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Abstract

We present images of comet Austin 1989cl in the light of H_O + from which the contribution

of dust continuum and gas coma has completely been removed. We describe the behaviour

of the H20 + plasma in the inner coma where it is reliably observed for the first time.

OBSERVATIONS AND DATA REDUCTION

To study the spatial distribution and temporal behaviour of water ions in the inner coma,

comet Austin 1989cl was observed with our focal reducer/CCD camera and tunable Fabry-

Perot interferometer (FPI) at the lm Cassegrain telescope of Hoher List Observatory in the

period Apt 30 - May 7 1990. On May 7 the comet's heliocentric distance was 0.789 AU

and the geocentric distance 0.453 AU. The phase angle was 105.5 °. The piezoelectrically

controlled FPI has a spectral resolution of 3.7/_. Images were taken at wavelengths of 6203

(one image per night) and at 6199/_ (all other images) to register continuum and the line

doublet at 6198.747 and 6200.030/_ of the 0-8-0 transition of the A?A1 - :_2B1 electronic

system of H20 +. At the lm telescope the angular size of one image element is 1.6 arcsec

which corresponds to approximately 600 km at the comet. The exposure time was 20 min

and the time difference between individual images was 22 - 23 min. In total 25 frames of the

plasma tail were obtained.

A special formalism was applied to correct the spatial modulation of the monochromatic

signal introduced by the FPI and to completely remove the continuum (Bonev and Jockers

1991). The doublet structure of the emission was explicitly taken into account. The images

were absolutely calibrated and converted to column densities. After the full processing cycle

a portion of approximately 2 x 105 km of the cometary images contains useful information.

The images show the spatial and temporal behaviour of the H20 + plasma in the inner coma

where it is usually hidden by the neutral and dust coma emissions. Some examples are

presented below.

DESCRIPTION OF THE IMAGES

The following desciption refers to the whole data set of 25 plasma frames. Figure 1 shows

isocontours of the images obtained May 6 (left side) and May 7 (right side). The lowest

contour corresponds to 1.6 × 10 l° particles cm -2 and each subsequent contour increases by

a factor of _f2. The level of 1011 particles cm -2 is enhanced. The coordinate system is

centered at the photocenter of the raw ion frames (i.e. before removal of the continuum)
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Fig. I: [sophotes of the H_O + coma and inner tail of comet Austin 1989q

Left: May 6, 1990. Right: May 7, 1990. Isocontours increase with factors _}"-2.

The enhanced contour is at 10 n H_O + particles Cm -_.
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and oriented along the solar-antisolar direction. From the big changes between subsequent

images it is clear that the temporal plasma behaviour is only insufficiently resolved.

Around the nucleus there is an "ion coma", i.e. the plasma distribution is extended in a

coma-like fashion and not as narrow as the ion tail itself. Before generation of new rays the

ion coma is particularly extended. The region represented approximately by the enhanced

contour of 1011 particles cm -2, is very flat in contrast with the sharply peaked dust and gas

coma and changes its shape in a characteristic fashion. A two-lobed "boomerang-shaped"

structure resembles the "root" of the youngest tail rays present (see Figure ld and g). When

the rays move towards the tail axis new lobes will form out of the diffuse ion coma at the

outer sides of the old ones. When this happens it seems that the old rays are not anymore

supplied with plasma and their column densities decrease (see Hoffmeister, 1943). Often, but

not always, the old rays will merge. If their density is still sufficient, together with the new

rays they will give the inner contours a three-lobed "mushroom" type appearance (Figure

le). In two cases (both shown, Figure lc and f) the stem of the mushroom disconnects from

the mushroom's hat. A separate ion column density maximum forms and moves down the

tail. The observation of separate maxima demonstrates the close connection between the tail

ray phenomenon and the disconnection events. In the two observed cases the disconnection

occurs tailwards of the nucleus and represents a local column density minimum.

Superimposed on the birth and decay of tail rays are turns of the tail axis. On May 5 we see

tail ray activity only at the lower side of the main tail. It is followed by a downward turn

of the main tail in accordance with a rule derived by Jockers (1985). On May 4 and 7 the

behaviour is mixed i.e. tail rays form on both sides of the main tail alternatingly. On May

6 the tail looks particularly narrow and symmetric. It is possible that the observer happens

to be in the plane of the tail current sheet (see below).

COMPARISON WITH PUBLISHED MODEL CALCULATIONS

Numerical models of several authors show that under stationary conditions the ion tail

becomes increasingly flatter with distance from the nucleus extending more in the plane

perpendicular to the magnetic field, i.e. in the plane of the current sheet. We call this

plane in the following the plasma plane. Already in the plasma coma the plasma density is

enhanced in the plasma plane, perpendicular to the magnetic plane. On May 6 the plasma

tail is narrow and has a large column density. Therefore it is suggestive to assume that at

the time of the exposures, for the outer part of the tail, the observer was located close to

the plasma plane and that the magnetic plane was closely coinciding with the sky plane.

Schmidt and Wegmann (1982) have proposed that ion clouds and associated tail rays may

originate if a solar wind tangential discontinuity with a magnetic field rotation of about

90 ° is swept through the comet. Let us apply this idea to the images of May 6. On the

tailward (right) side, the magnetic field would be in the plane of the sky squeezing the tail

and making it narrow perpendicular to the line of sight and extended along the line of sight,

thereby increasing its column density. On the upwind (left) side the magnetic field is along

the line of sight. As it enters the plasma coma, it is increasingly wrapped around the comet,

sweeping up the plasma and creating an ion cloud. The newly created plasma behind the

discontinuity is separated from the old plasma on the right side by the turned magnetic
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field and is ejected sideways, forming the plasma lobes which later become tail rays. The

described process will also work if the turn of the field is not exactly at right angle.

This idea has been followed up by Schmidt-Voigt (1989), who numerically simulated the

passage of such a tangential discontinuity through acomet_ The mode! successfully produces

a cloud but, because of a hrmted number of grid points m the three-&menslonal numerical
::= -- : : :

grid, the resolution is insufficient to produce the tail rays. One model is available with

a production rate of water of 1029 particles s -1, very close to the one observed for comet

Austin (Festou et al., 1990). Schmidt-Voigt provides a plot of the temporal development of

the maximum column density in the cloud Which is most useful for the =comparison. The

plot refers to our case with the original magnetic field in the sky plane. At the time of

the separation of the cloud from the near-nucleus maximum the peak column density is

2.05 x 1011 cm -2. This agrees with the observed value of 2 x 101i cm -2 (Figure la). We

would, however, expect the model value to be higher, because the model has only one ion

channel and in reality H20 producesseveral kinds of ions from which we Observe only H20 +.

After 72 minutes (Figure ld) the maximum)n the obseryed cloud is ai_ead) by_a factor of

_= 1.26 less than the two maximum lobes close to the nucleus. In the model the cloud

remains brighter than the near nucleus plasma for more than 210 minutes. It seems that

the model underestimates the leakage of plasma into the rays, but there is at least some

qualitative agreement: .......

So far we have discussed the case when the plasma plane turns from along the line of sight

to the sky plane. In the framework of the Schm_dt-Voigt model the opposite case should be

about as frequent. Schmidt-Voigt points out that the cloud represents a real ion concentra-

tion and appears as column density enhancement no matter if the observer is in the plasma

plane or not. If the original magnetic plane is in the line of sight, the associated tail rays

extend along the line of sight and therefore would not be observable. In our data set there

are only two cases when plasma clouds are ejected (Figure lc and f). Both are assocoiated

with tall rays. We have no case of a cloud without rays.
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