Asteroids, Comets, Meteors 1991, pp. 253-256 Lunar and Planetary Institute, Houston, 1992

560-90 N93/5191/3

Cometary Implications of Recent Laboratory Experiments on the Photochemistry of the C_2H and C_3H_2 Radicals

William M. Jackson, Yihan Bao, Randall S. Urdahl, Xueyu Song, Jai Gosine and Chi Lu Department of Chemistry University of California Davis, California 95616

<u>Abstract</u>

Recent laboratory results on the photodissociation of the C_2H and C_3H_2 radicals are described. These studies show that the C_2 and C_3 radicals are produced by the 193 nm photolysis of the C_2H and C_3H_2 radicals, respectively. The quantum state distributions that were determined for the C_2 radicals put certain constraints on the initial conditions for any models of the observed C_2 cometary spectra. Experimental observations of C_2 formed by the 212.8 nm photolysis of C_2H are used to calculate a range of photochemical lifetimes for the C_2H radical.

Introduction

The formation of C_2 and C_3 in comets has been an intriguing problem in cometary astrophysics [Jackson, 1976]. Numerous laboratory studies suggest that these radicals cannot be produced as a daughter product by photolyzing a parent molecule. Rather, it has been postulated that they are formed as granddaughters via the following reaction scheme [Jackson, 1976]:

parent ->daughter->granddaughter (1)

Cometary observations of the spatial profiles of C_2 and C_3 radicals have generally supported the idea that these are granddaughter species [Cochran, 1985 and O'Dell, 1988]. Alternate explanations are that these radicals result from ion-molecule reactions in the coma or some type of direct volatilization from grains and the cometary nuclei. These explanations are certainly more complicated than the photochemical formation of granddaughter species. It is important to test this proposed mechanism to determine what limitations must be placed on using it to explain cometary observations. In this paper, we will describe some recent laboratory experiments that do put restrictions on the use of this postulate to explain cometary observations.

<u>C</u>2

The laser-induced fluorescence (LIF), visible emission, time-resolved Fourier transform infrared emission spectroscopy, and photofragment time-of-flight techniques have all been used to establish that the mechanism for the primary and secondary photolysis of acetylene at 193 nm can be summarized by the following two reactions:

$$C_2H_2 + hv_{103} -> C_2H^* + H$$
 (2)

$$C_2 H^* + hv_{193} -> C_2(E_{el}, E_v, E_r) + H$$
 (3)

Fletcher and Leone have observed that the C_2H radical formed in reaction (2) is vibrationally excited with several quanta of energy in the bending mode [Fletcher and Leone, 1989]. Earlier it

had been argued that this must be the case, since the C₂H radical has enough internal energy such that a 193 nm photon can be used to excite it to the second excited state in the linear configuration, i.e., the $B^2\Sigma^+$ state [Urdahl, et al., 1988]. Ab-initio theoretical calculations have shown the energies of this and the third excited state decrease when the C₂H radical bends away from the linear configuration of the ground state [Shih et al., 1979]. The energies of these excited states are still not accurately known, but recent experiments in our laboratory suggest that the $B^{2}\Sigma^{+}$, which becomes the $3^{2}A'$ in the bent configuration, must be at about $47,200 \pm 700 \text{ cm}^{-1}$ above the ground state. This number was derived from the observation of $C_2(a^3\Pi_u)$ radicals with the LIF technique when C₂H₂ was photolyzed at 212.8 nm. The error bars arise because the C₂H radical intermediate could have as many as 2 quanta of vibrational energy in the v_2 bending mode. In comets, all of the C2H radicals will be in the lowest vibrational and rotational levels of the ground electronic state. Thus one needs to add 700 cm⁻¹ to the above figure to compensate for the vibrational energy that was present in the laboratory experiments. A correction also needs to be made for the fact that the energy of the C_2H excited state is higher when it is linear than when it is bent. The ab-initio theoretical calculations suggest that this correction could be as high as 8100 cm⁻¹ [Shih et al., 1979]. The experimental observations and the theoretical calculations imply that photons with energies between 47,200 and 55,300 cm⁻¹ will be able to dissociate cold C_2 H radicals in comets.

Maximum photochemical lifetimes can be calculated, with a few assumptions, using the above information and the data on the solar flux reported by Heubner and Carpenter, [1979]. First, it is assumed that the absorption cross section for solar radiation can be replaced by an averaged absorption cross section, $\langle \infty \rangle$. This averaged absorption cross section is then combined with the solar radiation for a variety of different absorption bandwidths. The largest absorption bandwidth corresponds to a long wavelength absorption limit of 210.5 nm, while the smallest absorption bandwidth corresponds to an upper wavelength limit of 180.2 nm. Table 1 shows that the estimated photochemical lifetime can vary from 329 s to 3.8 x 10⁵ s depending on the absorption coefficient and bandwidth. The absorption bandwidth could be limited further if errors could be put on the ab-initio calculations, however the range of lifetimes are certainly within the range of lifetimes required by cometary observations [Fink et al., 1991].

The C₂ products formed in reaction (3) have been observed to contain electronic, vibrational, and rotational energy. In comets, these radicals will also be excited since they will arise from the same excited electronic state of the C₂H radical. Once the C₂ radicals are formed in comets, they will emit radiation in the singlet and the triplet manifolds and populate the various vibrational and rotational levels of the X¹\Sigma_g⁺ and the a³\Pi_u states, respectively [Jackson, et al., 1991]. In the singlet manifold, the laboratory studies have shown that the A¹Π_u, B¹Δ_g, and the B^{'1}Σ_g⁺ states are produced. Radiation from these excited singlet states could produce at least three different rotational and vibrational distributions in the X¹Σ_g⁺ state. Similarly, the laboratory

studies have also shown that C_2 is formed in the $a^3\Pi_u$ and $b^3\Sigma_g^+$ states, so two distributions of vibrational and rotational levels could be present in the $C_2 (a^3\Pi_u)$ in comets. Once the radicals reach their lowest electronic states in the singlet and triplet manifolds, they cannot relax further via infrared emission because the C_2 radical has no permanent electric dipole moment. This argument suggests that the C_2 radical in comets will be formed with two initial vibrational and rotational distributions in the $a^3\Pi_u$ state, and at least three initial vibrational and rotational distributions in the $X^{1}\Sigma_g^+$ state. Modeling of the Swan and the Phillips systems in comets should take into account these initial distributions[Gredel et al., 1989]. C_3

Laboratory studies on allene (CH_2CCH_2), and propyne (CH_3C_2H), using the photofragment time-of-flight and laser-induced fluorescence techniques have shown that the C_3 radical is produced by the following sequence of photochemical reactions at 193 nm:

CH ₂ CCH ₂	$_{2} + hv_{193} \rightarrow C_{3}H_{2}^{*}$	+ H ₂	(4)
CH ₃ C ₂ H	$+ hv_{103} -> C_3H_2*$	+ H ₂	(5)

$$CH_{3}C_{2}H + hV_{193} -> C_{3}H_{2}^{*} + H_{2}$$

$$C_{3}H_{2}^{*} + hV_{193} -> C_{3}(X^{1}\Sigma_{g}^{+}) + H_{2}$$
(6)

LIF spectra taken during the photolysis of allene and propyne at 193 nm show that the rotational distributions of the C_3 ($X^1\Sigma_g^+$) radicals are identical, even though the spectrum obtained using propyne is considerably weaker than it is with allene [Gosine et al., 1991]. Theoretical calculations using RRKM theory suggest that the excited propyne molecules must first isomerize to excited allene before undergoing dissociation. For comets, the importance of this result is that it suggests that the C_3H_2 radical, which is known to be one of the most abundant interstellar molecules, can be photolyzed to form C_3 . It also suggests that the C_3H_2 radical can be produced from a number of different parent molecules.

Conclusions

Laboratory studies on photochemical sources for the daughter radicals that can dissociate to produce the C_2 and C_3 radicals have revealed certain constraints on their formation in comets. The acetylene studies suggest that an initial bimodal distribution of vibrational and rotational levels should be used in any modeling of the Swan system in comets. Limits have been placed on the energy of the upper electronic state of C_2H that may be involved in the production of C_2 radicals in comets. A range of photochemical lifetimes have been calculated for the C_2H radical, and the results are consistent with cometary observations. Any molecule that can dissociate to produce the intermediate daughter radicals C_2H and C_3H_2 will probably lead to the formation of the C_2 and C_3 cometary radicals.

Acknowledgements

The authors gratefully acknowledge the support of this work by NASA under grant number NAGW-903.

Table 1

Calculated C₂H Photochemical Lifetime at 1 AU

Long Wavelength	Averaged Absorption Cross Section			
Absorption Edge	<0>(cm ²)			
(nm)	1×10^{-16} 1×10^{-17} 1×10^{-18}			

LIFETIME, τ , (s)

			• • • • • • • • •	
210.5	329	3290	32900	
200.0	844	8440	84400	
190.5	1683	16830	168300	
180.2	3786	37860	378600	

<u>References</u>

Cochran C.R. (1985) C₂ Photolytic Processes in Cometary Comae, <u>Astrophys. J.</u>, 289, 388-391.

Fink Uwe, Combi Michael R., and DiSanti Michael A. (1991) P/Halley: Spatial distributions and scale lengths for C₂, CN, NH₂, and H₂O, Submitted <u>Ap. J.</u>

Fletcher T.R. and Leone S.R. (1989) Photodissociation dynamics of C_2H_2 at 193 nm: Vibrational distributions of the CCH radical and the rotational state distribution of the A(010) state by time-resolved Fourier transform infrared emission, J. Chem. Phys., 90, 871-879.

Gosine Jaimini N., Song Xueyu, Bao Yihan, Urdahl Randall S., and Jackson William M. (1991) The 193 nm multiphoton dissociation of allene and propyne; Evidence for photoisomerization, in preparation.

Gredel R., van Dishoeck E.F., and Black J.H. (1989) Fluorescent vibration-rotation excitation of cometary C₂, Astrophys. J., 338, 1047-1070.

Heubner W. F., and Carpenter C. W. (1979) <u>Solar Photo Rate Coefficients</u>, LA-8085- MS, Los Alamos Scientific Laboratory, pp 10.

Jackson W.M. (1976) The photochemical formation of cometary radicals, <u>J. Photochem.</u>, <u>5</u>, 107-118,

Jackson William M., Bao Yihan, and Urdahl Randall S. (1991) Implications of C₂H photochemistry on the modeling of C₂ distributions in comets., <u>J. Geophys. Research</u>. 96(E2),17,569-17,572.

O'Dell C.R., Robinson R.R., Swamy K.S.K., McCarthy P.J., and Spinrad H. (1988) C₂ in comet Halley: Evidence for its being third generation and resolution of the vibrational population discrepancy, <u>Ap. J.</u>, <u>334</u>, 476-488.

Shih, Shing-Kuo, Peyerimhoff Sigrid D., and Buenker Robert J. (1979) Calculated Potential Surfaces for the description of the emission spectrum of the C₂H radical, <u>J. Mol. Spectrosc.</u>, 74, 124-135.

Urdahl R.S., Bao Y., and Jackson W. M. (1988) Observation of the LIF spectra of $C_2(a \ ^3\Pi_u)$ and $C_2(A \ ^1\Pi_u)$ from the photolysis of C_2H_2 at 193 nm, <u>Chem. Phys. Lett.</u>, 152, 485-490.