 1991.
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When the data can come from more than one statistical

distribution, it is useful to identify the limiting distribu-

tion as a case for analysis. Because the number of spec-

tra per accumulated power spectral output is selectable in
HRMS sky survey operations, the power spectral samples

for white Gaussian noise input will come from X2u distri-
butions with varying degrees of freedom (v). For X2v data,

the limiting case to consider in the analysis of the effect

of estimate error on PFA is that of the maximum number

of degrees of freedom expected. Normal-rate operations

in the HRMS sky survey require the greatest control over

the PFA, and these will have a maximum of 10 spectra per

accumulated power spectral output.

At 10 spectra per accumulated output, each spectrum
will consist of samples from the X2_0distribution. The value

to be thresholded is a weighted sum of five of these samples

weighted approximately by {0.64, 0.89, 1.00, 0.89, 0.64} in

a five-tap FIR filter matched to the antenna beam passing

over a point source. The weighted sum can be approxi-

mated as samples of the X_I distribution. For such a large

number of degrees of freedom, it is appropriate to use the

following approximation [Eq. (1)] for the probability that
a sample is greater than a value x (see [6], Eq. 26.4.14).

Prob[x_ 2 > x] = Q(xlv ) _ Q(x2)

(x/u) l/a - (1 - 2/(9e))

X 2 ----
(1)

Note that in the region of interest where PFA _< 10 -5,

the following approximation [Eq. (2)] is valid:

e-_/2

Q(_2) _ _2qg; (2)

Let the estimated threshold be related to the ideal

threshold by 55 --- (1 -4-a)T; i.e., the fractional error is a.

The probability of false alarm, given a fractional estimate

error a, is:

e-_22/2

Prob[_s21 > (1 +a)T] _ Q(_:_) ,_ _2v_-_

_c2 _ 19.092[(1 -4-ot)l/a(T/81)l/a

-4-4-0.99726] (3)

Figure 1 shows the effect of errors in the estimate on the

probability of false alarm for 10 spectra per accumulation.

It is important to note that the noise power estimates
are obtained on a per-spectrum basis, and it is the effective
combined error of the five estimates that must meet the

accuracy requirement. The errors in the methods under

consideration are normally distributed, zero mean, and in-

dependent for each spectrum. It can be shown that the

combined fractional error is approximately normally dis-

tributed, zero mean, with standard deviation

/0.642 -4-0.892 + 1 + 0.892 + 0.642

a V -O----.6a]TF-O.---_-_-_-l+0.89+0.64 = 0.4540" (4)

where 0" is the standard error of an individual estimate.

This results in a reduction of the fractional error by 54.6

percent. For example, a 1-percent error in the final effec-

tive estimate corresponds to an error of 2.2 percent in the

noise power estimates for the individual spectra.

Conservative estimates of false alarms due to interfer-

ence suggest that the data rate out of the special-purpose

hardware will be a factor of 10 greater than the target

PEA of 10 -5. This implies that maintaining the data rate

out of the special-purpose hardware requires that the noise

power estimate be effectively accurate to within 6 percent.
If such an error were specified as a 3-standard-error event,

the effective estimator accuracy requirement for one stan-

dard error would be only 2 percent.

The significantly smaller PEA required to select can-
didates for re-observation would tend to imply a stricter

requirement on the noise power than that driven by the
hardware data rate. Additional candidates translate di-

rectly into additional re-observation time, and as a result,

it is unlikely to think that any more than a factor-of-2
variation would be tolerable. A 3-standard-error event

corresponding to a factor-of-2 change would imply an ef-
fective standard error for the five estimates of about 0.37

percent. This corresponds to a standard error of 0.82 per-

cent in the individual estimates. It is important to note,

however, that determination of the PEA for re-observation

candidate selection uses many individual noise power esti-

mates. Improvement of the noise power estimates or rejec-
tion of obviously bad data may be possible at this stage.

Taking this possibility into account, and considering that
a 3-standard-error event occurs with approximately 10 -a

probability, the required error in the noise power estimate
is taken to be less than 1 percent, r

r The error in the false alarm rate, defined as the difference between

the target and the actual false alarm rate, will not be zero mean
and will not, in general, be synu'netrically distributed about the

mean. However, this can be easily compensated for.
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B. Dynamic Range of the Estimator

Once an estimate accuracy requirement has been de-

fined, a dynamic range within which the estimator meets
its accuracy requirement can be determined. In almost

all estimation applications, the dynamic range of the esti-

mated parameter can be limited. It is shown below that

by limiting the dynamic range, one can construct simple,
efficient order-statistic-based estimators.

A noise power estimator must be flexible enough to

cover natural variations in received noise power. Unnat-

ural variations that would result in unusable data, e.g.,

significant drops in receiver gain, need not be within the
performance limits of the estimator. For HRMS or radio

astronomy purposes, natural variations are mainly caused
by four sources: changes in air mass as a scan changes el-

evation angle, increased water vapor as the antenna beam

passes through a cloud or water vapor bubble in the at-
mosphere, the contribution from galactic or extragalactic

radio sources at A = 21 cm due to Doppler-broadened

atomic hydrogen hyperfine emission, and the contributions

from common strong astrophysical radio sources. For all

of these sources, increases in system temperature will be

a function of frequency. Compensating for the variations

due to the passage of the beam across rare strong astro-
physical sources is not considered a requirement, but is a

goal.

Since the underlying statistical distribution affects the

dynamic range of the estimator, the statistics under which

the dynamic range must be met also need to be defined.

The HRMS sky survey will vary the number of spectra per

accumulation inversely as the sky frequency of the obser-

vations changes from 1 to 10 GHz. The nominal range
is from 10 to 2 spectra per accumulated power spectral

output. To accommodate slower scan rates, the nominal
accumulation may be increased by a factor of 10. For this

application, the system should also be capable of allowing

the number of spectra per accumulation at 1 GHz to vary

from 10 to 100 and the number of spectra per accumula-

tion at l0 GHz to vary from 2 to 20.

The observing environment ultimately defines the re-

quired dynamic range. Conditions at Canberra, Australia,
will be worse than those at Goldstone, California. s The

HRMS system will have a nominal (i.e., cold, dry sky at

zenith) system temperature of 25 K. The atmospheric con-

tribution to the system temperature scales as the square

of the frequency.

s Based on the models for the atmospheric contribution to sys-

tem temperature in DSN Standard Flight Project Interface De-

sign Project Handbook 810-5 (internal document), Revision D, Jet

Propulsion Laboratory, Pasadena, California, September 15, 1991.

Dynamic range requirements for from 20 to 40, 40 to 60,
60 to 80, and 80 to 100 spectra per accumulation can be

derived by using the translations from number of spectra

per accumulation to RF center frequency that are given by

Olsen, 9 and the planned slowdown factor of 10. Dynamic

range calculations due to atmosphere alone are given in
Table 1, and consideration of strong astrophysical sources

is presented in Table 2. As shown in Table 3, the dynamic

range requirement is for 7.1 dB of dynamic range for from

2 to 20 spectra per accumulated output, with a goal of

9.0 dB, and 3.8 dB of dynamic range for from 20 to 100

spectra, with a goal of from 4.2 to 4.8 dB.

III. Description of the Threshold-and-
Count Estimator

The threshold-and-count estimator consists of a thresh-

old applied to a population and a count of the num-

ber of points in the population that do not exceed the
threshold) ° Modifications may be made to this method

to dynamically adjust the threshold, if necessary, or to

apply multiple thresholds and pick the best one, but the
basic method remains the same. Provided that the popula-

tion is sufficiently dense around the threshold, this method

is equivalent to choosing an order statistic for the noise

power estimateJ 1 However, the value of the order statis-

tic is now fixed, as it is the threshold value, and the rank of
the order statistic is the random variable. The result is an

estimate of the value of the cumulative distribution func-

tion at the threshold, i.e., the probability that a sample is

less than the threshold value. The noise power estimate

can then be obtained from a look-up table, interpolating
from the cumulative distribution function to recover the

mean noise power of the population. A block diagram of

the threshold-and-count estimator is shown in Fig. 2.

IV. Estimator Performance

As expected, and verified by simulation, 12 the perfor-

mance of the threshold-and-count estimator is equivalent

to choosing a true order statistic, given a sufficiently dense

population of points around the threshold. Simulations

9 E. T. Olsen, "Time Required to Complete the All Sky Survey Cam-

paign," Interoffice Memorandum 1720-6025-3280, Jet Propulsion
Laboratory, Pasadena, California, February 27, 1991.

a0 B. Oliver, personal communication, Deputy Chief of HRMS Office,

NASA Ames Research Center, Moffett Field, California, summer
1991.

11 R. Brady, op. cit.

12 Ibid.
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demonstratedla that 1 percentof 8192,or 82pointsbe-
lowthethreshold,wasasufficientnumberforthevariance
of theorderstatisticto maskthethresholderrordueto
finitesampledensityaroundthethreshold.In the limit
oflargepopulationsize,orderstatisticsarenormallydis-
tributed,with a meanand variance for the rth smallest
order statistic

r/N (1 - _) (5)
E[x(r)] = _ = F -1 (r/N) Var[x(r)] - N f(_)2

where F 0 is the cumulative distribution function of the
population, f0 is the population's probability density
function, and N is the number of samples in the popu-

lation. For accumulated power spectra of white Ganssian

input voltage samples, the populations will be drawn from

the X_ distribution with an even number of degrees of free-

dom with v = 2xthe number of spectra per accumulated

output (v = 2n), with the probability density function

f(_) -- T_(n-1)! (6)

Since the mean value of the order statistic is propor-

tional to the mean noise power, and

E = Prob[x_n <_] = 1-e -_E_. (7)
i----O

the fractional standard error is:

z = ve.T,(n- 1),

trlN (1. r/N) e_(n - 1)!= ; n = V, (8)

In a true order-statistic estimate, the operating point,

r/N, is fixed. As a result, establishment of a given error at
a chosen operating point requires a minimum population

size, Nmin :

r [ e0 (-_n-- 1)]] u (9)Nmin ----- (N)(1-_) [ o.]_r_

13 Ibid.

Table 4 gives Nmin for some likely operating points.

Order-statistic-based methods similarly require popula-

tions larger than the Nmin at their operating points. Ta-
ble 4 shows that an order-statistic-based approach can

achieve a 1-percent standard error with a population of

16K (16,384) samples, a 0.5-percent standard error with

64K (65,536) samples, and a 0.33-percent standard error
with 128K (131,072) samples. Since the threshold-and-

count estimator is equivalent to a true order-statistic es-

timate at the given values of r/N, it achieves the same

standard errors with the same population sizes.

Because r/N remains fixed in a true order-statistic al-

gorithm, it will always produce the same standard error,

provided that the statistics of the data do not change.
Thus, if it can operate within the estimate accuracy re-

quirement, its dynamic range will only be limited by the

dynamic range of the numerical representation. Approxi-

mate order-statistic methods, like the threshold-and-count

method, have more limited dynamic range. The dynamic

range of a single, fixed-threshold threshold-and-count esti-
mator is examined first below. Modifications may be made

to the single, fixed-threshold estimator to increase its dy-

namic range, such as automatically adjusting the thresh-

old over time to track slow variations, or using multiple
thresholds based on different a priori values of the noise

power, but the performance of these modifications can be

analyzed easily through the single fixed-threshold case.

Consider the factor _? in the probability density and

distribution functions. The factor f? reflects the relative

position of the threshold within the probability distribu-

tion of the samples. Increasing the noise power by a factor

(_ is equivalent to dividing ]_by (_. When the noise temper-
ature changes, the new value of r/N must be calculated

using the cumulative distribution function with the new

value of ft. The accuracy of the estimator can then be

computed as before. Figure 3 shows the standard error as

a function of system temperature change.

The shape of the probability density function for the

X 2 distribution and the quadratic form in r/N in the ex-

pression for the estimate variance guarantee that if the

population size is greater than Nmin, the estimator will
perform within the accuracy requirement within an iso-

lated, continuous range of noise power values. The ratio

of the maximum noise power value at which the estima-

tor accuracy is within specification to the minimum such

value is the estimator's dynamic range.

The single, fixed-threshold threshold-and-count estima-
tor was evaluated with 64K samples for the dynamic range

defined by a standard error of less than 1 percent. Table 5

344



shows that the dynamic range of the single, fixed-threshold
threshold-and-count estimator is limited by the behavior

of the estimator at high numbers of spectra per accumu-

lation. As the number of degrees of freedom, v, increases,

the X_ distribution of the samples approaches the Gaus-
sian distribution, with the mean approaching v, and the

standard deviation approaching x/ft. This indicates that

the probability density is being concentrated about the

mean, collapsing the range over which it has non-negligible
values. As a result, the threshold-and-count estimator be-

comes more sensitive to changes in the noise power. Hence,

the dynamic range of the threshold-and-count estimator is

limited by the performance with the maximum specified

number of degrees of freedom.

It can be observed from Table 5 that a 1-percent error

usually corresponds to the fairly loose requirement of the

threshold, falling between the 0.1 and the 99.9 percentage

points of the distribution. However, in order to preserve

the assumption of a dense population of points near the
threshold, required for the equivalence of the threshold-

and-count method to a true order-statistic noise power

estimator, the operating range will be limited to the 1-

percent to the 99-percent points of the distribution.

It has been asserted, 14 perhaps incorrectly, that as the

upper limit of the range increases past the median of the

distribution, the interference robustness of the algorithm

is lost. This is based on a generalization of the effect of
interference on high-level order statistics in a true order-

statistic algorithm. Since the threshold is fixed in the

threshold-and-count algorithm, as opposed to the thresh-
old in a true order-statistic technique, depletion of the

population due to interference can always be corrected

for. This is different from using a high-level order statistic,
e.g., the 99-percent point, where high levels of interference

might give an erroneously high value for the order statistic.

With a fixed threshold, high levels of interference do not

change the threshold. The interference reduces the effec-

tive population size, the same effect that it has on order

statistics from below the median of the distribution [4].
In both a true order statistic and the threshold-and-count

methods, this reduction of the population biases the esti-

mate. Correction for this bias can easily be performed in

the threshold-and-count estimator by adjusting the con-
tents of the lookup table.

Therefore, consider the dynamic range of the threshold-

and-count estimator to be the ratio of the 99-percent to

the 1-percent point of the distribution, guaranteeing both

14Ibid.

a dense population around the threshold and a standard
error less than 1 percent for all but 2 or 4 spectra per

accumulation. For 2 or 4 spectra per accumulation, a

95- to 5-percent range achieves the required accuracy, and

demonstrates dynamic ranges still in excess of the 99- to 1-

percent ranges achieved when there are more than 8 spec-
tra per accumulation. Standard errors at the 1-, 5-, 50-,

95-, and 99-percent points of the distributions are shown

in Table 6. The dynamic range for the 1- to 99-percent

points is shown in Table 7, as well as the dynamic range

defined by the more conservative 5- to 95-percent and 1-

to 50-percent levels.

None of the estimators will cover the 7.1-dB dynamic

range required at 20 spectra per accumulated output with

1 percent of the points remaining above or below the

threshold. This problem is not insurmountable. One pre-
viously explored solution 15,16 is to adapt the threshold to

track a slowly time-varying noise power. This assumes that
the noise power will not vary outside the dynamic range
of the estimator from accumulation to accumulation. This

assumption can be difficult to maintain at high numbers

of spectra per accumulation, suggesting adaptation of the

threshold during the accumulation. Such a solution would

have high dynamic range but might be difficult to imple-
ment, since the number of degrees of freedom in the data

increases with each spectrum added to the accumulation.
Such a scheme would require a look-up table to invert sev-

eral different cumulative distribution functions, at least

until the distribution becomes sufficiently Gaussian. Eval-

uation of adaptation methods requires knowledge of the
dynamics of the noise power, which could be obtained from

field experiments with the SSPS. Time-varying thresholds
will not be considered further here.

Another, simpler modification to increase the dynamic

range of the estimator would be to have multiple thresh-
olds arranged so that one would always be within the es-

timator's dynamic range. An estimator with a dynamic

range of 7 dB can be extended to cover a dynamic range
of/_ dB by replicating it P/7 times, placing the operating

points such that the lower edge of one threshold's range

was at the upper edge of the previous threshold 's range.
Table 7 shows that only two such combined thresholds pro-

duce a dynamic range of 9.15 dB at 20 spectra per accumu-

lated output and a dynamic range of 4.0 dB at I00 spectra,

exceeding the dynamic range requirements and meeting

the dynamic range goals at 20 spectra. The dynamic range

15 Ibid.

16 W. Deich, "Truncated Data and Background Estimator," Interof-

fice Memorandum, Jet Propulsion Laboratory, Pasadena, Califor-

nia, May 3, 1988.
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requirementsat all numbersof spectraperaccumulation
upto 100canbemetwith from2 to 4 thresholdestima-
tors,dependingonhowconservativeoneis inchoosingthe
percentagepointsdefiningthedynamicrange.All thedy-
namicrangegoalscanbemetwith from4 to6estimators,
with the number again depending on how conservatively
one chooses the percentage points. Since the threshold

does not need to be settable to a high precision, e.g., 1

percent is sufficient, a floating-point threshold compari-

son can be performed with fewer than 16 bits compared.

Given the simplicity of the algorithm, 6 threshold units

is not an unwieldy number, and the additional threshold
counts could be used as a check on how well the data fit

the assumed distribution. Furthermore, all the threshold-

and-count units operate on the same input data, making

this architecture an ideal candidate for implementation as

integrated logic, e.g., a field-programmable gate array or

application-specific integrated circuit (ASIC). The draw-

back of this approach is that the dynamic range of the noise

power estimator is limited at design time by the number of

thresholds built into special-purpose hardware. This can

limit flexibility for possible long accumulation studies.

V. A Hybrid Threshold-Order-Statistic
Estimator

By combining a threshold with the current order-

statistic technique, it is possible to produce an estima-
tor that is significantly more hardware-efficient than the

two-pass order-statistic estimator in the SSPS, yet with

a much wider dynamic range than the threshold method

alone. The key to this method is to use an a priori thresh-
old to determine a range of numeric values to histogram
to obtain an order statistic of a desired rank.

First, consider that the required estimate accuracy is
1 percent. One should then make the fractional numeric

precision of the estimate small relative to the required esti-
mate accuracy. In floating-point arithmetic, the fractional

numeric precision defines the number of bits required to

represent the mantissa. A precision of i0.1 percent will
be achieved with 9 bits of mantissa. Hence, if one were to

perform a one-pass histogram, one would require 9 bits of

mantissa plus 8 bits of exponent for a total of 17 bits, or

128K histogram bin values. An efficient hardware imple-

mentation used in the SSPS requires that the population

size be at least twice the histogram length, and hence, the

current approach could not support an expansion to 17

bits with a population size of 64K points. As a result,

a one-pass reduced-precision histogram, while attractive,
would either require a more complex hardware implemen-

tation, or a significantly larger minimum population size

of 256K points.

If only 3 bits of exponent were supported in addition

to the 9 bits of mantissa required for 0.1-percent preci-

sion, a dynamic range of almost a factor of 28, or 24 dB,

would be obtained. This far exceeds the dynamic range

requirements for the estimator, and, if desired, bits of ex-
ponent can be traded for greater precision. Two bits of

exponent give a dynamic range of a factor of almost 16, or

12 dB, while 1 bit of exponent reduces the dynamic range

to a factor of almost 4, or 6 dB. Two bits of exponent

meet all the HRMS requirements and goals. Such a hy-

brid noise power estimator would consist of the following:

(1) a threshold value determined by the most significant

6 exponent bits of the desired order statistic, (2) a com-
parator that determines if the 6 most significant exponent

bits of a data point are less than, greater than, or equal

to the threshold, (3) a counter for the data points less

than the threshold, and (4) an ll-bit histogram unit, as

in the SSPS, for data points with the most significant 6

bits of exponent equal to the threshold. The desired order

statistic is then obtained by adding the count below the

threshold to the ascending values in the histogram until
the desired level is reached, producing an order statistic of

tile desired rank. This procedure is of approximately the

same complexity as that implemented in the SSPS on a

sing]e 14- by 14-in. wire-wrap board.

VI. Conclusions

At the cost of limited dynamic range, estimation equiv-

alent to sampling fixed order statistics can be performed
with a single pass of the data. The requirements and goals

for the HRMS sky survey's signal detection are met with
a noise-power-estimator accuracy requirement of 1 percent

and a dynamic range of up to 7.1 dB for most observations.

Under normal operating conditions, a fixed-threshold

threshold-and-count estimator is equivalent to a true

order-statistic estimator in accuracy, with a limited dy-

namic range. If a population size of 64K is used, the es-
timator will have better than 1-percent accuracy, but less

than the required 7.1 dB dynamic range at 20 spectra per

accumulation. Multiple thresholds may be used to increase

the dynamic range. The HRMS requirements are met with

from 2 to 4 thresholds, and the goals are met with from

4 to 6 thresholds. This technique provides a single-pass

noise power estimator, as opposed to the current two-pass

order-statistic technique, at the cost of a fixed dynamic

range. In summary, an acceptable noise power estimator
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could be constructed with the threshold-and-count tech-

nique, and this estimator might occupy less than half of

a single board in the sky survey operational system. In
contrast, the current true order-statistic estimator imple-

mentation would occupy from 2 to 3 boards.

A combination of the threshold-and-count estimator

and the current implementation of the true order-statistic

estimator also produces a single-pass, single-board noise

power estimator for floating-point systems with superior

dynamic range. This new, hybrid threshold-histogram es-

timator would produce an order statistic of a desired rank,

provided that the desired order statistic is within its dy-
namic range. This new, hybrid estimator would require

only one threshold, would be based on the design in the

SSPS, and while slightly more complicated than the raw

threshold-and-count, offers the advantage of constant es-

timate accuracy.

Based on this analysis, it is recommended that the fol-

lowing research activities be performed with the SSPS,

currently deployed at the Goldstone Deep Space Com-

munications Complex, California: (1) monitoring the dy-
namic range of the noise power estimates to confirm the

requirements derived in this article, (2) testing the inter-
ference robustness of the true order-statistic estimator in

the SSPS, (3) testing the performance and interference ro-
bustness of the threshold-and-count estimator, and (4) an-

alyzing the estimator bias induced by interference in all the

candidate estimators, and if necessary, (5) analyzing and

testing an algorithm for automatically correcting signifi-
cant estimator biases.
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Table 1. Dynamic range constraints due to atmosphere, calcu-

lated by using the Slobln model, a 99-percent cumulative, 20-deg

elevation, 25-K system, for the Canberra Deep Space Communi-

cations Complex.

Maximum system Dynamic range
RF, GHz

temperature, K needed, dB

1-10 128 7.1

1-3.8 49 2.9

1-2.25 38 1.8

1-- 1.63 35 1.5

1-1.32 34 1.3

Table 2. High-temperature radio sources considered in conjunction with atmosphere.

Atmosphere Source Dynamic Source

20-deg temperature, range and

elevation, K K needed, dB frequency

35 10 2.6 Galactic plane

background (_, 21 cm, 1.4 GHz)

35 25 3.8 Common strong

sources (L-band, 1-1.55 GHz)

34 to 128 70 9.0 Rare strong

sources (all frequencies)

Table 3. Dynam|c range requ|rements and goals.

Number of Dynamic range Dynamic range

accumulations requirement, dB goat, dB

2-20 7.1 9.0

20-40 3.8 6.8

40-60 3.8 6.4

60-80 3.8 6.2

80-100 3.7 6.2

Table 4. Minimum population size versus fractional error.

Error, a, % r/N = 0.25 r/N -----0.375 r/N = 0.5

1.00 15,058 10,931 9035

0.50 60,231 43,726 36,140

0.33 135,520 98,383 81,316
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Table 6. Standard error versus percentage points of the distribution
functions.

Number of
accumulations

Standard error at percentage point, percent

1 5 50 95 99

2 2.01 0.96 0.37 0.43 0.67

4 1.15 0.58 0.25 0.33 0.53

6 0.86 0.44 0.20 0.28 0.45

8 0.71 0.36 0.18 0.25 0.41

10 0.61 0.32 0.16 0.22 0.37

20 0.39 0.21 0.11 0.16 0.28

50 0.23 0.13 0.07 0.11 0.19

100 0.17 0,09 0.05 0.08 0,12

Table 7. Estimator dynamic range.

Accumulations
Percentage point Dynamic range percentage, dB

1 5 50 95 99 1-99 5-95 1-50

2 0.30 0.71 3.36 9.49 13,28 16.5 l1.3 10.5

4 1.65 2.73 7.34 15.51 20.09 10.9 7.54 6.48

6 3.57 5,23 11.34 21.02 26.22 8.66 6.04 5.02

8 5.81 7.96 15.34 26.30 32.00 7.41 5.19 4,22

10 8.26 10.85 19.34 31.41 37.57 6.58 4.61 3.69

20 22.16 26.51 39.34 55.76 63.69 4.58 3.22 2.50

50 70.06 77.93 99.33 124.3 135.8 2.88 2.04 1.52

1 O0 156.0 167.9 199.5 233.8 248.3 2.01 1.43 1.07
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