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ABSTRACT

In a time-dependent three dimensional MHD simulation for cometary plasmas, Schmidt-
Voigt (1989) could observe the formation of condensations in the plasma tail after a 90

degree change in the interplanetary magnetic field (IMF) sweeping over the comet. We
investigated the IMF measurements of the Vega SC in the vicinity of the comet Halley for

90 degree changes in the clock angle and studied the relation between them and optical
observations of condensations in the plasma tail. For the time interval 24 Feb. 86 to 14

Mar. 86, we could not find a correlation between such changes and the release of
condensations from the cometary head.

INTRODUCTION

In a paper by Schmidt-Voigt (1989), a time-dependent three dimensional MI-ID simulation
of cometary plasmas was presented. It studied how features in the plasma tail of a comet

change if conditions in the onstreaming solar wind are modified. Especially, 90 degree
changes in the direction of the interplanetary magnetic field (IMF) were investigated. The
author found the following effects on the modelled plasma tail: at the time where the

magnetic discontinuity sweeps over the cometary head, the plasma density is locally
enhanced due to the additional effect of the magnetic stresses (B.V) B/(4_r) from the

original and modified magnetic field. Because of the draping of the original field in front
of and the new IMF behind the discontinuity, the magnetic stresses of both fields act
together and compress the plasma in front of the comet from two sides. A condensation is

formed and subsequently transported down the tail (see Schmidt-Voigt (1989), fig. 11).

Since the total pressure is cylindrically symmetric with respect to the tail axis and the total
pressure gradient radially away from it is small, the condensation does not expand radially.
Only the (also small) pressure gradient along the tail axis will allow a slow spreading of the
plasma along it, while the condensation is moving down the tail. The condensation can be

seen as enhancement of the column density, for several hours its brightness is even higher
than that of the coma (see Schmidt-Voigt (1989), fig. 12) and therefore possible to be

observed optically.

The Soviet SC Vega-1 and Vega-2 passed near Halley's comet on 6.3042 March 1986 in

8890 kin, resp. 9.3042 March in 8030 km distance and almost continuously measurements
of the interplanetary magnetic field have been recorded by the magnetometer experiment on
board. The relative positions of the SC and the comet around closest approach are shown in
Delva et al. (1991), fig. 1.
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On the other hand, a big effort was made by the IHW to make different types of ground-

based observations of the development of the comet. Especially many plates of the plasma

tail were taken; they show several features like condensatJ6hs moving-down-the tail,

disruptions (so called disconnection events) of the whole _i, etc.
We therefore here investigated the available IMF data, measured directly in the neigh-

bourhood of Halley's Comet, for 90 degree changes in the direction and looked if there is

any correspondance between them and the plasma _! condensations observed.

ANALYSIS OF THE DATA

Magnetomet_eLDa_ _ + : +

Due to the compression of the onstreaming IMF in front of the comet, the-angles of the B -

vectors with the line Sun - Comet are aligned to 90 degree angles, so the cone angle plays

hoionger a role and the Ci_k angie (_0ckahgle=-arct_i03HB3_)- for B_Xin d_&2fi0-ri to the

Sun, Bz to ecliptic north) is the m-ainparameter of the fieidwlaen sweeping o'¢er_t_comet.

In the time series of our IMF data, we searched for 90 degree changes in the clock angle

for an interval of about 20 days around the closest approach of the Vega-1 SC (24 Feb. to

14 Mar. 1986). First, the data where averaged over intervals with only small changes, to

accentuate the global behaviour of the clock angle. Changes between 75 and 105 degrees

were picked out (to allow slight deviations from the sharp 90 degree limit). The time of

occurrence of the change at the SC was corotated to the position of the comet by means of

formula (1) of Delva et al. (1991), using the actual solar wind velocity as measured on the

SC by the PLASMAG-instrument (M. Tatrallyay (1991)). Fgr_ calculation of th_e corotafion
time, differences in ecliptic latitude were negl_ted: it was only looked when th_ same are

of Archimedean spiral that passed over the SC swept over die cx3mei. F6r this ti_me interval,

the difference in ecliptic longitude between SC and comet is small and corotation times are

short, up to about 36 hours at most_

The 90 degree changes in the clock angle are shown in Fig. 1, at the time they are expected

to reach the comet, and in terms of numbers of events per day, with a total of 26 events.

The changes on March 6 are shown only dashed, since the field there is influenced by the

comet and due to the draping some events can be measured several times.

- _ ..... "+

- -Observations of Comet Halley's Plasma _ :-_= +

A detailed list of plasma tail observations of Comet Halley was published by Celnik and

Schmidt-Kaler (1987). These authors observed the plasma tail for a period of more than two
months and identified series of condensations moving down the tail. From their time-

distance data, they determined the time of release of the condensation from the " cometary

head (Celnik et al. (1988)). We took the data of emissions of condensations from their

Table 4. They are here shown in Fig. 2 in terms of number of emissions per day, with a
total of 31 events. -
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Representation of the Data

The IMF data show sometimes several subsequent changes as well as some more "quiet"

times (Fig. 1). The same is the case for the release of condensations from the cometary

head. Due to the slight inaccuracy introduced through the necessary corotation of the IMF

features, a comparison of a single IMF clock angle change with a single condensation seems

to be a risky task. For sake of correctness, we prefer to correlate only the general behaviour

of both parameters: if more 90 degree changes occur over a short time (e.g. per day), we

should expect more releases of condensations at that time. Therefore, we present the two

datasets as histograms of events per day.

Fig. 1: Histogram of 90 degree changes in the clock angle of the IMF, measured by Vega-1

and corotated to comet Halley, in nr. of changes per day; total number of events: 26 (or 30

including the dashed ones).
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Fig. 2: Histogram of releaseof plasma clouds from the cometary head (afterCelnik and

Schmidt-Kalcr (1987), Table 4) in nr. of releasesper day; totalnumber of events:31.
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RESULTS AND DISCUSSION

If a correlation as suggested by Schmidt-Voigt exists, then Fig. 1 and 2 should have similar

shapes: a high number of 90 degree changes should coincide with a high number of releases
of condensations. However, from Fig. 1 and 2 we can see no such correlation: sometimes

many condensations are released without any 90 degree clock angle change (e.g. 27 Feb.).

Sometimes the situation is vice versa (e.g. 11 Mar.) and on other days both types of events

occur.

From the PLASMAG-experiment on the Vega SC of the same period, measurements of the

solar wind velocity show a high spread stream with a sharp velocity enhancement up to
700 km sq to arrive at the Comet on 28 Feb a slow decline to 400 km s q until 6 - 7 Mar.

and again a steep enhancement to 600 s"lkm on 8 - 9 Mar. with decline until 12 Mar.

(M. Tatrallyay (1991)). In Fig. 2, a higher number of releases can be seen on days of high

solar wind velocity sweeping over the comet. This may indicate that the variation of the

solar wind velocity plays a role in the development of plasma condensations.

From the present investigation we conclude that the effect seen in the numerical MHD
simulation is not seen in the observations of the IMF and the plasma tail of Halley's Comet.

An MI-ID simulation with variation of several parameters would be desirable for better

understanding of the influence of the single parameters on the structures in the plasma tail.
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