Program ELM: A Tool for Rapid Thermal-Hydraulic Analysis of Solid-Core Nuclear Rocket Fuel Elements

James T. Walton
Lewis Research Center
Cleveland, Ohio

November 1992
PROGRAM ELM: A TOOL FOR RAPID THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

James T. Walton
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts, and provides a listing of the code.

INTRODUCTION

Program ELM calculates coolant temperature, wall temperature, and pressure profiles for a heated pipe with a compressible hydrogen flow (fig. 1) given geometry and an axial heat generation profile. This capability is desirable for accurate performance prediction of nuclear reactor thermal-hydraulics based on axial flow through passages, such as the NERVA-derivative reactor configurations with prismatic fuel elements. The program can be applied to solve iteratively for the inverse system design problem, where the maximum wall temperature or channel exit pressure and temperature are specified and the power or mass flow rate must be computed.

Program ELM was written in support of the current nuclear propulsion project for the Space Exploration Initiative (ref. 1). The program was developed as a tool to evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous computer programs. During the golden era of nuclear-heated gas rocket engine development (1955 to 1972), many codes of similar capability were written in support of the NERVA/KIWI programs, the PLUTO program, and the 710 program; however, none are readily available nor adaptable for the same purpose as ELM.

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area, ft^2</td>
</tr>
<tr>
<td>C_L</td>
<td>pressure loss coefficient</td>
</tr>
<tr>
<td>C_p</td>
<td>constant pressure specific heat, Btu/lb-R</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>f</td>
<td>friction factor</td>
</tr>
<tr>
<td>H</td>
<td>static enthalpy, Btu/lb</td>
</tr>
<tr>
<td>h</td>
<td>heat transfer coefficient, W/ft^2-R</td>
</tr>
<tr>
<td>Ht</td>
<td>stagnation enthalpy, Btu/lb</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>L</td>
<td>length, in.</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>N</td>
<td>dimensionless number</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>P</td>
<td>power generation per fuel element</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>PSF</td>
<td>axial power shape factor</td>
</tr>
<tr>
<td>Q</td>
<td>heat flow, W</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>T</td>
<td>temperature, R</td>
</tr>
<tr>
<td>V</td>
<td>velocity, ft/s</td>
</tr>
<tr>
<td>W</td>
<td>mass flow rate, lb/s</td>
</tr>
<tr>
<td>X</td>
<td>axial position, in.</td>
</tr>
<tr>
<td>ε</td>
<td>surface roughness</td>
</tr>
<tr>
<td>γ</td>
<td>ratio of specific heats</td>
</tr>
</tbody>
</table>

NERVA/ROVER

Under the NERVA/ROVER program, several thermal-hydraulic fuel element analysis codes were written. The NERVA/ROVER program was a research and development project for nuclear-heated gas rocket engines sponsored by the United States Government under the auspices of NASA and the Atomic Energy Commission (AEC) (ref. 2). The NERVA space propulsion project focused on thermal-neutron fission reactors with 54-in.-long hexagonal fuel elements incorporating 19 axial coolant channels. The codes written to model fuel element thermal-hydraulics include CAC, TRACK II, TAP-A, TOSS, SCAP, and MCAP.

The Core Analysis Code (CAC) is a quasi-steady-state incompressible thermal-hydraulic analysis program written to predict the pressure and temperature through orificed fuel element channels (ref. 3). The program accounts for channel inlet and exit losses, multiple fuel elements, and radial power profile, and balances the calculated flow rate through each channel to account for core pressure-drop boundary conditions. CAC estimates the maximum material temperature. The code has been compared with NRX-A2 startup and steady-state experimental data (ref. 4). This code is currently available through the Computer Software Management and Information Center (COSMIC), the University of Georgia, Athens, Georgia 30602 (ref. 5).
TRACK II is a program for transient or steady-state thermal analysis of heat-generating solids of arbitrary geometry which are cooled by a fluid flowing through single or multiple channels (refs. 6 and 7). The hydraulic and heat convection calculations are coupled with finite-element heat conduction calculations to determine coolant conditions and material temperature distributions in a single pass. TRACK II was used for prediction of the XE-PRIME NERVA reactor performance. This code is no longer available; however, the equations used are well documented.

The TAP-A Program was developed to solve problems involving transient and steady-state heat transfer in multidimensional systems having arbitrary geometric configurations, boundary conditions, initial conditions, and physical properties (ref. 8). The program has the capability to consider the following modes of heat transfer and boundary conditions: internal conduction and radiation, free and forced convection, radiation at external surfaces, specified time-dependent surface temperatures, and specified time-dependent surface heat fluxes. This code is also no longer available, but the equations used are well documented.

The TOSS code calculates transient or steady-state material temperature distributions for a three-dimensional irregular body with internal heat generation (refs. 9 to 11). The heat transfer mechanisms of conduction and convection are considered in the code using an implicit solution method. This program is available through COSMIC (ref. 12).

The Single Channel Analysis Program (SCAP) calculates the temperature distributions in an internally cooled heat-generating solid (ref. 13). The equations used were derived for steady-state heat transfer and pressure drop for a compressible gas flowing in a coolant channel of a heater. This code is also no longer available, but the equations used are well documented.

The Multiple Channel Analysis Program (MCAP or MuCAP) calculates the temperature distributions in an internally cooled heat-generating solid (ref. 14). The equations used were derived for steady-state heat transfer and pressure drop for a compressible gas flowing in a coolant channel of a heater. Features of the code include flow balancing in parallel channels, and automatic adjustment of power or channel diameter (or loss coefficients) to meet specified uniform exit conditions. This code is also no longer available, but the equations used are well documented.

710 Program

Under the 710 program, as during the NERVA/KIWI program, many thermal-hydraulic analysis codes were written. The 710 program was a nuclear rocket engine design effort commenced by the U.S. Air Force at General Electric in the late 1950's (ref. 15). This effort was focused around a fast-spectrum-neutron fission reactor incorporating hexagonal fuel elements made of UO$_2$ dispersed in a refractory-metal matrix. The fuel elements contained axial coolant channels which were metal lined to provide positive fuel and fission product retention (ref. 16). The codes written under this project include THT, GFP, and ISOTHERMALIZE.

The Transient Heat Transfer (THT) program provides a solution capability for large, complex three-dimensional transient and steady-state heat transfer problems, which can include conduction, convection, and radiation, with the option to compute fluid flow rates on a one-dimensional basis (refs. 17 and 18). The final version incorporated compressible thermal-hydraulic fluid analysis capability. This code is currently available through the Energy Science and Technology Software Center (ref. 19).

The General Flow Passage (GFP) computer program calculates the one-dimensional aerothermal performance of a compressible flow in a passage of arbitrary geometry. The program computes temperatures
and pressures and accounts for entrance and exit losses. The equations used in this program are well documented, and a listing and test cases are available in reference 20.

The ISOTHERMALIZE program is a direct extension of GFP. The GFP program will vary only the mass flow rate or the inlet pressure to satisfy a given pressure drop or maximum surface temperature, whereas ISOTHERMALIZE will systematically vary two quantities, one of which may be channel diameter, in order to satisfy even more restrictive design constraints. The code includes the capability to calculate volumetric heating rates and thermal stresses. The equations used in this program are also well documented, and a listing and test cases are available in reference 21.

PLUTO Program

Under the PLUTO program, many codes were developed to compute the temperature and pressure profiles for air flow through a tube with friction and heat addition. The PLUTO program was an air-breathing nuclear ramjet development project. Under the PLUTO program, several successful tests of air-cooled reactors, TORY II-A and TORY II-C, were conducted to demonstrate the feasibility of nuclear ramjets for use at low-altitude, Mach 3 flights of up 10 hr (refs. 22 to 24). The main code written for core thermal-hydraulic analysis was the FLOSS program.

The FLOSS computer program solves a one-dimensional difference representation of momentum, energy, continuity, and state equations for turbulent, compressible gas flow in hydraulic channels (refs. 25 to 27). The program incorporates real gas analysis for air and argon. Used in the design and performance analyses of the TORY II-A test series, this code provided agreement to better than ±5 percent for all experimentally measured parameters. The equations used in this program are well documented, and a listing and test cases are available in reference 25.

PROGRAM METHODOLOGY

The Program ELM logic is based on one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature for a control volume. The control volume is an incremental length ΔL of tube. The corresponding pressure drop is then determined by applying the conservation of momentum.

A one-dimensional form of the conservation of energy is shown by the following equation for the stagnation enthalpy $H_{t_{\text{OUT}}}$ exiting an incremental length ΔL of tube:

$$H_{t_{\text{OUT}}} = H_{t_{\text{IN}}} + Q/W_{cH}$$

The stagnation enthalpy H_{t} is defined by the following equation:

$$H_{t} = H + V^2/2$$

The inlet stagnation enthalpy $H_{t_{\text{IN}}}$ can be computed from the inlet static enthalpy and velocity V. The inlet static enthalpy H_{IN} can be determined from the known entrance static pressure and temperature, and the velocity can be determined from the mass flow rate and the flow area. Thus, the exit stagnation enthalpy can be computed from the inlet stagnation enthalpy and heat flow per axial step $Q_{\Delta L}$. From the exit stagnation enthalpy $H_{t_{\text{OUT}}}$ and an estimate of the exit pressure P_{OUT}, the exit static enthalpy and temperature T_{OUT} can be fixed.
The heat flow per axial step \(Q_{\Delta L} \) is computed from the specified internal power generation per fuel element \(P \), the specified number of coolant channels \(N_{CH} \), and the axial power shape factor \(PSF \)

\[
Q = PSF \times \frac{P}{(L \times N_{CH})} \times \Delta L
\]

Since the only remaining unknown in the determination of \(T_{OUT} \) is the power shape factor, a correlation must be provided for the power shape factor in terms of known quantities. The power shape factor is typically derived from either reactor physics or experimental analyses.

Newton’s Law of Cooling is shown by the following equation:

\[
Q = h \times A \times (T_w - T_{AW})
\]

The adiabatic wall temperature is defined where film conditions are evaluated at the average of the wall and adiabatic wall temperatures (ref. 28):

\[
T_{AW} = T_b \times (1 + 0.5 \times Pr_f^{1/3} \times (\gamma_b - 1) \times M_b^2)
\]

The form of Newton’s law used to determine the wall temperature at the midpoint of an incremental step is shown by the following equation:

\[
T_w = Q/(hA) + T_{AW}
\]

Since we are computing \(T_w \), a correlation must be provided for the heat transfer coefficient \(h \) in terms of known quantities.

The pressure drop across an axial step is a combination of friction and momentum loss. The form of the equation used is shown by the following (ref. 29):

\[
\Delta P = \left[\frac{W_{CH}^2}{A^2} \times \Delta L \times f/D_{CH} \times \left(1/\rho_{IN} + 1/\rho_{OUT} \right) \right] + \left[\frac{W_{CH}^2}{A^2} \times \left(1/\rho_{OUT} - 1/\rho_{IN} \right) \right]
\]

A correlation must also be provided for the friction factor in terms of known quantities. The following sections review a number of correlations used in the past to complete the solutions for the step exit temperature, the step midpoint wall temperature, and the step pressure drop.

Correlations for the Heat Transfer Coefficient

The heat transfer coefficients are typically correlated by using the dimensionless Nusselt number. The Nusselt number provides a measure of the convection heat transfer at the wall surface and is defined by the following equation:

\[
Nu_D = hD/k
\]

Many correlations for Nusselt number have been developed from experimental data for a variety of gases. The general form of the local Nusselt number correlations for turbulent pipe flow is shown by the following equation:

\[
Nu_D = C1 \times \frac{Re_b^{C2} \times Pr_b^{C3} \times (T_w/T_b)^{C4} \times (C5 + C6 \times (X/D)^{C7})^{C8}}{}
\]

The constants generally range from -1 to 1 and could be zero. The following paragraphs discuss the correlations included in Program ELM.
(1) **Analytical solution.** The first Nusselt number model was derived from an analytical solution based on turbulent velocity perturbations about a mean velocity. This equation is valid for hydrogen within ±4 percent for Reynolds numbers from 10^4 to 5×10^6 and for Prandtl numbers from 0.5 to 2000.

$$Et = (1.82 \cdot \log_{10} Re_b - 1.64)^2$$

$$K1 = 1 + 3.4 \cdot Et$$

$$K2 = 11.7 + 1.8 \cdot Pr_b^{-1/3}$$

$$Nu_0 = Et \cdot Re_b \cdot Pr_b^{0.5} / (K1 + K2 \cdot (Et/8)^0.5 \cdot (Pr_b^{2/3} - 1))$$

$$Nu_D = Nu_0 \cdot (T_W/T_b)^{-0.31 \cdot \log(T_W/T_b) - 0.36}$$

(2) **Wolf-McCarthy.** This is the latter of two correlations developed by these researchers based on experimental data for hydrogen, helium, and air (ref. 30). The correlation shown below fits their experimental data within ±10 percent.

$$Nu_D = 0.045 \cdot Re_b^{0.8} \cdot Pr_b^{0.4} \cdot (T_W/T_b)^{-0.55} \cdot (1 + X/D)^{-0.15}$$

(3) **Modified Wolf-McCarthy.** This correlation is a modified version of the previous correlation by Wolf-McCarthy. The modification was done by Westinghouse AstroNuclear Laboratory for the TRACK II computer program (ref. 7).

$$Nu_D = 0.025 \cdot Re_b^{0.8} \cdot Pr_b^{0.4} \cdot (T_W/T_b)^{-0.55} \cdot (1 + 0.3 \cdot (X/D)^{-0.7})$$

(4) **McEligot and Magee.** This correlation was developed at Stanford University in the early 1960's in support of the PLUTO program (ref. 31). The experimental data base is from tests with air as the fluid, and the correlation fits the data within ±10 percent.

$$Nu_D = 0.021 \cdot Re_b^{0.8} \cdot Pr_b^{0.4} \cdot (T_W/T_b)^{-0.47} \cdot [1 + (X/D)^{-0.7}]$$

(5) **Worsoe-Schmidt and Perkins.** The Worsoe-Schmidt and Perkins experiments were conducted with nitrogen flowing through uniformly, electrically heated Inconel tubes (ref. 32). The tests were conducted over a range of Reynolds numbers from 1.83×10^4 to 2.79×10^5 and a range of T_W/T_b from 1.24 to 7.54. The correlation is accurate to within ±20 percent of the data.

$$Nu_D = 0.024 \cdot Re_b^{0.8} \cdot Pr_b^{0.4} \cdot (T_W/T_b)^{-0.7} \cdot (1 + (X/D)^{-0.7} \cdot (T_W/T_b)^{0.7})$$

(6) **Modified Dalle-Donne.** This correlation was developed for helium and air data gathered at various positions in a tube, from a length-to-diameter ratio of 10 to 240. The tests were over a range of Reynolds numbers from 3×10^4 to 4×10^5 and a range of T_W/T_b from 1.1 to 8. The correlation shown below is accurate within ±20 percent for 64 percent of the data (ref. 33).

$$Nu_D = 0.021 \cdot Re_b^{0.8} \cdot Pr_b^{0.4} \cdot (T_W/T_b)^{-0.29 - 0.0019 \cdot X/D}$$

(7) **Modified Petuhkov and Wolf-McCarthy.** This correlation is a combination of the correlations developed by Petuhkov (ref. 34) and Wolf-McCarthy (ref. 7). The combination was performed by Westinghouse AstroNuclear Laboratory for the TRACK II computer program (ref. 7), and is based on the perceived accuracy of each correlation relative to axial position.
X/D < 80:
\[\text{Nu}_D = 0.0212 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{0.11859+0.0071465(X/D)-0.000027083*X/X/D/D} \]

80 < X/D < 260:
\[\text{Nu}_D = (0.0212 + 0.000211(X - 0.2032)) \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.55} \]

260 < X/D:
\[\text{Nu}_D = 0.025 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.55} \]

(8) Williamson, Bartlit, and Thruston. This correlation was developed at Los Alamos Scientific Laboratory in the late 1960’s and is accurate within ±20 percent for 63 percent of the data (ref. 35).

T_W/T_b < 1.8:
\[\text{Nu}_D = 0.023 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.765} \]

T_W/T_b > 1.8:
\[\text{Nu}_D = 0.023 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.2} \times 0.7 \]

(9) Taylor equation. The following correlation was developed by M. Taylor at NASA Lewis Research Center from hydrogen heat transfer measurements (ref. 36). The correlation was developed by using data with wall temperatures from 114 to 5600 °R and temperature ratios to 23. The correlation is valid for Reynolds numbers from 7.5 \times 10^3 to 1.38 \times 10^7 and is most accurate at inlet pressures higher than 530 psi. The correlation is accurate within ±25 percent for 87 percent of the experimental data. The Taylor equation was used extensively by Los Alamos Scientific Laboratory in the early 1970’s in developing their Small Engine Concept (ref. 37).

\[\text{Nu}_D = 0.023 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.57-1.59*D/X} \]

(10) Wolf-McCarthy II. This is the earlier of the two correlations developed by these researchers based on experimental data for a hydrogen flow in a electrically heated stainless steel tube (ref. 38). The correlation, shown below, was developed over a range of Reynolds numbers from 7800 to 1 500 000 and a range of T_W/T_b from 1.5 to 2.8.

\[\text{Nu}_D = 0.023 \times \text{Re}_b^{0.8} \times \text{Pr}_b^{0.4} \times (T_W/T_b)^{-0.3} \]

Correlations for the Friction Factor

Many correlations for the dimensionless friction factor have been developed from analysis and experimental data for a variety of gases. However, no single correlation or equation form appears to work well across the broad range of experimental data. The following paragraphs discuss the correlations incorporated into Program ELM.
(1) **Analytical solution.** The first friction factor model was derived from an analytical solution based on turbulent velocity perturbations about a mean velocity. This equation is valid, for Re_w^* from 1.4×10^3 to 10^6 and for Prandtl numbers from 0.5 to 2000, within ± 3 percent for hydrogen.

$$
Et = (1.82 \times \log_{10} Re_b - 1.64)^2 \\
Re_w^* = 4 \times W_{CH}/(\pi \times D \times \mu) \times (T_w/T_b)^{-2} \\
Re' = (Re_w^*)^{-0.38} \\
f = Et \times (T_w/T_b)^{-0.6 + 5.6 \times Re'}
$$

(2) **GRAPH-I-TITE G.** The correlation shown below was developed by Aerojet-General Corporation for the GRAPH-I-TITE G fuel elements with a roughness of 0.006 from Reynolds numbers 2300 to 100 000 (ref. 39).

$$
f = 0.25 \times (0.0345 + 363/Re_b^{1.25})
$$

(3) **Basic friction factor.** The following correlation was developed for friction factors in smooth tubes with turbulent flow. This equation is valid for data with Reynolds numbers from 5000 to 200 000.

$$
f = 0.046/Re_b^{0.2}
$$

(4) **Moody diagram with input roughness.** This correlation was developed to model the Moody Diagram for friction factor and incorporates a variable surface roughness (ref. 40).

$$
f = 0.0055 \times [1 + (20 \times \epsilon + 1 \times 000 \times 000/Re)^{1/3}]
$$

(5) **Basic friction factor and roughness correction.** During analysis of channel pressure drop for the 710 Program, the basic friction factor correlation was modified by a multiplier to account for surface roughness (ref. 41).

$$
f = 1.35 \times (0.046/Re_b^{0.2})
$$

(6) **Koo equation.** The following correlation is the Koo equation developed for the friction factor in a smooth tube (ref. 42).

$$
f = 0.0014 + 0.125/Re_b^{0.32}
$$

(7) **Moody friction with $\epsilon = 0.006$.** A correlation based on the Moody diagram for a roughness of 0.006 was developed (ref. 4) and is shown in the following equation. The relative roughness of 0.006 was measured experimentally from a passage of a fuel element split axially.

$$
f = 0.25 \times (0.03172 + 7.2/Re_b^{0.75})
$$

(8) **Taylor correlation I.** The Taylor correlation is presented for the friction factor in a smooth tube (refs. 43 and 44). This was developed from a data base of hydrogen, air, nitrogen, and helium experiments with a Reynolds number in the range 3000 to 187 000. The accuracy is within ± 10 percent for the data base.
Taylor correlation II. The correlation here is the Taylor correlation incorporated in the TNT-II program, which was used to predict the performance of the NRX reactor series of the NERVA program (ref. 45).

\[
\begin{align*}
Re_w &= 4 * \frac{W_{CH}}{\pi D/\mu_w} * \frac{T_b}{T_W} \\
f &= (0.0014 + 0.125/Re_b^{0.32})(T_W/T_b)^{-0.5}
\end{align*}
\]

(10) Moody friction with \(\varepsilon = 0.004 \). A correlation based on the Moody diagram for a roughness of 0.004 was developed (ref. 3) and is shown below. The relative roughness of 0.004 was measured experimentally from a passage of an unfueled element split along the axis.

\[
Y = \frac{(0.1552 - 0.04412 * Y + 0.005318 * Y^2 - 0.0002881 * Y^3 + 0.000005903 * Y^4) / 4}{\ln(Re_B * 10 000 000) + 10}
\]

Regression Models for the Axial Power Shape Factor

The axial power shape factor, which is a function of the reactor physics, is required to calculate the internal heat generation, or fission density, at each axial station relative to the average level of the entire element. For axial flow, right-circular-cylinder fission reactor cores without end-moderation, the axial power shape factor distribution is closely approximated by a sine wave. The power shape factor (PSF) values ranged from 0.2 to 1.4 for the NERVA reactors.

Program ELM incorporates eight fourth-order regression models of published power shape factor data. Figure 2 shows a sample comparison of four of the models with experimental data, while figure 3 presents a comparison of all the models. Table I presents the various regression models and their coefficients.
The regression models were developed from published experimental data for average power fuel elements (refs. 46 to 49). The general form of the fourth-order polynomial regression model which was used is shown as follows:

$$PSF = A + B \cdot (X/L) + C \cdot (X/L)^2 + D \cdot (X/L)^3 + E \cdot (X/L)^4$$

PROGRAM ELM STRUCTURE

Program ELM (ref. 50) was written in standard Fortran 77 and has been operated under a variety of operating systems on computers from IBM PC-compatibles to VAX mainframes. The overall structure and logic for Program ELM is shown in figure 4, and a listing of the program is provided in the appendix. The program listing does not include the real gas subroutine, PH2, since this model is already documented (ref. 51) or can be easily replaced by any routine which solves for density, enthalpy, molecular weight, and viscosity, given pressure and temperature. The code incorporates a user-interactive interface for selection of the three correlations and for displaying program results. Moreover, the program accesses an input file (table II) containing geometry and other parameters, and an output file (table III) containing the program results.

Algorithm

The program commences by echoing a program identification header to the screen, and this is followed by a prompt for the input and output file names. Next, the user is prompted for the number which selects the desired correlation for Nusselt number, friction factor, and power shape factor. At this point, the program reads the input file.

The first calculation made is to calculate the fuel element entrance losses. The general equation used for entrance or exit pressure loss is shown as follows:

$$\Delta P = 0.5 \cdot C_{L,IN} \cdot \rho \cdot V^2$$

The entrance loss coefficient $C_{L,IN}$ can be input, if known, or estimated based on the following relation, where A_2 is the upstream flow area and A_1 is the channel flow area (ref. 52):

$$C_{L,IN} = 1.5 - 0.5 \cdot A_1/A_2 - (A_1/A_2)^2$$

After an initial estimate of the step exit temperature, exit pressure, and wall temperature, the code computes the current axial position. With the estimate of the exit condition and knowledge of the step entrance parameters, the bulk (average) step pressure and temperature can be computed and the gas properties can be determined by a state properties subroutine. In Program ELM, the state properties were determined by subroutine PH2. This routine calculates the state properties of parahydrogen from saturated liquid to a dissociated gas.

Once the bulk properties are determined, the Nusselt number, friction factor, and power shape factor are computed from the specified correlations. With these values, the heat flux for the step ΔL can be fixed, and the exit temperature can be determined. Since this latter parameter was initially guessed and used to compute the bulk temperature, the new exit temperature is compared to the guessed value. If the absolute difference is greater than 0.1 percent, then the bulk temperature is recomputed using the new value and the cycle iterates until convergence is met.
Once convergence on exit temperature is met, the wall temperature is computed. Since this parameter was initially guessed and used in the Nusselt number correlation, the new exit temperature is compared to the guessed value. If the absolute difference is greater than 0.1 percent, then the Nusselt number is recomputed using the new value of wall temperature, and the cycle iterates until convergence is met.

Once convergence on wall temperature is met, the step inlet and outlet gas properties are computed from the known inlet conditions, the computed exit temperature and the guessed exit pressure. Finally, the exit pressure is computed. Since this parameter was initially guessed and then used to determine exit gas properties for the calculation of exit pressure, the new exit pressure is compared to the guessed value. If the absolute difference is greater than 0.1 percent, then the exit gas properties are recomputed using the new value of exit pressure, and the cycle iterates until convergence is met.

Once convergence is met on exit pressure, the parameters computed are echoed to the screen and stored in an array, the next axial position is computed, and the entire process repeats. The process iterates until the current position equals the specified channel length. Prior to writing the parameters to the output file, the program takes care of the following bookkeeping matter.

Recall that the equations used in ELM determine the step exit temperature, the step exit pressure, and the step midpoint wall temperature. Therefore, the wall temperatures stored in the array must be corrected to the step exit location. This is done by averaging two adjacent step midpoint wall temperatures to calculate the step exit wall temperature between the midpoints. The resultant values are restored in the array, which is then written to the output file.

The last computation by the program is to calculate the fuel element exit pressure loss. The exit loss coefficient $C_{L\text{OUT}}$ can either be input or be calculated from the following relation, where A_1 is the channel flow area and A_2 is the downstream flow area (ref. 52).

$$C_{L\text{OUT}} = 2 \cdot [A_1/A_2 - (A_1/A_2)^2]$$

Program Input Description

The main program input is read from a file assigned to Fortran unit 2. This file contains the geometric and initial hydrogen state parameters required for a successful program execution. The first 65 columns of each input file line contains a brief description of the parameter which follows in the next 14 columns. The following sections describe each input parameter.

POWER. Total thermal power added to the hydrogen for the fuel element, units are in watts.

PIN. Plenum pressure at the fuel element entrance, in pounds per square inch.

TIN. Plenum temperature at the fuel element entrance, in degrees Rankine.

WCH. Total mass flow rate through the fuel element, in pounds per second.

DH. Coolant channel hydraulic diameter, in inches.

NCH. Number of coolant channels bored through each fuel element. This is a dimensionless parameter.

L. Total length of the fuel element, in inches.
DL. Computational length into which the fuel element will be divided, in inches.

EROUGH. Channel surface roughness, in inches. This parameter is only required by friction factor correlations 4 and 9.

CLIN. Channel entrance loss coefficient. This is a dimensionless parameter. There are two options with CLIN. First, if CLIN is greater than zero, then this value will be used. Second, if CLIN is less than or equal to zero, it will be calculated internally from DH and DFE.

CLOUT. Channel exit loss coefficient. This is a dimensionless parameter. There are two options with CLOUT. First, if CLOUT is greater than zero, then this value will be used. Second, if CLOUT is less than or equal to zero, it will be calculated internally from DH and DFE.

DFE. Distance across the flats of a hexagonal fuel element, in inches. This parameter is required if either CLIN or CLOUT is less than zero.

DORF. Channel entrance orifice diameter, in inches. This parameter will be used instead of DH to compute the entrance loss coefficient if CLIN is less than zero.

VALIDATION

In order to visually understand the differences between the various heat transfer coefficient correlations, figures 5 and 6 present a comparison of the wall temperature distributions computed from each of the correlations within ELM. To visualize the effects of the various friction factor correlations, figures 7 and 8 present a comparison of the pressure distributions computed from each of the correlations within ELM. Note that correlations 1 and 4 in figure 7 do not follow the trends of the other eight correlations.

Because the most important aspect of any analysis program is its ability to accurately predict performance, Program ELM was validated against steady-state wall temperature data from the NRX reactor experiments of the NERVA program. These wall temperature data were from fuel elements located at the midrange radius; therefore, the power level and mass flow rate were close to the reactor average in light of the radial power profiles. Since the power generated per fuel element at the midrange radius is not precisely known, Program ELM was executed iteratively (while varying power) to match the known fuel element exit temperature T_E. The fuel element exit temperature was measured within $\pm 100^\circ R$. An input parameter sensitivity study was conducted, and the results are shown in figure 9. In this study, all input variables were held constant except for the parameter under evaluation. The results indicate the strong effect of power and mass flow rate on wall temperature, and a moderate effect of hydraulic diameter on pressure drop.

Figure 10 presents the results of the validation effort. This figure compares fuel element wall temperatures from several NRX reactor experiments with Program ELM analysis generated to match fuel element exit conditions. The experimental data were collected by thermocouples imbedded within the coolant channel wall. Included in this figure are the results from executing this code at power levels to produce fuel element exit temperatures $\pm 100^\circ R$ from the nominal. The Program ELM input and output data for the NRX-A3 reactor (ref. 53) are shown in tables II and III, respectively; for the NRX-A4 reactor (ref. 54) in tables IV and V, respectively; for the NRX-A5 reactor (ref. 48) in tables VI and VII, respectively; and for the NRX-A5 reactor in tables VIII and IX, respectively. In all cases, correlation 2 (Wolf-McCarthy I) for the heat transfer coefficient and correlation 2 (GRAPH–I–TITE G) for the friction factor were used.
Each comparison in figure 10 shows the calculated wall temperatures below the experimental data. This error can be attributed to either the use of imbedded thermocouples to represent wall temperatures or the roughness of the estimate for average fuel element mass flow rate. Figure 9 illustrates the large effect of mass flow rate variations.

CONCLUSIONS

A program has been developed and validated for modeling the steady-state pressure drop and temperatures along an axial coolant channel with heat transfer to a compressible fluid. Program ELM was used to evaluate various heat transfer coefficient and friction factor correlations on a common basis. As validation, ELM was used to model NRX reactor coolant channels. The results from this analysis were compared with experimental data for fuel element coolant channel wall temperature. The comparison showed good agreement. Since ELM is small, fast, accurate, and portable, it can be used as a rapid approximation tool for fuel element parametric studies. Moreover, ELM can be used to analyze general flow through pipes with high wall heating rates.
APPENDIX.—PROGRAM LISTING

PROGRAM ELM

CC THIS PROGRAM PERFORMS AEROTHERMODYNAMIC ANALYSIS ON H2 GAS COOLED
CC NUCLEAR REACTOR CORE FUEL ELEMENTS. THE ANALYSIS IS BASED ON
CC CONSERVATION OF ENERGY EQUATIONS WITH EXTENSIVE USE OF CORRELATIONS
CC FOR THE CONVECTIVE HEAT TRANSFER COEFFICIENT, FRICTION FACTOR, AND
CC ELEMENT AXIAL POWER DISTRIBUTION. THE ANALYSIS IS FOR AN AVERAGE
CC COOLANT CHANNEL, SUCH AS AT A POINT IN THE CORE WHERE THE RADIAL
CC POWER OVER AVERAGE POWER RATIO IS UNITY.
CC
CC THIS PROGRAM IS AVAILABLE THROUGH NASA'S COMPUTER SOFTWARE LIBRARY.
CC COSMIC. @ (404) 542-3265 AS PROGRAM # LEW-15423.
CC
CC THE SUBROUTINE PH2 IS AVAILABLE THROUGH COSMIC AS LEW-15505.
CC
CC CURRENTLY:
CC 1) NO ELEMENT ENTRANCE OR EXIT LOSSES ARE ACCOUNTED FOR.
CC 2) THE CHANNEL DIAMETER IS ASSUMED TO BE CONSTANT.
CC 3) CONVERGENCE TOLERANCES ARE SET TO 1 DEGREE RANKINE AND 1 PSI.
CC
CC ORIGINATION: SEPTEMBER 12, 1991
CC LAST MOD: APRIL 30, 1992
CC
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L,K,NU,NCH,NUSELT,MACH
DIMENSION STORE(5000,T)
CHARACTER DATE*20
DATA PCONV/0.001/,TCONV/0.001/,HCONV/0.00001/
DATA VERSION/1.03/, DATE/'APRIL 30, 1992'/

C......OUTPUT PROGRAM BANNER TO SCREEN AND REQUEST I/O FILE NAMES
CALL BANNER(VERSION,DATE)

C......SELECT NUSSELT NUMBER CORRELATION
INU = 0
INU = NUSELT(DUM1,DUM2,DUM3,DUM4,DUM5,DUM6,INU)

C......SELECT FRICTION FACTOR CORRELATION
ICF = 0
ICF = CFRICT(DUM1,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7,ICF)

C......SELECT POWER SHAPING FACTOR CORRELATION
IPSF = 0
IPSF = PSFCAL(DUM1,IPSF)

WRITE(6,1) VERSION,DATE
WRITE(3,1) VERSION,DATE
1 FORMAT(' PROGRAM ELM',/
' VERSION ',F5.2/, /
' ',A20,/)

C......READ INPUT IN ENGLISH UNITS
CALL READER(TIN,PIN,DH,POWER,NCH,WCH,L,DL,EROUGH,CLIN,CLOUT,
1 DFE,DORF)
WRITE(6,2)
WRITE(3,2)
2 FORMAT(
1 IX, ' X (in.)', ' Tb (R)', ' Tw (R)', ' Cum. P(W)',)
C.....CONVERT INPUT
TIN = TIN/1.8
PIN = PIN * 6894.7572
DH = DH * 0.0254
DFE = DFE * 0.0254
DORF = DORF* 0.0254
WCH = WCH * 0.45359237/NCH
L = L * 0.0254
DL = DL * 0.0254
EROUGH = EROUGH* 0.0254

C.....INITIALIZATION
ISTEP = 1
QSUM = 0.
TBN = TIN
TWN = TIN
X = -DL/2.
AREA = 3.14159*DH*DL
WOA2 = (WCH/(3.14159*DH*DH/4))**2

C.....COMPUTE ENTRANCE AND EXIT LOSS COEFFICIENTS
AFE = 1.5*DFE*DFE*0.57735
IF (DORF.LE.0.) DORF = DH
ADH = 3.14159*DORF*DORF/4.*19.
IF (CLIN.LT.0.) CLIN = 1.5-0.5*ADH/AFE-(ADH/AFE)**2
IF (CLOUT.LT.0.) CLOUT = 2.*(ADH/AFE - (ADH/AFE)**2)

C.....COMPUTE ENTRANCE LOSSES
IDUM = 0
CALL PH2(DUM1,PIN,TIN,RHO,VIS,CP,DUM2,DUM3,DUM4,DUM5,IDUM)
U = 4.*WCH/RHO/3.14159/DH/DH
PIN = PIN - CLIN*RHO*U*U/2.
PBN = PIN
POUTN = PIN - 30000.
WRITE(6,8000) 0., TIN*1.8, TIN*1.8,0.,0.,PIN/6894.7572,0.
WRITE(3,8000) 0., TIN*1.8, TIN*1.8,0.,0.,PIN/6894.7572,0.

C.....BEGIN ITERATION
100 X = X + DL

C.....DETERMINE FLOW PROPERTIES USING BULK STATIC TEMPERATURE AND
C BULK STATIC PRESSURE
200 TB = TBN
PB = PBN
IDUM = 0
CALL PH2(DUM1,PB,TB,RHOb,VIS,CP,PR,SOS,K,DUM5,IDUM)
U = 4.*WCH/RHOb/3.14159/DH/DH
MACH = U/SOS
REb = RHOb*U*DH/VIS

300 TW = TWN

C.....COMPUTE NUSSELT NUMBER
NU = NUSSELT(REb,PR,TW,TB,X,DH,INU)
HTC = (K/DH)*NU

C.....COMPUTE FRICTION FACTOR
f = CFRICT(REb,TW,TB,DH,EROUGH,PB,WCH,ICF)

C.....COMPUTE POWER SHAPE FACTOR
XOL = X/L
PSF = PSFCAL(XOL,IPSF)

C.....COMPUTE POWER ADDED TO FLOW ACROSS STEP
Q = PSF*POWER/L/NCH*DL

C..................................COMPUTE TOUT......................................
C..................................THE FOLLOWING SECTION COULD BE REPLACED BY THE COMMENTED-OUT EQUATION FOR 'TOUT'
C..................................COMPUTE STATIC ENTHALPY AT BEGINNING OF EACH STEP
 IDUM = 0
 CALL PH2(HIN,PIN,TIN,RHOIN,DUM1,DUM2,DUM3,DUM4,DUM5,DUM6,IDUM)
 HOUTN = HIN
C..................................COMPUTE VELOCITY AT BEGINNING OF EACH STEP
 UIN = 4.*WCH/RHOIN/3.14159/DH/DH
C..................................COMPUTE ENTRANCE TOTAL ENTHALPY
 HTIN = HIN + UIN*UIN/2.
C..................................COMPUTE EXIT TOTAL ENTHALPY
 HTOUT = HTIN + Q/WCH
C..................................COMPUTE EXIT STATIC ENTHALPY
 HOUT = HOUTN
 IDUM = 1
 CALL PH2(HOUT,POUTN,TOUT,RHOUT,DUM1,DUM2,DUM3,DUM4,DUM5,DUM6,IDUM)
 UOUT = 4.*WCH/RHOUT/3.14159/DH/DH
 HOUTN = HTOUT - UOUT*UOUT/2.
 IF (ABS{(HOUTN-HOUT)/HOUT).GE.HCONV) GOTO 350
 TOUT = Q/WCH/CP + TIN
C..................................COMPUTE NEW BULK TEMPERATURE
 TBN = (TOUT+TIN)/2.
 IF ((ABS(TBN-TB)/TB).GE.TCONV) GOTO 200
C..................................COMPUTE ADIABATIC WALL TEMPERATURE
 Taw = TB
 400 Tf = (TW + Taw)/2.
 IDUM = 0
 CALL PH2(DUM1,PB,Tf,RHO,T,CP,T,PR,T,C,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7,IDUM)
 GAMH2 = 1./(1.-4949.999/CP)
 Taw = TB*(1.+PR**0.3333*(GAMH2-1)/2.*MACH*MACH)
 TIN = (TW + Taw)/2.
 IF ((ABS(TIN-Tf)/TF).GE.TCONV) GOTO 400
C..................................COMPUTE WALL TEMPERATURE
 TWN = Q/HTC/AREA + Taw
 IF ((ABS(TWN-TW)/TW).GE.TCONV) GOTO 300
C..................................COMPUTE POUT....................................
C..................................COMPUTE PRESSURE DROP
 XX = X + DL/2
C..................................COMPUTE RHO.IN FOR USE IN P,DROP EQUATION
 IDUM = 0
 CALL PH2(DUM1,PIN,TIN,RHOIN,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7,IDUM)
C..................................COMPUTE RHO.OUT FOR USE IN P,DROP EQUATION
 1000 POUT = POUTN
 IDUM = 0
 CALL PH2(DUM1,POUT,TOUT,RHOOUT,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7,IDUM)
 dP = (WOA*{(DL*4/DH)*((1./RHOIN+1/RHOOUT))} +
 (WOA*1/RHOOUT-1/RHOIN))
POUTN = PIN - dP
IF ((ABS(POUTN-POUT)/POUT).GT.PCONV) GOTO 1000
PBN = (POUT+PIN)/2
C.....ITERATE UNTIL NEW BULK EQUALS OLD BULK (RECALL THAT INITIALLY
C TWALL IS COMPUTED WITH GUESSED BULK PRESSURE)
IF ((ABS(PBN-PB)/PB).GE.PCONV) GOTO 200
C.....ROUGH ESTIMATE FOR BULK PRESSURE OF NEXT STEP
PBN = POUT + dP/2.

C.....STEP PROPERTIES CONVERGED
WRITE(6,8000) XX*39.3701, TOUT*1.8, TW*1.8, QSUM, REb, POUT/6894.7572
1 .MACH
QSUM = QSUM + Q
STORE(ISTEP,1) = XX*39.3701
STORE(ISTEP,2) = TOUT*1.8
STORE(ISTEP,3) = TW*1.8
STORE(ISTEP,4) = QSUM
STORE(ISTEP,5) = ReF
STORE(ISTEP,6) = POUT/6894.7572
STORE(ISTEP,7) = MACH
ISTEP = ISTEP + 1
IF (ISTEP.GT.500) WRITE(6,1) ' ERROR · TOO MANY STEPS FOR ARRAY',
 1 ' STORE, PLEASE INCREASE ITS SIZE.'
 TIN = TOUT
 PIN = POUT
IF ((XX+DL/2).LT.L) GOTO 100
C.....CORRECT FOR EXIT LOSSES
U = 4.*WCH/RHOOUT /3.14159/DH/DH
POUT = POUT - CLOUT*RHOUT*U*U/2.
STORE(ISTEP-1,6) = POUT/6894.7572
C.....CORRECT WALL TEMPERATURE FROM STEP MIDPOINT TO STEP EXIT BY AVERAGING
 DO 7990 I = t, ISTEP-2
 STORE(I,3) = (STORE(I,3)+STORE(I+I,3))/2.
7990 CONTINUE
C.....CORRECT EXIT WALL TEMPERATURE BY EXTRAPOLATING
 STORE(ISTEP-1,3) = STORE(ISTEP-1,3) +
 1 (STORE(ISTEP-1,3)-STORE(ISTEP-2,3))/2
 WRITE(3,8000) ((STORE(I,J),J=t,7),I=I,ISTEP-1)
8000 FORMAT(tX,4F10.2,F10.0,F10.2,F10.3)
WRITE(6,8010) QSUM*NCH
8010 FORMAT(31X,'..............',/31X,F10.1,' = POWER/ELEMENT',/)
WRITE(3,8010) QSUM*NCH
WRITE(6,9) ' (NOTE: SEE OUTPUT FILE FOR PRECISE OUTPUT AT EACH',
 9 ' STATION.)'
STOP
END

REAL*8 FUNCTION NUSELT(REb,PR,TW,TB,X,DH,INU)
CC
CC FUNCTION NUSELT
CC
CC THIS FUNCTION COMPUTES THE NUSSELT NUMBER GIVEN BULK FLOW CONDITIONS.
CC
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 Kt,K2,NU0

IF (INU.EQ.0) GOTO 8000
GOTO (1,2,3,4,5,6,7,8,9,10). INU
GOTO 9990

C.....LOCAL NUSSELT NUMBER BASED ON ANALYTICAL SOLUTION. VALID OVER
C 10000<RE<5000000, .5<PR<2000, WITHIN +-4% FOR H2.
C (PETUKHOV, B.S.: HEAT TRANSFER AND FRICTION IN TURBULENT PIPE FLOW.
C ADVANCES IN HEAT TRANSFER, ACEDMIC PRESS, NEW YORK, 1970.
1 IF ((REb.LT.10000.).OR.(REb.GT.5000000.)) WRITE(6,9900) INU,REb
ET = (1.82*DLOG10(REb)-1.64)**(-2.)
K1 = 1. + 3.4*ET
K2 = 11.7 + 1.8*PR**(-.33333)
Nu0 = ET*REb*PR/8.*/(K1+K2*SQRT(ET/8.)*PR**(.6667)-1.))
NUSSELT = Nu0*(TW/TB)**(-.31*DLOG10(TW/TB)-.36)
GOTO 9999

C.....LOCAL NUSSELT NUMBER FOR TURBULENT FLOW IN SMOOTH PIPES DERIVED FROM
C EXPERIMENTAL DATA FOR HIGH TEMPERATURE HYDROGEN, HELIUM, AND AIR.
C ACCURATE WITHIN +-10%.
C (WOLF, H.; McCARTHY, J.R.: HEAT TRANSFER TO HYDROGEN AND HELIUM WITH
C WALL TO FLUID TEMPERATURE RATIOS TO 11.09. ROCK.DYN. RR-60-12. 12/60.
C REF. BY BUSSARD, R.W.; DELAUER, R.D.: FUNDAMENTALS OF NUCLEAR FLIGHT.
C McGRAW-HILL, NEW YORK, 1965.)
2 IF (REb.LT.2300) WRITE(6,9900) INU,REb
NUSSELT = .045*REb**0.8*PR**0.4*(TW/TB)**(-0.55)*(1.+X/DH)**(-0.15)
GOTO 9999

C.....LOCAL NUSSELT NUMBER BASED ON MODIFIED McCARTHY-WOLF
C (REFERENCED IN TRACK II - WANL-TME-2697, MAY 1970.)
3 IF (REb.LT.1200)
1 NUSSELT = (4.36 + (0.036*REb*PR*DH/X)/(1.+0.001*REb*PR*DH/X))*
1 (TW/TB)**.25
1 (X/DH)**(-7))
GOTO 9999

C.....LOCAL NUSSELT NUMBER FOR TURBULENT FLOW IN PIPES.
C ACCURATE WITHIN +-10%.
C (McELIGOT, D.M.; MAGEE, P.M.: AEROTHERMODYNAMIC STUDIES AT HIGH
C TEMPERATURE. STANFORD DEPT OF M.E., NUCLEAR ENGINEERING LABORATORY,
C TRN 326-1, JUNE 1962. REF. BY TORY IIC - UCRL-12069)
4 IF (REb.LT.2300) WRITE(6,9900) INU,REb
NUSSELT = .021*REb**0.8*PR**0.4*(TW/TB)**(-.47)*(1.+X/DH)**(-.7)
GOTO 9999

C.....NUSSELT NUMBER FROM WORSOE-SCHMIDT AND PERKINS CORRELATION. THIS
C RELATION MAY HAVE BEEN DEVELOPED BASED ON A NITROGEN DATA IN A
C CONSTANT ELECTRICALLY HEATED INCONEL TUBE WITH AN OVERALL L/D=160.
C 18300<RE<279000, 1.24<TW/TB<7.54. ACCURACY WITHIN +-20%.
C (PERKINS, H.C.; WORSOE-SCHMIDT, P. INTERN. J. HEAT MASS TRANSFER,
C 8. NO. 7, 1011-1031, 1965. REF. BY PEWEE-1 - LA-4217-MS)
5 IF (Reb.LT.18300.) WRITE(6,9900) INU,Reb
 Nuselt = .024*Reb**0.8*Pr**0.4*(Tw/Tb)**(-0.5)*(1.+X/Dh**(-0.7))
 (Tw/Tb)**(0.7))
GO TO 9999

C.....LOCAL NUSSELT NUMBER CORRELATION FOR TURBULENT AND LAMINAR FLOW.
C THE TURBULENT RELATION IS A MODIFIED DALLE-DONNE CORRELATION DEVELOPED
C IN HELIUM AND AIR WITH A TUBE 10 < L/D < 240, 200 < Tin < 2800 R,
C 1.1 < Tw/Tb < 8. THE REYNOLD RANGE IS 30000 < Re < 400,000 WITH
C 64% OF THE DATA WITHIN ±20%.
C [MILLER, J.V.; TAYLOR, M.F.: IMPROVED METHOD OF PREDICTING SURFACE
C TEMPERATURES IN HYDROGEN-COOLED NUCLEAR ROCKET REACTOR AT HIGH
C KAYS, W.M.: NUMERICAL SOLUTIONS FOR LAMINAR-FLOW HEAT TRANSFER IN
C CIRCULAR TUBES. TRANS. ASME, VOL. 77, NOV. 1955, PP.1265-1274.
C REF. IN CLARK - NASA TM-X-1232)
6 IF (Reb.LT.2300.)
 1 Nuselt = 4.36 + (0.036*Reb*Pr*DH/X)/(1.+0.001*Reb*Pr*DH/X)
 IF (Reb.GE.2300.)
 1 Nuselt = .021*Reb**0.8*Pr**0.4*(Tw/Tb)**(-0.25)X**(-0.0019*X/DH)
GO TO 9999

C.....WANL NUSSELT NUMBER CORRELATION WHICH IS A COMBINATION OF THE WORK
C DONE BY PETUKHOV AND THAT OF McCARTHY-WOLF.
C (TRACK II - A COMPUTER PROGRAM FOR TRANSIENT THERMAL ANALYSIS OF
C FLOW SYSTEMS WITH MULTIPLE PARALLEL AND SERIES CHANNELS. WANL-TME-2697.
C MAY 1970.)
7 IF (Reb.LT.1200)
 1 Nuselt = (4.36 + (0.036*Reb*Pr*DH/X)/(1.+0.001*Reb*Pr*DH/X))
 1 (Tw/Tb)**0.25
 IF (Reb.LT.1200.) GOTO 9999
 PXXX = 0.11859090909 + 0.007146590909*X/DH - 0.000027083333*
 1 X**X/DH/DH
 IF ((X/DH).LT.80.)
 1 Nuselt = 0.0212*Reb**0.8*Pr**0.4*(TB/TW)**PXXX
 IF (((X/DH).GE.80.)AND.((X/DH).LE.260.))
 1 Nuselt = (0.0212+0.000211*(X-.2032))*Reb**0.8*Pr**0.4*(TB/TW)**0.55
 IF ((X/DH).GT.260.)
 1 Nuselt = 0.025*Reb**0.8*Pr**0.4*(TB/TW)**0.55
GO TO 9999

C.....LASL NUSSELT NUMBER CORRELATION 73% OF DATA WITHIN ±20%
C [WILLIAMSON, K.D.; BARTLIT, J.R.; THRUSTON, R.S.: STUDIES OF FORCED
C CONVECTION HEAT TRANSFER TO CRYOGENIC FLUIDS. C.E.P. SYMPOSIUM,
C SERIES 87, VOL 64, 1968. REF. IN TRACK II - WANL-TME-2697)
8 IF (Reb.LT.1200)
 1 Nuselt = (4.36 + (0.036*Reb*Pr*DH/X)/(1.+0.001*Reb*Pr*DH/X))
 1 (Tw/Tb)**0.25
 IF (Reb.LT.1200.) GOTO 9999
 C1 = 1.
 C2 = 0.765
 IF (((Tw/Tb).GE.1.8)) C1 = 0.7
 IF (((Tw/Tb).GE.1.8)) C2 = 0.2
 Nuselt = 0.023*Reb**0.8*Pr**0.4*C1*(TB/TW)**C2
GO TO 9999

C.....NUSSELT NUMBER CORRELATION FROM TAYLOR EQUATION.
C [DURHAM, FRANKLIN P.: NUCLEAR ENGINE DEFINITION STUDY PRELIMINARY
C REPORT, VOL. II - SUPPORTING STUDIES (SMALL ENGINE). LA-5044-MS, 9/72]
9 Nuselt = 0.023*Reb**0.8*Pr**0.4*(Tw/Tb)**(-.57+1.59*DH/X)
GO TO 9999
GOTO 9999

C........NUSELT NUMBER CORRELATION FROM EARLY MCCARTHY & WOLF BASED ON H2 IN
C ELECTRICALLY HEATED STAINLESS STEEL TUBE (L/D = 67 OR 42.6). GOOD FOR
C 1.5 < TW/TB < 2.8 & 7800 < RE < 1500000.
C (MCCARTHY, J.R.; WOLF, H.: FORCED CONVECTION HEAT TRANSFER TO GASEOUS
C HYDROGEN AT HIGH HEAT FLUX AND HIGH PRESSURE IN A SMOOTH, ROUND,
10 IF (REb.LT.7800.) WRITE(6,9900) INU,REb
 NUSELT = 0.023*REb**.8*PR**.4*(TW/TB)**(-.3)
GOTO 9999

C..
8000 WRITE(6,8001)
8001 FORMAT(/,/.
1' SELECT NUSSELT NUMBER CORRELATION'./',
2' ..'./',
212X,'(1) PETUHKOV ANALYTICAL SOLUTION (+-4%).',/
312X,'(2) WOLF-McCARTHY RELATION (I) FOR SMOOTH CHANNELS (+-10%).',/
412X,'(3) WANL TRACK II CORRELATION FOR SMOOTH CHANNELS'./',
512X,'(4) McELIGOT-MAGEE RELATION BASED ON AIR DATA'./',
612X,'(5) WORSOE-SCHMIDT RELATION BASED ON N2 DATA'./',
712X,'(6) MODIFIED DALLE-DONNE CORRELATION BASED ON HE & AIR'./',
812X,'(7) WANL RELATION FROM PETUHKOV & McCARTHY-WOLF'./',
910X,'(8) LASL RELATION FROM WILLIAMSON-BARTLIT-THRUSTON'./',
O12X,'(9) TAYLOR EQUATION USED IN SMALL ENGINE DESIGN EFFORT'./',
111X,'(10) WOLF-McCARTHY RELATION (II) FOR SMOOTH CHANNELS'./',
111X,'(11) WOLF-McCARTHY RELATION (II) FOR SMOOTH CHANNELS',/
1 '/,/,/,/,/.' ENTER NUMBER: ')
READ(S.*) NUSELT
WRITE(6,8002)
8002 FORMAT(/,/.
1 ' REYNOLDS NUMBER OUT OF SCOPE OF NUSSELT NUMBER'.
 1 ' CORRELATION #.12./' (CURRENT REb=.'F10.1.')')
9901 FORMAT(' TW/TB OUT OF SCOPE OF NUSSELT NUMBER ',
 1 ' CORRELATION #.12./' (CURRENT TW/TB=.'F10.2.')')
9902 FORMAT(' STOP ---- FUNCTION NUSELT COMPUTED NU < 0')
9990 WRITE(6.*) ' ERROR - INCORRECT VALUE FOR INU DETECTED IN',
 1 ' FUNCTION NUSELT'
 STOP
9999 IF (NUSELT.LE.0.) WRITE(6,9902)
 IF (NUSELT.LE.0.) STOP
RETURN
END

REAL*8 FUNCTION CFRICT(REb,TW,TB,DH,EROUUGH, PB, WCH, ICF)
CC
CC FUNCTION CFRICT
CC
CC THIS FUNCTION COMPUTES THE FRICTION FACTOR GIVEN BULK FLOW CONDITIONS.
CC
CC AUTHOR: JAMES T. WALTON, NASA LEWIS RESEARCH CENTER
CC ORIGINATION: SEPTEMBER 17, 1991
CC LAST MOD.: NOVEMBER 25, 1991
CC
IMPLICIT REAL*8 (A-H,O-Z)
IDUM = -1

IF (ICF.EQ.0) GOTO 8000
GOTO (1,2,3,4,5,6,7,8,9,10), ICF
GOTO 9990

FRICTION FACTOR FROM ANALYTICAL SOLUTION.
(PETUKHOV, B.S.: HEAT TRANSFER AND FRICTION IN TURBULENT PIPE FLOW.
ADVANCES IN HEAT TRANSFER, ACADEMIC PRESS, NEW YORK, 1970.
1 \(\varepsilon_t = (1.82 \times \text{DLOG} (\text{Re}_b) - 1.64) \times (-0.2) \)
IDUM = 0
CALL PH2(DUM,PB,TW,DUM1,VISW,DUM2,DUM3,DUM4,DUM5,DUM6,IDUM)
\(\text{Re}_w = 4. \times \text{WCH} / 3.14159 / \text{DH} / \text{VIS}_w \times (\text{TB} / \text{TW})^{**2} \)
CFRICT = \(\varepsilon_t \times (\text{TW} / \text{TB})^{**(-0.6 + 5.6 \times \text{Re}_w \times (-0.38))} \)
GOTO 9999

C.....FRICTION FACTOR CORRELATION FOR GRAPH-I-TITE G FUEL ELEMENTS AS
DETERMINED BY AEROJET-GENERAL CORP. FOR A ROUGHNESS OF 0.006 AND
FOR 2300<\text{Re}<100,000.
(ANON.: COLD FLOW TEST OF REACTOR CLUSTER AND SUBSTITUTE REACTOR
CLUSTER. AGC RN-S-0058. REF BY CLARK NASA TMX).
2 IF (\text{Re}_b>120,000) WRITE(6,9900) ICF,\text{Re}_b
IF (\text{Re}_b<2300) CFRICT = 16./\text{Re}_b
IF (\text{Re}_b\geq 2300) CFRICT = .25*(0.0345+363/\text{Re}_b^{**1.25})
GOTO 9999

C.....FRICTION FACTOR CORRELATION FOR SMOOTH TUBES.
(BUSSARD, R.W.; DELAUVRE, R.D.: NUCLEAR ROCKET PROPULSION. MCGRAW-
HILL, NEW YORK, 1958.)
3 IF (\text{Re}_b>200,000.) WRITE(6,9900) ICF,\text{Re}_b
IF (\text{Re}_b<5000) CFRICT = 16./\text{Re}_b
IF (\text{Re}_b\geq 5000) CFRICT = 0.046/\text{Re}_b^{**0.2}
GOTO 9999

C.....FRICTION FACTOR FROM MOODY
(ANON.: PEWEE-1 REACTOR TEST REPORT. LA-4217-MS, AUGUST 1969)
4 IDUM = 0
TENG = (TW+TB)/2
CALL PH2(DUM1,PB,TENG,DUM2,VISf,DUM3,DUM4,DUM5,DUM6,DUM7,IDUM)
\(\text{Re}_f = 4. \times \text{WCH} / 3.14159 / \text{DH} / \text{VIS}_f \)
CFRICT = 0.0053*(1.+{(20.*\text{ERROUGH}+1000000./\text{Re}_f)^**.333333333})
GOTO 9999

C.....FRICTION FACTOR FROM 710 PROGRAM CORRECTED FOR ROUGHNESS
(ANON.: QUARTERLY PROGRESS REPORT (710 PROGRAM) NO. 1. GEMP-210.
MAY 1963.
5 CFRICT = 1.35*(0.046/\text{Re}_b^{**0.2})
GOTO 9999

C.....KOO EQUATION FRICTION FACTOR FOR SMOOTH TUBE.
REF BY CLARK NASA TMX-1232)
6 IF (\text{Re}_b<2300) CFRICT = 16./\text{Re}_b

21
IF (REb.GE.2300) CFRICT = 0.0014 + 0.125/REb**.32
GOTO 9999

C.....FRICTION FACTOR FOR TUBE WITH RELATIVE ROUGHNESS OF 0.006 DEVELOPED
C FROM MOODY DIAGRAM.
C (CLARK, J.S.: COMPARISON OF PREDICTED AND EXPERIMENTAL OPERATING
C
7 IF (REb.LT.2300) CFRICT = 16./REb
IF (REb.GE.2300) CFRICT = 0.25*(0.03172+7.2/REb**.75)
GOTO 9999

C TAYLOR CORRELATION FOR FRICTION FACTOR IN A SMOOTH TUBE DEVELOPED FOR
C H2, AIR, N2, HE AND GOOD FOR +10% OVER 3000 < RE < 187000.
C (TAYLOR, M.F.: A METHOD OF CORRELATING LOCAL AND AVERAGE FRICTION
C COEFFICIENTS FOR BOTH LAMINAR AND TURBULENT FLOW OF GASES THROUGH
C A SMOOTH TUBE. INTL HEAT AND MASS TRANSFER SHORTER COMMUNICATIONS,

8 IDUM = 0
CALL PH2(DUM,PB,TW,DUM1,VISW,DUM2,DUM3,DUM4,DUM5,DUM6,IDUM)
REw = 4.*WCH/3.14159/DH/VISw*TB/TW
IF (REw.LT.1070) CFRICT = 16./REw
IF (REw.LT.1070) GOTO 9999
CFRICT = (0.0014+0.125/REw**.32)*SQRT(TB/TW)
GOTO 9999

C THE FRICTION FACTOR CORRELATION USED IN TNT-II CALCULATIONS FOR
C ROUGH SURFACE.
C (ANON.: THERMAL AND FLUID FLOW ANALYSIS WANL TME-2753)

9 IDUM = 0
CALL PH2(DUM,PB,TW,DUM1,VISW,DUM2,DUM3,DUM4,DUM5,DUM6,IDUM)
REw = 4.*WCH/3.14159/DH/VISw*TB/TW
IF (REw.LT.2000) CFRICT = 16./REw
IF (REw.LT.2000) GOTO 9999
A = 495./EROUGH**1.138
FA = 0.0014 + .125/A**.32
FB = 0.0014 + .125/(A/20.)**.32
REw1 = REw
IF (REw.GT.A) REw1 = A
P = REw1/A
Q = .3 - .1*P
Y = (FB-FA)*P**Q
F1 = SQRT((0.0014+.125/REw**.32)*SQRT(TB/TW)+Y)
FT = (2.28+4.*DLOG10((EROUGH+4.675/REw/F1)**(-1))**(-2.)
IF ((REw.GT.2000.).AND.(REw.LT.3000.))
1 CFRICT = FT*(REw-2000)/1000. + 16./REw*(1.-REw/2000.)/1000.0.
IF (REw.GE.3000.) CFRICT = FT
GOTO 9999

C.....FRICTION FACTOR FOR TUBE WITH RELATIVE ROUGHNESS OF 0.004 DEVELOPED
C FROM MOODY DIAGRAM.
C (CLARK, J.S.: ANALYTICAL AND EXPERIMENTAL STUDY OF STARTUP CHARAC.
C OF A FULL-SCALE UNFUELED NUCLEAR ROCKET CORE ASSEMBLY.
10 IF (REb.LT.2300) CFRICT = 16./REb
YX = DLOG(REb*10E-06)+10.
IF (REb.GE.2300) CFRICT = (0.1552-0.04412*YX+0.005318*YX*YX.
1 0.0002881*YX*YX*YX+0.000005903*YX*YX*YX)/4.
GOTO 9999

C...
8000 WRITE(6,8001)
8001 FORMAT(/.
1 ' SELECT FRICTION FACTOR CORRELATION'.
2 ' '...'/.'
212X,'(1) PETUKHOV ANALYTICAL SOLUTION'.
310X,'* (2) GRAPH-I-TITE G FUEL ELEMENT FRICTION RELATION '.
412X,'(3) BASIC FRICTION FOR LAMINAR AND TURBULENT (e=0) '.
512X,'(4) MOODY BASED FRICTION FACTOR (e=INPUT VALUE) '.
612X,'(5) BASIC FRICTION FOR TURBULENT * 1.35 CORRECTION'.
712X,'(6) KOO EQUATION FOR SMOOTH TUBES '.
812X,'(7) RELATION FROM MOODY DIAGRAM FOR e=0.006 '.
912X,'(8) TAYLOR RELATION FOR FRICTION FACTOR (e=0) '.
010X,'* (9) TAYLOR RELATION FOR FRICTION FACTOR (e=INPUT VALUE) '.
011X,'(10) RELATION FROM MOODY DIAGRAM FOR e=0.004 '.
1 ' 'ENTER NUMBER: ')
 READ(S,*) CFRICT
WRITE(6,8002)
8002 FORMAT(/.)
WRITE(3,8003) CFRICT
8003 FORMAT(FRICTION FACTOR CORRELATION #',F2.0)
GOTO 9999

9900 FORMAT(REYNOLDS NUMBER OUT OF SCOPE OF FRICTION FACTOR',
1 'CORRELATION #',12.1.' (CURRENT REb=',F10.1,')')
9901 FORMAT(STOP --- FUNCTION CFRICT COMPUTED f <= 0')

9990 WRITE(6,*) ' ERROR - INCORRECT VALUE FOR ICF DETECTED IN'.
1 ' FUNCTION CFRICT'
STOP
9999 IF (CFRICT.LE.0.) WRITE(6,9901)
IF (CFRICT.LE.0.) STOP
RETURN
END

REAL*8 FUNCTION PSFCAL(XOL,IPSF)
CC
CC FUNCTION PSFCAL
...............
CC THIS FUNCTION COMPUTES THE POWER SHAPE FACTOR GIVEN AXIAL POSITION.
CC
CC AUTHOR: JAMES T. WALTON, NASA LEWIS RESEARCH CENTER
CC ORIGINATION: SEPTEMBER 19, 1991
CC LAST MOD.: NOVEMBER 25, 1991
CC
IMPLICIT REAL*8 (A-H,O-Z)

IF (IPSF.EQ.0) GOTO 8000
GOTO (1,2,3,4,5,6,7,8). IPSF
GOTO 9990

C.....POWER SHAPING FACTOR COEFFICIENTS FOR CURVE USED BY TNT-II PROGRAM.
C (NERVA ENGINE DATA AND DESIGN CONCEPTS, VOL. III - THERMAL AND FLUID
C FLOW ANALYSIS. WAML-TME-1798, JUNE 1968.)
1 A = 0.240243623548
 B = 3.18743980258
 C = 1.14783695957
 D = -7.52353879018
<table>
<thead>
<tr>
<th>Reactor</th>
<th>Power Shape Factor Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRX-A2</td>
<td>$E = 3.23771164993$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>NRX-A3</td>
<td>$A = 0.360742338891$</td>
</tr>
<tr>
<td></td>
<td>$B = 4.50215211498$</td>
</tr>
<tr>
<td></td>
<td>$C = -4.94032044875$</td>
</tr>
<tr>
<td></td>
<td>$D = -0.481081746774$</td>
</tr>
<tr>
<td></td>
<td>$E = 0.768777777651$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>NRX-A4</td>
<td>$A = 0.388914519476$</td>
</tr>
<tr>
<td></td>
<td>$B = 4.02639441610$</td>
</tr>
<tr>
<td></td>
<td>$C = -3.35296846791$</td>
</tr>
<tr>
<td></td>
<td>$D = -2.71711572027$</td>
</tr>
<tr>
<td></td>
<td>$E = 1.95396600540$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>NRX-A5</td>
<td>$A = 0.523554259920$</td>
</tr>
<tr>
<td></td>
<td>$B = 3.11216568076$</td>
</tr>
<tr>
<td></td>
<td>$C = 0.429960285933$</td>
</tr>
<tr>
<td></td>
<td>$D = -9.51785121938$</td>
</tr>
<tr>
<td></td>
<td>$E = 5.82723420430$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>NRX-A6</td>
<td>$A = 0.342910797012$</td>
</tr>
<tr>
<td></td>
<td>$B = 3.85198430654$</td>
</tr>
<tr>
<td></td>
<td>$C = -0.721844440175$</td>
</tr>
<tr>
<td></td>
<td>$D = -8.27798616356$</td>
</tr>
<tr>
<td></td>
<td>$E = 5.09908210847$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>PEWEE-1</td>
<td>$A = 0.315263743551$</td>
</tr>
<tr>
<td></td>
<td>$B = 4.01075764283$</td>
</tr>
<tr>
<td></td>
<td>$C = -2.81198488737$</td>
</tr>
<tr>
<td></td>
<td>$D = -2.13642616902$</td>
</tr>
<tr>
<td></td>
<td>$E = 0.653731955838$</td>
</tr>
<tr>
<td></td>
<td>GOTO 9999</td>
</tr>
<tr>
<td>SMALL</td>
<td>$E = 3.23771164993$</td>
</tr>
<tr>
<td>ENGINE</td>
<td>GOTO 9999</td>
</tr>
</tbody>
</table>

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF NRX-A2 REACTOR.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF NRX-A3 REACTOR.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF NRX-A4/EST REACTOR.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF NRX-A5 REACTOR.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF NRX-A6 REACTOR.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF PEWEE-1 REACTOR.

PEWEE-1 REACTOR TEST REPORT. LA-4217-MS, JUNE 1969.

C. POWER SHAPE FACTOR COEFFICIENTS FOR CURVE OF SMALL ENGINE REACTOR.

(DURHAM, FRANKLIN P.: ENGINE DEFINITION STUDY. LA-5044-MS, VOL. I-III.
C SEPTEMBER 1972.)
A = 0.370101535438
B = 4.33086012101
C = -4.51483233018
D = -0.0955935232165
E = 0.0959623283744
GOTO 9999

C ...
8000 WRITE(6,8001)
8001 FORMAT(/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/)
 1 ' SELECT AXIAL POWER SHAPE CORRELATION'.
 2 ' ---'
21DX.'(1) PROGRAM TNT-II NERVA MODEL CIRCA 1968'.
41DX.'(2) NRX-A2 REACTOR MODEL BASED ON EXPERIMENTAL DATA'.
41DX.'(3) NRX-A3 REACTOR MODEL BASED ON EXPERIMENTAL DATA'.
41DX.'(4) NRX-A4/EST REACTOR MODEL BASED ON EXPERIMENTAL DATA'.
41DX.'(5) NRX-A5 REACTOR MODEL BASED ON EXPERIMENTAL DATA'.
41DX.'(6) NRX-A6 REACTOR MODEL BASED ON EXPERIMENTAL DATA'.
312X.'(7) PEWEE-1 REACTOR MODEL'.
912X.'(8) SMALL ENGINE REACTOR MODEL'
012X.'
1 /...,...:' ENTER NUMBER: 1)
READ(5.*) PSFCAL
WRITE(6.8002)
8002 FORMAT(/,/ RETURN

9901 FORMAT(' STOP ---- FUNCTION PSFCAL COMPUTED PSF <= 0')
9990 WRITE(6,*) ' ERROR - INCORRECT VALUE FOR IPSF DETECTED IN'
 1 ' FUNCTION PSFCAL'
 STOP
9999 PSFCAL = A + B*XOL + C*XOL*XOL + D*XOL*XOL*XOL + E*XOL*XOL*XOL*XOL*XOL
 IF (PSFCAL.LE.0.) WRITE(6,9901)
 IF (PSFCAL.LE.0.) STOP
 RETURN
END

SUBROUTINE BANNER(VERSION,DATE)
CC SUBROUTINE BANNER
CC -------------------------------------
CC THIS SUBROUTINE WRITES THE STANDARD NASA PROGRAM BANNER PAGE
CC TO THE TERMINAL SCREEN.
CC
CC AUTHOR: JAMES T. WALTON, NASA LEWIS RESEARCH CENTER
CC ORIGINATION: MAY 13, 1991
CC LAST MODIFICATION: SEPTEMBER 17, 1991
CC
CC IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER JUNK*12,DATE*20,FILEINP*12,FILEOUT*12
DATA FILEINP/'ELM.INP'/,FILEOUT/'ELM.OUT'/
WRITE(6,10) VERSION, DATE

SUBROUTINE BANNER(VERSION,DATE)
SUBROUTINE READER(TIN,PIN,POWER,NCH,WCH,L,DL,EROUGH,CLIN,CLOUT,DFE,DORF)

CC
SUBROUTINE READER

CC
THIS SUBROUTINE PERFORMS ALL READS FROM THE INPUT FILE.

CC
AUTHOR: JAMES T. WALTON, NASA LEWIS RESEARCH CENTER

CC
ORIGINATION: JUNE 14, 1991

CC
LAST MODIFICATION: FEBRUARY 20, 1991

CC
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 NCH,L
CHARACTER*65 JUNK,ACARD

READ(2,1) JUNK
READ(2,1) ACARD
WRITE(3,1) ACARD
READ(2,1) JUNK
READ(2,1) JUNK
READ(2,1) JUNK,POWER
WRITE(3,1) JUNK,POWER
READ(2,1) JUNK,PIN
WRITE(3,1) JUNK,PIN
READ(2,1) JUNK,TIN
WRITE(3,1) JUNK,TIN
READ(2,1) JUNK,WCH
WRITE(3,1) JUNK,WCH
READ(2,1) JUNK,DH
WRITE(3,1) JUNK,DH
READ(2,1) JUNK,NCH
WRITE(3,1) JUNK,NCH
READ(2,1) JUNK,L
WRITE(3,1) JUNK,L
READ(2,1) JUNK,DL
WRITE(3,1) JUNK,DL
READ(2,1) JUNK,EROUGH
WRITE(3,1) JUNK,EROUGH
READ(2,1) JUNK,CLIN
WRITE(3,1) JUNK,CLIN
READ(2,1) JUNK,CLOUT
WRITE(3,1) JUNK,CLOUT
READ(2,1) JUNK,DFE
WRITE(3,1) JUNK,DFE
READ(2,1) JUNK,DORF
WRITE(3,1) JUNK,DORF
WRITE(3,*)
WRITE(3,*)
1 FORMAT(A6S,E14.6)
RETURN
END

C.....MODIFICATIONS
C.....VERSION 1.00 --- > 1.01
C 1) CORRECTED NEWTONS LAW OF COOLING TO USE ADIABATIC WALL TEMPERATURE.
C
C.....VERSION 1.01 --- > 1.02
C 1) CONVERTED TOUT CALCULATION FROM Q = M*CP*(TOUT-TIN) TO HTOUT=HTIN+Q
C 2) ACCOUNT FOR ENTRANCE AND EXIT LOSSES
C
C.....VERSION 1.02 --- > 1.03
C 1) UPDATE HYDROGEN PROPERTIES MODEL TO NBS STANDARD LEW.15505
REFERENCES

34. Petukhov, B.S.; et al.: Heat Transfer Experimental Research For Turbulent Gas Flow in Pipes at High Temperature Differences Between Wall and Bulk Fluid Temperature. Science Research Institute, Moscow Power Engineering Institute, Moscow, USSR.

44. Taylor, M.F.: Correlations of Friction Coefficients for Laminar and Turbulent Flow with Ratios of Surface to Bulk Temperature from 0.35 to 7.35. NASA TR-R-267, 1967.

<table>
<thead>
<tr>
<th>Regression Model Name</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRX Model</td>
<td>.240243623548</td>
<td>.18743980258</td>
<td>1.14783695957</td>
<td>-7.52353879018</td>
<td>3.23771164993</td>
</tr>
<tr>
<td>NRX-A2 Model</td>
<td>.360742338891</td>
<td>4.50215211498</td>
<td>-4.94032044875</td>
<td>-0.481081746774</td>
<td>.768777777651</td>
</tr>
<tr>
<td>NRX-A3 Model</td>
<td>.388914519476</td>
<td>4.02639441610</td>
<td>-3.35296846791</td>
<td>-2.71711572027</td>
<td>1.95396600540</td>
</tr>
<tr>
<td>NRX-A4 Model</td>
<td>.523554259920</td>
<td>3.11216568076</td>
<td>.429960285933</td>
<td>-9.51785121938</td>
<td>5.82723420430</td>
</tr>
<tr>
<td>NRX-A5 Model</td>
<td>.203569633244</td>
<td>5.59270800308</td>
<td>-7.77244060348</td>
<td>2.39244292069</td>
<td>-.010689274194</td>
</tr>
<tr>
<td>NRX-A6 Model</td>
<td>.342910797012</td>
<td>3.85198430654</td>
<td>-7.21844448175</td>
<td>-8.27798616356</td>
<td>5.09908210847</td>
</tr>
<tr>
<td>PEWEE-1 Model</td>
<td>.315263743551</td>
<td>4.01075764283</td>
<td>-2.81199888737</td>
<td>-2.13642616902</td>
<td>.653731955838</td>
</tr>
<tr>
<td>SMALL ENGINE Model</td>
<td>.370101535438</td>
<td>4.33086012101</td>
<td>-4.51483233018</td>
<td>-0.955935232165</td>
<td>.0959623283744</td>
</tr>
</tbody>
</table>
TABLE II.—INPUT DATA FILE FOR NRX-A3 REACTOR EXPERIMENT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>the total thermal power generated/fuel element (W)</td>
<td>621500.</td>
</tr>
<tr>
<td>PIN</td>
<td>the fuel element inlet stagnation pressure (psf)</td>
<td>687.</td>
</tr>
<tr>
<td>TIN</td>
<td>the fuel element inlet static temperature (R)</td>
<td>221.</td>
</tr>
<tr>
<td>WCH</td>
<td>the fuel element mass flow rate (lb/s)</td>
<td>0.04267</td>
</tr>
<tr>
<td>DH</td>
<td>the coolant channel hydraulic diameter (in)</td>
<td>0.091</td>
</tr>
<tr>
<td>NCH</td>
<td>the number of coolant channels/fuel element</td>
<td>19.</td>
</tr>
<tr>
<td>L</td>
<td>the length of the fuel element (in)</td>
<td>52.</td>
</tr>
<tr>
<td>DL</td>
<td>the computational step size (in)</td>
<td>2.</td>
</tr>
<tr>
<td>EROUGH</td>
<td>the surface roughness, required by some f models (in)</td>
<td>0.008</td>
</tr>
<tr>
<td>CLIN</td>
<td>the entrance loss coefficient (1.28<CL<1.75)</td>
<td>-1.</td>
</tr>
<tr>
<td>CLOUT</td>
<td>the exit loss coefficient</td>
<td>-1.</td>
</tr>
<tr>
<td>DFE</td>
<td>the distance across element flats (in)</td>
<td>0.75</td>
</tr>
<tr>
<td>DORF</td>
<td>the inlet orifice diameter (in)</td>
<td>0.</td>
</tr>
</tbody>
</table>
TABLE III–PROGRAM ELM OUTPUT FILE FOR NRX-A3 REACTOR EXPERIMENT

PROGRAM ELM
VERSION 1.02
FEBRUARY 26, 1992

NRX-A3 EXPERIMENT CRT 21550

<table>
<thead>
<tr>
<th>X (in.)</th>
<th>Tb (R)</th>
<th>Tw (R)</th>
<th>Cum. P (W)</th>
<th>Re</th>
<th>Pb (psi)</th>
<th>MACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>0221.00</td>
<td>0221.00</td>
<td>00000.00</td>
<td>000.00</td>
<td>686.39</td>
<td>0.000</td>
</tr>
<tr>
<td>02.00</td>
<td>0283.58</td>
<td>0670.73</td>
<td>00585.12</td>
<td>100327.00</td>
<td>685.69</td>
<td>0.034</td>
</tr>
<tr>
<td>04.00</td>
<td>0365.16</td>
<td>0922.04</td>
<td>01351.99</td>
<td>085798.00</td>
<td>685.70</td>
<td>0.039</td>
</tr>
<tr>
<td>06.00</td>
<td>0469.47</td>
<td>1181.51</td>
<td>02286.53</td>
<td>073070.00</td>
<td>684.81</td>
<td>0.044</td>
</tr>
<tr>
<td>08.00</td>
<td>0597.50</td>
<td>1422.34</td>
<td>03373.76</td>
<td>062331.00</td>
<td>683.40</td>
<td>0.050</td>
</tr>
<tr>
<td>10.00</td>
<td>0744.51</td>
<td>1635.95</td>
<td>04597.91</td>
<td>053635.00</td>
<td>681.68</td>
<td>0.055</td>
</tr>
<tr>
<td>12.00</td>
<td>0907.27</td>
<td>1838.77</td>
<td>05942.56</td>
<td>046756.00</td>
<td>679.63</td>
<td>0.061</td>
</tr>
<tr>
<td>14.00</td>
<td>1082.71</td>
<td>2036.56</td>
<td>07390.80</td>
<td>041311.00</td>
<td>677.25</td>
<td>0.067</td>
</tr>
<tr>
<td>16.00</td>
<td>1268.13</td>
<td>2231.18</td>
<td>08925.28</td>
<td>036968.00</td>
<td>674.51</td>
<td>0.073</td>
</tr>
<tr>
<td>18.00</td>
<td>1460.66</td>
<td>2421.42</td>
<td>10528.42</td>
<td>033469.00</td>
<td>671.40</td>
<td>0.079</td>
</tr>
<tr>
<td>20.00</td>
<td>1657.58</td>
<td>2606.67</td>
<td>12182.49</td>
<td>030623.00</td>
<td>667.93</td>
<td>0.085</td>
</tr>
<tr>
<td>22.00</td>
<td>1856.34</td>
<td>2785.60</td>
<td>13869.76</td>
<td>028287.00</td>
<td>664.09</td>
<td>0.091</td>
</tr>
<tr>
<td>24.00</td>
<td>2054.49</td>
<td>2956.63</td>
<td>15572.63</td>
<td>026353.00</td>
<td>659.88</td>
<td>0.097</td>
</tr>
<tr>
<td>26.00</td>
<td>2249.76</td>
<td>3118.07</td>
<td>17273.74</td>
<td>024740.00</td>
<td>655.30</td>
<td>0.102</td>
</tr>
<tr>
<td>28.00</td>
<td>2440.04</td>
<td>3268.92</td>
<td>18956.13</td>
<td>023386.00</td>
<td>650.36</td>
<td>0.108</td>
</tr>
<tr>
<td>30.00</td>
<td>2623.45</td>
<td>3408.46</td>
<td>20603.33</td>
<td>022244.00</td>
<td>645.06</td>
<td>0.113</td>
</tr>
<tr>
<td>32.00</td>
<td>2801.57</td>
<td>3538.26</td>
<td>22199.53</td>
<td>021117.00</td>
<td>639.49</td>
<td>0.118</td>
</tr>
<tr>
<td>34.00</td>
<td>2967.49</td>
<td>3657.16</td>
<td>23729.69</td>
<td>020261.00</td>
<td>633.54</td>
<td>0.123</td>
</tr>
<tr>
<td>36.00</td>
<td>3123.22</td>
<td>3762.09</td>
<td>25179.63</td>
<td>019534.00</td>
<td>627.27</td>
<td>0.128</td>
</tr>
<tr>
<td>38.00</td>
<td>3269.06</td>
<td>3851.41</td>
<td>26536.26</td>
<td>018909.00</td>
<td>620.68</td>
<td>0.132</td>
</tr>
<tr>
<td>40.00</td>
<td>3400.35</td>
<td>3923.59</td>
<td>27787.60</td>
<td>018376.00</td>
<td>613.80</td>
<td>0.137</td>
</tr>
<tr>
<td>42.00</td>
<td>3517.64</td>
<td>3979.80</td>
<td>28922.98</td>
<td>017929.00</td>
<td>606.66</td>
<td>0.141</td>
</tr>
<tr>
<td>44.00</td>
<td>3620.45</td>
<td>4021.05</td>
<td>29933.12</td>
<td>017555.00</td>
<td>599.27</td>
<td>0.146</td>
</tr>
<tr>
<td>46.00</td>
<td>3708.47</td>
<td>4047.58</td>
<td>30810.32</td>
<td>017245.00</td>
<td>591.65</td>
<td>0.150</td>
</tr>
<tr>
<td>48.00</td>
<td>3781.58</td>
<td>4059.59</td>
<td>31548.52</td>
<td>016995.00</td>
<td>583.83</td>
<td>0.154</td>
</tr>
<tr>
<td>50.00</td>
<td>3839.77</td>
<td>4057.55</td>
<td>32143.48</td>
<td>016797.00</td>
<td>575.82</td>
<td>0.157</td>
</tr>
<tr>
<td>52.00</td>
<td>3883.21</td>
<td>4050.86</td>
<td>32592.90</td>
<td>016648.00</td>
<td>563.98</td>
<td>0.161</td>
</tr>
</tbody>
</table>

619265.1 = POWER/ELEMENT
<table>
<thead>
<tr>
<th>POWER</th>
<th>the total thermal power generated/fuel element (W)</th>
<th>705000.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>the fuel element inlet stagnation pressure (psi)</td>
<td>678.</td>
</tr>
<tr>
<td>TIN</td>
<td>the fuel element inlet static temperature (R)</td>
<td>229.</td>
</tr>
<tr>
<td>WCH</td>
<td>the fuel element mass flow rate (lb/s)</td>
<td>0.04273</td>
</tr>
<tr>
<td>DH</td>
<td>the coolant channel hydraulic diameter (in)</td>
<td>0.095</td>
</tr>
<tr>
<td>NCH</td>
<td>the number of coolant channels/fuel element</td>
<td>19</td>
</tr>
<tr>
<td>L</td>
<td>the length of the fuel element (in)</td>
<td>52</td>
</tr>
<tr>
<td>DL</td>
<td>the computational step size (in)</td>
<td>2</td>
</tr>
<tr>
<td>EROUGH</td>
<td>the surface roughness, required by some f models (in)</td>
<td>0.008</td>
</tr>
<tr>
<td>6CLIN</td>
<td>the entrance loss coefficient (1.28<CL<1.75)</td>
<td>-1</td>
</tr>
<tr>
<td>CLOUT</td>
<td>the exit loss coefficient</td>
<td>-1</td>
</tr>
<tr>
<td>DFE</td>
<td>the distance across element flats (in)</td>
<td>0.75</td>
</tr>
<tr>
<td>DORF</td>
<td>the inlet orifice diameter (in)</td>
<td>0</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>00.00</td>
<td>0229.00</td>
<td>0229.00</td>
</tr>
<tr>
<td>02.00</td>
<td>0317.38</td>
<td>0912.12</td>
</tr>
<tr>
<td>04.00</td>
<td>0426.31</td>
<td>1210.86</td>
</tr>
<tr>
<td>06.00</td>
<td>0561.78</td>
<td>1491.09</td>
</tr>
<tr>
<td>08.00</td>
<td>0720.39</td>
<td>1738.90</td>
</tr>
<tr>
<td>10.00</td>
<td>0898.22</td>
<td>1969.69</td>
</tr>
<tr>
<td>12.00</td>
<td>1092.08</td>
<td>2195.72</td>
</tr>
<tr>
<td>14.00</td>
<td>1299.12</td>
<td>2418.78</td>
</tr>
<tr>
<td>16.00</td>
<td>1515.99</td>
<td>2637.79</td>
</tr>
<tr>
<td>18.00</td>
<td>1739.42</td>
<td>2851.00</td>
</tr>
<tr>
<td>20.00</td>
<td>1966.16</td>
<td>3056.23</td>
</tr>
<tr>
<td>22.00</td>
<td>2193.00</td>
<td>3251.26</td>
</tr>
<tr>
<td>24.00</td>
<td>2416.88</td>
<td>3434.22</td>
</tr>
<tr>
<td>26.00</td>
<td>2635.02</td>
<td>3587.03</td>
</tr>
<tr>
<td>28.00</td>
<td>2848.34</td>
<td>3746.37</td>
</tr>
<tr>
<td>30.00</td>
<td>3049.82</td>
<td>3911.17</td>
</tr>
<tr>
<td>32.00</td>
<td>3240.93</td>
<td>4041.51</td>
</tr>
<tr>
<td>34.00</td>
<td>3419.98</td>
<td>4152.18</td>
</tr>
<tr>
<td>36.00</td>
<td>3582.47</td>
<td>4244.44</td>
</tr>
<tr>
<td>38.00</td>
<td>3729.21</td>
<td>4320.55</td>
</tr>
<tr>
<td>40.00</td>
<td>3859.91</td>
<td>4381.75</td>
</tr>
<tr>
<td>42.00</td>
<td>3974.64</td>
<td>4433.05</td>
</tr>
<tr>
<td>44.00</td>
<td>4075.10</td>
<td>4474.12</td>
</tr>
<tr>
<td>46.00</td>
<td>4161.55</td>
<td>4503.58</td>
</tr>
<tr>
<td>48.00</td>
<td>4234.79</td>
<td>4526.33</td>
</tr>
<tr>
<td>50.00</td>
<td>4296.44</td>
<td>4545.67</td>
</tr>
<tr>
<td>52.00</td>
<td>4348.60</td>
<td>4559.58</td>
</tr>
</tbody>
</table>

711494.4 = POWER/ELEMENT
TABLE VI.—INPUT DATA FILE FOR NRX-A5 REACTOR EXPERIMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER...the total thermal power generated/fuel element (W)</td>
<td>678000.</td>
</tr>
<tr>
<td>PIN...the fuel element inlet stagnation pressure (psi)</td>
<td>675.</td>
</tr>
<tr>
<td>TIN...the fuel element inlet static temperature (R)</td>
<td>242.</td>
</tr>
<tr>
<td>WCH...the fuel element mass flow rate (lb/s)</td>
<td>0.041968</td>
</tr>
<tr>
<td>DH...the coolant channel hydraulic diameter (in)</td>
<td>0.093</td>
</tr>
<tr>
<td>NCH...the number of coolant channels/fuel element</td>
<td>19.</td>
</tr>
<tr>
<td>L...the length of the fuel element (in)</td>
<td>52.</td>
</tr>
<tr>
<td>DL...the computational step size (in)</td>
<td>2.</td>
</tr>
<tr>
<td>EROUGH...the surface roughness, required by some f models (in)</td>
<td>0.008</td>
</tr>
<tr>
<td>CLIN...the entrance loss coefficient (1.28<CL<1.75)</td>
<td>-1.</td>
</tr>
<tr>
<td>CLOUT...the exit loss coefficient</td>
<td>-1.</td>
</tr>
<tr>
<td>DFE...the distance across element flats (in)</td>
<td>0.75</td>
</tr>
<tr>
<td>DORF...the inlet orifice diameter (in)</td>
<td>0.</td>
</tr>
</tbody>
</table>
TABLE VII.—PROGRAM ELM OUTPUT FILE FOR NRX-A5 REACTOR EXPERIMENT

<table>
<thead>
<tr>
<th>X (in.)</th>
<th>Tb (R)</th>
<th>Tt (R)</th>
<th>Cum. P (W)</th>
<th>Re</th>
<th>Pb (psi)</th>
<th>MACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>0242.00</td>
<td>0242.00</td>
<td>00000.00</td>
<td>0000</td>
<td>674.40</td>
<td>0.000</td>
</tr>
<tr>
<td>02.00</td>
<td>0287.67</td>
<td>0597.76</td>
<td>00423.08</td>
<td>9379</td>
<td>673.83</td>
<td>0.034</td>
</tr>
<tr>
<td>04.00</td>
<td>0362.02</td>
<td>0901.02</td>
<td>01110.44</td>
<td>8259</td>
<td>673.84</td>
<td>0.038</td>
</tr>
<tr>
<td>06.00</td>
<td>0466.47</td>
<td>1225.86</td>
<td>02032.18</td>
<td>7068</td>
<td>673.07</td>
<td>0.042</td>
</tr>
<tr>
<td>08.00</td>
<td>0601.45</td>
<td>1523.69</td>
<td>03159.56</td>
<td>5996</td>
<td>671.79</td>
<td>0.047</td>
</tr>
<tr>
<td>10.00</td>
<td>0760.99</td>
<td>1776.83</td>
<td>04664.92</td>
<td>5111</td>
<td>670.19</td>
<td>0.053</td>
</tr>
<tr>
<td>12.00</td>
<td>0940.37</td>
<td>2007.85</td>
<td>05921.74</td>
<td>4412</td>
<td>668.28</td>
<td>0.060</td>
</tr>
<tr>
<td>14.00</td>
<td>1135.29</td>
<td>2226.86</td>
<td>07504.63</td>
<td>3866</td>
<td>666.02</td>
<td>0.066</td>
</tr>
<tr>
<td>16.00</td>
<td>1341.96</td>
<td>2438.42</td>
<td>09189.27</td>
<td>3435</td>
<td>663.41</td>
<td>0.072</td>
</tr>
<tr>
<td>18.00</td>
<td>1556.53</td>
<td>2644.02</td>
<td>10952.51</td>
<td>3094</td>
<td>660.45</td>
<td>0.078</td>
</tr>
<tr>
<td>20.00</td>
<td>1775.64</td>
<td>2843.52</td>
<td>12772.28</td>
<td>2820</td>
<td>657.12</td>
<td>0.084</td>
</tr>
<tr>
<td>22.00</td>
<td>1996.21</td>
<td>3035.74</td>
<td>14627.63</td>
<td>2597</td>
<td>653.43</td>
<td>0.090</td>
</tr>
<tr>
<td>24.00</td>
<td>2215.40</td>
<td>3219.32</td>
<td>16498.73</td>
<td>2415</td>
<td>649.38</td>
<td>0.096</td>
</tr>
<tr>
<td>26.00</td>
<td>2430.69</td>
<td>3392.80</td>
<td>18366.86</td>
<td>2264</td>
<td>644.98</td>
<td>0.102</td>
</tr>
<tr>
<td>28.00</td>
<td>2639.89</td>
<td>3540.05</td>
<td>20214.41</td>
<td>2138</td>
<td>640.22</td>
<td>0.108</td>
</tr>
<tr>
<td>30.00</td>
<td>2844.50</td>
<td>3695.57</td>
<td>22024.88</td>
<td>2017</td>
<td>635.19</td>
<td>0.113</td>
</tr>
<tr>
<td>32.00</td>
<td>3037.85</td>
<td>3857.72</td>
<td>23782.89</td>
<td>1924</td>
<td>629.77</td>
<td>0.118</td>
</tr>
<tr>
<td>34.00</td>
<td>3221.77</td>
<td>3989.71</td>
<td>25474.15</td>
<td>1845</td>
<td>624.03</td>
<td>0.123</td>
</tr>
<tr>
<td>36.00</td>
<td>3395.93</td>
<td>4105.09</td>
<td>27085.49</td>
<td>1777</td>
<td>617.96</td>
<td>0.128</td>
</tr>
<tr>
<td>38.00</td>
<td>3555.47</td>
<td>4204.01</td>
<td>28604.86</td>
<td>1719</td>
<td>611.60</td>
<td>0.132</td>
</tr>
<tr>
<td>40.00</td>
<td>3701.20</td>
<td>4287.95</td>
<td>30021.29</td>
<td>1670</td>
<td>604.95</td>
<td>0.137</td>
</tr>
<tr>
<td>42.00</td>
<td>3832.61</td>
<td>4357.13</td>
<td>31324.95</td>
<td>1629</td>
<td>598.03</td>
<td>0.142</td>
</tr>
<tr>
<td>44.00</td>
<td>3949.37</td>
<td>4414.70</td>
<td>32507.07</td>
<td>1594</td>
<td>590.86</td>
<td>0.146</td>
</tr>
<tr>
<td>46.00</td>
<td>4052.09</td>
<td>4458.92</td>
<td>33560.03</td>
<td>1564</td>
<td>583.46</td>
<td>0.150</td>
</tr>
<tr>
<td>48.00</td>
<td>4140.81</td>
<td>4486.86</td>
<td>34477.29</td>
<td>1539</td>
<td>575.83</td>
<td>0.154</td>
</tr>
<tr>
<td>50.00</td>
<td>4214.77</td>
<td>4500.50</td>
<td>35253.42</td>
<td>1519</td>
<td>567.99</td>
<td>0.158</td>
</tr>
<tr>
<td>52.00</td>
<td>4273.99</td>
<td>4505.38</td>
<td>35884.09</td>
<td>1503</td>
<td>556.23</td>
<td>0.162</td>
</tr>
</tbody>
</table>

681797.8 = POWER/ELEMENT
TABLE VIII.—INPUT DATA FILE FOR NRX-A6 REACTOR EXPERIMENT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>the total thermal power generated/fuel element (W)</td>
<td>710000.</td>
</tr>
<tr>
<td>PIN</td>
<td>the fuel element inlet stagnation pressure (psi)</td>
<td>706.</td>
</tr>
<tr>
<td>TIN</td>
<td>the fuel element inlet static temperature (R)</td>
<td>222.</td>
</tr>
<tr>
<td>WCH</td>
<td>the fuel element mass flow rate (lb/s)</td>
<td>0.04141</td>
</tr>
<tr>
<td>DH</td>
<td>the coolant channel hydraulic diameter (in)</td>
<td>0.092</td>
</tr>
<tr>
<td>NCH</td>
<td>the number of coolant channels/fuel element</td>
<td>19.</td>
</tr>
<tr>
<td>L</td>
<td>the length of the fuel element (in)</td>
<td>52.</td>
</tr>
<tr>
<td>DL</td>
<td>the computational step size (in)</td>
<td>2.</td>
</tr>
<tr>
<td>EROUGH</td>
<td>the surface roughness, required by some f models (in)</td>
<td>0.008</td>
</tr>
<tr>
<td>CLIN</td>
<td>the entrance loss coefficient (1.28<CL<1.75)</td>
<td>-1.</td>
</tr>
<tr>
<td>CLOUT</td>
<td>the exit loss coefficient</td>
<td>-1.</td>
</tr>
<tr>
<td>DFE</td>
<td>the distance across element flats (in)</td>
<td>0.75</td>
</tr>
<tr>
<td>DORF</td>
<td>the inlet orifice diameter (in)</td>
<td>0.</td>
</tr>
</tbody>
</table>
TABLE IX.—PROGRAM ELM OUTPUT FILE FOR NRX-A6 REACTOR EXPERIMENT

PROGRAM ELM
VERSION 1.02
FEBRUARY 26, 1992

NRX-A6 EXPERIMENT

<table>
<thead>
<tr>
<th>X (in.)</th>
<th>Tb (R)</th>
<th>Tw (R)</th>
<th>Cum. P (W)</th>
<th>Re</th>
<th>P (psi)</th>
<th>MACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>0222.00</td>
<td>0222.00</td>
<td>00000.00</td>
<td>0000.</td>
<td>705.49</td>
<td>0.000</td>
</tr>
<tr>
<td>02.00</td>
<td>0287.86</td>
<td>0717.10</td>
<td>00598.85</td>
<td>9454.</td>
<td>704.90</td>
<td>0.031</td>
</tr>
<tr>
<td>04.00</td>
<td>0376.49</td>
<td>1017.46</td>
<td>01405.44</td>
<td>8019.</td>
<td>704.90</td>
<td>0.036</td>
</tr>
<tr>
<td>06.00</td>
<td>0493.31</td>
<td>1329.37</td>
<td>02411.07</td>
<td>6753.</td>
<td>704.13</td>
<td>0.041</td>
</tr>
<tr>
<td>08.00</td>
<td>0639.13</td>
<td>1614.93</td>
<td>03603.77</td>
<td>5691.</td>
<td>702.85</td>
<td>0.046</td>
</tr>
<tr>
<td>10.00</td>
<td>0808.62</td>
<td>1868.33</td>
<td>04968.63</td>
<td>4843.</td>
<td>701.28</td>
<td>0.052</td>
</tr>
<tr>
<td>12.00</td>
<td>0998.33</td>
<td>2109.62</td>
<td>06488.23</td>
<td>4182.</td>
<td>699.38</td>
<td>0.058</td>
</tr>
<tr>
<td>14.00</td>
<td>1204.73</td>
<td>2345.13</td>
<td>08143.03</td>
<td>3665.</td>
<td>697.16</td>
<td>0.064</td>
</tr>
<tr>
<td>16.00</td>
<td>1424.11</td>
<td>2574.82</td>
<td>09911.72</td>
<td>3258.</td>
<td>694.58</td>
<td>0.070</td>
</tr>
<tr>
<td>18.00</td>
<td>1652.62</td>
<td>2798.57</td>
<td>11771.61</td>
<td>2933.</td>
<td>691.65</td>
<td>0.076</td>
</tr>
<tr>
<td>20.00</td>
<td>1886.55</td>
<td>3014.51</td>
<td>13699.06</td>
<td>2673.</td>
<td>688.36</td>
<td>0.082</td>
</tr>
<tr>
<td>22.00</td>
<td>2122.26</td>
<td>3220.42</td>
<td>15669.82</td>
<td>2461.</td>
<td>684.71</td>
<td>0.088</td>
</tr>
<tr>
<td>24.00</td>
<td>2356.27</td>
<td>3414.28</td>
<td>17659.41</td>
<td>2288.</td>
<td>680.70</td>
<td>0.094</td>
</tr>
<tr>
<td>26.00</td>
<td>2585.35</td>
<td>3594.84</td>
<td>19643.55</td>
<td>2146.</td>
<td>676.35</td>
<td>0.099</td>
</tr>
<tr>
<td>28.00</td>
<td>2810.11</td>
<td>3764.00</td>
<td>21598.50</td>
<td>2026.</td>
<td>671.71</td>
<td>0.105</td>
</tr>
<tr>
<td>30.00</td>
<td>3022.69</td>
<td>3921.06</td>
<td>23501.45</td>
<td>1909.</td>
<td>666.71</td>
<td>0.109</td>
</tr>
<tr>
<td>32.00</td>
<td>3224.59</td>
<td>4060.62</td>
<td>25330.96</td>
<td>1823.</td>
<td>661.38</td>
<td>0.114</td>
</tr>
<tr>
<td>34.00</td>
<td>3414.64</td>
<td>4179.17</td>
<td>27067.25</td>
<td>1750.</td>
<td>655.74</td>
<td>0.119</td>
</tr>
<tr>
<td>36.00</td>
<td>3587.31</td>
<td>4277.45</td>
<td>28692.68</td>
<td>1688.</td>
<td>649.83</td>
<td>0.124</td>
</tr>
<tr>
<td>38.00</td>
<td>3743.12</td>
<td>4357.68</td>
<td>30192.06</td>
<td>1637.</td>
<td>643.66</td>
<td>0.128</td>
</tr>
<tr>
<td>40.00</td>
<td>3881.51</td>
<td>4420.76</td>
<td>31553.08</td>
<td>1594.</td>
<td>637.25</td>
<td>0.132</td>
</tr>
<tr>
<td>42.00</td>
<td>4002.36</td>
<td>4471.88</td>
<td>32766.69</td>
<td>1559.</td>
<td>630.62</td>
<td>0.136</td>
</tr>
<tr>
<td>44.00</td>
<td>4107.47</td>
<td>4509.82</td>
<td>33827.47</td>
<td>1529.</td>
<td>623.79</td>
<td>0.140</td>
</tr>
<tr>
<td>46.00</td>
<td>4195.94</td>
<td>4532.06</td>
<td>34734.01</td>
<td>1505.</td>
<td>616.78</td>
<td>0.143</td>
</tr>
<tr>
<td>48.00</td>
<td>4268.57</td>
<td>4543.30</td>
<td>35489.31</td>
<td>1486.</td>
<td>609.60</td>
<td>0.147</td>
</tr>
<tr>
<td>50.00</td>
<td>4326.57</td>
<td>4546.26</td>
<td>36101.18</td>
<td>1471.</td>
<td>602.28</td>
<td>0.150</td>
</tr>
<tr>
<td>52.00</td>
<td>4371.59</td>
<td>4545.92</td>
<td>36582.59</td>
<td>1459.</td>
<td>591.31</td>
<td>0.153</td>
</tr>
</tbody>
</table>

695069.2 = POWER/ELEMENT

40
Figure 1.—Fuel element schematic diagram.
Figure 2.—Sample comparison of power shape factor curvefits to experimental data.
Figure 3.—Comparison of power shape factor curve fits for eight regression models.
Figure 4.—ELM logic block diagram.
Figure 5.—Comparison of axial wall temperature distributions for heat transfer correlations 1 to 5.

Figure 6.—Comparison of axial wall temperature distributions for heat transfer correlations 6 to 10.
Figure 7.—Comparison of axial pressure distributions for friction factor correlations 1 to 5.

Figure 8.—Comparison of axial pressure distributions for friction factor correlations 6 to 10.
Figure 9.—Sensitivity to changes in various input parameters.
Figure 10.—Comparison of program ELM to experimental data.
Program ELM: A Tool for Rapid Thermal-Hydraulic Analysis of Solid-Core Nuclear Rocket Fuel Elements

Author(s)
James T. Walton

Performing Organization Name(s) and Address(es)
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

Sponsor/Monitoring Agency Name(s) and Address(es)
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

Distribution/Availability Statement
Unclassified - Unlimited
Subject Category 20, 16

Abstract (Maximum 200 words)
This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts, and provides a listing of the code.