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Abstract

Orbital signals are being discovered in pre-Pleistocene sediments. Due

to their hierarchical nature these cycle patterns are complex, and the

imprecision of geochronology generally makes the assignment of strati-

graphic cycles to specific orbital cycles uncertain, but in sequences such

as the limnic Newark Group under study by Olsen and pelagic Cretaceous

sequence worked on by our ltalo-American group the relative frequencies

yield a definitive match to the Milankovitch hierarchy.Due to the multi-

ple ways in which climate impinges on depositional systems, the orbital

signals are recorded in a multiplicity of parameters, and affect different

sedimentary facies in different ways. In platform carbonates, for exam-

ple, the chief effect is via sea-level variations (possibly tied to fluctuating

ice volume), resulting in cycles of emergence and submergence. In limnic

systems it finds its most dramatic expression in alternations of lake and

playa conditions. Biogenic pelagic oozes such as chalks and the lime-

stones derived from them display variations in the carbonate supplied by

planktonic organisms such as coccolithophores and foraminifera, and also

record variations in the aeration of bottom waters.Whereas early stud-

ies of stratigraphic cyclicity relied mainly on bedding variations visible

in the field, present studies are supplementing these with instrumental

scans of geochemical, paleontological and geophysical parameters which

yield quantitative curves amenable to time- series analysis; such analysis

is, however, limited by problems of distorted time-scales. My own work

has been largely concentrated on pelagic systems. In these, the sensitivity

of pelagic organisms to climatic-oceanic changes, combined with the sen-

sitivity of bottom life to changes in oxygen availability (commonly much

more restricted in the Past than now) has left cyclic patterns related to

orbital forcing. These systems are further attractive because (!) they

tend to offer depositional continuity, and (2) presence of abundant mi-

crofossils yields close ties to geochronology. A tantalizing possibility that

stratigraphy may yield a record of orbital signals unrelated to climate has

turned up in magnetic studies of our Cretaceous core. Magnetic secular
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variations here c_rry a strong 39 ka periodicity, corresponding to the the-
oretical obliquity period of that time - Does the obliquity cycle perhaps
have some direct influence on the magnetic field?

I consider the following lines of research to be particularly important:

• (1) Studies ofstratigraphic sequences in which Milankovitch cyclicity
is particularly apparent, and in which the record appears to be un-
broken and extends for time spans in the 106 - 10 r Ma range. This

includes such sequences as the Newark Series (Olsen), the pelagic
Cretaceous of Italy which we have been studying, and the Eocene of

Angola (Fig. 5).

• (2) Extending such studies to the tracking of magnetic secular vari-
ation, which may turn out to provide a record of orbital variations
independent of climate.

• (3) Exploring the geographic dimension, by global mapping of the

distribution of cycle styles for given time-slices. How do cycle pat-
terns change with latitude, from hemisphere to hemisphere, from
ocean to ocean? Only such studies will bring cyclostratigraphic
studies to bear on the problems of climatic change. ALBICORE
is a start in that direction.

* (4) Extending cyclostratigraphic research into the Paleozoic. Mi-
lankovitch patterns, in particular the 1;5;20 ratio of precession to
the eccentricity cycles, have now been established back to the Tri-
assic Period, but Paleozoic stratigraphic patterns do not seem to fit
this scheme. Were the orbital periods, or the Earth's response to
them, different in Paleozoic times?

1 Orbital Variations

Quasi-rhythmical orbital variations have affected the Earth since its inception.

The current patterns of such rhythms with periods of up to 400,000 years, are

well defined from astronomical observations. Not so clear is how the major or-

bital parameters and their minor variations have changed through time. The

length of the day, for ex_anple, is lengthening with transfer of angular momen-

tum to the moon, and the current rate of change has been well established, but

it seems highly unlikely that the change has been linear, and the existing data
on this from historical geology are unsatisfactory. Other orbital variations such

as the obliquity cycle and the precession are linked to the rotation rate, so that

they too have changed with time, in ways that remain undefined.Astronomers

are interested in the patterns of change for obvious reasons, but so are geologists
and climatologists. If the orbital variations of the past have left a record in the

rocks - specifically, in the sequentially accumulated layers of sedimentary and

volcanic rocks that form an incomplete envelope of the crust - they may provide

a geochronology (Gilbert, 1895) and a means for refining the crude time scale
provided by radiochernistry. But furthermore, the orbital variations influence
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the latitudinal and seasonal distribution of insolation, and thereby atmospheric

climate and oceanic dynamics, and thus come to be agents in "Global Change."

While the major Icehouse and Greenhouse modes of the outer Earth have prob-

ably been driven by internal cycles (mantle convection - Wilson cycle of plate

tectonics: Fischer, 1984). The orbital variations have modulated oceanic an

climatic behavior within these major modes. Such modulations may be thought

of as experiments, and if they can be reconstructed from the historical record

they will bring light to the range of climatic-oceanic behavior that lies beyond

the realm of human experience.

2 The Quaternary Record

The case for such orbital forcing has now been compellingly made for the Pleis-

tocene. It was first suggested nearly 150 years ago by Adhemar, and the theory

was further developed and improved by Croll (for a summary, see Imbrie & Im-

brie, 1979), but its quantitative footing - that the orbital variations vary inso-
lation substantially - was the life-work of M. Milankovitch (1941), subsequently

improved by Berger (1980, 1988) and others. The tie of the glacial record to or-
bital variations did not become definitive until Imbrie and others discovered that

the isotopic record in the foraminifera of Pleistocene stratigraphic sequences re-

trieved from the ocean floor provided a proxy of ice volume, and found that

the fluctuations in ice volume not only showed the same hierarchical frequencies

of the orbital variations, but also historical coherence between these different

phenomena (Imbrie, 1982).

3 Pre-Quaternary Record of OrbitalVariations

But many climatologists and geologists remained dubious about the existence

of an orbital record during non-glacial times. Duff, Hallam and Walton (1967)

suggested that whereas the relatively small changes in insolation values during

glacial times became greatly amplified by the positive feedback of a greatly in-
creased Earth albedo due to the spread of glaciers and pack ice, the absence

of such feed-back during non-glacial times made a record of orbital variations

unlikely. Stratigraphers working in the gap- riddled record of the epicontinen-

tal regions saw little hope of recovering a record of persistent rhythmicity.Yet,
some stratigraphers found rhythmic patterns in the stratigraphic record that

seemed best explained as products of orbital forcing. Thus G.K. Gilbert (1895)

interpreted the rhythmic spacing of limestones in the Late Cretaceous of Col-

orado as the expression of the precessional cycle, W. Bradley (1929) viewed the

rhythmical alternations of oil shales and dolomite beds in the lacustrine Green

River Formation (Eocene) of the Rocky Mountain region in the same manner,

and W. Schwarzacher (1947) viewed the alternations of massive and laminated
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carbonates in the Late Triassic Dachstein platform of the Alps as precessional,

and their grouping into bundles of 5 as an expression of the 100 ka eccentricity
cycle. As geological attention has shifted from purely local or regional con-

cerns to global patterns, the number of these stratigraphers has grown (e.g.,
ROCC group, 1986; Fischer, 1986; Fischer et al., 1990; Fischer, 1991; Fischer
and Bottjer, 1991).

4 Oscillations Recorded in Older Stratigraphy

The pragmatic facts are that the stratigraphic record is replete with repetitive

features - some visible to the eye, (Fig. 5), others (such as the Pleistocene

isotope curve) only retrievable by instrumental studies. Some reflect only the

stochastically recurring alternations between the several modes of a depositional

system, such as the alternation of channel and overbank deposits in alluvial
systems, and were designated as "autocyclic." But others seem to have been

"allocyclic," driven by forces outside the regional setting, and candidates for the

rhythmic climatic- oceanographic changes to be expected from global forcing.

These oscillations are of many sorts, of which the following have been recognized
to date:

• 1. Cryogenic cycles. Changes in global ice volume, reflected in

- (a) variations in the isotopic composition of sea water. Best recorded

in foraminiferal tests of pelagic sediments retrieved from the deep-sea

floor (isotopic cycles) (Imbrie, 1982)

- (b) oscillations in sea level, on the scale of 10 -1- 102 m, best recorded

in subtidal-intertida] alternations and emergence cycles of carbonate

platforms (emergence cycles), (e.g. Schwarzacher 1947, Fischer 1964,

Goldhammer et al. 1987, Hinnov and Goldhammer 1991), (Fig. 1).

• 2. Carbonate production cycles. Oscillations in productivity of pelagic
carbonate producing organisms (mainly coccolithophorids) are best recorded
in pelagic chalk and marl sequences (Herbert and Fischer, 1987; Herbert

and d'Hondt, 1990; Fischer et al. 1991) (Figs. 2, 5).

• 3. Dilution cycles. Oscillations in the flux of detrital mud are best recorded

in hemipelagic sediments of continental margins (Roof et al., 1991).

• 4. Dissolution cycles. Oscillations in the depth and intensity of the lyso-

cline - the level at which oceanic carbonate accumulation gives way to

carbonate dissolution, best recorded in relatively deep (2-5 km) pelagic
sequences.

• 5. Desiccation cycles. Oscillations in the regional precipitation-evaporation
ratio are best recorded in
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- (a) marginal marine evaporite sequences, where annual varving per-

mits an approach to net evaporation as recorded in annual sulfate

precipitation (Anderson, 1982, 1984).

- (b) alternations of lake and playa conditions in lacustrine systems
(Fig. 1) (Olsen 1987, Fischer and Roberts 1991).

• 6. Redox cycles. Oscillations in the aeration of bottom waters best

recorded in pelagic systems by

- (a) retention of organic carbon (Figs. 2, 5), and

- (b) shifts in the spectrum of bottom-dwelling animals, best reflected
in their burrowing patterns (ichnofabric) (Fischer et al., 1991).

• 7. Magnetic cycles. Oscillations in magnetic parameters may be signif-

icant, in sediments which acquired a remnant magnetism during or soon
after deposition, and in which this signature has not been irretrievably

lost by subsequent/magnetic overprints. The remnant magnetism thus

developed depends (a) on the presence and character of suitable magnetic

carrier phases (such as the mineral magnetite), and (b) on the strength
and direction of the then-prevailing magnetic field.

Inasmuch as the carrier phase is linked to lithology, which responds to climate

and oceanic change, oscillations in the carrier phase may be expected to reflect

orbital (as well as other) sorts of lithic forcing. Hence it is not surprising that

the detailed magnetic investigations of the Piobbico core (Napoleone et al.,

1991, 1992) find the 100 ka eccentricity cycle, dominant in Fourier spectra of
lithic variation, to be present in tbe magnetic intensity spectrum as well (Fig.

4). It is not so easy to explain why it should also appear in the inclination
and declination spectra. It is even more difficult to understand why a 39 ka

periodicity- that of the obliquity cycle - should dominate the magnetic intensity

spectra and should also appear in the inclination and declination spectra, when

it appears as only a very weak component of the various spectra related to

lithology. There would thus appear to be a possibility that the magnetic field is

affected by orbita] variations - a suggestion that has been made previously, but

has never been taken very seriously by the paleomagnetic community. If it were

to be true, then paleomagnetic studies might provide a record of orbital cycles
that is independent of transmission through climatic and oceanic dynamics - a

possibility worth pursuing.

Paleontological criteria play a large role in the recognition of these cycles (la,

lb, 2, 4, 6) - which should not be surprising, considering the great sensitivity of

organic communities to climatic and oceanographic change.
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5 Theoretical Considerations

Complications arise from the following factors:

1. The cycles may be overprinted and swamped out by grosser lithic

changes in response to tectonic-geomorphic events. This is particularly

the case in marine settings near major sources of detrital sediments, and

is minimized in carbonate platforms and pelagic settings.

2. Cycles may be only partially preserved or totally lost owing to interrup-

tions in deposition and continual reshuffling of sediments such as occurs

in the "tempestite regime." This implies that many stratigraphic facies

are never likely to lend themselves to the establishment of a "cyclostratig-

raphy."

3. Cycles of the higher frequencies may be largely or entirely destroyed

by the burrowing activities of organisms (bioturbation). This is likely to

be the case in slowly deposited facies, such as the "red clay" of the very
deep ocean floor, accumulated at mean rates of lmm/103 = lm/106years.

4. Cycle patterns are hierarchical and therefore complex (Figs. 2, 4,

5). The earliest workers sought to identify stratigraphic cycles with only

one forcing period, such as that of the precession. Subsequent studies

such as those by Schwarzacher (1947), Van Houten (1964), Herbert and
Fischer (1987) found hierarchical patterns. The hierarchy most commonly

encountered is the grouping of ca 5 bedding couplets into sets (bundles,

Figs. 2, 5), which may in turn be grouped into superbundles of 4 (Fig. 2).
On the other hand, the patterns can become complicated when members

of the hierarchy shift phase relative to the others, and vary in strength of
expression.

5. The different orbital forcing functions affect climate and oceanic be-

havior in quite different ways, and impinge upon a specific depositional

setting via different pathways. The northern and southern hemispheres,

for example, respond to the obliquity cycle in phase, but to the preces-

sional cycle 180 ° out of phase. When this complication is combined with

the observation that the climatic-oceanographic forcing of any given de-

positional setting contains both globally averaged effects such as sea level
and locally imposed effects such as variations in the amount and tim-

ing of insolation, the likelihood of a wide range of possible combinations

and variations emerges. When these effects take different pathways that

impose different lag times (such as global oceanic turnover), further com-

plications may result. On the one hand this may be daunting for a first
recognition of cycle patterns, but on the other such complexities, once

resolved, provide a wealth of additional information.
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6 Identification of Specific Cycles

Vital to development of a cyclostratigraphy is the identification of oscillations

observed in the stratigraphic record with specific cyclic forcing functions. This

revolves largely around timing the cycle period. The following approaches have
been used.

6.1 Varying.

The varve method, employed by Bradley (1929), Fischer and Roberts (1991),

Ripepe, Roberts and Fischer (1991), and Anderson (1982, 1984). Some sedi-

mentary sequences - in particular those of deep-water evaporites and those of
meromictic lakes - retain a fine lamination which can with reasonable probabil-

ity be assigned to the annual cycle, (varving). Continuous varying permitted

Anderson to plot variations in sulfate precipitation for a 200,000 year record,

which provided a remarkable record of the precession in late Permian time.

Episodic varying in lake sediments, extrapolated to the non-varved intervals,

permitted Bradley to recognize the precession in lacustrine Eocene sediments

of the Rocky Mountain region (see also Fischer and Roberts, 1991; Ripepe,

Roberts and Fischer, 1991). Varved sediments are, however, rare, and gener-

ally do not form time-series long enough to be useful in timing cycles in the

Milankovitch frequency band.

6.2 Radiometry

Radiometric approaches are fairly accurate in the radiocarbon range (the last 30

ka, possibly extendable to 100 ka), and are applicable to many sediments, but

for the vast bulk of geological time (Harland et al., 1990) radiometry depends

on the dating of specific geological events, such as the emplacement of an ash

layer or an intrusion, which are then extrapolated to the stratigraphy at large.

Stratigraphical stage-boundaries dated in this manner generally have confidence

limits of one or two million years for the last 100 Ma or so, but beyond this the
uncertainties increase toward the 10 Ma level, and, in Cambrian time, beyond

that. The durations of Mesozoic stages, averaging 3-10 Ma long, have errors
in the range of 1-5 Ma. Rhythmic time series studied to date generally occupy

fractions of such a stage, and extrapolating the assumed stage duration down

to the level of the time-series in question involves further errors depending on

accuracy of stratigraphic correlations and uniformity of sedimentation rate. As

a result, such calculations are approximations with confidence limits in the range

of a factor of 1.5 to 2. This generally serves to ascertain whether a given rhythm

falls within the confines of the Milankovitch frequency band, but generally does

not identify it definitively with one of the specific orbital variations.
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6.3 Magnetic reversal stratigraphy

MagneticreversalssincetheLateJurassichavenowbeenidentifiedonthesea-
floor,andcanberecognizedin manystratigraphicsequences.Throughbios-
tratigraphythesereversalshavebeentiedtotheradiometricscale.Thewidthof
thecorrespondingmagneticanomaliesonthedeep-seafloorprovidesameans
of refiningthe radiometrictime-scale,assumingrelativelyconstantsea-floor
spreadingrates.At times of frequent reversals, the polarity zones are only a

few million years long, commonly shorter than stages, and may thus afford a

better basis for estimating the periods of cycles. Whereas much of our work

has been in the "Cretaceous long normal" polarity chron which lacks the requi-

site reversals, work in the Tertiary (Schwarzacher, 1987; Herbert and d'Hondt,

1990) have used reversal stratigraphy to good effect in dating cycles.

6.4 Ratios

As pointed out above, stratigraphic cycles commonly occur in hierarchies. A

grouping of ca 5 bedding couplets into bundles, in Triassic platform emergence

cycles has now been well documented (Schwarzacher, 1947; Goldhammer et al.,

1987; Hinnov and Goldhammer, 1991). It has been found in Triassic-Jurassic

lacustrine sequences (Van Houten, 1964; Olsen, 1986), and occurs in Eocene

(Fig. 5) and Cretaceous (Fig. 1, 2) pelagic sequences (Fischer et al., 1990).

Furthermore, the Triassic-Jurassic lacustrine beds and the Cretaceous pelagic

sequence of the Scisti a Fucoidi show a grouping of the 100 ka bundles into 400

ka superbundles.The geochronology based on radiometric data shows that these

examples all lie within the Milankovitch frequency band, and thus the case of

identifying bedding couplets with the ca, 20 ka precession, the bundles with the
ca 100 ka eccentricity cycle, and the superbundles with the ca 400 ka eccentricity

cycle becomes compelling.The ratios between cycle levels in the hierarchy thus
emerge as an important clue to cycle identity. It is noteworthy, however, that

to date no such good ratios have been found in the Paleozoic. Such studies are

as yet in their infancy, but the 5;1 ratios, commonly visually striking in the

Cenozoic and Mesozoic, have not emerged (of. Boardman and Heckel, 1989;

Goldhammer et al., 1991).

7 Present Status of Global Cyclostratigraphy

At this stage, the case for a pre-Quaternary record of orbital variations has

been made in principle. The main stratigraphi¢ facies showing heirarchical
periodicities of the orbital variations are:

• (1) Deep-water evaporites (Permian, Anderson 1982, 1984). Their varv-

ing, offers the best age control. They suffer from (a) being too short to
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apprehendthelongercycles,(b) fromdifficultiesin tying themchrono-
logicallyto otherfacies,and(c) in beingscarce.Nevertheless,workon
thesesequencesshouldbepursued.In particular,it nowbecomesessential
to restudytheCastilesequencebymeansof instrumentalscans.Studies
shouldalsobecarriedon to othersequencesof this type,suchasthe
varvedanhydritesof the Zechstein Formation of Germany.

(2) Lacustrine facies: Primarily the Triassic-Jurassic Newark Group se-

quences studied by Van Houten (1964) and Olsen (1986). Lakes as closed

systems provide continuity of deposits and a record responding mainly and

sensitively to local/regional climatic change (wet vs. dry). The disadvan-
tages of lacustrine studies lie mainly in poor ties to/.he marine record and

global geochronology. The most significant work being carried on at this

time is that of Paul Olsen (Lamont). Other large and persistent lake sys-
tems of this sort include an unstudied Devonian complex in Nova Scotia,

which would perhaps provide entry to the presenl]y enigmatic Middle and
Lower Paleozoic.

(3) Biogenic pelagic facies such as those explored in the Piobbico Core

(Fischer et al., 1991) in deep-sea cores (Herbert and co-workers). The

not-so-deep pelagic sediments appear to have recorded (a) changes in the

aeration state of the bottom waters, and (b) carbonate productivity in the

surface waters. These parameters presumably reflect changes in circula-
tion and in the general productivity patterns of the oceans, and a combi-

nation of local and global effects. Deep pelagic facies are complicated by

the superposition of dissolution events, and by the effects of bioturbation

on slowly accumulated muds.

(4) Carbonate platform facies such as those studied by Schwarzacher

(1947), Fischer (1964), Goldhammer et al., (1987), and Hinnov and Gold-

hammer (1991). Such facies monitor small-scale sea-level fluctuations - a
globally integrated signal in contrast to lacustrine cycles. Whereas Mi-

lankoviteh cyclicity has been well substantiated, uncertainties about the

origin of sea-level oscillations pose a problem (I lean toward small-scale

glacial effects). Also, like the evaporite and lacustrine records the plat-

form rocks generally lack the means of close correlation into the global

stratigraphy, based mainly on pelagic fossils.

8 My Own Researches

8.1 Piobbico Core

I have been working primarily with orbital eyclicity in the pelagic facies - and in

recent years mainly with the Piobbico core, cut by an Italo-American consortium
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(PremoliSilva-Fischer-Napoleone)in themid-CretaceousScistiaFucoidiof the

central Apennines. We have used this core as a means of exploring various
techniques of extracting continuous time-series data of various parameters from

rocks. Figs. 2-4 are a summary of the work to date. We are continuing work
on this core.

8.2 Eocene of Angola

Some of my Italian colleagues, working in Angola, have discovered there what

appears to be a truly extraordinary Milankovitch sequence in Eocene chalks, in

which the shale-chalk couplets appear even better defined than in the Albian of

Italy, as is their bundling into sets of ca 5 (Fig. 5). We hope to make a detailed

photographic record of these exposures in 1992, and to sample the sequence in
more detail.

The regional setting of this sequence - between the extremely nutrient- rich

upwelling belt of southwest Africa and the tropical waters of the Gulf of Guinea

- may well have provided an ideal site for recording lateral displacements of the

boundary, of the sort that might be driven by orbital cycles.

The Eocene, like the Mid-Cretaceous, was a time of Greenhouse Climate, and

this could well turn out to be the most dramatic expression oforhital/Milankovitch

cyclicity in greenhouse times. We do not presently have support for this study.

Eocene time contains numerous magnetic reversals, well tied into the planktonic

fossil record, and if Angolan sequence retains its original remnant magnetism

then it should be possible to define the cycle periods with a higher degree or
precision than has theretofore been achieved.

8.3 Project Albicore

It is one thing to establish the effects and a record of orbital forcing in principle,

in isolated sequences. Such work may indeed help to define the relative changes

in cycle periods through time. But they will not shed light on geological prob-

lems by providing refined chronologies, nor will they illuminate the problems of

ancient climates. For this it will be necessary to study cyclicity globally and

for restricted time-slices, which will provide a general view of changes in cycle
patterns as related to latitude, continent-ocean distribution etc.

Toward this end I hope to generate a global attack on the pelagic facies
of one time-slice - the Ticinella praeticinesis subzone of the Albian, about 100

million years ago, at about the peak of the Cretaceous greenhouse. We chose

this zone because (1), it shows such striking cyclicity in Italy (Fig. 2, 3, 4),
(2) it is readily recognized by foraminifera and nannofossils, and (3) it stems

from a time when high sea- levels left a widely distributed record of pelagic

sediment. We expect to find such sediments in about 15-20 countries. My plan

is to carry on studies modelled somewhat (with improvements) on those we have

developed in Italy (Piobbico core), which will produce comparable data. The
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work in individual countries would be financed and carried out by groups of

concerned scientists, advised and aided by an international steering committee.

Our first step in this direction will be an international workshop, organized

by Premoli Silva, Fischer and Napoleone, to be held on October 4-9, 1992, in

Perugia, Italy. The reason for choosing that. locale is that it lies within striking

distance of the outcrops in which our model - the cyclicity in the Scista a Fucoidi

- can be displayed.

This workshop will be largely combined with another, the APTICORE con-
ference of Larson and Erba. This will attempt, to organize a parallel project to

focus on the slightly earlier (early Aptian) events - the eruption of enormous

quantities of basalt in the mid-Pacific region, and the widespread development
of oil shales the Selli Bed - which is also very well displayed there. A vital part

of the participants - that of the world's Mid- Cretaceous stratigraphers - will be

equally involved in both workshops.
The aim of the ALBICORE workshop will include (a) alerting the Mid-

Cretaceous stratigraphers to the opportunities provided by these approaches,

which provide a focus very different from the conventional one, (b) educat-

ing them in the general background, in the need for extended interdisciplinary

approaches, (c) providing a general forum of exchange on these matters, (d)

organizing some international "action groups" who would set. out to undertake
such studies at specific locales, and (e) organizing a supporting organization

that would provide advice, and support such as providing laboratory facilities

for specific types of analyses.

We expect 50-75 people for the combined workshops. Larson has asked
NSF Ocean Sciences for support, through JOIDES, and this may help to cover

travel expenses for the 15 or so US participants, but. is limited to supporting
US workers. Our dependence on other nations, many of whose scientists do not

have travel money, makes it imperative to find funds no thus restricted. I hope

that the NSF Global Change program will allow for this, but we are likely to

fall short of support for non-US participants.
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Rye suttigr=phic sequences showing hier'_mhlcal _ythmicity identified with orbital cycles.

Upper tier comrmriso_ of prccc_ional cycles. Note variations in scale. Lo_r tier _ocentriclty cycles. A

Lacusudn¢ facies. Triassic-Jurassic Newark Supcxgroup, e.as=era North America. Aa Precessional cycle

lake- shore mudstortes eac, followed by lact_rine flsh..bctring s_le (commonly black), suc_ by

play• mud•tones • lak,'-Icve] cycle. Ab E,¢centri¢ity cycles. EI_. cycle: fluctu=,tJons in carbonate and

ana|cimc content, att_ributed to degree of b4_n flushing by pcriodic attainment of ov¢.d'_ow E3 cycle iS •

modulation in oxidation level, resulLing in ahem-don of drab and red colors. B Pehgic, Albion Scisti •

Fucoidi, Italy. Ba Pr_-t:_ional cycle black, mor_ or I_ laminated shale (anaerobic) succee.ded by

Chondriw.s marls (dysacrobic) followed by Planolites-be.aring limestone (aerobic). Cycle attributed to

fluctuations in plonk'tonic carbonate productivity linked to dcgrt_ of bottom aeration. Bb An El,?. bundle

of pre, ca=ssional cycles expressed in calcium ca,,'txmat¢ values (mirror plot) and in o¢curre.n¢¢ of black

shales. Piobbico core, l_c Instrumental profiles of 8 m ( 1600 ka) of Piobbico cor_, shcrwing darkax:ss curve

(/eft) and calcium carbonatc cur'vc (right). Black shales in center. High-frequency signal is fl'tat of

pn=c=ssional couplets; these are grouped into El.?. bundles, and these into E3 superbundles. (After Hcrb<:rt

and Rscher 1986). Bd multi••per spe,¢tra of darL, m_ curve and calcium carlxxhue curve, showing tim El .2

peak (Park and Hcrberl 1987). C Hcmip¢iagic Coniacitn-C.ampanian Niobrara Formation. Colorado, USA.

Ca Processional signal: shale, dark, nonbiolurbalca:L anacrablc?, followed by Ca'amdrites ¢halk (dysacrobic),

succeeded by Planolims- beating chalk (aerobic). Cb Processional couplets defined by detailed calcium

carbonate profiles and organic ¢.arbort content. Bcrthoud No. I State. (hit el al. 1990). Cc Endrt Niobrara

Formation, Bcrthoud No. I State./2fi calcium carbonate curve, general; ri&ht I_amma ray log. Precessional

cycle, not resolved. El.2 cycles, at lower limit of re:solution,, are groulX:_ into E3 _per'oundles in s¢_ of

4, and thee into • y= longer cycle which may rtpresem E,4 or a still Ionser ( 1600 ka) cycle. (After Pratt

¢t al. 1990). Cd Fort Hays Mcmber. Adobe Oil & Gas Co. Johnson Taylor 11-22., mirror plm of rt:sistivity

law.rolog. Pr_cessional cycles not resolved. El ,2 cycle-,; grouped inlo E3 "superbundl='. (After Lafcrricr¢

eta[. 1987). D Platform facies. Late Triassic Dachstcin Lime•ton©, Notlhem Alp•. Processional signal:

mLssivc ne.ritic limestone containing large clams etc. ahcraalcs with peritidat algal laminit_,. F..videncc

that a rust•tic o-•:ilia•ion commonly led to full cmcrgene© of platform is furaish...,4 by oc.e.atlonal presence

of relic sqils (cla_,¢y red to t'rgemudstones) and commo n mud.stone-filled
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Fig. 2--Quantitative expression of hierarchical Milankovitch cyclicity patterns in

the pelagic Mid-Cretaceous (Scisti a Fucoidi) of Italy (Fig. I). Left curve: varia-

tions of gray-scale darkness, by microdensitometry of diapositives; right curve:

calcium-carbonate values. High-frequency dark-light (low-carbonate/high-

carbonate) bedding couplets (a,b,c,d,e) represent the precessional cycle (produc-

tivity and redox cycles combined). A baseline variation in carbonate content (and

thickness of carbonate beds) groups these couplets into sets of ca. 5, representing

the ca. 100-ka eccentricity cycles (1,2,3,4). The enveloping trace shows the

grouping of bundles into sets of 4, representing the ca. 400-ka eccentricity cycle

(A,B,C .... ). From Fischer et al., 1991.
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Fig. 5--Pelagicchalk-marlsequencein Eoceneof Angola. This is the most

dramatic visual stratigraphic record of Milankovitch cyclicity known to me, but

has yet to be studied. By analogy with the Scisti a Fucoidi cycles (Figs. 1, 2 and

3), I would interpret the high-frequency chalk-marl bedding couplets as alterna-

tions of (a) calcareous plankton blooms combined with bottom aeration, and (b)

reduction of carbonate productivity combined with bottom stagnation. This

appears to be a record of the precession. They are bundled in sets of ca. 5 into

what would have to be the ca. 100-ka eccentricity cycle. The number of bundles

in the 20-km strip of coastal cliffs is estimated at ca. 100, which implies a 10-

million-year record of Milankovitch cyclicity. Study is being planned.
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