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Preface

This quarterly publication provides archival reports on developments in pro-

grams managed by JPL's Office Telecommunications and Data Acquisition (TDA).

In space communications, radio navigation, radio science, and ground-based radio
and radar astronomy, it reports on activities of the Deep Space Network (DSN) in

planning, in supporting research and technology, in implementation, and in oper-
ations. Also included is standards activity at JPL for space data and information

systems and reimbursable DSN work performed for other space agencies through

NASA. The preceding work is all performed for NASA's Office of Space Operations

(OSO). The TDA Office also performs work funded by two other NASA program

offices through and with the cooperation of the Office of Space Operations. These
are the Orbital Debris Radar Program (with the Office of Space Station) and 21st

Century Communication Studies (with the Office of Aeronautics and Exploration

Technology).

In the search for extraterrestrial intelligence (SETI), the TDA Progress Report

reports on implementation and operations for searching the microwave spectrum.

In solar system radar, it reports on the uses of the Goldstone Solar System Radar

for scientific exploration of the planets, their rings and satellites, asteroids, and

comets. In radio astronomy, the areas of support include spectroscopy, very long

baseline interferometry, and astrometry. These three programs are performed for

NASA's Office of Space Science and Applications (OSSA) with the Office of Space

Operations for funding DSN operational support.

Finally, tasks funded under the JPL Director's Discretionary Fund and the
Caltech President's Fund which involve the TDA Office are included.

This and each succeeding issue of the TDA Progress Report will present material

in some, but not necessarily all, for the following categories:

OSO Tasks:

DSN Advanced Systems

Tracking and Ground-Based Navigation
Communications, Spacecraft-Ground

Station Control and System Technology

Network Data Processing and Productivity

DSN Systems Implementation

Capabilities for Existing Projects

Capabilities for New Projects
New Initiatives

Network Upgrade and Sustaining
DSN Operations

Network Operations and Operations Support
Mission Interface and Support

TDA Program Management and Analysis
Ground Communications Implementation and Operations

Data and Information Systems

Flight-Ground Advanced Engineering

Long-Range Program Planning

OSO Cooperative Tasks:

Orbital Debris Radar Program

21st Century Communication Studies

Iil



OSSA Tasks:

Search for Extraterrestrial Intelligence

Goldstone Solar System Radar

Radio Astronomy

Discretionary Funded Tasks

iv
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Precise Tracking of the Magellan and Pioneer Venus

Orbiters by Same-Beam Interferometry

Part I: Data Accuracy Analysis

J. S. Border, W. M. Folkner, R. D. Kahn, and K. S. Zukor

TrackingSystemsand ApplicationsSection

Simultaneous tracking of two spacecraft in orbit about a distant planet by two

widely separated Earth-based radio antennas provides more-accurate positioning
information than can be obtained by tracking each spacecraft separately. A demon-

stration of this tracking technique, referred to as same-beam interferometry (SBI),

is currently being done using the Magellan and Pioneer 12 orbiters at Venus.

Signals from both spacecraft fall within the same beamwidth of the Deep Space
Station antennas. The plane-of-sky position difference between spacecraft is pre-

cisely determined by doubly differenced phase measurements. This radio metric
measurement naturally complements line-of-sight Doppler. Data were first col-

lected from Magellan and Pioneer 12 on August 11-12, 1990, shortly after Ma-

gellan was inserted into Venus orbit. Data were subsequently acquired in February

and April 1991, providing a total of 34 hours of same-beam radio metric observ-
ables. Same-beam radio metric residuals have been analyzed and compared with

model measurement error predictions. The predicted error is dominated by solar
plasma fluctuations. The rms of the residuals is less than predicted by about 25

percent for 5-rain averages. The shape of the spectrum computed from residuals is
consistent with that derived from a model of solar plasma fluctuations. This data

type can greatly aid navigation ofa sec_ond spacecraft when the first is well-known
in its orbit,

I. Introduction

The Venus-relative positions of the Magellan (MGN)

and Pioneer 12 (PVO) spacecraft are currently being de-

termined independently by using Earth-based measure-

ments of the radio signals emitted by each spacecraft.

Simultaneous tracking of the two orbiters provides much

stronger positioning information than is obtained by track-

ing just a single orbiter. The two spacecraft are so close

angularly as seen from Earth that they may be observed
in the same beamwidth of an Earth-based radio antenna.

Radio metric data received at two Earth stations may be

combined to provide an interferometric measurement of

the plane-of-sky position difference between the two space-



craft.Thismeasurement technique, called same-beam in-

terferometry (SBI), is extremely precise due to double dif-

ferencing of common errors along the four ray paths from

the two spacecraft to the two ground stations. SBI mea_

surements made at S-band (2.3 GHz) give plane-of-sky po-

sition change with an accuracy on the order of 10 m at
Venus. A joint solution for the orbits of both spacecraft,

combining Doppler and interferometric observables, pro-

vides up to an order of magnitude better accuracy than

solutions for a single orbiter using only Doppler data.

A demonstration using the Magellan and Pioneer 12

orbiters is in progress to show the improvements to or-

bital accuracy that are provided by SBI, as compared with

single-station Doppler. The first simultaneous data were

supplemented with SBI data, the expected improvement
in orbital accuracy for two orbiters varies from a factor of

two to a factor of ten, depending on data accuracy and

strategy. The Space Exploration Initiative (SEI) proposes
a series of missions to Mars, which will likely involve com-

munications orbiters, mapping spacecraft in low orbits,
rendezvous craft, stationary landers, and rovers. Early de-

velopment of an SBI capability will enhance this mission
set.

The interferometric measurement and its expected con-

tribution to the orbit solution process are discussed in

more detail in the next section. Analytic models for pre-

dicting SBI measurement errors are presented. The acqui-

sition and processing of SBI data from the Magellan and
acquired in August 1990, shortly after Magellran was _-j_ Pioneer 12 orbiters are briefly discusse_. SBI measure-

serted into Venus orbit, during the Magellan orbital check- ment residuals from the August 1990 and February 1991
out phase. SBI data were also acquired in February and data sets are then analyzed and compared with predicted
April 1991. This article describes the data acquisition and errors.

presents an analysis of measurement system errors. An

analysis of orbit solutions derived from these data will be

presented in a following article.

SBI has been employed before, at the very beginning
of the Pioneer 12 mission to Venus. Radio signals emitted

from the four probes released by the orbiter were measured

II. Tracking Strategies and SBI

Doppler measures the line-of-sight range rate between
a Deep Space Station and a spacecraft. An arc of Doppler

data from a planetary orbiter provides a history of the

change in range. Interferometric measurements naturally
by SBI relative to the orbiter radio signal to determine the

complement Doppler. T_he difference in arrival time of aVenus wind speed and direction [1]. A similar determina-
signal at two stations provides a direct measure of the an-

tion was obtained from simultaneous interferometric mea- g]e between the baseline vector joining the two stations

surements of the Vega spacecraft and the balloons that it .... _d'-t_e'-d'irectTon_tot_he_ra_i'o _o_-_. _This, in turn, pro-
dropped off at Venus [2]. Earlier, this technique was used- --v|d-6s'a g_meir-_c measure ot_'th-e_p[ane-of-sky position of

to locate the Apollo 16 Lunar Rover relative to the Lu .... -t]le-_d[o sour-ce _n the_cllrectl-on old,he baseline projected
nar Module [3] and to measure librations of the moon by - - -_--_-- .- ......... • ...............

• • . onto the plane of the sky. ...... _-_....
using signals from the Apollo Lunar Surface Experiments ..... _ __......... _.... - ::_-::_ .... .............

lne L_ppmr ovservame m aenvee xrom measuring the
tions of SBI were of short duration and primarily for sci- --p_a_-6f-th_sp_-cecr_-R_ -c-_r1"e_r m'_-_nal Both Magel-

entific purposes, NASA routinely and continuously tracks - -lan _IPi0n_r'I2-£_:e capab_'0_ t_smitting at S-band

planetary orbiters. Obtaining telemetry and radio metric _.ff-GlCl-z__d X=bg/iN _8:C-G--Hz).- Since phase can be
data simultaneously from two spacecraft at one station of- - _ naeKs-u_e'd" io Wit_hin-£-sma][ r_c_%f a cycle, Doppler
fers tremendous efficiency advantages. If, in addition, the ........................ _ ......

_s precise enough to sense sul_nu_meter-level changes in
two spacecraft are also simultaneously observed at a sec- - - lfffe=o-r--s]_l_t r£_e-_'_[t_is'-geg_-a][_ not possible to utilize

ond, distant station during the mutual visibility period, - - the full precision ot" Doppler since neither media fluctua-
then improved orbital accuracy results. Improved accu-

racy may increase science data return or reduce the total

tracking time necessary to maintain a specified level of

positional knowledge. The demonstration with Magellan

and Pioneer 12 is the first step toward developing an oper-

ational capability for SBI data acquisition within NASA's
Deep Space Network.

SBI system errors and the application of SBI to the

positioning of planetary rovers, landers, and orbiters have

been described previously [5-8]. When Doppler data are

tions nor spacecraft dynamics can be modeled to the mil-

limeter level. The SBI observable (Fig. l) is also derived

from measuring the carrier phase. The SBI observable

is the phase, first differenced between stations and then

differenced between spacecraft. Errors in the line-of-sight

phase measurements are greatly diminished by double dif-

ferencing. The doubly differenced phase, A_¢, is given

approximately by

A A_¢ = (B sin O)AO



where

-- the signal wavelength

B = the length of the baseline

8 = the angle between the baseline and the direction

to the spacecraft

A8 = the difference in 0 for the two spacecraft

The angular separation between spacecraft is measured

with an accuracy given by the doubly differenced phase ac-

curacy times the wavelength divided by the baseline length

projected onto the plane Of the sky. The plane-of-sky po-

sition accurac F (linear distance at the spacecraft) of an
SBI measurement is equal_ to the Earth-spacecraft distance

times the angular accuracy. For millicycle-phase accuracy,
intercontinental baselines, and an Earth-spacecraft dis-

tance of one astronomical unit, the position accuracy is
on the order of 1 m. The combination of complementary

Doppler and SBI data allows for dramatic improvement in

orbital accuracy as compared With Doppler alone. Actual

improvement in ai:_uracy Will besensitive to where'in the

orbit the data are acquired.

Because the SBI observable is obtained from the Carrier

phase, there is an integer cycle ambiguity in the SB! mea-

surement. A priori knowledge of orbiter positions will gen-
erally be inadequate to resolve this ambiguity. Thus, SBI

measures the change in plane-of=sky position, rather than

absolute position, just as Doppler measures the change in

line-of-sight position. An SBI bias, common to all da_a

points in a continuous arc, must be estimated. If the er-
ror in the estimation of the bias is significantly less than

one cycle, it may be possible to fix the integer cycle, thus
strengthening the data set. All instrumental effects not
common to both spacecraft signal chains must be cali-
brated if the bias is to be fixed.

The orbits of both spacecraft are _esti_mated together

when using SBI data. The Pioneer 12 orbit is less per-
turbed by Venus gravity-field mismodeling than is the

short-period Magellan orbit. For example, given a good

orbit for Pioneer 12, SBI data will geometrically trans-

fer position _ccuracy to Magellan, independent of gravity
mismodeling. On the other hand, if Magellan is tracked

much more frequently than Pioneer I2, then the SBI data

improve the Pioneer 12 orbit by tying it to the relatively

well-known Magellan orbit. In general, the signature in
SBI data will provide information to improve the orbits of

both spacecraft.

Currently, for operational tracking of either Magellan

or Pioneer 12, one Deep Space Station is in two-way corn-

munication with one spacecraft. The station transmits a

signal that is coherently transponded by the spacecraft and
received back at Lthe transmitting station. The resulting
measurement is referred to as two-way Doppler; orbit de-

termination relies primarily upon this measurement. Orbit

solutions for Magellan also make use of Doppler data re-
ceived simultaneously at two stations and then differenced

[9]. This data type, known either as narrowband VLBI

[10], or more recently as differenced Doppler [11], has in-
formation content similar to that given by SBI, but is less
accurate since measurement errors are not reduced by dou-

ble differencing. For the SBI demonstration, Doppler data
were acquired in the two-way mode from both Magellan

and Pioneer 12, at separate stations. SBI data were ac-

quired in an open-loop mode by using the Narrow Channel

Bandwidth (NCB) VLBI System [12]. The NCB record-

ings were normally made on a noninterference basis at the
Deep Spade Stations scheduled for operational Magellan

tracks. For some passes a separate station was scheduled

for the purpose of recording with the NCB system. SBI

data were acquired while both spacecraft were transmit-

ting in the two-way mode, except for two passes when

Magellan data were acquired in the one-way mode. The

spacecraft onboard oscillator is the frequency reference for
one-way Doppler and SBI. Because the received spacecraft

signals are differenced between two stations, the SBI data

accuracy does not depend on whether the tracking mode

is one-way or two-way.

To realize advantages in efficiency by using SBI, it is of

paramount importance to receive data from two or more

spacecraft at a single station, with a second station to

be used only during the baseline overlap periods. This

mode of operation ea!ls for replacing some or all of the
two-way Doppler used_for orbit determination with one-

way Doppler so that multiple uplinks are not required,
and i_t cal_ for simultaneous reception of telemetry from

two spacecraft at one station. This is currently impractical
for two reasons: (1) The oscillators on board the Magel-

lan and Pioneer 12 spacecraft have insufficient stability

to make one-way Doppler a viable alternative to two-way

Doppler 1 and (2) the Deep Space Stations are configured

to process only one telemetry signal stream at S-band and
only one telemetry signal stream at X-b_.nd. In fact, dual

support passes have been scheduled during which a sin-
gle station receives Pioneer 1_2 telemetry at S-band and

Magellan teIemetry at X-band, but Doppler data are gen-

1 D. Engelhardt, "Suitability of the MGN Onboard Auxiliary Os-

cillator for One-Way Doppler Data Generation," JPL Interoffice

Memorandum 314.6-695 (internal document), Jet Propulsion Lab-

oratory, Pasadena, California, July 28, 1986.
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erated for only one spacecraft. 2 Future developments are

expected to allow the DSN to fully realize the increased

efficiency which SBI makes possible. Improvements to the

stability of flight oscillators may enable orbit determina-

tion accuracy requirements to be met by using a combina-

tion of one-way Doppler and SBI data in place of two-way

Doppler data [13]. The implementation of the Block V
receiver in the DSN will enable simultaneous reception of

Doppler and telemetry from at least two spacecraft at a
single station at either S-band or X-band. 3

III. Predicted SB! Measurement Errors

Measurement errors are predicted here for the SBI data

obtained from MGN and PVO. Due to limited spacecraft

battery capacity during data acquisition periods, Pioneer

12 was transmitting at S-band only, while Magellan was

usually transmitting at both S-band and X-band. SBI
data could be generated only at the S-band frequency,

but the dual frequency downlink on Magellan was useful

for characterizing charged particle delays. Measurements

were compressed to either 2-sec, 20-sec, or 5-min averages

over the i:hr (typical) data arcs. Formulae for error pre-
diction are developed that apply to arbitrary geometries

and arbitrary frequencies. Solar plasma and instrumental

phase shifts within the receiver are the two errors that are

least perfectly canceled by double differencing, and gener-
ally they are limiting error sources for SBI measurements.
These two error sources will be discussed in detail. For

S-band measurements, the Earth's ionosphere is also a po-

tentially significant error.

Distinction is made between (1) noiselike errors, which
are random over a data arc and decrease with averaging

time, and (2) errors that appear as slow drifts over a data

arc. For this experiment, a constant measurement bias

does not contribute an error, since an SBI data bias will

be estimated for each data arc. Error predictions for SBI
observables are given in picoseconds. One picosecond of

time delay corresponds to 0.0023 cycle of phase at S-band,

or to 0.0084 cycle of phase at X-band. Also, one picosec-

ond of time delay corresponds to an angle of 37.5 prod over
an 8000-km baseline, or to a transverse position of 8 m at

1.4 AU. Measurement errors are predicted for S-band SBI

2 Deep Space Network Teat and Training Plan, Magellan/Pioneer-

IP. Simultaneou, Support (MPSS), JPL 870-176 (internal docu-

ment), Jet Propulsion Laboratory, Pasadena, California, August

20, 1990.

:;Deep Space Communications Complex, Block V Receiver Imple-

mentation Task, Volume 5: Functional Requirements, JPL 803-112

(internal document), Jet Propulsion Laboratory, Pasadena, Calg

fomia, May 1, 1991.

observables for the geometries of August 1990 and Febru-
ary 1991. For comparison, error predictions are also given

for X-band SBI observables for the geometry of August

1990. The assumptions used in the error analysis are sum-

marized in Tables 1-4. A histogram of error contributions

is shown in Fig. 2. All errors are one-sigma.

At S-band, the signal measured for SBI is the carrier

from PVO and the carrier signal transmitted from either

the high-gain antenna (HGA) or medium-gain antenna

from MGN. The S-band carrier signals are separated by
about 4 MHz in frequency. At X-band, the signal mea-
sured for SBI is the carrier from PVO and the -16th har-

monic of the high-rate telemetry subcarrier from Magel-

lan. The -16th harmonic is chosen as the Magellan X-
band reference signal because it has adequate power and is

separated by only 0.1 MHz in frequency from the PVO X-

band carrier, whereas the Magellan X-band carrier is offset

by 15 MHz from the PVO X-band carrier. Magellan was

transmitting at S-band from its medium-gain antenna on
August 11-12, 1990, and was transmitting dual-frequency

S- and X-band downlinks from its HGA in February and

April 1991.

A. Syste m Thermal Noise _

TIae ' sampled radio band will contain both the space-

craft signal and also the ground-receiver generated noise,

which is proportional to the system operating tempera,

ture. The system noise error depends on the ratio of re-

ceived signal power to system noise power. The voltage
signal-to-noise ratio (SNR) for one-bit sampling is given

by

where ['Tone is the received spacecraft tone power, No is

the system noise power in a 1-Hz bandwidth, and Tob, is
the averaging interval (in seconds). The'SB!thermal noise

error is given by

!

fSBI =
SNRvxf_F 1 2 2S N Rv 2f'_F2

psec

where SNRvI and fRri are, respectively, the SNRv and
radio frequency in hertz for spacecraft i. The leading v_

accounts for two stations. A link analysis showing the re-

ceived signal power and resulting voltage SNR for 1-sec

integration is given in Table 4. Recorder data are time-

multiplexed between spacecraft, so that 1 sec of data is



recordedforeachspacecraftina2-sec interval. The SNRv

for 20-see averages is _ x SNRv, I,,_, and the SNRv

for 5-min averages is _ x SNRvAaec. System noise

is a random error source. Though not decreased by sta-

tion differencing or spacecraft differencing, system noise is

reduced as averaging time increases.

B. Instrumental Phase Shifts

The instrumental phase response of the receiver system

is characterized predominantly as a group delay: The in-

strumental phase shift is a linear function of the frequency

of the received signal. Deviations from linearity due to
dispersion take two forms: a curvature that slowly varies

with signal frequency and a much more rapidly varying

"ripple." SBI measurements are affected in a systematic

way as the Doppler shift causes the received signal fre-

quency to sweep across the passband. Phase shifts due

to instrumental group delays and clock offsets are referred
to as linear systematic; phase shifts due to bandpass cur-

vature are referred to as nonlinear systematic; and shifts

due to the deviation of the system phase response from a

smooth phase response are referred to as phase ripple.

1. Linear Systematic. The time-dependent station-

differenced phase shift ¢i(t) for a single spacecraft due to

instrumental group delays and station clock epoch offsets
can be shown to be 4

¢i(t) =fRv (v(t)rl + _(t)_r_Zo¢k - 6r_to_t) + Aea cycles

where fRF is the transmitter frequency (in hertz); v(t) is

the interferometer fringe frequency (in sec/sec);/_(t) is the

line-of-sight range rate to Station 1 (in sec/sec); rl is the

instrumental group delay at Station 2 (in seconds); _fT"ctock

is the error in modeling the clock epoch offset between

stations (in seconds); and Aeh is a constant instrumental

phase shift (in cycles). Note that v(t) is the line-of-sight

range rate differenced between stations. The term p(t)

refers to Station 1, and the term v1 refers to Station 2,
due to the convention that was used to select a clock ref-

erence point. The phase shift ¢I(0 causes an SBI error
because the model for spacecraft-received phase does not

account for certain instrumental delays and, of course, for

an unknown clock offset. A constant phase shift is ab-

sorbed by estimating an SBI data bias. SBI errors will be

induced by a change in et over the data arc, which is not
common to both sources. The change in ¢I over a data

arc due to the change in v and _ is

4 j. S. Border, "Analysis of Clock and Instrumental Group Delays in

AVLBI Observables," JPL Interoffice Memorandum 335.1-90-002

(internal document), Jet Propulsion Laboratory, Pasadena, Cali-

fornia, January 5, 1990.

5¢I = fSF (6vrt + _/_r_ook) (1)

The interferometer fringe frequency v, approximately

given by the Earth rotation rate times the baseline length
divided by the speed of light, is Mmost independent of

spacecraft velocity for a distant spacecraft. The change in

v over a pass may be 6v = 0.3 psec/sec. The instrumental

group delay vl is about 25 #sec. But _fv is almost the same
for two spacecraft at Venus, the difference being on the or-

der of 1 nsec/sec. This makes the first term in Eq. (1) an

insignificant SBI error. The change in line-of-sight range
rate _f_ will be distinct for each spacecraft, unless they

share an orbit (e.g., lander and rover). For SBI data arcs

acquired in August 1990, the maximum change in _fp oc-

curred for Magellan and was 22 psec/sec. A clocklike off-
set between stations can be measured with subnanosecond

precision by making interferometric observations of natu-

ral radio sources. However, the term 6rcto¢_ above refers to

the error in knowledge of time tags. Currently this knowl-

edge is on the order of 0.1 psec. Ambiguities in instrumen-

tal calibrations have prevented absolute time-tag synchro-

nization at the precision of the measurements. This is not

a fundamental limitation; nanosecond-level synchroniza-

tion is entirely feasible [14]. The second term in Eq. (1)

is one of the largest SBI errors; improved synchronization

is, in fact, required to reduce this error source. The SBI

error due to linear systematic effects is given by

eSBI = 10126p 6v,_ock psec

This error changes slowly over a pass, as _5changes.

2. Nonlinear Systematic. The phase response of the

baseband filters has a known systematic curvature. The
curvature is almost the same at each station. The received

baseband frequencies will, in general, differ at each station

due to the rotation of the Earth, so the station-differenced

phase shift will not be zero. The phase shift will change as

the narrowband signal sweeps across the passband. To es-

timate the size of this effect, suppose that the curvature is

quadratic over 2F kHz with a peak-to-peak phase nonlin-

earity of 2A deg. Suppose that the baseband frequencies
at the two stations are separated by _fbb kHz. Then, the

maximum station-differenced phase shift as the received

signal sweeps from -F to +F kHz at Station 1 is

4A6Ab

In August 1990, the Magellan received frequency

changed by about 50 kHz over a 1-hr data arc, while the



PVOreceived-frequencychanged by less than 3 kHz. The

peak-to-peak nonlinear phase response over 50 kHz is esti-

mated: t0 be 2 deg for the open-loop receiver system used

[15]. The offset inbaseband frequencies between stations

was 4 kHz for data acquired in August 1990. This gives a

phase shift of _¢, = 0.64 deg.

The SBI error is given by

esm = 101:6¢_/360 deg psec
/RF

This error varies slowly, as the line-of-sight range rate
varies, and does not cancel between spacecraft. The er-

ror can be made smaller by either modeling the curvature

of the passband or by offsetting station mixing frequen-
cies-so that baseband frequencies will be nearly equal. For

data acquisitions in February and April 1991, station mix-

ing frequencies were offset, virtually eliminating the error
due to bandpass curvature at baseband. There also is an
error of this form due to curvature at RF and IF, which

is not eliminated by offsetting station mixing frequencies,

though the magnitude of this curvature is estimated to be
smaller than the curvature at baseband by a factor of ten.

3. Phase Ripple. The phase ripple e¢ for the open-
loop system used to record the SBI data is estimated to

be 0.5 deg [15]. Most of the ripple comes from the base-

band filter, though RF and IF components also contribute.
Variations of +0.5 deg away from the smooth systematic

curvature of the bandpass occur over scales of a few kilo-

hertz. Thus, this error is generally independent for each

spacecraft and each station, since received frequencie_ are
not equal. The SBI error is given by

esB! = 10 t2 2e_/360 deg
fRF psec

transmitter frequency is used to convert between calcu-

lated geometric time delays and observed phase delays.

An unknown offset _fT (in hertz) between the transmitter
frequencies of two spacecraft will cause an SBI error of

eSBI = 1012r'7 -- psec
IRF

where 7"(in seconds) is the interferometric delay. For two-

way signals_ where the spacecraft is transponding a signal
uplinked from a ground station, the offset *fT/fRF is a
measureof clock-rate synch_ronization b_etween the _wp sta-

tions t_at are_linkii_g to the two spacecraft_- The 5SN

station clock rates are generally synchr0nized t O 10 -13

sec/sec, -though a few stations have independent clocks

that may have unknown rate offsets as large as 10 -12

sec/sec. The interferometric delay may range .oyer _-_0.02
to +0.02 sec. This error source is insignificant for two-way
transmissions, such as were used for nearly all the Magel-

lan and Pioneer 12 measurements. For one-way transmis-

sions, the spacecraft onboard oscillator frequency must be
estimated to the 0.1-Hz level in order to reduce the size of

this error below one picosecond. -_-........... '_:-=-_: :

D. Baseline

Baseline errors include uncertainties in station location,

Earth orientation, and frame tie. The DSN Earth-fixed

baseline components are known to 5 cm. Calibrations for

UT1-UTC, polar motion, and nutation tweaks are avail-
able about 2 weeks after the measurement epoch that pro-

vides Earth orientation accuracy of 5 cm per component

in the radio frame. Real-time predictions are currently at
the 30-cm level, but may improve to 5 cm over the next

fewyears as Global Positioning System (GPS) satellite
measurements are incorporated into Earth orientation so-

lutions [16,17]. Since the positions of the spacecraft being

tracked are specified relative to Venus, the orientations of

the baselines in the planetary frame are required. Knowl-

edge of the orientation offset between the radio frame and

Received frequencies from Venus orbiters may change the planetary frame is estimated to be 25_ nra_d !18 ]._This

by a few kilohertz in 5 min, or by much less, so t_ll__error cauls a baseIine_ _ error _of_20 __cmper component._o__ ___ __ .........The-rss
is random or systematic, depending on the orbital geom- baseline error (for data processed 2 weeks after real time)

etry. For the MGN-PVO data set of August 1990, the

error component due to Magellan is random, while the er-

ror component due to PVO is slowly varying. For a data
arc that includes the time of PVO periapsis, the error com-

ponent due to PVO is random rather than systematic.

C. Transmitter Frequency Offset

Clock offsets and instabilities at both transmitters and

receivers are nearly eliminated by differencing. But the

is 21.2 cm per component. The SBI error is given by

1012
eSB! = eBL AO psec

c

where eBL is the baseline component error (in centime-

ters), A0 is the angular separation of the two spacecraft

(in radians), and c is the speed of light (cm/sec). This

error term is slowly varying over a pass.



E. Troposphere

Signal path delay through the troposphere is a func-

tion of the zenith tropospheric delay and source elevation

angle. The zenith delay is computed from surface meteo-

rology data, mapped to the line of sight, and applied as
a calibration for each source. The calibration error de-

pends on the uncertainty in the determination of zenith

delay and the differential elevation angle between sources.

Uncertainty in the static component of the zenith delay is

dominated by the uncertainty in determining the wet com-

ponent. Spatial fluctuations in water vapor content also
affect SBI observables.

1. Zenith Bias. At a single station, the error due to

a zenith bias is given by

101_ P*tc°s76 psec
esBI = c sin27 7

F. ionosphere

The ionosphere is a dispersive medium; path delay
scales as the inverse of frequency squared. Charged par-

ticle effects can be eliminated by observing at two radio

frequencies, such as S- and X-band. For single-frequency

data, calibrations are applied based on measurements of

the total electron content (TEC) along the line of sight

from each Deep Space Station to one or more beacon satel-

lites. A mapping function, which depends on elevation an-

gle and on the arc length in the ionospheric shell between

the Earth_sun line and the source ray path, is used to
calculate calibrations for each source. Systematic errors

are caused by uncertainty in the measured TEC to the

beacon satellite, by mapping error, and by a difference in

radio frequency between the two observed sources. Spatial
fluctuations in TEC also affect SBI observables.

1. Zenith Bias. For a single source, the total iono-

spheric delay can be written as

where Pzt is the uncertainty in the measurement of zenith
delay (in centimeters), c is the speed of light (cm/sec),

7 is the source elevation angle, and 57 is the differential

elevation angle between sources (in radians). This error
will be independent at each station and will vary slowly

over a pass. It is calculated for the MGN-PVO dat_ set

from the parameters in Tables 2 and 3.

2. Fluctuations. Two ray paths from a single sta-

tion, separated by A0 tad, may be thought of as haVing
a spatial separation of 3h, AO in the tropospheric shell,

where h, is the effective wet tropospheric height (ht
1 kin) and 3 is the mapping to the typical elevation angle

of 20 deg: An estimate for the effect of spatial fluctua'
tions on two ray paths separated by this distance may be

derived from the structure function of tropospheric delay

developed by Treuhaft and Lanyi [19]. Fluctuations are
described by Kolmogorov turbulence. For small angular

separations (A0 < 1 mrad), expressed as a function of the

angle A0 (in radians), the SBI error=is: given_by :

eSBI = V_ 48A05/s psec

decorrelation time --- (3htA0)/v, see

where vt _ 0.008 km/sec is the tropospheric wind speed
and the leading X/r2 accounts for two stations: For the

August 1990 MGN'PVO data set, with A0 = 0.3 rnrad,

the SB I error is 0.08 psec with a decorrelation time of
0.11 sec. This error is insignificant.

I TEC,
rloN = 1340T psec

JR_ RF .................

where TEC, is the zenith delay in TEC units
(1016 el/mS), f is the mapping function from zenith to

line of sight, and fRr is the radio frequency in gigahertz.

The differential error, after calibration, for two sources ob-

served at one station is then given by

where p_i is the error in the zenith delay measurement (in
TEC units), Of�COO is the spatial derivative 5 of the map-

ping function, and 5fRr (in gigahertz) is the differenc_e

in frequency between the two observed sources. Zenith
delay calibrations were obtained from Faraday rotation

measurements of geostationary satellite beacons and from

dual-frequency group delay measurements of the available

GPS satellites. The zenith error P_i is estimated to be

5 TEC units, To estimate Of/00 for the MGN-PVO data
set, calibrations mapped to line -of sight were examined for

the full Venus visibility window for each station complex.

The maximum change in the mapping function per unit

change in angle was found to be Of�cO0 = 6.9 rad -1. For

5 The mapping function .f depends on-the two-dlmensional angle that

defines the ray path, and it depends on diurnal variations in zenith
TEC. Here, the zenith error pzi is considered to be constant and

O f/O0 is computed as the maximum (over all directions) change in

mapped calib_ration pe r unit angle.



A8 = 0.3 mrad, the first term in Eq. (2) is 2.6 psec. This

term slowly varies over a pass, as the zenith measurement

error and the geometry change. For a typical mapping of

f = 3, the second term in Eq. (2) is 13.2 psec. But this is

the total effect; a constant offset is absorbed by estimation

of an SBI data bias. The SBI data are only sensitive to a

change in the delay due to this term. The mapped calibra-

tion changed by at most 25 TEC units over a MGN-PVO

pass. The change in the calibration error is expected to

be 10 percent of this. Substituting 2.5 TEC units for fp, i

in the second term gives an SBI error of 2.2 psee. The

total systematic error will not be increased by V_ since

neither the spatial derivative of the mapping function nor

the drift in calibration error is expected to be large at both

complexes concurrently.

Ionosphericcalibrationuncertaintyisa potentiallysig-

nificanterror source for S-band_SBI measurements. This

sourceof errorisexpected to be reduced by a factorof2
to 5 when dual-frequencyGPS group-delaymeasurements

become availabie-fro_la fullGPS constellationfor gen-

erationof ionosphericcalibrations.Also, the component

oferrordependent on frequencydifferencebetween sources

can be reduced ifeven one source transmitsdual-frequency

S-X signals.The dual-frequencytransmissionsallow pre-

cisemeasure of the change {nTEC along the lineofsight.

The Magellan spacecrafttransmitted dual-frequencyS-X

signals during theFebruary-and April 19_ SBI-n_easure-

ment sessions. The dual-frequency data were used to check

the externally supplied ionosphere calibrations. For this
data set, the observables were changed by an insignificant

amount when the Faraday/GPS calibrations were adjusted

so that the change in TEC along the line of sight was as

i measured by the Magellan S-X data.

i ......

2. Fluctuations. Temporal fluctuations in the iono-

spheric delay rate, aft_er removal of a nominal calibration,
have been observed to be about 3.8 x 10 -_4 see/see for X-

band signals, for daytime low-elevation observations, and

for averaging intervals from 60 t0.6000 sec. 6 An estimate
for SBI errors due to spatial fluctuations will be derived

"- from this result. The angul-_rar separati0n AO (in radians_

between ray paths corresponds to a spatial separation d (in

kilometers) in the ionospheric shell and to a temporal sep-

aration T (in seconds) between measurements through the
relations

d _ Tvi _, 3hiA0

6 A. J. Mannucci, '_remporal Statistics of the Ionosphere," JPL

Interoffice Memorandum 335.1-90-056 (internal document), Jet

Propulsion Laboratory, Pasadena, California, October 25, 1990.

where vi _ 0.1 km/sec is the ionospheric wind speed, 3
is a typical elevation scale factor, and hi _, 350 km is the

effective height of the ionosphere. Spatial fluctuations in

delay, for angles from 0.006 to 0.6 rad, appear to scale

linearly with the angle, since delay rate variations are flat

over corresponding time intervals. It may be optimistic

to assume that the angular dependence remains linear for

very small angles. Instead, Kolmogorov turbulence will
be assumed. Thus, the error is of the form kAO 5/6 for

small angles. The constant k is defined by making this

expression predict an error for A# = 0.00571 tad, which is
consistent with the corresponding observed temporal vari-

ations for a time offset of 60 sec. The resulting SBI error

is

./_11700^_5 6
_SBI ---- v #,T_.a,; ] psec

decorrelation time = (3hiAS)/vi sec

where fRF is the observing frequency in gigahertz and v/2

accounts for two stations. For the Augus t 1990 MGN-

PVO data set, with A# = 0.3 mrad, the SBI error is 3.6

psec with a decorrelation time of 3.15 sec.

G. Solar Plasma

To model solar plasma-induced fluctuations on ra-

dio signals transmitted by interplanetary spacecraft, the

plasma is imagined to be confined toa th-in screen pass-
ing through the center of the sun and perpendicular to

the line connecting the spacecraft and the Earth. Define a
random function, ¢(x), which-reprints- t_e p_ase fluctu-

ation induced on a radio signal as it penetrates the plasma

screen at a distance z from the eenterofthesun. Then the
quantity _b(b + _:)- _b(z) represents the differential phase
fluctuation induced on two signals that are separated by
a distance b when passlng_through the plasmascreen. For

an interferometric observation, b is the !ength of the pro-

jection of the baseline onto the plasma screen. For an
observation of a spacecraft at Venus from a DSN baseline,

b is typically 4000 kin.

To determine the plasma-induced phase error on inter-
ferometric measurements, the spatial structure function

of phase, D(b), is computed. It is defined as: D(b) -

<(¢ (b + z) - + (z))2>. Here, brackets denote an ensemble

average. The value D(b) may be viewed as representing
the phase variance of a station-differenced phase measure-

ment. The power spectrum of electron density fluctua-

tions, which has been determined experimentally [20], can

be used to calculate a formula for D(b) [21]

8
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D(b) 2.5 X 10-4
: (fRF)2 X (b/vsw)1"65

x (sin(SEP)) -2"4s cycles2 (31

In this expression, fRF is the signal radio frequency in
gigahertz, SEP is the sun-Earth-probe angle, and vsw is

the velocity of the solar wind (typically 400 km/sec).

Knowledge of the structure function enables calcula-
tion of the temporal correlations between plasma-induced
errors on interferometric measurements. First note that

because of the dynamics of the solar wind, the plasma-

induced phase fluctuation, ¢, is actually a function of both

space and time, ¢k = ¢(z,t). If, however, it is assumed

that the plasma turbulence consists of fixed structures that

maintain their shape as they travel radially outward from
the sun at velocity v°w, then _bmay be written as a func-

tion of a single variable _(z, t) = ¢(z - v,wt).

Let A@(b, _) _= ¢(b + z, tl) - ¢(z, t_) and A_(b, 7_) __
¢(b + z, tj) - _(z, tj) be the station-differenced phase at

Earth receive times T/and Tj, along a baseline whose pro-
jection onto the plasma screen has length b. Here, ti =

T/ - [light travel time from plasma screen to Earth], and

tj = 7_-[light travel time from plasma screen to Earth].

(The slight difference in signal arrival time at the two sta-

tions is ignored here.)

Then, the temporal covariance is computed as

(_# (b,_q):,¢ (b,7_))= (f_(b + _,t,) - _(_, t,))

× (-d(b+_,t_)-_;(_,t_)))

= (_(b+_,t,)-$(b+ _,t_))

- (-_(b+ z,ti)_(z,t_))

- (_(b + x,tj)_(z,ti))

Assuming that ¢ is stationary,

_(_, t);_(y,t,)) = (¢(_ - v..t) ¢_(y- v._t'))

= (¢(_ - y - v.w(t - e)) ¢(0))

and

Applying the above two equations yields

(A,_(b,Ti)Aah(b,Tj)) = (ek_)- l12D (vsw(tj -t,) )

- (_2)+1/2D (b - v.w (tj -ti))

- (¢:_)+l/2D (b+v°,_(tj-tl))

+ (¢_) - 112D(v,_,(t_-t,))

= l12D (b - v,,o (tj - t,))

+ l12D (b + v,w (tj-ti))

- D (v.w (tj-ti))

Since D can be computed by using Eq. (3) above, this
expression for the temporal covariance between station-

differenced phase measurements can be used to estimate

the plasma-induced error on an interferometric observable

that is derived from a time average of "instantaneous"
measurements. As an example, consider a spacecraft at

Venus on August 11, 1990, transmitting an S-band sig-
nal that is simultaneously received at Goldstone and Can-

berra. The SEP angle is 21 deg, and the projection of

the baseline onto the plasma screen is 4000 km. The

above model for the solar plasma yields a plasma-induced
station-differenced delay error of 40 psec over 5 min.

The SBI observable is formed from doubly differenced
phase observables. For spacecraft whose separation is less

than 1 deg, double differencing of phase observables can

result in significant cancellation of the plasma-induced er-

ror. Let A2¢(S,b,Tj) be the doubly differenced phase

at time 7_. Here S is the separation (on the plasma

screen) between the signals transmitted by the two space-
craft (Fig. 3 / . Then, the instantaneous phase variance is

A2¢(s,b,_) - {,',,I,(b,_5)}s/c_- {A,I,(b,T_)}s/c=

= {-_(s+_+,,t,)--d(s+,,t,)}

- {_(b+ _,t,) - 7(,,t,)}

The covariance between doubly differenced phase measure-

ments, (z:_ (s, b,T,)Z:¢ (S,_,TA), can be com-



puted by first applying the substitution above and then

proceedi-ng_i_n an analogous fashion to the Calculation

for singly differenced phase measurements. The final result
is

<A2_ (S, b, Ti) A2@ (S, b, Tj) I =, 2D (v,_ (tj - t,)) + D (b + v,_ (tj - ti)) + D (S + v,w (t I - ti))

+ D (-b + v,w (tj - ti)) q- D (-S + v,_ (t I - ti))

- 1/2D (b + S + v,_ (tj - ti)) - 1/2D (S - b + Vow (tj - ti))

- 1/2D (b - S + v°w (tj - ti)) - 1/2D (-b - S + Vo_ (tj - ti))

D can be computed by using Eq. (3) above, so this ex-

pression for the temporal covariance between doubly dif-
ferenced phase measurements can be used to estimate the

plasma-induced error on an SBI observation.

In the August 1990 SBI experiment, the SEP angle
was 21.3 deg. The baseline projection onto the plasma
screen, b, was about 3300 km for _Goldstone--Madrid and

4000 km for Goldstone-Canberra the pr0j-ection of the

spacecraft separation, S, was about 4_0 km during tlae-

Goldstone-Canberra observations Using the _bove model

for the solar plasma, the plasma-induced $Blerror for a 5-

min average is 13 psec at S-band for each baseline. This is
substantially smaller than the 40-psec plasma-induced de-

lay error for a single spacecraft interferometric observable;

because Magellan and PVO are angularly close (separation

,_ 0.3 mrad), plasma-induced phase advances on signals
transmitted by each spacecraft are highly correlated The

predicted SBI error for a 2-see average is 8i psec, while

the error for a 20-see average is 64 psec Errors have high

temporal correlation for averaging times less than 100 sec.

This calculation of the covariance between doubly dif-

ferenced phase measurements assumes that the two space-

craft transmit signals at exactly the same frequency; Ma-

gellan and PVO transmit signals at 2297 Gttz and 2293
GHz, respectively. Since (1) plasma-induced phase ad-
vance is inversely proportional to frequency; (2) the space-

craft frequencies differ by only 0.2 percent; and (3) the

predicted doubly differenced phase error is only about a

factor of three less than the singly differenced phase error,

the temporal covariance of doubly differenced phase mea-
surements differs from the above estimate by less than one

percent.

It should be noted that the separations S and b typ-

ically have components that are not in the solar radial

direction. It is expected that the error for such a me_-

suremeni is Comparable with the error calculated via the

simple model above. Large-scale turbulence (>40,000 km

or, equivalently, hundreds of seconds) is still common to

all four signal paths; small-scale turbulence (less than a
few thousand kilometers or, equivalently, several seconds)

is not common to any of thesignal paths, regardless of the
orientation of S and b. Thus, for averaging times of 2 see

or5 min, the predicted _Jasma-induce.d errp_r op_ the_SBI
measure_ent'sl_oul_no_ de_en_ _s_r'_o_n_y__o_ {_:_ _

t!o_o_f._and _b._ _ ,_ :...................._- :_=_ -.

gular separation would benefit from even greater cancella-

tion of the solar plasma error. SEI encompasses an exten-
sive series of missions to Mars beginning in the late 1990s.

Two spacecraft separated by thousands of kilometers on
the Martian surface would have an angular separation on

the order of 5-10 prad as viewed from Earth; when Mars is

at a 20-deg SEP angle, the plasma-induced phase error for

a 5-rain S-band SBI observation of two landed spacecraft

is less than 2.2 psec.

Solar plasma turbulence can vary substantially from

day to day, potentially resulting in an order of magnitude

variation in plasma-induced phase error at a given SEP

angle [20].

H. Root-Sum-Square Error

The total predicted measurement error is computed as

the rss of individual error terms. It is evident from Fig. 2

that solar plasma fluctuations dominate S-band SBI er-

rors for the geometry of August 1990. This error term

is reduced for the geometry of February 1991, due to the

reduced angular separation between the two spacecraft as
seen from Earth. Errors due to station instrumentation

and the Earth's ionosphere are comparable to the solar
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plasma error for the geometry of February 1991. The pre-
dicted one-sigma rss error for the S-band SBI measure-

ments acquired in February 1991 from Magellan and PVO

is, for averaging intervals of 2 sec, 20 sec, and 5 rain, equal

to 56 psec, 30 psec, and 4.8 psec, respectively. The plane-

of-sky separation between the two spacecraft is thus mea-
sured with a precision of 41 m, after a 5-min integration.
All observables in a continuous data arc will have a com-

mon bias, due to the integer cycle ambiguity in the mea-

surement of radio signal phase.

IV. Data Acquisition and Processing

SBI data may be acquired during the overlap periods
when Venus is visible from either the Goldstone-Madrid

baseline or the Goldstone--Canberra baseline, provided

that both Magellan and Pioneer 12 are transmitting. Nei-

ther spacecraft transmits continuously, however. Magel-
lan, which has an orbital period of 3.25 hr, transmits to

Earth for approximately 2 hr of each revolution. Data are

unavailable when Magellan is making radar measurements

of the Venus surface or performing a star calibration. Pi-
oneer 12 transmission time is limited by the amount of

power available at the spacecraft, which has been decreas-

ing during the last few years. Daily transmission time has
typically been in the range of 4 to 12 hr since August 1990.

SBI data were scheduled when both Magellan and Pioneer

12 were expected to be transmitting during baseline over-

laps.

Doppler data were acquired whenever possible. During

each day, tracking shifts from the DSN complex at Madrid,

Spain; to Goldstone, California; to Canberra, Australia.
Reference orbits were generated separately for each spa£e-

craft by using the two-way Doppler.

A total of 33.5 hr of SBI data were acquired from Ma-

gellan and Pioneer 12; the amount of data acquired during
each experiment set for each baseline is listed in Table 5.

Figure 4 shows the Venus-centered orbits of the two space-
craft for the geometry of August 1990, projected onto the

plane of the sky, and indicates where in the orbits SBI
data were acquired. Pioneer 12 was near apoapsis for all

SBI data acquisitions in August 1990. During February

and April 1991, Pioneer 12 was near periapsis during the
Goldstone-Canberra overlap.

The NCB VLBI System was used to make an open-loop

recording (1-bit samples) of the received signal voltage in
250-kItz channels that contained the S-band carrier signals

from each spacecraft. The Magellan X-band carrier signal
was also recorded in the February and April 1991 experi-

ments. The signal phase was extracted at 1-sec intervals

by digitally mixing a model of the received phase with the
recorded signal voltages. For each spacecraft, the phase

was differenced between stations, then further compressed

to either 20-sec or 5-min averages. Residuals were obtained

by removing a model based on the reference trajectories

and by applying calibrations for tropospheric and iono-

spheric delays. Tropospheric calibrations were based on

surface meteorological data, and ionospheric calibrations
were based on either Faraday rotation measurements or

dual-frequency GPS satellite measurements. SBI residu-
als were then obtained by differencing between spacecraft.

Using two-way Doppler and SBI, a simultaneous solution

for the orbits of both spacecraft was then generated. For

the purpose of examining measurement errors, residuals

were recomputed with respect to the new spacecraft or-
bits.

V. Analysis of Measurement Residuals

The magnitude of measurement errors and the charac-

terization of correlations among measurements are impor-

tant inputs to the orbit determination process. SBI resid-
uals are examined here in an attempt to validate the error

budget. Since the spacecraft orbits were fit to the SBI

data as well as to the longer Doppler data arcs, it is pos-

sible that systematic SBI measurement errors have been
absorbed into the spacecraft orbits. Checks of orbit con-

sistency and orbit prediction will be necessary to resolve

this issue. Here, examination is restricted to residuals of
individual data arcs.

Residuals of 2-sec averages are displayed in Fig. 5 for
the longest contiguous data arc acquired in August 1990.

The geocentric angular separation of the two spacecraft is

also shown. The predicted one-sigma error is 82 psec for

2-sec averages. The rms of the residuals is less than the
prediction by about a factor of three at this time scale.

When data are further compressed to 5-min averages, the
rms is less than the predicted error of 14 psec by about 25

percent.

Residuals of 20-sec averages are shown in Fig. 6 for

SBI data acquired on the Goldstone-Canberra baseline

on February 17, 1991. A dramatic drop in the point-to-

point scatter occurs where the angular spacecraft separa-

tion (also shown in Fig. 6) reduces from 100 to 30 prad.
This is believed to be the result of a more complete can-

cellation of solar plasma effects. Angular spacecraft sep-
arations below 100 /lrad did not occur during SBI data

recordings in August 1990.

Figure 7 shows residuals of 20-sec averages for SBI data

acquired on the Goldstone-Canberra baseline on February
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20, 1991. The variation in angular separation over this
data arc is comparable to the variation over the data arc

displayed in Fig. 6, yet the apparent reduction in point-to-

point scatter is much less dramatic at the point of closest

angular approach. This may be due to temporal varia-

tions in solar wind intensity or to geometric factors not
accounted for in the solar plasma error model developed

here. But, for both the February 17 and the February 20

data arcs, the rms of residuals for 20-sec averages is less

than that predicted by the error budget. The rms for
February 17 is 29 psec; the rms for February 20 is 18 psec;

while the error budget prediction (assuming 90-/_rad an-

gular separation) is 30 psec.

According to the measurement error budget, solar

plasma is the dominant error source at S-band frequencies

for most geometries. Without dual-band measurements, it

is difficult to separate dispersive and nondispersive errors
in the residual phase; one method of determining whether

the measurements are consistent with the error budget is

to examine the power spectrum of the doubly differenced
residual phase to see whether it conforms to the behavior

expected of the solar plasma. Radio scattering experi-

ments with the Pioneer and Viking spacecraft [20,22] have

established that the one-dimensional power spectrum of

solar plasma-induced phase scintillations follows a power

law of the form P_(f) proportional to f-_.sh. Since the
SBI observable is formed by doubly differencing four line-

of-sight phase measurements, the form of the spectrum for

the SBI observable will be somewhat modified; differencing

the signals acts as a crude high-pass filter.

The function ¢(z - v,wt) has been defined in Section
III.G as representing the plasma-induced phase advance

on an individual signal traversing the plasma screen at

a distance z from the sun at time t. Define _,(t) =

¢(z - vsj). Then _,(t) represents the temporal phase
fluctuations induced by the plasma at a distance x from

the sun. The power spectrum of the temporal phase
fluctuations is the Fourier transform of the autocorrela-

tion of _. The power spectrum is of the form Kf -2"65,

where the value of the constant K depends on the dis-

tance z, or equivalently, the SEP angle. For a space-
craft at a 20-deg SEP angle transmitting a 2.3-GHz signal,

P_(f) = 3.9 x 10-sf -26s cycles2/ttz [20]. To represent a

doubly differenced phase measurement, define a new func-

tion, _(t) = _,:(t+rs+r_)-_(t+rs)-_o_(t+_)+_,,:(t),

where rb is the length of the baseline projection on the

plasma screen, b, divided by the solar wind velocity, and

rs is the projection of the spacecraft separation on the

plasma screen, S, divided by the solar wind velocity. The

power spectrum of _, can be derived by Fourier transform-

ing the autocorrelation of _x. The result is given by the
following expression:

P_,(f) = 2P_,(f)[2 - 2 cos(27rrbf)

-- 2 COS(2_vTsf) "4- COS(27r(_ 4" Ts)f)

+ cos(2.(, - rs)/)] (4)

Note that when f is small, as compared with 1/r_ and
1/rs, a Taylor series expansion of the cosines in the above

equation shows that P_,(f) is proportional to f+1.35. For
higher frequencies, the power spectrum follows a power
law of the form f-2.65, which is modulated by cosines.

For the SBI experiment in August 1990, rb and rs were

typically 10 see and 75 see (here a solar wind velocity of

v,_ = 400 km/sec is assumed). Using these values, Eq. (4)

is plotted in Fig. 8 with the power spectrum of SBI resid-
uals from the Goldstone-Canberra data arc on August 11

[note that in this figure, the cosine minima that occur in

Eq. (4) have been suppressed, and only the envelope of
the theoretical spectrum is shown]. The experimental and

theoretical spectra are qualitatively similar, though the

experimental spectrum is not as strongly suppressed at

low frequencies as is the theoretical spectrum. Other error

sources in addition to solar plasma may be increasing the
magnitude of the experimental spectrum at the lowest fre-

quencies. Both spectra have a "knee" at close to 0.01 Hz

(note that vsw/S = 0.013 Hz). The theoretical spectrum is

about one order of magnitude larger than the experimen-
tal spectrum for higher frequencies; this is consistent with

the factor of 3 difference between the predicted phase error

and scatter of the SBI residuals at short averaging inter-

vals. This discrepancy could reflect either daily variation

in the solar wind turbulence or it may suggest that the

model for plasma-induced doubly differenced phase scin-
tillations needs to be renormalized. The acquisition of

additional data, particularly dual-band data, is needed to

help resolve this issue. Figure 8 also shows the predicted
spectra of the errors due to system thermal noise and the

ionosphere. The measured spectrum is in good agreement
with the predicted system noise effect at the highest fre-

quencies. The ionospheric error spectrum was computed

assuming white frequency noise for lower frequencies and

Kolmogorov turbulence for higher frequencies, with a mag-

nitude consistent with the error budget. The ionosphere
may be affecting the measured spectrum at the lowest fre-

quencies.

The measured spectrum of SBI data residuals and the

spectra of predicted error sources are shown in Fig. 9 for
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its medium gain antenna, and the predicted solar plasma
and ionospheric errors are less for February 20, since the

angular separation between the two spacecraft was smaller
during the February 20 SBI data arc. The measured spec-

trum is again in qualitative agreement with the prediction,

which suggests that error models have been successfully
applied for two different observation geometries.

The SBI measurement error as a function of averaging

interval is displayed in Fig. 10. Curves are drawn for the

predicted error for both the August 1990 and the Febru-

ary 1991 data sets. Points are plotted for the errors as
measured for the August 11 and the February 20 data

arcs. The measured values are about 25 percent less than

predicted for 5-min averages, and about a factor of three

less than predicted for shorter averaging intervals. Good
characterization of measurement errors is more important

at the longer averaging intervals, since orbit determina-

tion will be affected by the errors which remain after data

averaging.

It should be noted that in acquiring the SBI data, the

signals are not simultaneously recorded; the spacecraft sig-

nals from the two spacecraft are recorded in separate chan-

nels which are multiplexed with 1-sec dwells. Time mul-

tiplexing of the channels can conceivably introduce addi-

tional instrumental phase errors that do not cancel when

the spacecraft signals are doubly differenced. For this rea-
son, several phase calibration tones are injected near the

beginning of the instrumental path into each channel. The

phase calibration tone generator is locked to the station's

hydrogen maser, providing frequency stability at the level

of 10 -15 sec/sec for 1000-sec intervals. Calculation of the
power spectrum of doubly differenced phase calibration

tone residuals for the August 1990 data set showed that the

errors contributed by imperfect instrumental cancellation
between channels was insignificant; the power spectrum

of doubly differenced phase calibration tone residuals was

several orders of magnitude below the measured spectrum

illustrated in Fig. 8.

Vl. Discussion

The SBI data acquired in 1990-1991 from the Magel-
lan and Pioneer 12 orbiters at Venus have provided an

initial assessment of SBI measurement errors. The scatter

in the residuals is consistent with predictions for averaging

intervals of 5 min, and less than predicted by about a fac-

tor of 3 for shorter averaging intervals. The error budget
for these measurements, made at S-band, is entirely domi-

nated by solar plasma fluctuations at the shorter averaging

intervals. The plasma error mo_del is based on line-of-sight

observations. The eventual availability of dual-frequency

same-beam radio metric data is expected to provide sub-

stantial improvement of this model for predicting SBI er-

rors.

A single S-band SBI measurement (5-min average) de-

termines spacecraft plane-of-sky separation with an accu-

racy of 40 to 100 m. Measurements made at X-band are

expected to be more accurate by an order of magnitude.
Measurement errors other than solar plasma are not distin-

guishable in the available S-band data set. Additional data

acquisition is anticipated to further examine measurement

system errors.

Demonstration of improved orbital accuracy is essen-

tial to validate the performance of the SBI measurement

technique. Orbits generated using disjointed data arcs,
and various combinations of Doppler, differenced Doppler,

and SBI data, may be propagated to a common epoch and

compared. The radio metric data in hand from Magellan
and Pioneer 12 provide the opportunity to demonstrate the

contribution of the SBI technique toward orbital accuracy

improvement.
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Table 1. Ploneer 12 and Magellan transmitter frequencies.

Transmitter frequency,
S-band X-band

MHz

Radio frequency 2293.81 8410.63

Frequency offset 4.16 0.II

Table 2. SBI measurement error model assumptions.

Source Magnitude

Station clock offset

Zenith troposphere error

Zenith ionosphere error

Baseline component errol _

0.I /Jsec

4cm

5 TEC units

21.2 cm

a Includes station location, Earth orientation, and radio-

planetary frame tie.

Table 3. SBl observatlon geometry.

Component August 1990 February 1991

Venus

Right a#cension, deg 120.3 355.7

Declination, deg 20.8 -3.2

Sun-Earth-Venus angle, deg 21.3 25.8

Distance from Earth, AU 1.563 1.472

Elevation angle, deg

Madrid 15. --

Goldstone 45. 20.

Canberra 15. 35.

Differential elevation angle, mrad

Madrid 0.16 --

Goldstone 0.30 0.07

Canberra 0.16 0.07

Angular separation, mrad

Goldstone-Madrid 0.30 --

Goldstone-Canberra 0.24 0.09

Change in S-band Doppler shift

over data arc, kHz

Magellan 47. 54.

Pioneer 12 2.4 67.
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Table 4. PVO and MGN link analysis, for PVO S-band and X-band oerr]ers, MGN S-bend carrier

from medium-gain antenna (MGA) and high-gain antenna (HGA), end MGN -16th harmonic of

high-rate telemetry eubcsrrler at X-band.

MGN MGN
PVO PVO MGN

Link component S-band S-band
S-band X-band X-band

MGA HGA

Power transmitted, dBm 40.0 27.8 35.5 35.6 42.4

Spacecraft antenna gain, clB 25.2 35.0 18.7 35.9 47.9

Space |oss, 1.5 AU, dB -267.1 -27"8.3 -267.1 -267.1 -278.3

PTone/PTotat, dB -8.4 O.0 -3.5 -7.4 -38.1

Polarization loss, dB 0.0 0.0 -0.5 -3.0 0.0

Receiving antenna gain, dB 56.0 68.0 56.0 56.0 68.0

PTone, dBm -154.3 -147.5 -160.9 -150.0 -158.1

No a, dBm/Hz -182.1 -184.6 -182.1 -182.1 -184.6

PTo,_JNo, dB-Hz 27.8 37.1 21.2 32.1 26.5

PTo,dNo, W/W 603. 5130. 132. 1620. 447.

SNRv,1 sec 27.7 80.8 13.0 45.4 23.9

System temperature 45 K at S-band and 25 K at X-band.

Table 5. SBI data aoqulred from Magellan and Pioneer 12.

Session Goldstone-Madrid, hr Goldstone-Canberra, hr Radio frequency, GHz

August 1990 2 3 2.3

February 1991 0 8 2.3

April 1991 7 13.5 2.3
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Flg. 1. Geometry of $BI measurements.

SYSTEM NOISE

INSTRUMENT, LINEAR

INSTRUMENT,
NONLINEAR

TRANSMITTER
FREQUENCY OFFSET

BASELINE

TROPOSPHERE

IONOSPHERE

[] FEBRUARY 1991 S-BAND

[] AUGUST 1990 X-BAND

• AUGUST 1990 S-BAND

SOLAR PLASMA

PIONEER
VENUS

/_ ORBITER

(_f _ 1_ SOLARWND
/ _1 °'"'cT'°"

//
EARTH \ \_

Fig. 3. Geometry of radio signals traversing the solar plasma.
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0 5 10 15

SBI MEASUREMENT ERROR, psec

Fig, 2. Predicted SBI measurement errors for MGN-PVO for 5-

mln averages. Predlcted X-band errors are shown for comparison

only.
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Application of High-Precision Two-Way Ranging to

Galileo Earth-1 Encounter Navigation

V. M. Pollmeier and S. W. Thurman

NavigationSystemsSection

The application of precision two-way ranging to orbit determination with rel-

atively short data arcs is investigated for the Galileo spacecraft's approach to its

first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz)
ranging dat_ acquired from Galileo indicated that under good signal conditions sub-

meter precision and lO-m ranging accuracy were achieved. It is shown that ranging

data of suflicient accuracy, when acquired from multiple stations, can sense the geo-

centric angular position of a distant spacecraft. A range data filtering technique, in

which explicit modeling of range measurement bias parameters for each station pass
is utilized, is shown to largely remove systematic ground system calibration errors

and transmission media effects from the Galileo range measurements, which would

otherwise corrupt the angle-finding capabilities of the data. The accuracy of the

Galileo orbit solutions obta/ned with S-band Doppler and precision ranging were
found to be consistent with simple theoretical calculations, which predicted that

angular accuracies of 0.26-0.34/_rad were achievable. In addition, the navigation
accuracy achieved with precision ranging was marginally better than that obtained

using delta-diffel;enced one-way range (A DOR), the principal data type that was
previously used to obtain spacecraft angular position measurements operationally.

I. Introduction

The approach phase leading up to the Galileo space-

craft's first Earth encounter (designated Earth-l) provided
a good opportunity to test the viability of high-precision

two-way ranging as an operational radio metric data type.

Two-way ranging data acquired by Deep Space Network
(DSN) stations have been accurate to 15 m or better for

nearly 20 years, depending upon the frequency band and

station-spacecraft radio link characteristics. Such data
have typically been utilized for orbit determination at as-

sumed accuracies of 100-1000 m, due to the effects of

station delay and transmission media calibration errors,

and the influence of small, poorly modeled spacecraft non-
gravitational forces. Since the early 1970s, evolutionary

improvements in the accuracy and stability of timing sys-
tems, station delay calibration procedures, and transmis-

sion media calibration techniques, coupled with more so-

phisticated orbit determination software, now make it pos-

sible to reconsider the use of precision ranging for inter-
planetary spacecraft navigation.

In a recent experiment conducted with radio metric

data acquired from the Ulysses spacecraft, two-way rang-

ing data were processed with a new range data-filtering
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technique that made it possible to successfully utilize the
data at an assumed accuracy of 10 m for the first time [1].

This filtering technique utilized estimated parameters to

explicitly account for and remove residual ground system
calibration errors and solar plasma-induced delays from

the "ranging data. Other factors that contributed to the
success of the Ulysses experiment were the accuracy and

consistency of the DSN station delay calibrations and the
utilization of a new DSN station location set developed by

Folkner and Dewey. 1

The use of Galileo ranging for a second test of the

range data-filtering technique used to process the Ulysses
data was motivated by the earlier results of the Galileo
Venus encounter orbit solutions. During Galileo's ap-

proach to Venus and its subsequent flyby, good signal

strength was obtained from the spacecraft's two low-gain

S-band (2.3-GHz) antennas, yielding point-to-point two-

way range noise (indicative of the precision of the data)
of under 1 m and an apparent accuracy of 10 m or bet-

ter [2]. In addition, the station delay calibrations during
this time period appeared to be of good consistency, show-

ing little variation over the month prior to the encounter.
This article describes an investigation which reexamined
the orbit determination that was utilized for the design

of the last targeting maneuver prior to the Earth-1 en-
counter. A brief discussion of the theoretical basis for the

ability of high-accuracy ranging data to sense spacecraft

angular position is presented, as well as comparisons of
different solutions obtained using combinations of various

data types, including two-way Doppler and ranging, and

ADOR.

!1.Theoretical Background

A simple investigation of the abifity of ranging and

Doppler data to determine the trajectory of a distant
spacecraft can be conducted by analyzing the theoretical

precision with which the geocentric spacecraft motion can
be sensed from one or two passes of data. Similar analy-

ses have been performed previously for range and Doppler

data separately [1,3,4]. The station-spacecraft tracking

geometry is illustrated in Fig. i. The topocentric range,
p, and range-rate, P, can be accurately approximated over

short periods of time (up to roughly 24 hr) in terms of the

geocentric spacecraft range (r), range rate (_), declination

(6), and right ascension (a), as follows:

1 W. M. Folkner and R. J. Dewey, "Radio Source Catalog and Sta-

tion Location Set for Ulysses," JPL Interoffice Memorandum 335.1-
90-0481 Jet Pmpulsion Laboratory, Pasadena, California, Septem-

ber 13, 1990.

p _, r - (r, cos 5 cos H + z, sin 6) (1)

_ ÷+ wr, cos 6sin H (2)

where

r, = stationdistancefrom Earth'sspin axis(spinra-

dius)

z, = stationheight above Earth's equator (z-height)

w = Earth rotationrate (7.3 x 10-5 rad/sec)

H = ag+A-c_

and

a 9 = right ascension of Greenwich meridian

A = station east longitude

From Eqs. (1) and (2), it can be seen that four of the
six components of the geocentric spacecraft trajectory

(r, _, 6, and ct) can be sensed by range and range-rate
measurements. Over the time period of interest, _:, 6, and

o are nearly constant. A determination of the remaining
two coordinates, 6 and &, and hence the complete trajec-

tory, normally requires the acquisition of multiple passes of
data overt a period of several days. The accumulated infor-

mation in each ranging and Doppler pass can be thought
of as a multidimensional measurement of the spacecraft

trajectory, with the statistical combination of several such
measurements yielding a complete determination of the

trajectory.

A simple least-squares error analysis of estimates of

r, ÷, 6, and a, derived from a single pass of range and
Doppler data, can be formulated analytically (refer to the

paper by Hamilton and Melbourne [3] for more details).

For the purposes of this analysis, it is assumed that _, 6,

and a are constants, and that r varies linearly with time.
The information matrix, J, for these coordinates, assum-

ing a tracking pass in which the station-spacecraft hour
angle H varies as -¢ _< H < +¢, can be expressed as

J [oo/o (,., ;.,6,
¢

x [op/0(r, ÷,6, dH

(')/: [apla (,.,¢.,
+

× [ap/o (,.,÷,6, dH (3)
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where

_rp = range measurement noise one-sigma uncertainty

o"b - range-rate (Doppler) measurement noise one-

sigma uncertainty

At = time interval between measurements

In Eq. (3), it is assumed that the time between mea-

surements, At, is the same for both the range and Doppler

measurements. The partial derivatives appearing in Eq.

(3) at some time t, with respect to the geocentric coor-
dinates at time to, where to is assumed to be the time

at which the spacecraft crosses the local meridian of the

tracking station, are as follows:

Op
[1, t - to, ro sin 6 cos H - z, cos 6,

O(r, ÷, 6, a) (4)

- r, cos 6 sin H]

ob
0(r,÷,6,a)

_, [0, 1, -wr° sin 6 sin H, -wr° cos 6 cos H]

(5)

The error covariance, A, for r, b, 6, and a at time to is
simply

A _ j-1 .__

2 0

2 0 2

2 0 a_ 0_r6

0 2 0 v_

(0)

where

a_ = war'
(r, sin6)2/1 (7)

2 war (8)
(r, cos 6) 2 f2 (¢' 2 2

Equations (7) and (8) are similar to expressions derived

by Anderson [4] in an earlier analysis of this same prob-
lem (the functions fl and f2 are not shown explicitly, as

they are rather complex). As noted by Anderson, _6 is

proportional to 1/sin 6, and will theoretically become infi-

nite for spacecraft located on the celestial equator (6 = 0).
Hamilton and Melbourne [3] found an equivalent result for

a single pass of Doppler data only. In contrast, aa is seen

from Eq. (8) to be proportional to 1/cos 6, which h_s little
(-4-10 percent) variation over the declination range spanned

by the ecliptic plane (+24 deg), in which most interplan-

etary spacecraft trajectories lie. Although formulas for

ar and _# are not explicitly given, Eq. (6) predicts that

these quantities are determined with a precision limited
only by the precision of the range and Doppler measure-

ments and the number of measurements acquired. Thus,

for the case of single-station tracking, the ability of ranging

and Doppler data to determine the spacecraft declination

depends heavily on the tracking geometry.

The situation described above changes dramatically

wheh an additional pass of ranging and Doppler data from
a properly chosen second station is added into the infor-

mation matrix. Consider a scenario in which a tracking
pass is acquired from a station with z-height, z°, and spin

radius, r,, followed immediately by another pass from a

second station, with z-height, -zs, and spin radius, %.

This choice of station coordinates is not arbitrary; sta-

tions located at the DSN complexes at Goldstone and near

Canberra have spin radii that are nearly equal (to within

about 5 km) and z-heights that are nearly equal in mag-

nitude but have opposite signs. Applying the assumptions
used in the single-pass analysis to this case yields an error

covariance matrix, A, that incorporates the information

matrix obtained from the first pass, designated J1, and

the information matrix from the second pass, J2:

A = [2_ + J_]-I (0)

For the case of 6 = 0, the formula for at obtained from

Eq. (9) reduces to a simple form

a, = _-_z,V --_ (10)

From Eq. (I0), it can be seen that the z-height component
of the baseline formed by the two stations enables a de-

termination of 6, and that this determination is provided

solely by the ranging data. The result for a_ obtained

in Eq. (10) is simply equal to the expression for a_ from

Eq. (8) multiplied by a factor of 1/v_.

A simplified illustration of the result obtained in Eq.
(10) is shown in Fig. 2, for a spacecraft at near-zero dec-

lination (i.e., sin 6 _ 6) being tracked by two stations lo-

cated on a two-dimensional Earth. In Fig. 2, the two sta-

tions shown have z-heights equal in magnitude but oppo-

site in sign, as was assumed in developing Eqs. (9) and

23



(10). The spacecraft declination is sensed through the
difference between the range measured from the two dif-

ferent stations. As explained by Taylor et al. [5], the

greatest accuracy in determining this range difference is
achieved by explicitly differencing sinmltaneous or near-

simultaneous range measurements obtained during peri-
ods of mutual visibility. If the spacecraft dynamics and

the range measurements can be modeled with sufficient

accuracy, though, this explicit differencing is not required;

the two-way ranging data from the different station passes

implicitly contain the information needed to determine/5,

as shown in Eq. (10) above.

Using Eq. (10), the angular precision that can theoreti-
cally be achieved by using two passes of S-band (2.3-GHz)

ranging and Doppler data for 6 = 0 was computed and

plotted in Fig. 3, as a function of the combined tracking
time from the two stations, which were assumed to have

r_ and z, coordinates corresponding to the DSN Gold-
stone and Canberra complexes. The assumed ranging and

Doppler measurement accuracies used to construct Fig. 3

(ap = 10 m and cr_ = 1 mm/sec) are based on previ-
ous experience with Galileo S-band ranging and Doppler

data [2]. In Fig. 3, the total tracking time is assumed to
be divided equally between the two participating stations.

During the Galileo spacecraft's approach to the Earth-1

encounter, typical tracking pass lengths were 9 to 10 hr;

Fig. 3 indicates that for two 10-hr passes, the theoretical
angular precision achieved is about 0.26 prad in declina-
tion and about 0.34/Jrad in right ascension. Subsequent

calculations using Eq. (10) for nonzero values of/5 rang-

ing from -24 to +24 deg (not shown here) yielded re-

sults that were within 10 percent of the data shown in

Fig. 3. In comparison, the angular precision of Galileo
S-band ADOR, the principal data type used to obtain an-

gular measurements during actual Earth-1 encounter nav-
igation operations, was about 0.04-0.08 _rad, depending

upon the tracking geometry [6].

Although not as accurate as ADOR in this experiment,

two-way ranging is a much simpler data type to employ

operationally, in that the data are easier to acquire and

process. In addition, it will be shown Subsequently that
the superior angular precision of ADOR does not always

translate into an equivalent level of navigation accuracy. In

a typical mission operations environment, the scheduling

and postprocessing requirements associated with ADOR
result in data acquisitions every 1 to 2 days at best, and

more often at intervals of 3 to 7 days instead (e.g., 19

ADOR measurements were acquired over the 44-day data

arc used in this experiment; 2750 two-way range mea-

surements were acquired during the same period). This

sparsity of ADOR data sometimes leads to navigation ac-

curacies that are, in an angular sense, poorer than the
theoretical angle-finding capability of the data.

While the theoretical results above show that ranging

can overcome the dependence of Doppler-based angle de-

termination on the tracking geometry, it must be recog-

nized that the effects of systematic range measurement

errors, principally station delay calibration errors, will not

necessarily be reduced through statistical averaging, as
will the effects of random errors. These systematic errors

must be accounted for in some way, or reduced a priori

through the use of very accurate calibrations.

III. Station Delay Calibrations

To account for the effects of systematic bias errors on

the ranging data, pass-specific bias parameters were esti-
mated for each Deep Space Station (DSS) used to acquire

ranging from Galileo. In addition to station delay calibra-
tion errors, which generally do not change very much over

the duration of a single pass, these bias parameters were
intended to represent slowly varying range delays due to

the solar plasma, which are often the largest nongeometric

component of range measurements acquired with S-band

uplink and downlink frequencies [1]. The data were di-
vided into batches so that no two ranging passes from the

same station were included in a single batch. Stochastic

range bias parameters were then estimated for each station

during each successive batch by using a batch-sequential
filter algorithm.

An examination of the station delay calibration data

obtained during the Earth-1 approach phase indicated that
for the 60 days prior to the encounter, the values of station

delay calibrations for the DSN 70-meter subnet (most of

the Galileo Earth-1 approach radio metric data were ac-

quired from this subnet) were very consistent and showed
little day-to-day variation. Great effort was made on the

part of DSN station personnel to maintain the consistency

of the 70-m station configurations during this phase of
the mission. The standard deviation of the station de-

lay calibrations was observed to be just 55 cm, with the

largest variations being on the order of 1.5 m. Since track-
ing passes were obtained infrequently from the 34-m stan-

dard (STD) subnet, the sparsity of station delay calibra-
tion data from this subnet prevented any similar analysis.

The Sun-Earth-spacecraft angle was quite large within the

data arc (greater than 150 deg); therefore, the anticipated

magnitude of solar plasma-induced delays in the S-band
range measurements was 1 m or less, assuming an average

level of solar activity [7]. Based on these considerations,

the stochastic range biases associated with the 70-m sta-

tions were assigned a priori uncertainties of 2 m, and the
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range biases associated with the 34-m STD stations were

assigned a priori uncertainties of 10 m.

IV. Analysis

The Earth-1 orbit determination analysis for this ex-

periment consisted of recomputing the orbit determina-

tion delivery that was used for the design of the final

Earth-targeting maneuver and used several different data
sets and assumed data accuracies. The data arc used for

the solutions extended from October 10, 1990 (59 days
prior to encounter) to November 23, 1990 (15 days prior

to encounter). This time period corresponds to Earth-

spacecraft distances ranging from 50-12.5 million km, and

a geocentric spacecraft declination of 15-13 deg. The radio

metric data acquired included 3740 Doppler points (600-
sec count time) and 2750 range points. Additionally, 19

ADOR observations were obtained, including 11 observa-

tions from the DSN Goldstone-Canberra baseline, and 8
observations from the Goldstone-Madrid baseline. Table

1 summarizes the parameters and assumptions that were
used in the orbit determination filter model. In Table 1,

the estimated parameters are those that were explicitly

solved for in the estimation process; the consider param-

eters were not estimated, but the effects of uncertainty

in these quantities was accounted for (i.e., "considered")
when calculating the error covariance associated with the

solution for the estimated parameters. Also in Table 1,

the radial and transverse components of the solar radia-

tion pressure model refer to the direction parallel to the

Sun-spacecraft line, and the two directions orthogonal to
that line, respectively.

For the set of solutions that was computed, several dif-

ferent choices of data set and data weighting (i.e., speci-
fication of the assumed measurement noise level for each

data type) were exercised in order to determine the effect
of each variation on the predicted aim point for the en-

counter. These solutions were then compared with a highly
accurate (50-m) post-flyby reconstruction of the trajectory

that was computed using both pre- and post-encounter ra-

dio metric data. For the precision ranging analysis, a range
data weight of 10 meters was used. Although the noise

level previously observed in Galileo ranging data was at

the submeter level, a weight of 10 m was chosen in light of

the presence of i- to 2-meter-level systematic ionospheric
calibration errors that could affect data acquired at S-band

frequencies. For comparison purposes, a range data weight
of 1 km was used in several solutions, as this value is repre-

sentative of more traditional methods of utilizing ranging
(1 km was, in fact, the range weight used operationally

for the Earth-1 encounter). Two sets of solutions were

calculated; in the first set a Doppler weight of 1 hlLm/sec
(60-see count time) was used for all solutions, and in the

second set a Doppler weight of 2 mm/sec (60-sec count

time) was employed. The Doppler data weight used during

actual Earth-1 encounter operations was 1 mm/sec, which

is commensurate with the inherent accuracy of the data.

In each set, solutions were constructed using Doppler data

only; Doppler plus 1-km range; Doppler, 1-km range and

50-cm ADOR; and Doppler plus 10-m range. A final solu-
tion was constructed using only 10-m range for comparison

purposes. The stochastic range bias filter model was em-

ployed in all cases involving 10-m range.

V. Results

The results of the analysis are shown in Figs. 4 and 5,

and are summarized in Table 2. Figures 4 and 5 portray

the two sets of solutions obtained with Doppler weights
of 1 mm/sec and 2 mm/sec, respectively, in an Earth-

centered aiming plane coordinate system. 2 The one-sigma

dispersion ellipses associated with each solution (repre-
senting a 39-percent confidence interval) are also shown in

Figs. 4 and 5. For the Earth-1 encounter, the aiming plane

was nearly coincident with the plane of the sky, that plane

which is normal to the Earth-spacecraft line-of-sight, over
the entire data arc. Therefore, the ability of different ra-

dio metric data types to determine the aim point for the

encounter was very closely related to their ability to mea-
sure the geocentric spacecraft angular position over the

time span of the data arc. Thus, this encounter represents

a fairly direct test of the angle-finding capability of S-band
precision ranging data.

The solution utilizing 1-mm/sec Doppler and high-
precision ranging, shown in Fig. 4, resulted in the clos-

est agreement with the post-flyby reconstruction of all
the solutions performed, with an error of 4.2 km in the

aiming plane. This error translates into an angular error
of 0.34 prad, a value that is in good agreement with the
theoretical precision of two Northern and Southern Hemi-

sphere 9- or 10-hr DSN tracking passes, shown in Fig. 3.
This precision range result compares quite favorably with

the 1-mm/sec Doppler, 1-km range, 50-cm ADOR solu-

tion (also shown in Fig. 4), which had an error of 7.8 km

2 The aiming plane or "B-plane" coordinates system is defined by

three unit vectors, S, T, and 1_; S is parallel to the incoming

asymptotic velocity vector, T is parallel to the ecliptic plane (mean
plane of the Earth's orbit), and R completes an orthogonal triad

with S and T. The aim point for a planetary flyby is defined by the

miss vector, B, which lies in the T-R plane, and can be thought
of as specifying where the point of closest approach would be if the

target planet had no mass and did not deflect the flight path.
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(equiv_ent to 0.62 grad); this solution was the best solu-
tion obtained during actual Earth-1 encounter operations.
The relatively poor performance of ADOR is attributed

to the number of velocity changes (due to attitude update

maneuvers and propellant line flushings) that had to be

estimated by the orbit determination filter, and the spar-

sity of the ADOR data set (19 ADOR points versus 2750

range points). Operational complexities associated with

the scheduling of ADOR and the sequencing procedures

used by Galileo made it difficult to acquire a large data set
for the Earth-1 encounter. In addition, ADOR scheduling

difficulties during the Earth-1 approach resulted in a some-

what irregular distribution of ADOR points over the data

arc, which is also believed to have contributed to the rel-

atively poor performance that was obtained. This aspect

of Earth-1 navigation operations is described in greater

detail by Gray [6]. As is evident in both Figs. 4 and 5,
the ranging data, when utilized at a 1-km weight, have

little effect on the Doppler-plus-range solutions versus the

Doppler-only solutions, indicating that at 1 kilometer most
of the information content of the ranging data is being ef-

fectively discarded, except for the direct measurement of

the Earth--spacecraft distance, r.

In the solutions obtained with a 2-mm/sec Doppler

weight (Fig. 5), the Doppler-only and Doppler/1-km range
solutions improved noticeably in terms of the error relative

to the post-flyby reconstruction. Additionally, the disper-
sion ellipses for these two cases were more commensurate
with the actual orbit determination errors than in the 1-

mm/sec Doppler cases. This indicates that with a weight

of 1 mm/sec, the Doppler data were being affected by some
modeling error that was not adequately accounted for by
either the assumed level of random measurement noise or

with the estimated and consider parameter set described in

Table 1. It is believed that the principal error source caus-

ing this behavior was the solar plasma effect (larger than

expected ionospheric calibration errors may have also been
a contributing factor), which was not explicitly accounted

for by the Doppler measurement error model used in the

orbit determination filter, but was accounted for in the

precision range error model by the stochastic bias param-

eters (hence, the good agreement between the aiming plane
error for the 10-m range-only solution and the dispersion

ellipse associated with this solution). As in the solution set

with 1-mm/sec Doppler, the accuracy of the Doppler/1-km

range/ADOR solution with 2-mm/sec Doppler was found

to be poor (0.43 Arad) relative to the theoretical angle-
finding capability of the ADOR data (0.04-0.08/Jrad). It
should be noted here that theoretical studies have indi-

cated that navigation accuracies of 0.08-0.10 /_rad may
be achieved with two-way X-band (8.4-GHz) ranging and

Doppler data, provided that accurate (1 m or better) sta-

tion delay and transmission media calibrations are avail-

able [1].

VI. Conclusions

The results of the analysis indicate that for Galileo

Earth-1 approach navigation, precision ranging data

yielded orbit solutions which, although not in theory as
accurate as those obtainable with ADOR data, were in

fact somewhat better in this particular case. The rela-

tively poor navigation performance of ADOR is primarily

attributed to the sparsity of the ADOR data set and the ir-

regular distribution of these measurements within the data
arc. In addition, it was found that the orbit determina-

tion errors obtained in the Doppler and precision ranging
solutions were consistent with simple theoretical predic-

tions of the angle-finding capability of S-band ranging and
Doppler data. The relative ease of ranging data schedul-

ing and processing procedures makes ranging an attractive
alternative to ADOR, when the nominally higher perfor-
mance of ADOR is not required. Further improvements

(factors of 3 to 5) in the navigation accuracy obtainable
with precision ranging may be achieved through the use of

X-band (8.4-GItz) frequencies, as opposed to S-band (2.3-

Gttz) frequencies, and through improved station delay and
transmission media calibration accuracies.
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Table 1. Galileo orbit determination model assumptions.

A priori Remarks
Model parameters uncertainty, 1cr

Estimated

Spacecraft state vector
Epoch position l0 skm No information

Velocity lO s ]can/see

Solar radiation pressure

Radial 5 percent of nominal
Transverse 1 percent of nominal

Attitude update maneuvers 0.5 mm/sec About 1 every 2 weeks

Propellant llne flushlngs
Magnitude 0.5 mm/sec About 1 every 3 weeks
Direction 15 mrad

Quasar location, for ADOR 100 nrad Conservative

Range bias parameters (1 per station-pass)
DSN 70 m 2.0 m
DSN 34 m STD 10.0 m Conservative

Consider

DSN station locations (correlated covariance), m

Spin radius 0.24
Longitude 0.24

z-height 0.30

Troposphere zenith delay calibration error, cm
Wet 4.0

Dry 1.0

Ionosphere zenith delay calibration error, cm

Daytime 75.0

Nighttime 15.0

Acceleration biases, km/sec 2

Radial (spacecraft spin axis) 3 X 10 -12
Transverse 1 × 10 -12

Earth ephemeris (heliocentric), km
Radial 0.2

Along track 30.0

Out-of-plane 15.0

Earth mass, GM 0.15 km3/sec _

Relative uncertainty
between stations is

approximately 5 cm

S-band values (conservative)

A priori covariance, JPL ephemeris DE 125

DE 125
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Table 2. Comparison of orbit solutions and reconstructed
trajectory.

Case Aiming plane Equivalent
error, km angular error, _rad

1-mm/sec Doppler 27.7 2.22
(no range)
(no ADOR)

l-mm/sec Doppler,
1-kin range 27.8 2.22
(no ADOR)

l-mm/sec Doppler,
10-m range 4.24 0.34 _
(no ADOR)

1-mm/sec Doppler,
1-krn range,
50-cm ADOR 7.8 0.62

2-mm/sec Doppler 15.1 1.21

no range)no ADOR)

2-mm/sec Doppler,
1-kinrange 12.1 0.97
(no ADOR)

2-mm/sec Doppler,
10-m range 6.5 _ 0.52 a

(no ADOR)

2-mm/sec Doppler,
1-kin range,
50-cm ADOR 5.4 0.43

10-m range 7.34 0.58a

no Doppler)no ADOR)

aPrecision ranging solutions.
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The Effect of Tropospheric Fluctuations on the

Accuracy of Water Vapor Radiometry
J. Z. Wilcox

TrackingSystemsand ApplicationsSection

Line-of-sight path delay calibration accuracies of I mm are needed to improve
both angular and Doppler tracking capabilities. Fluctuations in the refractivity of

tropospheric water vapor limit the present accuracies to about 1 nrad for the angu-

lar position and to a delay rate of 3 x 10 -m sec/sec over a lO0-sec time interval for

Doppler tracking. This article describes progress in evaluating the limitations of the
technique of water vapor radiometry at the 1-mm level. The two effects evaluated

here are: (1) errors arising from tip-curve calibration of WVR's in the presence

of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths

for water vapor radiometer (WVR) horns. The error caused by tropospheric wa-

ter vapor fluctuations during instrument calibration from a single tip curve is 0.26

percent in the estimated gain for a tip-curve duration of several minutes or less.
This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated

path delay at a 10-deg elevation per 1 g/cm _ of zenith water vapor column density

present in the troposphere during the astrometric observation. The error caused by

WVR beam averaging of tropospheric fluctuations is 3 mm at a lO-deg elevation per

I g/cm 2 of zenith water vapor (and is proportionally higher for higher water vapor

content) for current WVR beamwidths (full width at half maximum of approxi-

mately 6 deg). This is a stochastic error (which cannot be calibrated) and which

can be reduced to about haff of its instantaneous value by time averaging the radio

signal over several minutes. The results presented here suggest two improvements

to WVR design: First, the gain of the instruments should be stabilized to 4 parts

in 104 over a calibration period lasting 5 hours, and second, the WVR antenna

beamwidth should be reduced to about 0.2 deg. This will reduce the error induced

by water vapor fluctuations in the estimated path delays to less than 1 mm for the

elevation range from zenith to 6 deg for most observation weather conditions.
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I. Introduction

Future missions will benefitfrom spacecrafttracking

with 100-prad accuracy in an angular position. The

Cassiniradio scienceteam requiresa delay-rateaccuracy

of 5 x 10-16 sec/secover 1000 sec for gravitationalwave

searchesusing Doppler tracking.Fluctuationsin wet tro-

pospheric refractivitylimitthe present trackingcapabili-

tiesto about 1 nrad for angular positionand 5 x 10-14

sec/secover 1000 sec for Doppler tracking,which corre-

sponds to a 0.1-mm/sec uncertainty in spacecraftradial

velocity.

Angular tracking is done with very long baseline inter-

ferometry (VLBI), a technique that measures the differen-
tial phase between two DSN antennas of an electromag-

netic signal originating from a radio source. By relating
this measured phase difference to geometrical path delays,

astrometric parameters can be estimated. Inhomogeneities

in tropospheric refractivity cause unmodeled errors in the
path delay at about the 1-cm level for a path delay at

zenith over a period of several hours. This error cor-

rupts angular position estimates at about the 1-nrad level.

To achieve 100-prad angular position accuracy, fluctua-
tions in path delays must be calibrated at the l-ram level

[1,2].

Charged particles (both in the Earth's ionosphere and

in solar wind) are the main source of error for spacecraft
gravitational wave searches using Doppler tracking at S-

band (2.3 GHz) (all missions prior to Galileo). Searches

planned for Galileo at X-band (8.4 GHz) will be limited by
fluctuations in the plasma and the troposphere at about

the same level, a delay rate of approximately 5 x 10 -15

see/see over 1000 sec [3]. In searches planned for Cassini

at K-band (32 GHz), the increased observational frequency
will reduce the plasma-induced error to approximately

5 x 10 -is see/see over 1000 sec. To take advantage of

this increased sensitivity, tropospheric fluctuations must
be calibrated at the submillimeter level.

Water vapor radiometers (WVR's) have been suggested

for measuring line-of-sight path delays due to tropospheric
water vapor. WVR's work on the principle that the radio

power collected by a WVR antenna is proportional to the

brightness temperature of the sky in the antenna point-

ing direction. Path-delay retrieval algorithms relate the

brightness temperatures measured at two (or more) fre-
quencies near the 22.6-GHz water vapor absorption line

to a path delay associated with tropospheric water vapor

along a line of sight in the same direction [4]. Brightness

temperatures at two or more frequencies are required to
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subtract the effect of liquid water absorption from the to-

tal absorption. Unlike water vapor, liquid water does not
affect the refractivity at microwave frequencies.

The ability of WVR's to determine the absolute path

delays, or to track path delay changes induced by tropo-

spheric fluctuations, has been tested recently with mixed

results. 1-3 The accuracy of WVR calibration using radio-

sondes is limited at a level of approximately 10 percent

(which causes a 0.6-cm error for a 6-cm zenith path delay)

due to uncertainties in both the radiosonde data and path

delay retrieval algorithms [4]._ Studies that calibrated

VLBI time series with differenced WVR delays using co-
pointed antennas reported reduced rms residual delays at

high elevations, 3 but the residual delays actually increased

(up to 20 psec, corresponding to a 0.6-cm path delay er-

ror) at elevations below 50 deg. These results strongly
suggest that to meet the future mission requirements,
the character of various error sources that affect the ac-

curacy of water vapor radiometry must be much better
understood.

The accuracy with which WVR's estimate tropospheric

path delays is determined by error sources that include

(but are not restricted to) inaccuracies in calibration of the

WVR gain, uncertainties in the path-delay retrieval algo-

rithms and atmospheric absorption modeling, radiometer
noise, the effect of the WVR location relative to the ra-

dio telescope, and the beam intensity distribution. The

error sources will be discussed later. The errors can origi-

nate in the instrument or in the atmosphere and can cause

bias, scale, or random errors in the retrieved path delays.

The effect of a constant bias on path delays for angular
tracking can be eliminated by differencing between obser-

vations. Biases have no effect on delay rates used for grav-

itational wave searches. Unmodeled variability in spatial

distributions of atmospheric parameters together with the

system noise have been recognized as the principal noise
mechanisms that limit the ability of WVR's to monitor

tropospheric fluctuations. Only recently has it been recog-
nized that for any realistic WVR design, the tropospheric

dynamics will also influence the WVR accuracy.

1T. J. Vesperin], "Staplelon WVR Experlment-Part I: Results,"
JPL Interoffice Memorandum (internal document), Jet Propulsion
Laboratory, Pasadena, California, March 7, 1988.

2 S. Keilun, "Water Vapor RacUometer Intercompaxison Experiment:
Platteville, Colorado, March 1-14, 1991," Final report, JPL Task
Plan 80-3_89 (internal document), Jet Propulsion Laboratory,
Pasadena, California, July 1991.

3C. Edwards, "Water Vapor Radiometer Line-of-Sight Calibration
Capabilities," JPL Interof_ce Memorandum 335.1-90-015 (inter-
nal document), Jet Propulsion Laboratory, Pasadcma, California,
March 30, 1990.



Themain goal of this article is to investigate how the
tropospheric dynamics affect the WVR's ability to track

tropospheric fluctuations. Because WVR's are imperfect
instruments, one of the goals of this article is to quantify

relations between WVlq, design parameters and path-delay

retrieval accuracy. To understand how the errors affect

path delay estimates, an analysis of the effect of WVR

error sources on path delay retrieval is presented. The
article then focuses on two specific errors that arise from

tropospheric fluctuations: errors in WVR instrument gain
calibration from tip curves and errors caused by WVR an-

tenna beam averaging. Tropospheric fluctuations cause

errors in the estimated gain because data at different tip

directions are analyzed using mapping relationships valid

for a temporally constant and spatially homogeneous tro-
posphere. Tropospheric fluctuations cause unmodeled de-

partures from this picture, which induces errors in the es-

timated gain and ultimately in the estimated path delays.

WVR antenna beam averaging causes errors in the esti-
mated brightness temperature in the direction of a radio

telescope because data recorded by the WVR's are beam

averaged around the WVR pointing direction (full beam
widths of the present state-of-the-art WVR's are between

4 and 10 deg/, whereas radio telescopes measure the tro-

pospheric effects along the line of sight to a distant radio

source. The averaging corrupts the accuracy of the esti-
mated brightness temperature in the radio source direction

for all realistic WVR designs.

The article is organized as follows: Section II dis-

cusses how various error sources affect path delay esti-

mates. Some basic equations describing the conversion of

the recorded data to the llne-of-sight path delay are given.
Section III calculates the error in the WVR measurement

incurred by using tip curves in an inhomogeneous tropo-

sphere. This error will exist as long as the WVR's are cal-
ibrated by using tip curves. Section iV studies the effect

of beam averaging on WVR measurements for collocated

antennas. The effects of antenna copointing and beam in-
tensity distribution are discussed. The aim here was not

to derive exact numbers for any specific WVR design but
rather to provide rough error estimates. Section V is a

summary with recommendations for WVR gain stability

requirements and antenna beam width design to comply
with the 1-mm path-delay accuracy requirement, as well

as plans for further studies.

II. WVR Error Sources and Their Effect

on Path Delay Retrieval

To put the above-mentioned effects in perspective, this

section gives an overview of how various error sources af-

fect the estimated path delay. The conclusions of this

overview are summarized in Fig. 1. Error sources result
from inaccuracies in WVR measurements or data inter-

pretation and can cause bias, scale, or random effects in

the retrieved path delay. The effect of a constant bias or

linear trend on the tracking of changes in the path delay

can be eliminated with astrometric parameter estimation.
A scale error is an error that is directly proportional to

the path delay. It is unclear at the present time to what
extent radiometric data reduction can filter out the effect

of a systematic scale error on astrometrlc parameter esti-

mates. Stochastic errors cannot be reduced by parameter
estimation. The effect of error sources on the estimated

path delays can be analyzed by using a path delay retrieval

algorithm that relates the line-of-sight path delay (L_ / due

to water vapor in the troposphere to the brightness tem-
perature (TB) in the same direction. For example, Eq.

(201 of [4],

L_ "- ao + alTB,1 + a2TB,2 (1)

expresses Lv as a linear combination of the brightness tem-
peratures TB,/ (j = 1,2) at frequencies fl = 20.6 GItz

and f_ = 31.4 Giiz. In Eq. (11, aj's are coefficients that

have been determined by a regression analysis of the WVR

data [4]. The value of a0 quantifies the effect of the dry

component of the atmospheric absorption; al quantifies

the effect of water vapor absorption; and the term a2TB,2
(a2 _----al (fl/f_) 2) subtracts the contribution due to tro-

pospheric liquid water from the total absorption (liquid
water causes a negligible path delay 1. For L_ in centime-

ters and TBj in kelvins, typical regression coefficients are

a0 -_ -1.6, al -_ 0.66, and a2 _ -0.3. Typical TBj's
are between 10 and 100 K. The value of Lv scales as

L_(cm) __ 6 NJsinE, where Nv is the water vapor col-
umn density (in g/cm 2) at zenith, and E is the observed

elevation. For typical N_ between 1 g/cm 2 and 4 g/cm 2,
the zenith path delay (L_,_ / is between 6 and 24 cm.

Taking the differential of Eq. (1) determines the error

in the retrieved path delay, 6L_, in terms of errors in the

regression coefficients, 6aj 's, and the errors in TBj's as

2

= +  ( ajT j + aj TB ) (2)
j=l

where the subindex j = 1,2 refers to the WVR frequency

channels. This article focuses primarily on errors in TBj
induced by tropospheric fluctuations. However, for the

completeness of the discussion and because they are so

large, sources of errors in a t's are briefly summarized first.
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Thebiggest errors in aj's come from two sources: (1) inac-
curate modeling of the absorptivity of water vapor, a_ [i.e.,

from errors of the dependence of a_ = a_ (T, p, p, f) on the

ambient temperature T, pressure p, water vapor density p,

and frequency f], and (2) uncertainties in the spatial and

temporal distributions of atmospheric pressure, tempera-
ture, and water vapor and liquid present in the troposphere

during the observation along the line of sight. Errors in the

aj's cause scale errors in L_, of the type ,SL,, __ L,,_Sal/al.
The error caused by inaccurate modeling of a_ (T, p, p, f)

is systematic, about 10 percent for the current absorptiv-

ity models. Atmospheric profile uncertainties depend on
season, site, weather, time of day, and line of sight. The

uncertainties are difficult to model and are the reason why

there is no one-to-one correspondence between the bright-

ness temperature and the path delay. The error caused

by uncertainties in atmospheric profiles is between 2 and

4 percent, depending upon the specific retrieval algorithm
used. Several possibilities pertaining to the feasibility of

reducing the 6aj's will be noted in Section V.

The error in the brightness temperature, STBj, comes

from two sources: (1) the error _STAj in the measured
WVR antenna temperature TAj, and (2) an error in the

interpretation of TAj. The latter contribution to 5TB,j

originates in the fact that WVR's do not measure TB,j di-
rectly, but rather they record a signal, VAj (from which

T.a,j is extracted), and the obtained TAd is used to esti-

mate the brightness temperature TBd. The error 6TA,j
in the WVR-measured TAd can be expressed in terms of
the WVR parameters, as follows: All WVR's use an in-

ternal reference, such as blackbody radiation or a noise

diode, to enable a subtraction of the contribution of the

system temperature from the recorded data. The recorded

VA,j is proportional to the difference between TAd and the

reference load temperature, Trel,

VA,_ = g (TA,j -T.j) (3)

where g is the WVR gain. Inverting Eq. (3) to obtain TAd
and taking a differential of the resulting equation yields the

error 6TA,j in the measured TA,j

6TA,j = _ + 5T_ef - _VA,j
g u

= _VA,.___j.q+ _Tref + _-(T_el - Tad) (4)

Thus, ,STA,j comes from three WVP_ parameters, the
system noise (modeled as the uncertainty in the equivalent

temperature, ,SVA,j/g), and the uncertainties in the refer-

ence load temperature 05Tr,l) and the WVR gain (6g).
Figure 1 shows that for the path delay error to be less

than 1 mm, the noise (or more generMly, any unmonitored

drifts) in all temperature-like quantities must be less than

0.2 K. In practice, the effect of the system noise on path

delay estimates can be reduced (at the expense of time res-
olution) by increasing the signal integration time. As long

as Tref remains constant, the path delay error caused by

using an incorrect value of Trel is a constant bias (whose
effect on astrometric estimates can be eliminated by dif-

ferencing between the observations).

Because the antenna voltage VA,j oc TAd - T_/, the
error caused by 6g [the last term on the right-hand side

of Eq. (4)] consists of two terms. The first is o¢ Trel, the
second is c< TAd. Note that since the typical T,_ I __ 300 K

is bigger than TAj (TAd "" TB,j _-- 10 to 100 K), the pres-

ence of Tre] in VAd enhances the effect of the gain error
(whatever its origin may be) on _L_. By using Eq. (4)

in Eq. (2), the first term (i.e., the term cc Trel) leads
to 5L, o¢ ai T_e! 6gig. For stable gain (i.e., for a con-
stant difference between the estimated and the WVR true

gains), this is a constant bias. For unmonitored gain fluc-

tuations, this is a random error, which, in order to satisfy

the 1-mm path delay requirement (see Fig. 1), must be

i_g/g < 0.08 percent. The second term (i.e., the term
c< TAd) is a scale error, 6L_ _- L_ 6g/g, which is system-

atic for a stable gain and time varying for an unstable gain.
This error depends on the tropospheric humidity and the

observed elevation. For the error to be less than 1 ram, the

gain error must be 6gig < 0.1 sin E/L_,z (where L_,_ is
the zenith path delay in centimeters and L_,_ = 6 cm for a
troposphere with 1 g/cm 2 of water vapor column density

at zenith). Figure 1 shows that for the scale error to be

less than 1 mm at a 10-deg elevation when L_., = 6 cm,
6gig must be less than 0.26 percent. For the error to be

less than 1 mmat E= 6degwhen Lu,z = 24cm, _g/g
must be less than 0.04 percent.

The gain error can originate from severaJ sources. The
most troublesome of these are unmonitored instrumental

drifts on a time scale of 100 to 1000 sec 4's (stochastic
fluctuations on time scales much shorter than the radio

observations can be incorporated into the system noise).
However, since they originate in the instrument, the drifts

should be controllable by improved instrument stabiliza-

4G. M. Resch (Tracking Systems and Applications Section) and
$. Keihm (Microwave Observational Systems Section), personal
communication, Jet Propulsion Laboratory, Pasadena, California,
1981.

s G. Parks, C. Bur, and S. Keihm, "Advanced Water Vapor Ra-
diometer: Definition Phase Study" (internal document), Jet Pro-
pulsion Laboratory, Pasadena, California, November 29, 1990.
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tioninadvancedWVRdesigns.Troposphericfluctuations
areanothersourceof 5g for WVR's cMihrated using the

tip curves. Even though this 6g is stochastic in origin, the

ensuing difference between the estimated and the actual

WVR gains causes a systematic (bias and scale) error in
Lv. The error depends on tropospheric humidity and cal-

ibration strategy and will be calculated in Section III of
this article.

The other contribution to 6TB,j is the error made in in-

ferring TB,j from TAj. The simplest and most often used

relationship between TBj and TAd is that TBd = TAd.
This relationship can be in error because of inaccurate an-
tenna pointing and spatial separation between the WVR

antenna and the radio telescope. Another source of uncer-

tainty is the effect of averaging tropospheric fluctuations

over WVR beam intensity distribution. Section IV de-

rives an expression for the error in the estimated TBj that
was caused by the beam averaging of tropospheric fluctu-

ations for collocated and copointed antennas. The error

will increase with decreasing elevation more rapidly than

L_, i.e., faster than a simple scale error. Since, as a result
of this increase, low-elevation data will be weighted more

heavily than they should be during VLBI data reduction,

astrometric parameter estimates will be impacted.

III. Error in the WVR Gain Estimated From
Tip Curves Due to Tropospheric
Fluctuations

This section presents a calculation of the error in the es-

timated gain (0) of WVR's induced by tropospheric fluctu-

ations during the WVR calibration using the tip curves. 6,7

Tip curves use the elevation dependence of the sky bright-
hess temperature [TB,I ---- TB(Ei), where Ei is the tip

elevation] to calibrate the WVR gain. The WVR gain

is determined by fitting the WVR recorded signal VA,_
(VA,i =-- VA(Ei)). If the elevation dependence of TB,i,

and therefore of VA,I, were known, this calibration proce-
dure would be limited only by thermal measurement noise.

Spatial and temporal fluctuations of atmospheric water va-

por cause the actual distribution of water vapor to depart

from the static distribution assumed in fitting the VA,i's.

6 j. Z. Wilcox, "The Standard Deviation of WVR Gain Estimated

from Tip Curves due to Wet Troposphere Fluctuatlons," JPL

Interoffice Memorandum 335.6-91-032 (internal document), Jet
Propulsion Laboratory, Pasadena, California, December 19, 1991.

r j. Z. Wilcox, "The Difference Between Two Successive WVR Gain

Estimates From Tip Curves due to Wet Troposphere Fluctuations,"

JPL Interoffice Memorandum 335.6-91-033 (internal document),
Jet Propulsion Laboratory, Pasadena, California, December 20,
1991.

Therefore, an error due to tropospheric fluctuations is in-

troduced into the gains estimated from the tip curve data.

All delays calculated with the derived gain will, therefore,
also be in error. In this section, the covariance of the gain
estimates is determined in terms of the covariance of the

tropospheric opacity. This is done by performing a tip-

curve analysis of modeled data and evaluating the opacity

covariance by using the Kolmogorov turbulence model [1]

for the wet troposphere.

A. Tip-Curve Analysis

The tip-curve data were modeled by using the optically

thin tropospheric approximation for the standard radia-

tion transport equation, neglecting the effect of the Earth's
curvature, ray bending, and nonzero WVR beamwidth,

assuming negligible time elapsed during each tip curve

sequence, and neglecting the time variation of all other

model parameters except the tropospheric opacity. The

recorded signal VA,i(t) for tip curve epoch t at elevation

E_ is then expressed as [5]

VA,,(O= g (TB,dt)- T.+)

= g (Tce -r'(O + TM(1- e-'dO) -- T,.,f)

_--g (Tc + TMC r,(t)-Tr,y) (5)

where the subscript i refers to ith elevation, g is the

WVR gain, Trej (T_ej _- 300 K) is the reference tem-
perature discussed in Section II, Tc "_ 2.8 K is the cos-

mic background temperature, TMC -- TM --TC where

TM _-- 270 to 280 K is the average atmospheric temper-

ature [5], and ri(t) (n(t) = r(Ei, t)) is a time-varying line

of sight opacity at elevation Ei. The linear approximation

[the second expression on the right-hand side of Eq. (5)]

is a good approximation for most optically thin (n < 0.5)
tropospheres of interest, with the added benefit of mathe-

matical simplicity.

In the standard tip curve analysis, the method of least

squares [6] is used to obtain the gain estimate (0) in terms

of the tip data. Appendix A discusses the tip curve fitting

in detail. The data are fit to a static (temporally averaged)

version of Eq. (5) by using the mapping function {ri) =
r_ Ai, where (...) designates the statistical average, r, is

the averaged opacity mapped to zenith, and the air mass

Ai = 1/sin Ei. For N elevations, the fitting leads to an
equation of the following type:

N

= c, vA,,(t) (6)
i=1
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where ci's are coefficients that depend on the assumed Tc,

TMC, and Trel, and on the so-called variance-covariance
matrix W -1 = Cov(VA(t),VA(t')) (See [6] and Appendix

A). Taking Eq. (6) at t and t' and substituting Eq. (5), the

covariance of the gain estimates separated by the time in-
terval T = t-t' is obtained in terms of opacity correlations

as

N

= c, cov(yA,,(t)v,,,(t'))
i,j=l

N

= g2 Th e E ci _ cov(_(t)u(t'))
i,j=l

(7)

The opacity covatiance cov(n(t)rj(t')) was evaluated by
neglecting fluctuations in the dry component of ri(t) (dry

troposphere contributes less than about 30 percent of the
total opacity fluctuations) s and by describing the fluctua-

tions in the wet component by Kolmogorov turbulence [1].

Specifically, the wet contribution to ri was expressed as

the line-of-sight integral r_,_ = f:,h, c_(r-_,t) dri, where

av(_', t) is the tropospheric absorptivity due to water va-

por per unit length at _', dn = Aidz is the path increment
along the line of sight at elevation Ei, and hv is the wet tro-

posphere height. Using vt_(_',t) _ X(F,t)r_,,/Lo.+, where

X = index of refraction - 1, and 7"v,z and Lv., are wet
opacity and path delay at zenith, respectively, Appendix

B shows explicitly the integral expressions that relate

cov(n(t)vj (t')) to the structure functions for X(_', t). (Note
that Lv,, -_ 6 cm, and r_,, __ 0.04 and 0.02 per 1 g/cm 2

of zenith water vapor column density, and the dry opacity

rd,, _--0.017 and 0.04, at 20.6 GHz and 31.4 GHz, respec-

tively.) The refractivity structure functions were evaluated
by generalizing the Kolmogorov turbulence expression [1]

for the structure function ((X(r")- X(_'+/_))2) to inho-
!

mogeneities correlated both spatially and temporally [1]: 9

Dx(/_, T) -- x(r. t) - X(f'+/_, t + T)

N$ C 2 IR + g T1213

1+ + gTIIL,) 213
(8)

where/_ and T are :the spatial and temporal intervals over
which the structure function is evaluated and _"is the wind

velocity. The role of Eq. (8) in VLB! data reduction was

S G. E. Lanyi, personal communication, Tracking Systems and Ap-

plications Section, Jet Propulsion Laboratory, Pasadena, CAlifor-

nia, 1991.

9 See Footnote 7.
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discussed in [1]. By using the standard deviation for re-

trieved path delays at average DSN conditions, the turbu-

lence strength was shown to be C = 2.4 x 10-Tm -1/3 for
a tropospheric slab with a water vapor column density of

Nv -_ 1 g/cm _ at zenith (corresponding to approximately

6 cm of wet path delay) and height hr = 1 km [1]. For
hr = 2 km, the recalculated C = 1.1 x 10-7m -l/s, which
is the value used in this article. I° The turbulence satu-

ration scale length was taken to be L, = 3,000 km [1].

The temporal correlation depends on the wind veloci.ty v
(Reference [1] shows that if one identifies T with IRI/v,
the spatial correlation between two parallel lines of sight
separated by the distance I,qlprojected on the Earth's sur-

face is equal to the temporal correlation of a single line of

sight at time t and later t+T.) This article used v = 10

m/sec, which is a typical wind speed at the Goldstone DSN
antenna site.

B. The Estirnated Gain Error

The standard deviation of the estimated gain, tr0, is
equal to the square root of the covariance given by Eq.

(7) for t = t'. For t # t', Eq. (7) gives the gain covariance
as a function of the time interval T = It - t'] between two

successive gain estimates, _'_(T) = (cov(_(t), _(t + T))) 1/2.

Before discussing the numerical results, note that Eq. (7)

depends on the number (N) of tip elevations. Evaluating
Eq. (7) for N = 2, 3, and 4, the covariance was found to
depend on the tip range and be nearly independent of the

elevation distribution within the range, n That is, the co-

variance is determined by the least-correlated tropospheric

inhomogeneities (i.e., by correlations between the lines of

sight associated with the minimum, E,m,, and maximum,

E,_, tip elevations). In what follows, the errors will be
shown versus E,u, (with E,,a_ at zenith) per 1 g/cm 2 of

zenith column density of water vapor present in the tropo-

sphere during WVR calibration. Note that because they

are proportional to N_, the errors are minimized by cali-

bration in dry (and stable) weather.

The value of 0"D is shown in Fig. 2" as a function of

E,,,. The error has a fiat minimum of approximately

0.26 percent between approximately E,,i, = 10 deg and
30 deg. Below a 10-deg elevation, the error increases with

decreasing E,m, because the decorrelation between the

tropospheric fluctuations associated with Eml, and 90-deg
lines of sight increases more rapidly than does the air mass

difference. Above a 30-deg elevation, the opposite is true.

It can be shown that as E,u, approaches 90 deg, the er-

ror increases as (90 - Emi,) -z/2 (which is slower than it

1o See Footnote 6.

n See Footnote 6.



would be if the fluctuations were completely random, in

which case the error would increase as (90 - E._i.)-_).

Thus, to minimize the gain error, E,m. should be between

10 and 30 deg.

The least-squares fit coefficients ei's depend on the
variance-covariance matrix W -1. In the so-called con-

sider analysis, the observable errors are assumed to be

uncorrelated, and W -1 is approximated by a unit diag-

onal [1]. Using the observable variance-covariance matrix
W-1 minimizes the variance of the estimated gain, Eq. (7)

(i.e., it minimizes _rb). The errors calculated by using the
unit and observable variance-covariance matrix W -1 are

shown as solid and broken line curves, respectively, in Fig.

2. Note that the two curves are practically the same in

the minimum region and differ by 8 percent at most in

the wings. This indicates that using the full covariance-
variance matrix W -I does not significantly improve the

estimated gain accuracy.

Figure 3 shows the temporal development of a_(T).

The value of ab(T ) decreases at T << Tcorr approximately

as a_(T) __ a_X/1 - (2T/Tcorr), where Teorr is the decor-
relation time. (Note that in Fig. 3, _r}(T_orr/2) _- o'}/2.)
The value of Tcor_ depends on v and Emir, as T_o_ "_

h_/(v tan Ernin). That is, Tcor_ is the time it takes for a

"frozen" troposphere [1] to pass through the tip range be-
tween Emtn and zenith. For v = 10 m/sec, and Ernin "" 30

deg, Tc_,r is about 7 min. The single-gain estimate errors

(a_'s) become independent from each other when the time

T between subsequent tip curves exceeds Teorr. Therefore,
if one wishes to minimize the estimated gain error by tip

curve repetition, the tip curves should be separated by a

time interval greater than 7 rain.

C. The Estimated Path Delay Error

It has already been discussed in Section II that a WVR

gain error induces two types of errors in the estimated

L_ : a bias and a scale error. Using Eq. (4) in Eq. (2)
and designating the bias and scale errors as ALv and/fL_,

respectively, the two errors are

AL,(cm) " (al +as) T_el _r___
g

__ 120 _-_-b__ 0.3 N_,c._ (9a)
g

SL,(e_) __(al TA,1+ ,_2TA,2) _
g

Nu ,cal Nu ,ob$
__ L, _r_ ,_ 0.016 (9b)

g - sin E

where the gain estimates at 20.6 Gttz and 31.4 Gttz were

assumed to be correlated (i.e., the gains in the two WVR

channels were determined during the same tip sequence)

and their magnitudes the same. Tre/ = 300 K, N_,e,t and

N_,obj are the number of grams per cm 2 of the column
density of water vapor at zenith during the WVR calibra-

tion and radio observation, respectively, E is the elevation

of the observation, and the last expressions on the right-

hand sides correspond to the minimum a_/g _- 0.26 per-
cent. The AL_ corresponding to N_,c,l = 1 g/cm 2 (i.e.,

to L_,, = 6 cm) is shown in Fig. 2. The minimum AL_

is approximately 3 mm. Note that as long as the WVR

gain remains constant, ALv is also constant, which makes
it possible to remove its effect on astrometric estimates

and delay rates by differencing between observations. For

unstable gain, the gain changes must be monitored (to
achieve a 1-mm path delay accuracy) with 0.08 percent ac-

curacy. The dependence of the scale error (strictly speak-
ing, _fL_ will be a pure scale error only in optically thin

tropospheres) on elevation was shown in Fig. 1. The value

of/_L_ caused by a 0.26-percent gain error at a 10-deg el-

evation when Nv,obs = 1 g/cm 2 is approximately 1 mm;
when Nv,oba = 4 g/cm 2, the error is 4 mm. To reduce 6Lv

to 1 mm, the gain error will have to be reduced by us-
ing a different calibration technique, tip curve repetition,

or a parameter estimation during the data analysis. How

this can be accomplished for a stable WVR is discussed in
Section V of this article.

A note should be made here on the dependence of AL,

and/hL_ on Tre/. From Eq. (9a), it would seem that ALv oc

Tre/. However, by performing the least-squares analysis,

one finds that the tropospheric fluctuation-induced _r_ is

o¢ liTre/. This cancels the dependence of ALv on Tre] and
makes 6Lv (x 1!Try/. [Note, however, that ALv caused by

an instrumental gain drift will be o¢ TreI, as given by the
first expression on the right-hand side of Eq. (ga).]

IV. Error in the Estimated Brightness Due
to the WVR Nonzero Beamwidth

Retrieval algorithms relate the line of sight L_ to the
brightness temperature (Tn) in the same direction, where-

as data recorded by the WVR's are beam averaged around

the WVR pointing direction. For collocated and copointed

WVR antennas and radio telescopes (the telescope points
along the line of sight to the radio source), the copointing
introduces two types of errors into the estimated Tn: a

systematic error due to the nonlinear dependence of air
mass on elevation and a random error due to WVR beam
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averaging Of tropospheric fluctuations. 12 The systematic

errorcan be calculatedforknown beam intensitydistribu-

tions(beam shapes) and water vapor content in the tro-

posphere. Itseffecton path delay estimatescan he elimi-

nated by pointing the WVR to a slightlyhigherelevation
so thatthe radiosourceliesinthe directionofthe centroid

ofthe distributionofWVR beam brightness.In thissec-

tion,the directionof the brightnesscentroidiscalculated

by WVR beam averaging of the air mass [seeEq. (12)

forthe centroiddefinition],and the random errorisdeter-

mined by usingthe troposphericopacitystatisticallyas in

SectionIII.Ithas been suggested that to simplifyWVR

beam steeringfor collocatedantennas,radio telescopeand

WVR antennas should he copointed.13 After correcting

the WVR data by subtractingfrom them the systematic

error,the "corrected"data would be used toestimatepath

delays in the directionof the beam's geometricalcenter.

Therefore, the random error has been evaluated also for

this geometricalcenter pointing case (and found that it

isbigger than the random error for the brightnesscen-

troidpointing,by an amount that depends on the WVR

beamwidth and elevation).

Before presenting numerical results,the WVR beam

intensitydistributionmust be specified.The systematic

error for an assumed Gaussian beam with 7.5-deg full

width at half maximum (FWHM) has been calculated

previously.14 To simplifythe computations, and sincethe

aim ofthisarticleisto provideerrorestimates(ratherthan

totailorthe errorsto specificWVR beam designs),a beam

isused whose crosssectionwhen viewed in the propaga-

tion directionisa square with sharp cutoffsforthe beam

intensity.Specifically,for a beam centered atelevationEc

and azimuth _¢, the WVR antenna temperature,TA(E_),

iscalculatedby integratingthe brightnesstemperature of

the sky (TB(E)) over the intensitydistribution:

(10)

where [..-it signifies tile WVR beam average around

(E_, to_), E and t_ are elevation and azimuth angles, respec-

12 j. Z. Wilcox, "The Error in the Estimated Path Delay due to WVR

Antenna Beta Width: Beam Averaged Air Mass and Wet Tropo-

sphere Fluctuations Effects," JPL Interomce Memorandum 335.6-
92-004 (internal document), Jet Propulsion Laboratory, Pasadena,

California, January 31, 1992.

13 See Footnotes 4 and 5.

14S. Robinson, "A Simple Analytic Correction for WVR Beam

Width," JPL Interol_ce Memorandum 335.4-530 (internal docu-

ment}, Jet Propulsion Laboratory, Pasadena, California, July 23,
1985.
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tively, and Be(E, V_) is the WVR antenna beam radiation
pattern

1

Bc(E,t_) _- (2 AI/2)2 "'"

Al/2
when IE - Ecl < A1/2 and ko - _,ol< c_E (11)

and zero otherwise,and AII_ = FWHM/2 isthe WVR

beam half-width.Note that aslong as Ec > All2, ground

pickup isavoidedforthisWVR beam pattern. By compar-

ing the numerical results,the systematicerror calculated

using beam intensitydistributionwith sharp cutoffs(for

the same FWHM) isabout 20-30 percent smaller than

for the Gaussian beams. (Itwas alsofound that neglect-

ing beam spreading in the azimuthal directionunderesti-

mates the random error by lessthan 10 percent.) The

radio telescopebeam was approximated by an infinitely

narrow pencilbeam. Since the errorsare proportionalto

troposphericwater vapor,allshown errorsare for 1 g/cm 2

ofzenithwater vapor column density.

A. Tropospheric Fluctuation-Induced Error for

Brightness Centrold Pointing

The elevation Eb of the WVR beam brightness centroid

is determined by requiring that the statistically averaged
brightness temperature (TB(Eb)) at the centroid elevation

Eb be equal to the WVR antenna temperature (TA(E_))

= (12)

where E¢ is the elevation of the WVR beam geometrical

center, and (...) designates the statistical average. Substi-

tuting TB(E) [Eq. (5)] into Eq. (10), neglecting the effect
of ray bending and the Earth's curvature, and using the

optically thin troposphere approximation, the statistically
averaged antenna temperature is

(TA(Ec)) - To -'l-TMC "rz[A]c (13)

where the WVR beam averaged air mass [A]c is given by

the same integral expression as Eq. (10) except that T,B(E)
is replaced by AE = 1] sin E. By also using Eq. (5) for

TB(Eb) in Eq. (12), one obtains the result that in an Ol>-
tically thin troposphere, the brightness centroid coincides

with the air mass centroid,

1 _ [ Be(E, _,)dE cos E d_ (14)
sin Eb J sin E



The calculated difference (the offset) between Ec and
Eb is shown in Fig. 4. The offset is always positive (i.e.,

the brightness centroid is tilted from the beam's geometri-

cal center to a lower elevation), it increases with the beam
2

width approximately as A1/_, and it has a very wide min-
imum in the elevation range around Ec _- 52 deg. The

minimum occurs because the systematic error, and hence

the offset, depends on a nonvanishing second derivative of

AE versus E. Specifically, for E < 90 - A1/2, the offset
2 II I I II

Ec - Eb _-- (A1/2/6)Ac/Ac, where A¢ and A c are the first
and second derivatives of AE = 1/sin E versus E at Ec.

Since _¢A",/A'.-c has a local minimum at 52 deg, the offset has

also a local minimum at 52 deg. Note also that as Ec ap-

proaches 90 deg, the offset rapidly increases to A1/2/V_.

For the current WVR A1/2 < 4 deg, the offset is less than
0.2 deg in the elevation range between approximately 20

and 80 deg. Note that in an optically thick troposphere,
the brightness centroid will differ somewhat from the air

mass centroid. This is a consequence of the nonlinear de-

pendence of TB on the air mass, Eq. (5), in an optically

thick atmosphere.

The error in the estimated TB(Eb) is the square root of
the variance

<I/ >')_(Eb) = ((TA(Ec)- TB(Eb))2) = TB(E) (Bc(E,_)-6(E- Eb,_-_b)) dE cosE d_p (15)

where 6(E-Eb, _--_b) is the Dirac delta function centered

at (Eb, _b). Equation (15) was evaluated by expressing

TB (E) using Eq. (5), and then evaluating the correlations
between the tropospheric opacities using the Kolmogorov
turbulence model, as described in the paragraph following

Eq. (7). The corresponding path delay error (ez,_ (Eb))
was obtained by substituting aT(Eb) into Eq. (2), where

aT(E_)'s were identified with 5TB,j's (j = 1, 2 designates

20.6- and 31.4-GHz frequency channels, respectively) for
the two WVR frequencies. Figure 5(a) plots the path de-

lay error versus E¢. Note that the error increases with

decreasing elevations faster than Lv. The error is plotted

versus A1/2 in Fig. 5(b). After a rapid rise near zero, the

error increases sublinearly. At A1/2 __-_ 3 deg and E¢ = 30
deg, 20 deg, and 10 deg, the errors are 0.06 cm, 0.1 cm,
and 0.3 cm, respectively. Advanced WVR's with narrow

beamwidths were designed for observations at low eleva-

tions. For A1/2 = 1 deg, the errors are approximately 0.23
cm and 0.5 cm at Ec = 10 deg and 6 deg, respectively.
These results qualitatively agree with errors calculated for

copointed beams, is

The error shown in Fig. 4 refers to instantaneous mea-

surements. However, astrometric data are averaged over
time intervals on the order of 1 to 2 minutes, which tends

to average out the fluctuations. Assuming that the radio

telescope and the WVR observe simultaneously and con-

tinuously during tint, the time averaged TB(E) is

15 S. Keihm, "Finite Beam Effects on LOS Path Delay Decorrela-

tion," (internal document), Jet Propulsion Laboratory, Pasadena,

California, March 22, 1990.

1 _ti_,TB(E) = _ dt TB(E,t) (16)

Using TB(E) instead of TB(E) on the right-hand side

of Eq. (15), the result is shown in Fig. 6. At tint

T1/_, the error decreases with a time constant T1/2 "_

2 A1/2h_/v sin 2 Ec, which is the time required for the

moving troposphere to pass through the WVR beam cone
(and thus erase the tropospheric differences between the

beam averaged and line-of-sight opacities). The value of

the time constant T1/2 increases with decreasing elevation

and increasing half-width. For h_ = 2 km, v = 10 m/sec,

A1/2 = 3 deg, and E¢ = 30 deg and 10 deg, 7"1/2 is approx-

imately 1.5 min and 12 min, respectively. For AI/2 __ 0.1
deg, T1/2 is 3 sec and 25 sec, respectively. Obviously, so
that the time resolution is not degraded, WVR integration

should never be longer than radio telescope integration.

B. Tropospheric Fluctuation-Induced Error

for Geometrical Center Pointing

The systematic and random errors for a copointed radio

telescope and a WVR antenna are calculated next. The

usual argument for why WVR data should be associated

with the direction of the beam's the brightness centroid

is that for a constant troposphere, (TA(E¢)) = (TB(E_)).
If this were the only criterion, one could also correct the

WVR data (i.e., TA(Ec)) by subtracting from them the

estimated value of the difference between (TA(E¢)I and
(TB(E¢)I and identify this "corrected" data as the actual

value of the brightness temperature TB(Ec) in the direc-
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tion of the beam's geometrical center. For a copointed

radio telescope and a WVR antenna, the (systematic) dif-

ference ATA (E,), is determined as

ATA(E¢) - (TA(Ec) - TB(Ec)) = TMC n AAc (17)

where rz is the total (wet and dry) zenith opacity, and

AAc = [Ale - A(Ec) is the difference between the beam

averaged and geometrical center air mass. Note that

(TA(E¢)) is bigger than (TB(E,)).

The value of ATA(E¢) at 20.6 Gttz (and the corre-

sponding path delay error) is shown in Fig. 7. The error

increases with beamwidth approximately as A_/2. Note
that for the radiation pattern with a sharp cutoff for in-

tensity distribution, this quadratic dependence on A1/2
can be derived analytically

1 tan(E¢ + At/2)/2 A¢AA¢ = _ In
2 A1/2 tan (Ee - A1/2)/2

A_/_ (1 + 2)- 6 sin E_ tan s E¢ (18)

where the approximate equality on the right-hand side has

been obtained for narrow line widths, All2 << Ee. The

more important feature to notice in Fig. 7 is that the error
increases with decreasing E_ more rapidly than L_, namely

that AL_ o¢ ATA(E_) _ AAc oc (1 + 2/tan2 Ec)/sinEc.

This is the same type of increase as for the random error

calculated in the preceeding paragraphs, i.e., the errors

caused by WVR beam averaging increase with decreas-

ing elevation more rapidly than a simple scale error. At

AI/_ ---- 3 deg and E¢ = 30 deg, 20 deg, and 10 deg, the
systematic path delay error is approximately 0.36 mm, 1.2
mm, and 10 ram, respectively. The error decreases with

decreasing beam width. At All2 __ 1 deg and Ec = 10
deg and 6 deg, the error is 2 mm and 6 mm, respectively.

(At AI/_ __ 0.! deg, the error is 0.1 mm and 0.06 mm,
respectively.)

Correcting the measured TA(Ec) by ATA(E¢), the sto-
chastic error in the inferred TB(E¢) is determined from

a_(E¢) = ((TA(E¢) - ATA(Ec) - TB(E¢)) 2)

<(s )')= (TB(E) - (TB(E))) (B<(E, _) - 6(E- E<, _- _:)) dE cos E d_ (10)

where 6(E- E¢,_- _) is the Dirac delta function cen-
tered at (E_,_c). Equation (19) was evaluated by using

the same procedure as Eq. (15). The corresponding path

delay error (aL,_(E¢)) is shown in Fig. 8(a) versus E¢ and

in Figure 8(b) versus A1/2. Similarly as for the system-

atic error [and for the stochastic error for the brightness

centroid, erL,_ (Eb)], a£,_ (E¢) increases with decreasing E¢
more rapidly than L_. Note that when the systematic error

is smaller than trL,u(Eb) (such as for All2 < 1 deg at a 6-

deg elevation, or for A1/2 < 1.5 deg at a 10-deg elevation),

trL,v (Ec) is about the same as O'L,_(Eb); whereas when the
systematic error is bigger than aL,_(Eb), aLm(E_) looks

more like the systematic error (which increases o¢ A_/_ and

can become very large). That is, while the copointing will

significantly increase the stochastic error for wide WVR

beams, the increase will be small for narrow beams. It
has also been found that when _rL,v(Ec) _-- CrLm(Eb) (the

narrow beam case), the o'L,v(E¢) for the integrated sig-

nal [as in Eq. (16)] decreases with ti,, at about the same

rate as does _rL,u(Eb); whereas when aLm(Ec) > a£m(Eb)

(the wide beam case), the decrease is significantly slower. 16
Thus, when the systematic error is less than crL,_(Eb) (the

narrow beam case, All 2 < 1 deg for all E > 6 deg), the
copointing will introduce a negligible error into the esti-

mated path delays using WVR's. However, for beam sizes

greater than 1 deg, the WVR's should be pointed at a

slightly higher elevation than the radio telescope.

V. Discussion and Recommendations

The main goal of this article is to investigate how tro-

pospheric dynamics affect the ability of realistic WVR's to
track tropospheric fluctuations. Two effects were studied

in detail: errors in WVR instrument gain calibration from

tip curves and errors in the estimated brightness temper-
ature caused by WVR beamwidth averaging. The errors
can be used to derive WVR _:ain stability requirements

16See Footnote 12.

42



andWVRantennabeamwidththat wouldmake it possi-

ble to reduce the path delay error to the l-ram level in the

elevation range from zenith to 6 deg.

The minimum error induced by tropospheric fluctua-

tions in a single gain estimate (per 1 g/era 2 of zenith

water vapor column density during WVR calibration) is

approximately 0.26 percent. That error causes two types

of errors in the estimated path delay. The first error, ap-

proximately 3 mm, is independent of path delay. Provided

that the WVR gain remains constant, this is a bias error
that can be removed by differencing between VLBI obser-

vations (biases have no effect on delay rates used for gravi-
tational wave searches). The second error,/_Lv _- Lv a_/g,

is a scale error. Figure 9 shows the scale error for a sin-

gle gain estimate _L_ (mm) __ 0.16 Nv,catN_,ob,/sinE

(where N_,¢al and N_,ob, come from water vapor con-

tent during the WVR calibration and radiometric obser-

vation) as a function of N_,calN_,ob, and elevation (E)
of the radiometric observation. For example, assuming

that N_,¢,_ = 1 g/cm 2 (corresponding to Lv,z = 6 cm)

and N_,ob, = 2 g/cm 2, 6Lv exceeds 3 mm (i.e., it ex-
ceeds the L_-independent error) when E _ 6 deg. When

N_,cal = Nv,'ob, = 2 g/cm 2, 6L_ exceeds 6.2 mm at E = 6

deg. To achieve the desired 1-mm path delay accuracy, ei-
ther the effect of/_L_ on astrometric estimates or 5g itself

must be reduced. The success of any approach to obtain-

ing accurate astrometric estimates depends on the stability

of the WVR gain.

For a stable WVR gain, the scale error is systematic.
Preliminary results of attempts to reduce the effect of sys-
tematic scale errors on astrometric estimates with VLBI

data analysis appear to be promising, although more work

is needed to ascertain quantitative results, iT The gain

error can be reduced by using an alternate gain calibra-
tion technique (such as two absolute reference load cal-

ibrations), or, assuming that the error induced by tro-

pospheric fluctuations is the dominant error source, by
tip curve repetition. Uncertainties in alternate calibra-

tion methods have so far prevented circumvention of tip

curves. To reduce the error by tip curve repetition, the

WVR gain must be sufficiently stable. For example, to

achieve a 1-mm path delay accuracy at a 6-deg elevation

when N_,ob, = 2 g/cm _, the gain error must be less than
0.08 percent. To reduce the gain error to 0.08 percent

when Nv,eat = 2 g/cm 2, the tip curve must be repeated at

least (0.52/0.08) _ = 40 times. Section III showed that suc-

cessive gain estimates become decorrelated within a typ-

IV R. /.,infield, Tracking Systems and Applications Section, personal

communication, Jet Propulsion Laboratory, Pasadena, California,

1991.

ical Teorr of approximately 7 min. Therefore, if one at-

tempts to reduce the gain error by tip curve repetition, the

tip curves should be separated by a time interval greater

than 7 n'fin, and the WVR gain should change by no more
than 0.08 percent over at least 40 Tcor_ -_ 5 hr. is (Be-

cause of the effect of other error sources and the possi-

bility of humidity higher than 2 g/cm 2, the recommended

WVR stability is 0.04 percent over the 5-hour period.) In
the time interval between the WVR calibration and the

radio metric observations (and during the observations)

the gain will still have to be updated, e.g., by comparing
the number of counts for the reference load. 19,2°

The error in the estimated brightness temperature due

to WVR beam averaging of tropospheric fluctuations was
found to be smaller when the direction of the radio source

coincided with the WVR beam brightness centroid than

with the beam geometrical center. The error increases

with tropospheric water vapor content and beamwidth.
More important, however, is that the error increases with

decreasing elevation faster than L_. Since low-elevation
data will be weighted more heavily than they should be,
this will affect astrometric estimates. Advanced WVR de-

signs have been suggested to reduce the error and avoid

ground pickup by implementing narrow beams. Figure 10
shows the errors in the two-dimensional space of beam

half-widths (A1/2) and elevations for 1 g/cm 2 of zenith

water vapor column density. For each curve, the error is

less than the cutoff error for all A1/_'s and E's below and

to the right of the curve. For example, for the error to

be less than 1 mm at all E > 10 deg, _112 should be
< 0.1 deg. For more humid weather, the errors will be

higher (and the beamwidth requirement more stringent),
proportional to zenith water vapor. Because of various ap-

proximations involved in deriving Fig. 10 (the WVR beam

radiation pattern with sharp cutoffs for intensity distribu-

tion, an infinitely narrow pencil beam for the radio tele-

scope, and an optically thin troposphere), the guidelines
are approximate (the guidelines can easily be quantified by

applying the methods described in this article to specific

beam shapes).

Signal integration reduces the fluctuation-induced er-
ror from its instantaneous value with a time constant

T1/_ _ 2 All2 h_/v sin 2 E. Because of its dependence
on beam width and elevation, the effect of signal integra-

:Is The measured gain of the current J and D series WVR's drift

at a rate that causes an approximate 0.3-percent gain change in

1000 sec (Footnotes 4 and 5). Therefore, the stability of these

WVR's should be improved by a factor of at least 60, from _/g ""

3 x 10 -6 sec -1 to ._/.q __.5 × 10 -s sec -1 .

19 See Footnote 2.

20 See Footnote 4.
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tion hasbeen neglected in Fig. 10. For example, for a

WVR beamwidth Az/2 = 0.1 deg (FWHM = 0.2 deg) and

g = 6 deg, T1/2 is 1 min, and the path delay error when
N,_,o_, = 2 g/cm 2 is about 4 mm. Hence, integrating the

WVR signal over a 2-min period (which is a typical VLBI

integration time) will reduce the fluctuation error to about

1 mm (which is the desired accuracy for the estimated path

delays). It Iaas been suggested that copointing a radio tele-
scope and a WVR antenna in the same direction would

simplify WVR antenna steering. The copointing will in-

troduce a systematic error and increase the random error
in the estimated path delay. For E > 6 deg, these addi-
tional errors will be smaller than the random error for the

brightness centroid pointing for all beam sizes AI/_ < 1

deg. For A1/2 > 1 deg, the additional errors will increase

cx A_/2, and, in addition, the required WVR signal inte-
gration time to average out the fluctuation-induced error

becomes longer 21 than the T1/2 for the brightness centroid

pointing (and longer than the VLBI integration time of

about 2 mln). Therefore, the ability for the wide beam
WVR's to be pointed at a slightly higher elevation than

the radio telescope is important.

_1See Footnote 12.

From the brief discussion of various error sources in Sec-

tion II, the biggest error in the estimated path delay is at

the present time due to inaccurate modeling of the absorp-

tivity of water vapor and uncertainties in the distribution

of atmospheric parameters along the observed lines of sight

(atmospheric noise). These uncertainties cause scale errors

(see Fig. 1) in the estimated path delay: a systematic er-
ror of about 10 percent due to the error in the absorptivity

model and between 2 and 4 percent random error due to
atmospheric noise. To satisfy the 1-mm path delay ac-

curacy requirement at a 6-deg elevation, the atmospheric
noise must be reduced to the 0.17-percent level by, for ex-

ample, custom tailoring the retrieval algorithm coefficients

to specific sites and a set of observing conditions.

The accuracy of the present absorptivity models could

be improved by better modeling and model calibration,

using for example, a comparison of WVR and radiosonde
data, direct measurements or estimates using interferomet-

ric data reduction of atmospheric path delays, or mea-

surement of water vapor absorptivity in a laboratory-

controlled environment. Investigation of some of these pos-

sibilities, including that of developing mathematical meth-
ods to filter out the effect of the systematic scale error

during VLBI data reduction, is part of an ongoing effort.
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Appendix A

The Method of Least Squares

For brevity of notation, the voltage recorded by a WVR
pointed in a direction E_ is designated V/, and the line-of-

sight opacity is designated ri. The duration of a single tip
sequence is less than the time it takes to decorrelate the

tropospheric inhomogeneities. The ith tip curve voltage,

V_, is then modeled as

= g (To e-" - TM(1- e-v') - Tr01)

g ri TMc -- g TRc (A-l)

where TRc = Try1 -Tc, TMC = TM --Tc, and where
the linearized Eq. (A-l) is a good approximation to the

full radiation transport equation for most (ri < 0.5) tro-

pospheres of interest.

In tip curve analyses, the WVR recorded data are fit

by assuming a temporally constant and spatially homoge-

neous stratified troposphere. For i = 1, ... N data, where
N is the number of tip curve elevations, the V/'s represent

a set of N equations for two solve-for parameters, _ and rz.

Mapping the ri's to zenith by using ri = ¢',, Ai, where _,

is the estimate for the zenith opacity r,, and the air mass

Ai = 1/sin El, the equations are solved by the method of

least squares [6], as follows.

Defining solve-for parameters and observable column
vectors Z = [g r_, g/ and Y = [V1,... VN], respectively,

the design matrix A (A has dimensions N x 2) in V = A X
is

(TMcA1 -Tnc)TMcA_ -The (A-2).A= : :

\TMcAN -TRC

Assuming that tile errors in Vi's have zero means and
a variance--covariance matrix W -1, minimization of the

quadratic form ((V - Mr() T W (V - .,42)) yields the fol-

lowing estimates for g and r;:

f( = (ATwc4)-IATw V (A-3)

where .Y is the column vector ._ = [ ge,, _], and the super-

script T designates the transpose matrix. By substituting
Eq. (A-l) into Eq. (A-3), one can easily verify that the

statistically averaged estimated gain is equal to the WVR

gain (i.e., (_) = g), as it should be. The estimated gain
2

standard deviation is the square root of e_ = cov(_j,_),
which is the matrix element (a2x)2,2 of

_. =_ Exp {(2- X)(X- X) T}

= B-1.ATw cov(V,V T) W ,4 B -I (A-4)

where Ezp designates the expectation value, coy(V, V T)

is the actual observable covariance-variance matrix, and

B = ATwA. Equations (A-3) and (A-4) yield _, _,, and

forgivenW,¢and cov(Y,Yr).

In practice, )( and _r_. can be derived either by us-

ing some assumed W -1 (the so-called consider analysis)

[1], or by setting W -1 equal to the observable variance-
covariance matrix cov(V, vT). The most common (and

simplest) form of the assumed W -1 is the unit matrix

(W-1)ij = 5i,j, where _i,_" is the Kronecker delta. Taking
the unit W -I corresponds to assuming that the observable

errors are uncorrelated with equal variances and reduces

the mlninfization procedure to the minimization of the sum

of squares. The latter, i.e., setting (W- 1)ij = cov(Vi, Vj),

minimizes the variance-covariance matrix a_ as a_ =

(ATwA) -1.

The results of these calculations are discussed in the

main text. Evaluation of cov(_, _) using the Kolmogorov
turbulence model is described in Appendix B.
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Appendix B

Evaluation of the Correlation Functions Using the
Kolrnogorov Turbulence Model

To evaluate correlations between the simulated data,

the voltage Vi associated with the sky brightness TBj in
the elevation direction El is first related to the line-of-sight

opacity ri by using Eq. (A-l). This expresses correlations
between V}'s in terms of correlations between ri's. Next,

neglecting fluctuations in the dry component of r_, cor-
relations between wet opacities are expressed in terms of

correlations of wet refractivity by expressing the wet opac-

ity (r_,i) as the line-of-sight integral

Tv,i = /h_/ainEi

JO

av(r'i) dri _- rv'--'-LzI']h'l'inE'
Lv,z JO

where h_ is the height of the tropospheric slab; av is the
water vapor absorptivity per unit length; r_,_ and L_,_

are the average values of wet opacity and path delay at
zenith, respectively; and X(_/) is the index of refraction -

1. The correlations between X(_)'s are evaluated by us-

ing the Kolmogorov turbulence structure function, Eq. (8)
of the main text. In what follows, the above described

procedure of evaluating the correlations is exemplified in
the evaluation of the observable variance-covariance ma-
trix W- 1

By using Eq. (A-l), the matrix element W..-. I is written
t,l

as

w,'51- cov(_,D)= g_T2Iccov(_,,,_o,j)

= g2T?_ic((_,,,_o,i)- (_,,)<_,_))(B-2)

where (...)signifiesstatisticalensemble averaging.

By using Eq. (B-l) and the expression(Eq. A.3 of[I])

1

(XiXi) = <X2> - _ D×(_-_) (n-3)

where Xi - X(_i) and Dx(f'i- ,_) - <(Xi- Xj)_) isthe

refractivity spatial structure function by interchanging the

order of integration and ensemble averaging, and then set-

ting dri = Ai dz and drj = Aj dz', Eq. (B-2) yields

"ru,z g TMC 2

where the variance trx_ of the wet refractivity fluctuation
is independent of spatial coordinates and is obtained by

letting the distance R go to infinity in

(< >_ = L.ax -- X2 = 2 = 2

(B-5)

where the last expression on the right-hand side has been

obtained by evaluating the asymptotic D×(R = oo) by us-
ing Eq. (8) of the main text, and where Nv is the water

vapor column density at zenith in g/cm 2, and L, is the tro-
pospheric turbulence saturation length. The reason why

Dx(oc ) should converge as R becomes very large has been
discussed in [1].

The covariance of successive gain estimates and the

effect of signal integration on beam averaging of tropo-
spheric fluctuations involve evaluation of correlations of

type (ri(t)rj(t + T)}. By using the "frozen" troposphere

model [1], these correlations were evaluated using the ex-
pression

_. . 1 -' - 6 +_'T) (B-6)(x(ri, t)x(rj, t + T)} = <X2> - _Dx(r,

where the structure function

Dx(_'i - _. + gT) = ((x(r'_,t)- X(_',t + T))2>

is the same as Eq. (8) of the main text.
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The Goldstone Real-Time Connected

Element lnterferometer

C. Edwards, Jr., D. Rogstad, D. Fort, L. White, and B. lijima

Tracking Systemsand ApplicationsSection

Connected element interferometry (CEI) is a technique of observing a celestial

radio source at two spatially separated antennas and then interfering the received

signals to extract the relative phase of the signal at the two antennas. The high

precision of the resulting phase delay data type can provide an accurate determi-
nation of the angular position of the radio source relative to the baseline vector
between the two stations. This article describes a recently developed connected el-

ement interferometer on a 21-kin baseline between two antennas at the Deep Space

Network's Goldstone, California, tracking complex. Fiber-optic links are used to
transmit the data to a common site for processing. The system incorporates a

real-time correlator to process these data in real time. The architecture of the sys-
tem is described, and observational data are presented to characterize the potential

performance of such a system. The real-time processing capability offers potential

advantages in terms of increased reliability and improved delivery of navigational
data for time-critical operations. Angular accuracies o[50-100 nrad are achievable

on this baseline.

I. Introduction

Interferometric techniques have been used for several

decades in the astronomy community to obtain very high

angular resolution images or to determine astrometrie po-
sitions of celestial radio sources [1-4]. By cross-correlating

signals received at two spatially separated sites, one syn-
thesizes an effective aperture corresponding to the spatial

separation of the two antennas, with a resulting improve-

ment in angular resolution. Just as the beamwidth of a

single-aperture antenna scales as X/D, where X is the ob-

serving wavelength and D is the antenna diameter, the
resolution of an interferometer scales as X/L, where L is

the distance between the interferometer antenna pair. As

will be demonstrated, this same high resolution can be

used to help track and navigate interplanetary spacecraft.

Two-way tracking of the round-trip delay and Doppler

shift of radio signals between Earth and a spacecraft pro-
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vides a direct measurement of the geocentric range and

radial velocity of the spacecraft. For current-generation

spacecraft incorporating X-band (8.4-GI-Iz) radio links,

spacecraft range can be determined to 10 m, and space-

craft radial velocity to 0.1 mm/sec.

The plane-of-sky angular coordinates of the state vec-

tor, however, are more difficult to determine. Some angu-

lar information can be deduced from the signature of the

Earth's rotation on the Doppler observable. Accuracies of
about 150 nrad can be obtained from an 8- to 12-hr arc

of Doppler data. Near the celestial equator, the accuracy

of the declination component of angular position degrades

as 1/sin(6), where 6 is the spacecraft declination, due to a

singularity in the Doppler partial derivative.

Interferometric techniques have been developed and are

used in the Deep Space Network to improve the ability to
track angular spacecraft position. Currently, the technique

of very long baseline interferometry (VLBI) is used in the

DSN for spacecraft tracking. As shown in Fig. 1, VLBI

measures angular position by determining the delay, r,
between arrival of the signal wavefront from a radio source

at the two antennas. This delay is related to the angle, 8,
between the baseline and the direction to the radio source:

r = 1Bcos0 (1)
C

where c is the speed of light. Because of the large spatial
separation between VLBI antennas, data are recorded at

each antenna along with timing references from extremely
stable clocks at each site. The recorded data are then

transmitted to a common site for subsequent correlation

processing, in which the delay is extracted. Final observ-

ables are typically unavailable until hours or days after the

observation is complete.

The current DSN VLBI system can provide angular ac-

curacies of about 30 nrad for spacecraft tracking, based on
a short, 30-min observation, which represents a significant

improvement over Doppler tracking alone. The VLBI ob-

servation provides a direct, geometric determination of the

spacecraft angular position, in contrast to the Doppler ease

in which the angular position is extracted from the signa-

ture of Earth's rotation on the Doppler observable over a

long data arc. In addition, VLBI suffers no degradation in

accuracy at declinations near 0 deg. Combining informa-
tion from the California-Spain and California-Austraiia

DSN baselines allows good determination of both the right
ascension and declination of the spacecraft throughout the

ecliptic plane.

By rearranging Eq. (1), one finds that the angular accu-

racy 60 is related to the accuracy 8r with which the delay

is determined and the length of the baseline projected onto

the plane of the sky:

c6r

_0 - B sin 0 (2)

From this, it is seen that angular accuracy is improved

by improving the delay measurement or by increasing the

baseline length. This latter point has driven the devel-

opment of VLBI on intercontinental baselines; the DSN

baselines from California to Spain and California to Aus-

tralia are roughly 8000 and 10,000 km in length, a sizable
fraction of the Earth's total diameter.

For several years, the authors have been investigating

the extent to which interferometry on relatively short base-

lines of under 100 km in length can provide medium accu-
racy, 50- to 100-nrad angular tracking. To achieve this de-

gree of accuracy on such a short baseline requires improv-

ing the precision of the interferometer delay measurement.
As will be shown in the next section, on these shorter

baselines one can make full use of the interferometer phase

observable to achieve this gain in precision. In addition,

there are a number of operational benefits to performing

interferometry on a short baseline that have motivated in-

terest in investigating connected element interferometry

(CEI) [51:

(1) By using fiber-optic links, the data from the vari-
ous antennas can be brought together to a common

site for real-time correlation processing, reducing the

turnaround time for delivering tracking observables
to a navigation filter.

(2) Real-time processing provides a real-time monitor of

the complete interferometry system. Many problems

affecting VLBI observations are not detected until
correlation processing; real-time correlation wouid

help to uncover such problems during the observa-
tion in time to correct them.

(3) A common clock can be distributed to both anten-

nas, allowing them to be operated coherently and

eliminating the need to solve for a clock rate offset
between stations.

(4) Propagation media errors are significantly reduced
due to common-mode cancellation on the short base-

line.

(5) The short baseline results in longer mutual visibility

periods and higher elevation angles. This eases ob-

servation scheduling and reduces the effect of prop-

agation media errors.
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II. The CEI Phase Observable

The basic observable of any interferometer is the rela-

tive phase of a received signal at two spatially separated

antennas. This phase can be thought of as a measure of
the interferometer delay r in units of the observing wave-

length, One can write the interferometer phase as

¢+2rN=wRr(1BcosO+r¢lock+r, rop+rion+ri.,_)

+ Cro (3)

where WnF is the RF observation frequency, and where the

total delay r is composed of the geometric delay given in

Eq. (1), the clock offset between stations rdock_ the tro-
pospheric and ionospheric propagation media delays rtrop

and rlo,, and any uncalibrated instrumental delay ri,,t.

(Each of these delay terms_ represents the differential ef-
fect between stations.) In addition, there is an overall

unknown phase offset ¢Lo between the aggregate local os-
cillators at each station. The term 2a'N represents the

cycle ambiguity associated with the phase data type. The
high precision of the phase data type is not usable until

this cycle ambiguity has been properly resolved,

For VLBI, uncertainties in the delay model typically

prevent resolving the phase ambiguity. Instead, the de-

lay is measured directly by determining the group de-

lay O¢/Ow. In practice, what is actually measured is the

quantity (¢1 - ¢2) / (wl - w_) for two or more nearby fre-

quencies. This group delay observable provides an unam-
biguous, but much less precise, measure of the interfero-

meter delay. The group delay is less precise by the ratio

of w/Aw, where w is the RF observing frequency; and
Aw is the spanned bandwidth over which the group delay

is calculated. For an X-band (8.4-GHz) spacecraft down-

link with VLBI tones spanning a 40-MHz bandwidth, the

phase observable is thus more than two orders of mag-

nitude more precise than the group delay. The inability

to resolve the integer cycle ambiguity prevents the use of

this precise phase observable on intercontinental base-
lines.

On short baselines, however, the a priori delay model is

sufficiently accurate to allow phase ambiguity resolution.
Biases associated with the clock, instrumental, and LO

terms in Eq. (3) are handled by differencing the phase
observable for two sequential radio source observations.

This differencing also greatly attenuates the effects of the

propagation media errors if the sources are angularly close.
The differential phase observable for two sources, A and

B, can then be written

A¢ + 2rAN = wRr (1B [cos Oa - cosOB]

+ Art,op + Argo. + Ar_.,) (4)

where AN now represents the differential phase ambiguity.

The term Arina_ is retained to represent any stochastic

temporal instability in the CEI signal path over the time
between the two observations.

III. CEI Error Sources

CEI error analysis focuses on two distinct issues: the

a priori model delay accuracy required to achieve ambigu-

ity resolution and the final a posteriori accuracy obtained
from the resolved phase observable. The ability to deter-

mine the differential phase ambiguity AN is dependent on

the a priori model uncertainties associated with the terms

on the right-hand side of Eq. (4). Basically, the overall
delay model must be known to much better than a wave-

length of the RF observing frequency. The DSN downlink

spacecraft frequencies of 2.3 GHz (S-band) and 8.4 GHz

(X-band) correspond to wavelengths of 13 and 3.6 cm, re-
spectively. Once the ambiguity is resolved, many of these
same errors will limit the final astrometric accuracy of the

observation. In the following sections, each of these error

sources is briefly examined.

A. Baseline

For short intracomplex DSN baselines, the vector be-

tween stations is typically known to 3-5 mm or less, based

on geodetic interferometry experiments. For small angu-

lar separations between the radio sources, the impact of

this uncertainty on the differential phase delay is further

reduced, roughly by the angular source separation in ra-

dians. Thus, for a 10-deg separation, this error is below
1 ram.

Gravity deformation, wind loading, and thermal expan-

sion could also potentially introduce antenna distortions at

the millimeter level. Here again, the differential nature of

the CEI observations is key to reducing this error source.

Angularly close sources will have similar gravity deforma-

tion; similarly, differencing observations over a short time
scale will help to reduce the effects of wind and thermal
distortions. Further error cancellation will occur if the two

antennas used in the observation are of identical size and

design.

B. Source Position

Here it is assumed that one of the sources is a well-

known reference quasar with an a priori position uncer-
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tainty of 1O nrad and that the other source, the target
source whose position is to be determined (e.g., a space-

craft), has a much larger source position uncertainty 60.

On a 21-km baseline (corresponding to the longest avail-
able DSN intracomplex baseline), the 10-nrad error of the

reference source corresponds to a 0.2-mm error. To unam-

biguously determine the phase ambiguity, a priori knowl-
edge of the target source position must satisfy

60 <
6 Bsin0

where 2 is the observing wavelength. The factor of 1/6

ensures that anything less than a 3-sigma position error
will cause less than a 1/2-wavelength error, and thus not

cause a cycle ambiguity error. For S-band observations,

and a projected baseline length of 21 km, this corresponds
to a required a priori position knowledge of about 1 #rad

for the target source.

C. Troposphere

The troposphere error corresponds to the double dif-

ference _of the tropospheric path cleiay along the-four |ines

of sight from the two ground stations to the two radio

sources. Most of the overall tropospheric effect cancels
in this double differencing; the remainder represents the

spatial and teh/poral fluctuations _n the troposphere on a
scale determined by the spatial separation of the antennas,

the angular separation of the sources, the scale heigllt of
the troposphere, and the time separati0n of the two scans.

These effects have been studied thoroughly elsewhere [6,7];
here the authors will just characterize the expected magni-

tude of this error source: For an angular source separation
of 10 deg, a 21-km baseline, an average elevation angle of

45 deg, and a time separation of 200 sec between scans,
the differential troposphere error is expected to be about

5 nun. This error grows to 10 mm when the mean eleva-

tion drops to 20 deg. Because this error is due primarily

to small-scale fluctuations in the troposphere, the error is
largely uncorrelated from one differential observation to

the next and thus can be reduced by repeated observa-
tions.

D. Ionosphere

The ionosphere causes a dispersive phase error for each

ray path of the form

where 6¢[eue] is the phase in cycles, TECIxol,eI/m_ l is the

integrated line-of-sight total electron content, and Piarlz]
is the observing frequency in gigahertz. Note the minus

sign: The ionosphere actually causes the phase of the
wavefront to advance. Taking the derivative with respect

to frequency yields a positive group delay, as required by

causality. Typical daytime values of TEC can range up to

100 x 101%l/m 2 or more at zenith and three times higher

at low elevations, which corresponds to tens of cycles at X-

band and 100 cycles or more at S-band. As in the case of

the troposphere, however, most of this error cancels in the
double-differenced CEI observable, with the residual er-

ror being due to small-scale ionospheric inhomogeneities.

While theoretical understanding of these fluctuations is

limited, empirical data suggest that the ionosphere er-
ror for differential CEI observations on a 21-km baseline

should be at or below the millimeter level at X-band, 1 rep-

resenting just a few percent of a cycle of X-band phase. At

S-band, this error grows to roughly one-tenth of a cycle.

This is large enough to be of concern, but should not pre-

vent accurate phase anabiguity resolution. Given the size
of this error source and the variable nature of the iono-

sphere, more data on ionosphere fluctuations would be

welcome. Experience gained in operating the Goldstone

CEI will help to evaluate the magnitude of this error. If

dual-frequency S- and X-band data are available, and no

cycle errors are made at either band, this dispersive er-
ror source is eliminated by forming the appropriate linear

combination of S- and X-band phase delay observables,

which eliminates the charged particle error:

_" -- _ _S

E. Clocks and Instrumentation

Because a single clock is used for both stations in

CEI, there is no clock rate error as in VLBI. However,

there is still a clock epoch uncertainty, since the propaga-
tion delays through the frequency distribution system and
through the CEI signal path itself are not calibrated at the

level of an RF wavelength. Thus, the CEI phase observable

contains a phase bias, which corresponds to the unknown

relative phase of the local oscillators at the two stations.

This bias is removed by forming differencing phase observ-

ables for two radio sources. This differencing also serves
to eliminate or reduce any other biaslike errors.

_¢[cu¢] = - 1.34 TEC[I°'%!/m?]
//[GHz]

z A. 3. Mannucci, 'rI'emporal Statistics of the Ionosphere," JPL

Interoffice Memorandum 335.1-90-056 (internal document), Jet
Propulsion Laboratory, Pasadena, California, October 25, 1990.
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While:thereis no explicit clock rate term, there are

instabilities in the frequency distribution system, which

can lead to an apparent difference in the instantaneous
reference frequency at the two stations. The delay error

induced by such an instability is Ttry(T) where T is the
time between two scans used to form a differential observ-

able and try(T) is the Allan standard deviation on that
time scale. For T = 300 sec and av(T) = 10 -14, this leads

to a 3-psec error; the fiber-optic clock transfer between

stations is thought to be even better than this [8].

IV. Non-Real-Time Phase Delay
Observations

A number of experiments have been performed on base-
lines within the Goldstone complex in a non-real-time

mode, with data recorded separately at each station [5,9].

The goals of these experiments were to demonstrate reli-
able phase ambiguity resolution and evaluate the poten-

tial angular accuracy of CEI observations. The results are

briefly reviewed here.
:==

Figure 2 shows the location of existing antennas within
the Goldstone, California, Deep Space Communications

Complex (DSCC). Baselines of up to 21 km are available.
Fiber-optic cables have been installed linking the various

antenna pairs [8]. For these non-real-time experiments,
such fibers were used to distribute a common frequency

reference to each antenna, which allowed the separate sta-

tions to be operated coherently.

Data have been collected on the 6-km DSS-12-DSS-13

baseline and on the 21-km DSS-13-DSS-15 baseline; only

the latter results are discussed here. Data were recorded at

each antenna for these non-real-time experiments; correla-

tion processing and postprocessing were performed subse-
quently at JPL. To simulate differential quasar-spacecraft

observations, pairs of quasars were observed with angular

separations of up to 20 deg. The dual frequency S-/X-
calibrated observations were then used to determine the

relative angular position of each quasar pair.

Ambiguity resolution was carried out as follows:

(1) An a priori delay model was calculated for each
quasar observation; an ambiguous residual phase
was then calculated for the S- and X-band obser-

vation relative to this model.

(2) The residual phases were differenced between adja-
cent scans for a given quasar pair. This serves to

eliminate the unknown phase bias between stations

and reduce many other errors through common-

mode cancellation.

(3)

(4)

The a priori delay model was used to resolve the S-

band phase ambiguity for the differential phase ob-
servable. In effect, this required the a priori model

for the differential quasar delay to be good to about

6.5 em or better (1/2 the S-band wavelength).

The S-band residual was then used to resolve the X-

band cycle ambiguity. (The X-band ambiguity was
chosen so that the S- and X-band phase delay residu-

als agreed to within half an X-band cycle.) This ap-

proach assumes that the dominant errors are nondis-

persive, which implies that the S- and X-band phase

delay residuals should be the same. This permits
successful X-band ambiguity resolution even when

nondispersive errors are more than half an X-band

cycle.

Statistical analysis of the resulting phase residuals sup-

ports the reliability of the S- and X-band phase ambiguity

resolution: The raw phases cluster about integer values of

the cycle ambiguity, and the width of the distribution is
much less than half a cycle.

After ambiguity resolution, the S-/X-calibrated phase

delay observable is formed to remove the effects of charged
particles. To assess the accuracy of these phase delay ob:

servations, the data were fit to estimate the angular posi-
tion of one of the quasars relative to the other. Figure 3

shows the resulting adjustment in right ascension and dec-
lination for the radio source CTA 102 for roughly 3 hours

of data. The data were weighted based on a model of

tropospheric fluctuations above a 21-kin baseline; the ob-

served phase delay residuals were consistent with these

data weights. The semi-minor axis of the source posi-
tion error ellipse is 73 nrad. While each individual mea-

surement only provides information for one component of

the plane-of-the-sky position, the baseline rotation over

the full observation period allowed some determination of

the orthogonal component. A second orthogonal baseline
would allow better determination of both components of

sky position in a short observation period.

V. Development of Real-Time Capability

Having demonstrated the capability of resolving the

carrier phase ambiguity and obtaining 50- to 100-nrad an-

gular accuracies, the subsequent goal is to demonstrate the
capability to collect and process CEI data in real time.

The two key components required to achieve this goal are
a communications channel to bring the observed data to

a common site and a real-time correlator to process the

received signals. Over the past year, the authors have im-
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plemented these components at Goldstone. Figure 4 shows

a block diagram of the entire Goldstone real-time CEI sys-

tem. The existing Mark III wide-channel-bandwidth VLBI

data acquisition terminals (DATs) at each station are used

to perform the downconversion, sampling, 1-bit quanti-

zation, time tagging, and formatting of the radio signal

at each site. However, instead of recording the resulting
bit stream on tape, the signals from DSS 15 are sent via

a digital fiber-optic link to DSS 13. There, a real-time
correlator, based on the architecture of the non-real-time

JPL/Caltech Block II VLBI correlator, receives the signals

from both stations and performs cross-correlation process-
ing.

A. Fiber-Optic Data Link

The fiber-optic link, shown in Fig. 5, consists of two
main units: a transmitter unit and a receiver unit. Com-

mercially available equipment was used to the fullest ex-

tent possible to minimize development costs. The optical
fiber itself exhibits very low dispersion and low losses. The

measured end-to-end attenuation of the optical signal from
DSS 15 to DSS 13 is -16 dB. Previous dispersion mea-

surements of a 14-km length of this fiber placed an upper
limit of 1 deg of phase nonlinearity over a 50-MHz band-

width [8].

The transmitter unit is located at the remote site where

it collects the Mark III data and transmits them through
the fiber-optic cable to the site where the real-time correla-

tot is located. The transmitter is composed of three main

building blocks. The first of these, the interface circuitry,

converts from the balanced emitter-coupled logic (ECL)
voltage levels of the Mark III DAT to transistor-transistor

logic (TTL) levels. The second stage of processing, based

on the AMD TAXI AM7968 high-speed multiplexor chip,

takes the parallel VLBI data (14 channels x 4.5 Mbit/sec)
and encodes them by using a 4/5 encoding scheme, con-

verting them to a serial data stream with synchronization
words inserted. Finally, this serial bit stream is sent to

a laser module where the signal is converted to light lev-
els sent across the optical fiber to the receiver site. The

optical transmitter (PCO DTX-13-565) modulates the

data onto a 1300-nm optical carrier signal, with -3-dBm

power. The aggregate bit rate on the fiber-optic link is
125 Mbit/sec.

The receiver is also composed of three main build-

ing blocks. The first of these is the pin diode receiver/
comparator (PCO RTX-13-565) with -33-dBm sensitiv-

ity; here the signal is converted back to an ECL sig-

nal. This signal is then sent to a serial-to-parallel con-

verter/decoder (AMD AM7968) where the bit stream is

synchronized, decoded (5/4), and made available as a par-
allel word, along with strobe and status bits. The last

stage converts the TTL signals back into the balanced ECL

signals required by the correlator.

B. Real-Time Correlator

The real-time correlator, dubbed Real-Time Block 2

(RTB2) is a subset of the JPL/CIT Block II VLBI proces-

sor used for non-real-time processing of VLBI data. The

RTB2 provides processing for 2 stations, 1 baseline, and 14

channels, while the full JPL/CIT Block II handles up to 4

stations, 6 baselines, and 28 channels. The large wirewrap
boards comprising the system are identical to those in the

Block II, and the VAX software is common to both pro-
cessors. The output data files are identical to those of the

Block II, and all the Block II postprocessing software can

be used for RTB2. The Block II itself can be arranged
to be the same as RTB2 with a quick cable change, facili-

tating the testing of new software on the Caltech campus,

rather than in the operational machine. The system is

built in a single rack and, of course, has no tape playback
units. A brief description of the system follows.

An overview of the correlator is shown in Fig. 6. Stan-
dard Mark III formatted data enter RTB2 on two ribbon

cables, which are the same as those that would normally
go to a Honeywell 9600 tape recorder in a Mark III VLBI

DAT. One of these will normally come from the local for-
matter and the other from a remote formatter via a fiber-

optic link. Data from the two sets of 14 "tracks" first

enter bit synchronizers that recover the data and clock

signals and then pass to a 28-by-28 crossbar switch that

can be set by the user to connect any track to any cor-
relator channel. The 14 tracks from the local station are
connected to channels 1-14 and those from the remote sta-

tion to channels 15-28. The data are then passed through

digital delay lines that are driven by 28 separate delay
models sent from the VAX to the station processor. The

output of the delay lines is fed to both the tone extractor
board and the cross-correlator board. On the tone extrac-

tor board, there is one tone extractor for each channel,
but it is time-multiplexed to allow four different tones to

be extracted from each channel, and hence there are 112

different phase polynomial tone models sent by the VAX

to the station processor. The connections from the delay

lines to the cross-correlator board are arranged to corre-
late the first 14 channels with the second 14 channels. The

user can choose to correlate 14 channels with 8 lags each,

7 channels with 16 lags each, or 1 channel of 112 lags. The

last case would normally be used for searching clock delay
with a delay range of 28/_sec. The cross-correlation board

is driven by 14 phase models and 14 fractional delay mod-
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els for each of the two antennas sent by the VAX to the

correlator processor.

The RTB2 retains all the features of the Block II, in-

cluding spectral domain fractional bit correction. Nor-
mal integration times are integral seconds. To the user,

the system appears as a two-station 14-channel correlator.

The correlator control file (or keyboard commands) are
the same as would be used for configuring and controlling

the Block ii by using two tape transports. The output

file also appears to be the result of a Block II correlation

using two tape transports. The monitor/display system
runs on a VAX workstation and uses a second copy of the

output file sent over the EtherNet, just as in the Block
II system. The display shows, in real time, the state and

quality of the data being received from each station, plots

of the correlation fringes for all channels versus time, plots

of the phases of all tones for one channel versus time, and

plots of the integrated delay and delay rate patterns for
one channel. Tile information to be displayed is chosen

by the user With a mouse-driven graphics interface. Addi-
tional real-time features, including spacecraft tone acqui-

sition and tracking, could be added in the future.

VI. Results and Future Plans

On June 18, 1991, the first end-to-end test of the Gold-

stone CEI system was performed. Observations of the

Magellan spacecraft were scheduled on the DSS-13-DSS-

15 baseline, concurrent with a regularly scheduled Magel-

lan telemetry pass at DSS 15. Fringes were successfully
detected that corresponded to the cross-correlation of the

Magellan carriers at 2.3 and 8.4 GIIz. Figure 7 shows the
first detected fringes.

This initial test served to verify tile end-to-end pro-

cessing of the Goldstone CEI system and demonstrated

the digital fiber-optic link and the real-time correlation
processing capabilities. To verify the angular accuracy of

the observables, differential quasar pair observations were

scheduled on October 3, 1991. From 03:29:00-04:17:00

GMT, the two quasars 3C 454.3 and CTA 102 were ob-
served at S-band and X-band. These two sources are sep-

arated by 6.8 deg on the plane of the sky. Twelve 3-minute

scans were scheduled, alternating between sources. Fringes
were visible in real time at the RTB2 correlator during

data acquisition. Postprocessing of the correlated phase

data yielded the ambiguity-resolved S-/X-band calibrated

phase delay residuals shown in Fig. 8. An uncertainty of

7 psec was assigned to each scan to reflect the expected
level of troposphere fluctuations, based on the model of

[5,6].

These residuals were then fit to estimate the relative

angular position of 3C 454.3 relative to CTA 102. Given
the limited duration of this data arc, the baseline projec-

tion on the plane of the sky did not rotate through a large

angle, and as a result these data alone were not adequate
to estimate both components of the angular separation of

the sources. Instead, due to the predominantly north-
south orientation of the baseline, just the declination of

the source 3C 454.3 was estimated. The position of each

source is known from regular VLBI observations to an ac-

curacy of 5 nrad, providing a truth model against which
the CEI determination can be compared. The twelve ob-

servations were grouped into four sets of three scans. For

each A-B-A sequence, a clock epoch and rate were fit. This

served to interpolate the A observations to the epoch of the
B observation and removed any constant or linear error in

the phase delay. For the entire set of observations, the dec-
lination of 3C 454.3 was fit, with no a priori constraint. In

addition, the relative zenith troposphere and the baseline

vector components were estimated, all with 1-cm a priori
constraints. These parameters were included so that the
final formal error in declination would reflect potential un-

certainties in station-dlfferenced troposphere and station

location. The resulting adjustment to the a priori declina-
tion of 3C 454.3 was 90-4-88 nrad. The adjustments to the

troposphere and baseline vector were small, as compared

with their a priori 1-cm constraints.

Further observations of close quasar pairs to demon-

strate the astrometric accuracy of the CEI system will be

conducted in the near future. Other potential demonstra-

tion opportunities include observing the Galileo, Magel-
lan, or Ulysses spacecraft. In particular, accurate angu-

lar tracking of Ulysses during its Jupiter Gravity Assist,
conducted in February 1992, would help to improve the

Jupiter ephemeris in the radio reference frame. This, in
turn, could benefit the approach navigation for Galileo,

which arrives at Jupiter in 1995. To this end, CEI ob-
servations were collected at Goldstone during the Ulysses

flyby of Jupiter. Analysis of these data is currently under

way. Preliminary indications suggest that angular accura-
cies on the order of 50 nrad will be achieved.

VII. Conclusions

A real-time CEI capability has been developed and
demonstrated at the Goldstone Deep Space Communica-

tions Complex on the 21-kin baseline between DSS 13 and

DSS 15. The key technology developments that enabled
this demonstration are a high-rate digital fiber-optic link

and a real-time correlation processor. The fiber-optic link

58



carries digitized, time-tagged data at an aggregate bit rate

of 125 Mbit/sec from SPC 10 to DSS 13. The correla-

tor, based on the JPL/Caltech Block II VLBI processor,
supports cross-correlation of up to 14 2-MHz channels of

Mark-III formatted VLBI data, and allows extraction of

calibration and/or spacecraft tone signals. Real-time data

have been successfully acquired for both spacecraft and

quasar observations. The RTB2 system displays interfer-

ometric fringe data in real time, providing verification of

successful data acquisition. Differential quasar pair obser-
vations have been performed, achieving angular accuracies
of under 100 nrad for less than 1 hour of data.
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Spacecraft-Spacecraft Very Long Baseline Interferometry
Part I: Error Modeling and Observable Accuracy

C. D. Edwards, Jr., and J. S. Border

TrackingSystemsand ApplicationsSection

In Part I of this two-part article, an error budget is presented for Earth-based

delta differential one-way range (ADOR) measurements between two spacecraft.

Such observations, made between a planetary orbiter (or lander) and another space-

craft approaching that planet, would provide a powerful target-relative angular

tracking data type for approach navigation. Accuracies of better than 5 nrad should

be possible for a pair of spacecraft with 8.4-GHz downlinks, incorporating 40-MHz
DOR tone spacings, while accuracies approaching 1 nrad will be possible if the

spacecraft incorporate 32-C'ltZ -downlinks with DOR tone spacings on the order of
250 Iffltz; these accuracies will be available for the last few weeks or months of

planetary approach for typical Earth-Mars trajectories.

Operational advantages of this data type are discussed, and ground system re-

quirements needed to enable spacecraft-spacecraft ?SDOR observations are outlined.
This tracking techn_-que could bedemonstrated during the final approach phase of

. the Mars '94 mission, using Mars Observer as the in-orbit reference spacecraft, if the

. _Russian spacecraft includes an 8.4-Gltz downlink incorporating DOR tones, Part
.H of this article will present an analysis of predicted targeting accuracy for this

, _ seen ario.

i.iritrodiJction ' .......... --

- Conventional differentialvery long baselineinterferom-

etry (AVLBI), as depicted in Fig. 1, provides angular

tracking Of an interplanetary spacecraft relative to one

or more extragalactic radio sources (e.g., quasars). With

respect to this quasar reference frame, which defines an

inertial navigation reference system, Galileo-era delta dif-
ferential one-way range (ADOR) observations between a

spacecraft and an angularly nearby quasar can provide

roughly 30-nrad angular accuracy, l while enhancements in
recorded and spanned band widths may enable nanoradian-

level accuracy in the future [1]. However, to take full

advantage of the high accuracy of AVLBI measurements

1 j. Border, "Analysis of ADOR and ADOD Measurement Errors for
Mars Observer Using the DSN Narrow Channel Bandwidth VLBI
System," JPL Interoffice Memorandum 335.1-90-026 (internal doc-
ument), Jet Propulsion Laboratory, Pasadena, California, May 15,
1990.
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for planet-relative targeting, one must also have compara-

bly accurate knowledge of the planetary ephemeris in the

radio reference frame. This knowledge is currently lim-
ited to about 50 nrad for the inner planets, due mostly

to uncertainty in the overall orientation of the planetary

ephemerides in the radio frame, with larger ephemeris un-
certainties for the outer planets. A number of techniques

(observations of the millisecond pulsar PSR 1937+214,
timing measurements of planetary occultations of quasars,

Phobos and Magellan AVLBI, and intercomparison of

VLBI and lunar laser ranging observations) promise to im-
prove this knowledge to about the 25-nrad level in the next

few years. Nevertheless, this still represents a large error

for angular ri_av;gationl as compared with the precision of
the A VLBU6bservabIe.

wideband data transfer and cross-correlation between sta-

tions that is required for generating a quasar group de-

lay observable. Only simple carrier phase tracking of
several sinusoidal tones from each spacecraft is required.

This has several advantages in terms of efficiency and re-

liability, including real-time validation of successful sig-
nal reception and real-time generation of spacecraft phase

and delay observables at each station, as well as near-

real-time generation of station-differenced delays. Only

a very small amount of data must be brought together to

form the station-differenced observables (for example, the
time-tagged spacecraft phases at a one-hertz rate) and so,
in prlnciplel the spacecraft-spacecraft ADOR observable
could be available within minutes of the actual observation

for idput into a navigation filter.
-- L

An a]te--rn_r planetary al_proach navigation:_de - /_ _goa] _of ti_is-_drt]c]e _ is to exar_fie t_e error budget

picted in Fig. 2, is to use a radio signal from an orbiter for spacecraft-to-spacecraft ADOR. Each _physical error
or lander already at the target planet as a V-LBI-nav- sourcels-ex-amined and,tothe extent possible, parameter-

igation reference beacon for the approaching spacecraft, ized as a function of angular separation. The total angular
The ADOR observations Can then be made between the _ tr%cking error as a function of spacecraft angular separa-

two spacecr_t directly, effectively replacing the quasar tion_is tJaen calculated for spacecraft with DOR tones at

with the reference spacecraft. The sequence of missions either X-band (8.4 GHz) or Ka-band (32 GHz.) Possible

to Mars em_odied_n the framework of the Space Explo-

ration Initiative(SEI) will enable such tracking opportu-

nities, providing a number of advantages over conventional

spacecraft-quasar ADOR. First, the frame-tie problem is
eliminated: The differentia/measurement between the ap-

proach spacecraftand the reference spacecrai't (planetary

orbiter or lander) provides a direct target-relative men-

applications of this technique are discussed. In particular,

an early opportunity to demonstrate spacecraft-spacecraft

ADOR will present itself in September 1995, the tentative

arrival date of the Russian Mars '94 mission at Mars, where

the U.S. Mars Observer spacecraft will already have been
in orbit for over two years. To evaluate the potential nav-

igation improvement for this Mars '94 approach scenario,

surement oft_e................_i_c_ff sp_.cecraft_s position. 0fcourse, acovarm" nee analysis is peri_ormed in Section II of this at-

the frame-tie-aaad-epfiemerls err0rsdre replaced by any Un- -i[cle, which is based on the spacecraft-spacecraft ADOR

certainty in t_e'reference _spacecraft*s position, but these -error buclget.
errors shouTd_be h_ucl_ smaller than typical frame-tle or "- _ •

planetary ephemeris errors. For example, Doppler data

typically provide subkilometer planet-relative positions for
plranetary o-r_lt-er_positlon errors for fixed land_dr_ -

should be at or below about 10 meters using new differen-
tial tracking datat-ypes [2].

II. Error Analysis

A. Observation Description

Thenominal observation scenario considered here con-

sists of three scans: a 60-sec observation of spacecraft A,

A seconff_dvafifag_-of thi_ _-cqan]qi_e-is that as the ap- -il_e-n a-12-0-sec observation of Spacecraft B, and finally an-

proach spacecraft nears the target planet, the angular sep-

aration betwee-n-the approach spacecraft and the reference
spacecraft will continually decrease. This will reduce the

size 01rh_m_b'_er o_-_ror sources, i'iicluding platform errors

(i.e., sthY[dn-l-6cat_ofiand i_arth br|entation) and propaga-

tion-media effects.- Thus, t_ae highest quality data will be

obtained just when it is most needed--immediately prior
to orbit ]nser tTon.

Finally, because the spacecraft signals are determin-

istic, on,way spacecraft range observables can be gen-
erated locally at each station, without the need for the

other 60-sec observation of spacecraft A, with slew times

of _0 sec allowed between scans. For each observation, two

stations spanning an intercontinental baseline simultane-

ously observe a number of sinusoidal tones (re'fe_rec] tb as

DOR tones) from one of the spacecraft, which provides a
group delay measurement of the difference in arrival times

of that spacecraft's signal at two tracking stations. A dif-

ferential observable is then formed by interpolating the
two observations of spacecraft A to the epoch of the ob-

servation of spacecraft B, thereby eliminating any errors

that are linear in time, and then differencing the inter-
polated delay for spacecraft A from the observed delay
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for spacecraft B. These observation times are long enough

to provide sufficient signal-to-noise ratio (SNR) for typi-
cal DOR tone amplitudes, yet short enough to keep vari-

ous stochastic errors small. Two spacecraft configurations
will be considered: a pair of spacecraft with X-band DOR

tones (with a spanned bandwidth of ArDoR = 40 MHz) or

a pair of spacecraft with Ka-band DOR tones (AvooR "-
250 MHz). (Additional DOR tones with smaller spanned

bandwidths could be added to the spacecraft downlink

spectrum, as required, to enable reliable ambiguity res-

olution.)

The mean elevation of the two spacecraft at each station

will be assumed to be 20 deg, and the angular separation

between the two spacecraft will be assumed to be solely

in the elevation direction, providing a worst-case estimate

Of propagation media errors. Table 1 summarizes the ob-

servation description. This article considers spacecraft-

spacecraft angular separations ranging from 0-20 deg on

the sky plane.

At each station, two (or more) DOR tones from each

spacecraft must be tracked to form the spacecraft DOR

group delay observables. A multichannel closed-loop dig-

ital tracking receiver will simultaneously phase track all

the tones from both spacecraft. While this capability does

not currently exist in NASA's operational Deep Space Net-

work (DSN), a demonstration is underway to use modified

Global Positioning System (GPS) digital tracking receivers

to simultaneously track carrier tones from Pioneer Venus

Orbiter and Magellan at two stations [2]. Planned up-

grades of the operational VLBI system will incorporate

this capability. The closed-loop tracking provides a much
lower data rate relative to current open-loop recording,

and the multichannel capability provides higher SNR by

eliminating time-multiplexing among DOR channels.

The actual spacecraft-spacecraft ADOR observable is
obtained by combining the measured phases as follows:

Let vii represent the frequency of the ith DOR tone for

spacecraft j, and let ¢ijk be the measured phase for that
DOR tone at station k. The single-station one-way delay

for spacecraft j at station k can then be obtained from a
pair of DOR tones

¢2ik - ¢1ik
vjk =

v2j -- _'lj

This one-way delay contains a bias due to uncertainty in
the time of transmission of the signal from the space-

craft. By differencing this one-way observable between

two ground stations, this bias is eliminated. The unbi-
ased, station-differenced delay observable for spacecraft j
is then

Tj "-" _2 -- _1

Interpolating the two observations of spacecraft A (at

t = -T and t - +T, respectively) to the epoch of the ob-

servation of spacecraft B (at t -- 0), and then differencing

between spacecraft, yields the final spacecraft-spacecraft
ADOR observable

r = I(rA(--T) + rA(T)) - rB(0)

(The simple arithmetic mean of the two observations of

spacecraft A is appropriate in the absence of significant

angular accelerations for spacecraft A. A more general in-

terpolation scheme could be used to account for any large
accelerations.)

This observable represents a measure of the geometric

delay rg, which is a function of the relative angular position
of the two spacecraft

where sA and _iB are the unit vectors in the directions

of the two spacecraft, B is the baseline vector between

ground antennas, and c is the speed of light.

In the next section, various error sources which corrupt

this spacecraft-spacecraft ADOR observable will be exam-
ined. Each error source will be characterized in units that

are most natural for the physical source of error, but ul-
timately one is interested in the angular error incurred on

DSN intercontinental baselines. The following conversion

factors will be used to relate various physical errors to an

angular error on the sky plane:

l-cm path delay error -- 33-psec delay error

--- 1.67-nrad angular error

(This assumes a 6000-kin projected length of the DSN in-
tercontinental baseline on the sky plane.)
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B. Error Components

1. Spacecraft Signal-to-Noise Ratio. The phase

error _ in the determination of the spacecraft tone phase
is related to the SNR of the received DOR tone. The

received DOR tone power can be expressed

_2

Poor = ['sic (DOR gSlC (4_R)2 gDSN

where

9S/C =

A=

R=

gDSN ----

total transmitted spacecraft power

fraction of spacecraft power in the DOR tone

(depends on modulation index and telemetry

status)

spacecraft antenna gain

RF wavelength

Earth-spacecraft range

DSN ground antenna gain

In considering DOR tone SNR, the Mars Observer
spacecraft will be used as a strawman.configuration. 2 At

maximum Earth-Mars range, with telemetry on (with an
80-deg modulation index), a 34-m high-efficiency DSN an-

tenna provides a received DOR tone power of PDOR =

--159.0 dBm. The noise power per unit bandwidth is given

by kT, y_, where k is Boltzmann's constant and T,_s is the

system temperature of the receiving system, which repre-

sents the sum of the noise temperature of the first-stage
amplifier, the brightness temperature of the atmosphere
in the direction of the spacecraft, the 2.7-K cosmic back-

ground radiation, and any ground pickup from antenna

spillover. Assuming a total noise system temperature of 25

K at X-band yields an X-band noise power per unit band-

width of-184.6 dBm/Hz. The ratio of ['Don to kTjy,,
which describes the achievable link SNR in a one-second

integration, is thus 25.6 dB-Hz.

The thermal phase error on the measured DOR tone

phase is then given roughly by

,/ kT,_,,
0"4, = VPDoR2Vint rad

where nnt is the integration time of the observation. For

the 120-see integrations for each spacecraft assumed here,

Ibid.

one arrives at a phase error of 5.4 x 10 -4 cycles at X-

band. (For the purposes of treating the statistical error
due to SNR, one can treat the two 60-see observations of

spacecraft A as a single 120-see scan at the same epoch as

the observation of spacecraft B.) The final thermal delay
error is thus given by

ar = _/2 x 2 x 2 _¢
AtJDOR

where the three factors of V_ reflect the pairwise differenc-

ing between DOR tones, stations, and spacecraft, resulting
in an X-band delay error of 38.3 psec.

If one assumes a similar ratio of PDOR to T,_, at Ka-
band (which provides a reasonable figure of merit in de-

Signing theKa-band DOR transponder), t_en _ne_ains

an equivalent phase error for Ka-band VLBI. The result-

ing delay error would then be 6.1 psec due to the larger
Ka-band spanned bandwidth.

2. Ground System Instrumental Dispersion. Un-

calibrated phase dispersion in the ground receiving]n_tru-

mentation induces errors in the measured tone phases that
will corrupt the final spacecraft-spacecraft ADOR observ-

able. As other error sources are reduced due to high SNR

and common-mode cancellation of media effects, these dis-

persive errors may well represent a limiting error source for
spacecraft-spacecraft ADOR. With current VLBI instru-

mentation, preliminary studies indicate that dispersive er-

rors are at the 1- to 2-deg level, s although more data on
this error source are sorely needed. Achieving this level

of phase error requires the use of phase calibration tones

and/or the careful selection of a baseband frequency con-
figuration to cancel instrumental errors between DOR tone
channels.

A next-generation VLBI system employing broadband
digitization of the entire intermediate frequency band-

width and digital baseband filtering could significantly re-

duce instrumental errors by eliminating the analog base-
band components that currently generate much of the dis-

persive phase effects. Design goals for this system provide

for a one-millicycle dispersive phase error. The authors

take this as the assumed instrumental dispersive phase er-

ror for each tone phase measurement. The resulting error

in the spacecraft-spacecraft ADOR delay observable is

3 C. D. Edwards and K. Zukor, "Video Converter Local Oscillator

Stability for Block I and Block II VLBI," JPL Interoffice Memoran-

dum 335.1-90-055 (internal document), Jet Propulsion Laboratory,
Pasadena, California, October 30, 1990.
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where the three factors of x/_ again account for the pair-

wise differencing between DOR tones, stations, and space-

craft. This points out an important advantage of the in-

creased spanned bandwidth available at Ka-band: For a

given level of phase dispersion, delay errors are reduced

proportional to the DOR tone spanned bandwidth. As-

suming that o'_"st = 1 mcyc yields a er_ of 70.7 psec at
X-band and 11.3 psec at Ka-band. At the smallest space-

craft angular separations, this error source will be one
of the dominant contributors to the spacecraft-spacecraft

ADOR error budget.

3. Station Clock Stability. Here the term "clock

stability" represents both the stability of the station clock

reference and the stability of the station frequency and

timing distribution systems. The group delay error due to
clock instability is on the order of

Ar = V_ x _u(r = 150 sec) x 150 sec

where 150 sec is the time between central epochs of the

scans for spacecraft A and B, and o'_(r = 150 sec) is the
Allan standard deviation, or fractional frequency stabil-

ity, evaluated at this time separation. Assuming a sta-

tion stability of a_(r = 150 sec)= 10 -14, this yields a
spacecraft-spacecraft ADOR delay error of 2.1 psec. For

a flicker-frequency noise spectrum, this error will grow lin-

early with the temporal scan separation.

4. Troposphere. The troposphere error can be sep-
arated into a static component and a fluctuating compo-
nent. The static component represents the error made in

the context of a static, isotropic refractivity distribution

characterized by a single zenith troposphere delay. The

delay at an arbitrary elevation angle 0 is related to this

zenith value by a mapping function fmap that is approx-

imated here as 1/sin 0. At a single station, an error a_ _n
in the zenith troposphere will lead to a delay error when

differencing between Spacecraft ....

1 1Iar = o'r sin 0A sin 0B

where 0i is the elevation angle of spacecraft i. For the

*e'_ is currently about 4 cm, based on sea-DSN stations, aT
sonal weather models and surface meteorology. Water va-

por radiometers and/or global GPS tracking data should

be able to provide reliable one-centimeter zenith tropo-

sphere estimates in the mid-1990s [3,4]; one centimeter

will be used here as the representative zenith delay error.

For two spacecraft with a mean elevation angle of 20 deg

and angular separation A0, assumed to be fully in the

elevation direction, and accounting for uncorrelated one-

centimeter zenith troposphere errors at each station, the

resulting spacecraft-spacecraft ADOR delay error is

sin(20 1crT =,¢r_ x 1 cm x deg + AO/2)

1 Isin(20 deg - A0/2)

In fact, the troposphere is neither static nor isotropic;

spatial and temporal fluctuations, particularly in the dis-
tribution of atmospheric water vapor, lead to additional

errors. Treuhaft and Lanyi [5] have developed a model

of these fluctuations that is based on Kolmogorov turbu-
lence. This model has been used to calculate the expected

additional fluctuation error for the A-B'A scan sequence

considered here, with the scans at a mean elevation of

20 deg and separated by 150 sec. The authors assume a
tropospheric scale height of one kilometer, a wind speed

of 8 m/sec, and a turbulence normalization constant of
2.4 x 10-Tin -1/3 [5]. For a zero-degree angular separa-

tion, the effect of temporal fluctuations over the 150-sec

scan separation times yields a fluctuation error of about 10

psec; as the angular separation is increased, the additional

effect of spatial fluctuations becomes important, with the
total fluctuation error reaching about 39 psec for a 20-deg

angular separation.

While not assumed in this analysis, it should be men-
tioned that improved line-of-sight troposphere calibrations

(using either improved WVRs or lidar calibration tech-
niques) could ultimately reduce the total wet troposphere
error to well below one centimeter, independent of angular

separation.

5. Ionosphere. Dual-frequency downlinks on both

spacecraft would enable charged particle-induced errors

to be virtually eliminated from the spacecraft-spacecraft

ADOR delay observable. For the analysis here, however,
the authors assume only a single-band downlink and calcu-

late the size of the charged particle error that is incurred.

The total ionospheric delay along a given line of sight can

be expressed

r[p_¢¢] = 1340 x
TEC[lo,_ el/m_l

u?cHz]
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whereTEC is the line-of-sight integrated total electron

content, and all units are indicated [6]. As with the tro-

posphere, one can also separate the ionospheric error into

a "static" and a "fluctuating" component. The mapping

function fmap used to express the elevation dependence of

the static component differs slightly from the tropospheric

mapping function, due to the height of the ionospheric

shell above the Earth, and takes the form

1 -4-h/RJ ) ....

where h is the height of the ionospheric shell above the

Earth (--,350 km) and R is the Earth's radius (--.6371 km).
The main impact is that the ionospheric mapping func-

tion increases more slowly at low elevations, saturating at

a value of about 3.1 at the horizon. (This is a highly sim-

plified picture of the ionosphere; in practice, the mapping

function used is more complicated and accounts for the

position of the Sun relative to the desired line of sight and
the line of sight at which the ionospheric calibration was

performed, in order to account for the diurnal variation in
TEC: Nevertheless, the Simple picture used here is ade-

quate to estimate a typical error gradient on thesky due to

ionospheric calibration error.) Using an analysis similar to
that used for the troposphere shows that the static iono-

spheric error Tor-the Spacecraft:spacecraft ADOR-de_[ay
observable is

5
o-_[p,e¢] =V_ x 1340 x .T"- x I/ .°p(2o deg + A012)

viGml

-f,,,,_,(20 deg - A0/2)I

where the authors have assumed an uncertainty in the

zenith TEC of 0.TEC = 5 x 1016 el/m 2, and where the

authors again take the worst-case geometry for which

the spacecraft angular separation is entirely in the ele-

vation direction. This corresponds to a 10-percent cal-

ibration uncertainty for a typical daytime maximum of
TEC = 50 x l0 is el/m 2, which is consistent with iono-

spheric calibration accuracies using Faraday rotation or

GPS satellite data. For A0 = 5 deg, this represents a

delay error of 36 psec at X-band, or 2 psec at Ka-band.

The fluctuating component for the ionosphere is ex-

pected to be important, due to the variety of phenom-

ena driving the ionospheric charged particle distribution

(e.g., the day-night asymmetry, traveling ionospheric dis-

turbances, and latitude variations) and the resulting lim-

ited accuracy of the simple static ionosphere model. Theo-

retical understanding of the processes driving ionospheric
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fluctuations is much less developed than for tropospheric

fluctuations; as a result, empirical data will be used to

guide the quantitative estimate of this error source. Based
on a recent study that derives temporal fluctuation statis-

tics from dual-frequency GPS carrier phase data, 4 an addi-

tional error of 0.5 TEC units (1 TEC unit = 1016 el/m s) is

specified to account for temporal ionospheric fluctuations
at each site on the time scale of the differential observa-

tions. This level of fluctuation corresponds to a delay error

of 13 psec at X-band and 0.9 psec at Ka-band.

6. Solar Plasma. Charged particles in the solar

plasma dis_o__m_duce=:afle[ay error for spacecra_-space:craft
ADOR. The solar plasma delay error is proportional to

the double-differenced line-of-sight integrated total elec-
tron content in the solar wind along the four relevant

spacecraft-spacecraft ADOR lines of sight_ The statis-

tical model of gahn and Border [7], based on solar plasma
electron density spectra compiled by Woo and Armstrong

[8], derives a spat]a:]-structure:function :for :sg]ar pl_a-
induced phase fluctuations, Which can be used to calculate

the error in the station-differenced delay to a single space-
craft

O'. t.

134 pse¢ ....

v[uGrlzl [sin SEP] 1"225

where SEP is the Sun-Earth-probe angle. For spacecraft-

spacecraft angular separations greater than about one de-
gree, the solar plasma error for a second spacecraft Will be
.....................

essentially uncorrelated. Assuming a projected DSN base-
line Of 6000 km then yields a total spacecraft-spacecraft
ADOR error of

0"0 --__

9.50 nrad

v[2Gml[sin SEP]* _2

A SEP angle of 20 deg for both spacecraft is assumed,

which yields a total angular error of 0"e = 0.50 nrad at

X-band and 0.03 nrad at Ka-band. Below a one-degree
angular separation, the solar plasma error will be further

reduced due to additional cancellation between raypaths

for the two spacecraft.

7, Baseline Errors. Uncertainty in the baseline vec-

tor is due to a combination of a priori station location

errors and errors in the knowledge of Earth orientation

4 A. J. Mannucci, "Temporal Statistics of the Ionosphere," JPL

Interoffice Memorandum 335.1-90-056 (internal document), Jet

Propulsion Laboratory, Pasadena, California, October 251 i990.



(UT1-UTC and polar motion). Any uncertainty 6]_ in

the baseline vector leads to a delay error

c

where sl and 82 are the source directions to the two space-

craft. (In other words, the baseline path delay error is

attenuated by the angular spacecraft separation, in radi-
arts, projected along the baseline direction.) It is assumed
here that station coordinates in the terrestrial frame are

known to 3 cm per component [9]. In addition, weekly

VLBI observations combined with daily GPS observations
have been shown to be able to deliver real-time Earth ori-

entation estimates with 10-nrad accuracy [10]. Based on
these two error components, a delay error of aT = 4.3 psec

XA_[deg ] due to baseline uncertainty is specified.

8. Frame Tie. One final error contribution is related

to the offset in the planetary and radio reference frames,

and is referred to as the frame-tie uncertainty. In conven-

tional spacecraft-quasar AVLBI, the spacecraft position
is measured in the radio frame relative to a nearby quasar;

the frame-tie offset contributes directly as an angular bias

for determining the spacecraft position relative to a plan-

etary target. The spacecraft-spacecraft AVLBI technique
described in this article reduces the effect of the frame-tie

error by directly measuring the approach spacecraft rela-

tive to a spacecraft at the target planet. Nonetheless, the

frame tie does induce a small residual error in converting

the measured AVLBI delay into an angular separation.
The error is due to the fact that the baseline orientation

is modeled in the radio reference frame, based on periodic

VLBI and GPS measurements of Earth orientation, while

the reference spacecraft's position is tied to the pl_anetary

ephemeris. The resulting angular error in the approach

spacecraft's angular position relative to the target planet

is proportional to the product of the frame-tie uncertainty

and the angular separation between spacecraft, expressed

in radians. The frame-tie uncertainty is currently about

50 nrad for the inner planets, but that value should be

reduced to about 25 nrad based on several ongoing ob-

servational programs, including millisecond pulsar timing

and VLBI observations [11], observations of planetary oc-

cultations of quasars [12], and joint solutions of VLBI and

lunar laser ranging data sets [13]. Thus, the authors in-

clude an error in the determination of the approach space-

craft's target-relative position in terms of the spacecraft-

spacecraft angular separation 50

71"

_e = 25 nrad x 1-_ x 60[deg] = 0.44 nrad x 60[deM

C. The Total Spacecraft-Spacecraft ADOR

Error Budget

Table 2 summarizes the error-modeling assumptions

made in this analysis, while Tables 3 and 4 present the

error budget for the X-band and Ka-band spacecraft-

spacecraft ADOR cases considered here. Figure 3 sum-

marizes the angular error for each case as a function of

the angular separation between spacecraft. For the X-
band case, the dominant errors for large angular separa-

tions (>10 deg) are the propagation media errors, due to
uncertainties in the zenith troposphere and ionosphere de-
lays_ The angular error grows roughly by 0.7 niad per

degree of angular separation in this range. For smaller an-
-guiar-separat[ons, the dominant errors are the small-scale
l_uctuat_0ns in the ionosphere and the i-nstrumenia] l_hase

dispersion, followed by troposphere fluctuations and the
statistical measurement error due to the received space-

craft SNR. As the angular separation approaches zero, the
accuracy levels out at just over 4 nrad.

The Ka-band error budget shows further accuracy im-

provement due to two factors. First, the much larger

spanned bandwidth reduces the statistical measurement
error as well as the phase dispersion error by a factor of

250/40 relative to the X-band case. Second, the higher
Ka-band frequency reduces the effects of the ionosphere

and the solar plasma by a factor of (32/8.4) 2, or about

14.5. For Ka-band, the dominant errors are troposphere

and platform errors at large angular separations, and in-
strumentation and troposphere fluctuations at small an-

gular separations.

IIh Discussion

The error budget presented in the last section was pa-

rameterized as a function of the angular separation of

the approach and in-orbit spacecraft. How does this an-

gular separation evolve during the final weeks of plane-

tary approach? As a representative example, consider the

spacecraft-spacecraft angular separation for a ttohmann

(minimum-energy) Earth-Mars transfer orbit. For this or-

bit, the Mars-Earth-probe (MEP) angle is less than 27 deg
for essentially the entire trajectory, less than 10 deg for the

last four months of the trajectory, and, in fact, less than 2

deg for the last 100 days. At encounter, the rate of change

of the MEP angle is only 0.044 deg/day.

Higher energy transfer orbits, for which aerocapture in-
sertions might be a key component, and therefore which

may require highest accuracy approach navigation, will

typically have larger approach velocities, but should still
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have a spacecraft-planet angular separation of less than 5

deg for at least the last few weeks of planetary approach.
Hence, the highest accuracy spacecraft-spacecraft ADOR

observables will be available during the final critical tar-

geting maneuvers in the last few weeks prior to encounter.

It should also be mentioned that during the final hours

of planetary approach, the in-orbit and approach space-
craft will become sufficiently close on the sky plane that

they may be Observed simultaneously within a single
Earth-based antenna beamwidth. This enables the use

of the same-beamwidth interferometry (SBI) technique

[2,14], in which the simultaneous observation of both

spacecraft leads to further significant error reductions,
with accuracies of 10-100 prad possible if the RF phase
observable can be resolved. The X-band and Ka-band

beamwidths of a 34-m antenna are 60 and 16 mdeg, respec-

tively; thus, for the Hohmann trajectory described above,
X-band SBI observations will be possible for over a day

before encounter, and Ka-band for about 8 hours prior to

encounter. Konopliv and Wood [15] have already shown

how the SBI observable can provide accurate Mars ap-
proach navigation during the final hours of approach, help-

ing to enable aerocapture. The key message of the results

presented here, however, is that even before SBI observa-

tions are possible, nonsimultaneous spacecraft-spacecraft
ADOR observations can provide significant improvements

in target-relative approach navigation for weeks or even
months before encounter.

One important error source that applies to spacecraft-

spacecra.f_t ADOR was not included in the error budget
presented_here: namely, the uncertainty in the planet:

relative position of the in-orbit reference spacecraft. This
error depends very much on the type of orbit the refer-

ence spacecraft is in, the amount and "¢iuallty o_ track[fig

data Col]ec--ted for the in-orbit spacecraft, and assumptions

about limiting errors, such as uncertainties in the plan:

etary gravity field. Preliminary navigation analysis for
the Mars Observer mission, for example, indicates thKt
one-kilometer orbit errors are expected immediately after

orbit insertion. However, after several weeks of intensive

Doppler tracking, the resulting improvement in the Mars

gravity field should allow a reduction of orbit errors to
about 200 meters. 5 A 200-m spacecraft position error cor-

responds to an angular error of 0.5-2.5 nrad, depending

on the Earth-Mars range. For X-band observations, this

.... errorwil]_ot be _gmlnant, but it will be an importan[ er-
ror source for the higher accuracy Ka-band observations.

5p. Esposito, S. Demcak, D. Roth, G. Bollman, and A. HalseU,
"Mars Observer Project Nhv]gat|on Plan," JPL D-3820 (internal
document), JetPropulsion Laboratory, Pasadena, California, June
15, 1990.

Of course, if the reference spacecraft is, in fact, a beacon
on the planetary surface, its position will be known to a

much higher accuracy: Conventional range and Doppler
data should be able to provide Mars-centered beacon po-

sition determination with 10-m accuracy in the spin radius

and 100-m accuracy along the spin axis. In addition, SBI
between the surface beacon and an orbiter could provide

few-meter Mars-relative beacon position accuracy in all

three components [16].

Some error sources which are important for conven-

tional quasar-relative ADOR are eliminated or greatly re-

duced in spacecraft-only observations. In the previous

section the authors discussed how the frame-tie error is
greatly reduced in the spacecraft-spacecraft technique, rel-

ative to spacecraft-quasar AVLBI. Other important error
sources for quasar-relative ADOR include the statistical

uncertainty in the measurement of the quasar delay, any

a priori uncertainty in the quasar position, and the ef-
fect of source structure on the quasar position. Because
of the limited 250-KHz recorded bandwidth of the NCB

VLBI system, the quasar delay measurement error is one

of the limiting error sources for conventional ADOR,. An

additional impact of the low NCB sensitivity is that only

bright quasars can be reliably observed: A minimum corre-
lated flux density of 0.4 Jy is typically required for reliable

detection with a pair of DSN antennas, one 70-m and one
34-m. Due to the limited number of useful sources, it is

often necessary to use a quasar more than ]0 deg from

the spacecraft, with the result that Earth orientation and

propagation media errors are increased.

Finally, a priori source pos_tions are uncertain at the

level of about 5 nrad, based on the current DSN quasar

data set. Source positioii' accuracies may 'improve fur-

ther, toward one-nanoradia n _.curacy with the i_ncreas-
ing amount of Mark III observations in t_e source-catalog
data_set. H0wever, it _is suspec:ted that source stri_cture

can cause few-nanoradian errors in apparent source posi-

tion, varying-w_th time as the quasar: jet structure evoIves,

and also changing with observation geometry as the fringe

orientation changes and different source features are re-
solved; this error source may pose a difficult obstacle to

achieving nanoradian-level quasar positions. Over short
periods of weeks or months,lduring which source, struc-o

ture is expected to remain nearly .constant, it is possible
to e!jminate the source structure error in a relat[_ sense

among a series of ADOR observations by always observing
the same quasar(s) at exactly the same hour angle(s) [1].
However, this poses scheduling constraints and still does

not eliminate any overall source position error common to
all observations.
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IV. Opportunities to Demonstrate
Spacecraft-Spacecraft _DOR

To validate the error budget presented here and gain

experience in acquiring and processing this data type, it

would be valuable to find opportunities to demonstrate

the spacecraft-spacecraft ADOR observation technique.

To demonstrate the technique, one requires two angularly
close spacecraft, each with downlinks at the same fre-

quency band, including VLBI DOR tones. Two notewor-
thy opportunities are mentioned here. First, in January

of 1994, Venus and Mars pass near each other on the sky

plane. At this time, Magellan will be in orbit about Venus,

and Mars Observer will have recently arrived at Mars.

Mars Observer has a 38.25-MHz DOR tone bandwidth,

and Magellan has a 30.72-MHz bandwidth consisting of
the 4-16th harmonics of the 960-KHz telemetry subcarrier.

The two spacecraft will pass within about 0.3 deg of each

other, with closest approach occuring on January 6, 1994.
By acquiring a series of spacecraft-spacecraft ADOR ob-

servations over a several-week period, it should be possible

to verify the accuracy of the spacecraft-spacecraft ADOR

data type as a function of spacecraft angular separation.

In addition, a subkilometer determination of the sky-plane
components of the offset between Venus and Mars at this

epoch would result, providing a valuable constraint on the

relative orientation of the orbit planes of these two planets.

The second, and potentially more interesting, oppor-
tunity involves using the Mars Observer spacecraft as a

spacecraft-spacecraft ADOR reference for planetary ap-

proach of the Russian Mars '94 spacecraft. Mars '94 tenta-

tively plans a September 1995 Mars orbit insertion; this is

near the end of the prime mission of Mars Observer, which

will have arrived at Mars in August of 1993: Mars Ob-
server incorporates a 38.25-MHz X-band DOR tone band-

more ambitious aerocapture missions encompassed within

the SEI will benefit from new, high-accuracy tracking tech-

niques.

V. Summary

Spacecraft-spacecraft ADOR observations between an

in-orbit spacecraft and another spacecraft approaching

that planet can provide target-relative angular navigation
with accuracies of about 4 nrad during the last weeks of

planetary approach for spacecraft equipped with X-band

transponders incorporating roughly 40-MHz DOR tone

spacings. Accuracies approaching one nanaradian can be
obtained by going to Ka-band downlinks with DOR tone

spacings of several hundred megahertz. These accuracies
correspond to an observation duration of only 6 minutes.

The spacecraft-spacecraft ADOR observable has the

advantage of tying the approach spacecraft directly to the

planetary target. In addition, because only spacecraft sig-

nals are used, no wideband quasar recording is required.

As a result, data transfer and data processing are sim-

plified, which enables these observables to be available in

near-real-time. To enable efficient data collection, a key

part of the DSN's planned VLBI system upgrade should

be the implementation of ground tracking receivers that

can simultaneously track multiple tones from each space-

craft. Reducing instrumental phase dispersion errors to

the millicycle level will be an important design goal for

this new system and should be achievable by using digi-

tal data acquisition techniques. Other key improvements

in ground capabilities assumed in this analysis are a 1-

cm zenith troposphere calibration capability and a 3-cm

station location knowledge. In the 1995 time frame, GPS

and/or WVRs should be capable of providing troposphere

width; if the Russians incorporate a similar capability on calibrations at this level, while VLBI, GPS, and LLR data

their spacecraft, it would be possible to collect spacecraft-

spacecraft ADOR data during Mars '94 approach. In

Part II of this article, a covariance analysis will be pre-

sented to examine the navigation benefits of such an obser-
vation program for the Russian spacecraft. And of course,

after encounter, one would also be interested in collect-

ing SBI data, which have already been shown to have

significant navigational benefits to both missions [2,14].

This scenario provides a unique opportunity to demon-
strate multiple spacecraft tracking at Mars, where future,

should be able to provide the required level of station lo-

cation accuracy.

Opportunities to demonstrate the spacecraft--spacecraft
ADOR technique will arise in the next several years, first

with fortuitous sky-plane flybys of unrelated deep space

missions, such as Magellan and Mars Observer, and then

in 1995 by the poss_ility of using differential observations

of Mars Observer and Mars '94 to improve the planetary
approach targeting for the Mars '94 mission.

71



Acknowledgments

This analysis benefits from earlier analyses of conventional spacecraft-quasar

ADOR by Brooks Thomas, Sien Wu, and Bob Treuhaft. The authors thank Roger

Linfield, Bill Folkner, Sam Thurman, and Lincoln Wood for their helpful comments
on a draft of this article.

References

72

[1] R..N. Treuhaft and S. T. Lowe, "Nanoradian VLBI Tracking for Deep Space
Navigation," paper AIAA 90-2939, Proceedings of the AIAA/AAS Astrodynamies
Conference, pp. 587-589, Part 2, Portland, Oregon, August 20-22, 1990.

[2] W. Folkner and J. Border, "Orbiter-Orbiter and Orbiter-Lander Tracking Using
Common-Beam Interferometry," paper 90-2906, Proceedings of the AIAA/AAS

Astrodynamics Conference, Part 1, pp. 355-363, Portland, Oregon, August 20-

22, 1990.

[3] D. M. Tralli and S. M. Lichten, "Stochastic Estimation of Tropospheric Path De-
lays in Global Positioning System Geodetic Measurements," Bulletin Geodesique,

vol. 64, pp. 127-159, 1990.

[4] T. It. Dixon and W. S. Kornreich, "Some Tests of Wet Tropospheric Calibra-
tion for the CASA Uno Global Positioning System Experiment," Geophys. Res.

Letters, vol. 17, pp. 203-206, March 1990.

[5] R. N. Treuhaft and G. E. Lanyi, "The Effect of the Dynamic Wet Troposphere
on Radio interferometric Measurements," Radio Sci., vol. 22, pp. 251-265, 1987.

[6] P. S. Callahan, "Ionospheric Variations Affecting Altimeter Measurements: A
Brief Synopsis," Marine Geodesy, vol. 8, pp. 249-263, 1984.

[7] R. D. Kahn and J. S. Border, "Precise Interferometric Tracking of Spacecraft at
Low Sun-Earth-Probe Angles," paper AIAA-88-0572, presented at Aerospace

Sciences Meeting, Reno, Nevada, January 11-14, 1988.

[8] R. Woo and J. W. Armstrong, "Spacecraft Radio Scattering Observations of
the Power Spectrum of Electron Density Fluctuations in the Solar Wind," J.

Geophys. Res., vol. 84, p. 7288, 1979.

[9] R. P. Malla and S. C. Wu, "GPS Inferred Geocentric Reference Frame for Satellite
Positioning and Navigation," Bulletin Geodesique, vol. 63, pp. 263-279, 1989.

[10] A. P. Freedman, "Determination of Earth Orientation Using the Global Position-

ing System," TDA Progress Report 42-99, vol. July-September 1989, pp. 1-11,
November 15, 1989.

[11] D. Jones, R. Dewey, C. Gwinn, and M. Davis, "Mark III VLBI Astrometry of
Pulsars," IAU Colloquium 131, Radio Interferometry: Theory, Techniques, and

Applications, ed. T. Cornwell, Socorro, New Mexico, October 1990.

[12] R. Linfield, "Using Planetary Occultations of Radio Sources for Frame Tie Mea-
surements; Part 1: Motivation and Search for Events," TDA Progress Report

45-103, vol. July-September 1990, pp. i-13, November 15, 1990.



[13]M. Finger and W. Folkner, "A Determination of the Radio-Planetary Frame-Tie
and the DSN Tracking Station Locations," paper 90-2905, Proceedings of the
AIAA/AAS Astrodynamics Conference, Part 1, Portland, Oregon, pp. 335-353,

August 20-22, 1990.

[14] J. Border and W. M. Folkner, "Differential Spacecraft Tracking by Interferom-
etry," paper CNES-89-145, Proceedings of the CNES International Symposium

on Space Dynamics, Toulouse, France, pp. 6-10, November 1989.

[15] A. Konopliv and L. Wood, "High Accuracy Mars Approach Navigation with
Radiometric and Optical Data," paper AIAA 90-2907, Proceedings of the AIAA/

AAS Astrodynamics Conference, Part 1, Portland, Oregon, pp. 364-376, August

20-22, 1990.

[16] R. D. Kahn, W. M. Folkner, C. D. Edwards, and A. Vijayaraghavan, "Position

Determination of Spacecraft at Mars Using Earth-Based Differential Tracking,"
paper AAS 91-502, presented at AAS/AIAA Astrodynamics Specialist Confer-

ence, Durango, Colorado, August 19-22, 1991.

73



Table 1. Observation descrlptlon. -

Observation sequence Timel sec : = :

Spacecraft A 60

Slew time 60

Spacecraft B 120

Slew time 60

Spacecraft A 60

Observation geometry

Mean elevation angle

Angular separation

Projected baseline length

20 deg

0-20 deg, in elevation direction

at both stations

6,000 kin

Spacecraft signal spectrum

Case 1, X-band Case 2, Kevband

Carrier frequency 8.4 GHz 32.0 GHz

DOR tone spacing 4-20 MHz 4.125 MHz

Received DOR tone SNR 25.6 dB-Hz 25.6 dB-Hz

Table 2. Error-modeling assumptlons.

Spacecraft SNR

DOR bandwidth

Case i, X-band

Case 2, Ka-band

P,o..INo
Instrumentation

Single-channel dispersive phase error

Clock stability

Time between spacecraft scans

Allan variance

Static troposphere

Zenith troposphere uncertainty 1 crn

Mean elevation angle 20 deg

Fluctuating troposphere

Treuhaft-Lanyi model

Static ionosphere

Zenith ionosphere uncertainty

Frequency

Case 1, X-band 8.4 GHz

Case 2, Ka-band 32 GHz

Mean elevation angle 20 deg

Fluctuating ionosphere

RMS TEC fluctuation

Baseline

Station location uncertainty 3 cm

Earth orientation uncertainty 10 nrad

RacUo-planetary frame tie

Frame-tie error 25 nrad

Solar plasma

Sun-Earth-probe angle 20 deg

40 MHz

250 MHz

25.57 dB-Hz

0.001 cyc

150 sec

1 x 10 -z4

(as per [81)

5 TEC units

0.5 TEC units

!:
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Ansxdar

separation,

deg

0.10

1.00

2.00

4.00

8.00

I0.00

20.00

Table 3. Error budget for X-band spececreft-spacecraft ADOR.

Spacecraft Clock

SNR, Instrumentation, stability, Troposphere, Ionosphere, Base-line,
nrad nrad nrad

nrad nrad nrad

Solar

plasm&t

nr&d

1.91

1.91

1.91

1.91

1.91

1.91

1.91

3.54 0.11 0.67 0.67 0.02

3.54 0.11 0.76 0.76 0.21

3.54 0.11 0.97 0.99 0.43

3.54 0.11 1.55 1.59 0.86

3.54 0.11 2.95 2.95 1.71

3.54 0.11 3.74 3.64 2.14

3.54 0.11 9.29 7.00 4.28

<0.50

0.50

0.50

0.50

0.50

0.50

0.50

_ame

tie,

mad

0.22

0.44

0.87

1.75

3.49

4.36

8.73

RSS,

nrad

4.16

4.22

4.39

5.01

7.00

8.20

15.69

Table 4. Error budget for Ks-band spececraft-spececraft ADOR.

Anglular

separation,

deg

0.10

1.00

2.00

4.00

8.00

I0.00

20.00

Spacecraft Clock Troposphere, Ionosphere, Base-
Instrumentation, stability, llne,

SNR, nrad nrad rtrad
mrad nrad nrad

Solar

plasm_t _

nrad

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.57 0.11 0.67 0.05 0.02

0.57 0.11 0.76 0.05 0.21

0.57 0.11 0.97 0.07 0.43

0.57 0.11 1.55 0.11 0.86

0.57 0.11 2.95 0.20 1.71

0.57 0.11 3.74 0.25 2.14

0.57 0.11 9.29 0.48 4.28

<0.03

0.03

0.03

0.03

0.03

0.03

0.03

Fra/n_

tie,

nrad

0.22

0.44

0.87

1.75

3.49

4.36

8.73

RSS,

nrad

0.94

1.11

1.52

2.57

4.93

6.17

13.47
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Fig. 1. Conventional ADOR provides a determination of the an-
gular position of a spacecraft relative to the reference frame of
distant quasars. Uncertainty in the position of the target planet
in this reference frame represents an important navigation error
source.

BASELINE

Fig. 2. Spacecraft-spacecraft ADOR observatlons between an
approach spacecraft and a planetary orbiter provide direct planet-
relative approach navigation.
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Fig. 3. Angular accuracy versus spaeecraft angular separation
for X-band and Ks-band spacecraft-spacecraft ADOR.
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Use of the VLBI Delay Observable for Orbit Determination

of Earth-Orbiting VLBI Satellites
J. S. Ulvestad

NavigationSystemsSection

Very long-baseline interferometry (VLBI) observations using a radio telescope in

Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are

scheduled for launch in 1995; the primary scientific goals of these missions will be

astrophysical in nature. This article addresses the use of space VLBI delay data for

the additional purpose of improving the orbit determination of the Earth-orbiting

spacecraft. In an idealized case of quasi-simultaneous observations of three radio
sources in orthogonal directions, analytical expressions are found for the instanta-

neous spacecraft position and its error. The typical position error is at least as large

as the distance corresponding to the delay measurement accuracy but can be much

greater for some geometries.

A number of practical considerations, such as system noise and imperfect cal-
ibrations, set bounds on the orbit-determination accuracy realistically achievable

using space VLBI delay data. These effects limit the spacecraft position accuracy

to at least 35 cm (and probably 3 m or more) for the first generation of dedicated

space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide

global VLBI astrometry as accurate as ground-only VLBL Recommended changes
in future space VLBI missions are unlikely to make space VLBI competitive with

ground-only VLBI in global astrometric measurements.

I. Introduction

Very long-baseline interferometry (VLBI) is a radio as-

tronomy technique that achieves high angular resolution

by means of the simultaneous recording of signals from
artificial or natural radio sources at widely separated ra-

dio telescopes, and then cross-correlating those signals at

a central processing facility [1]. This technique has been

used with ground radio telescopes for about 25 years. Cur-

rently its uses include high-resolution imaging of radio

sources, radio-source position measurements, and moni-

toring of Earth-rotation parameters and continental drift

(e.g., [2]). The first VLBI experiments involving a space
radio telescope along with the ground radio telescopes were
performed between 1986 and 1988 [3-6]. In those experi-

ments, a Tracking and Data Relay Satellite (TDRS) was

used as the space radio telescope, while large telescopes in

Australia and Japan were used on the ground.

Two dedicated space VLBI satellites, with radio tele-

scopes 7-10 m in diameter, are scheduled for launch in
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1995. The VSOP (VLBI Space Observatory Programme)
satellite is being developed in Japan [7], while Radioas-

tron [8] will be a product of the Russian space agency.
Radioastron _+lloperate in a highly elliptical orbit with a

perigee height of about 3000 km and an apogee height of

80,000 km, while the VSOP orbit will have a perigee height

of 1000 km and an apogee height of 20,000 km. Other mis-

sions that would be launched after the year 2000 have been

studied, particularly the International VLBI Satellite [9].

The primary goals of all these missions are astrophysical,

with models and images of radio-source morphologies be-
ing the most important scientific output. In this article,

the additional use of space VLBI data for improved orbit
determination of space VLBI satellites and for radio-source

position measurements ("astrometry"), first suggested in

[10], are explored. However, the performance in these ar-
eas is not the justification for the space missions, and the
limitations that are discussed in this article in no way im-

number of practical limitations to the accuracy achievable

in a realistic observing scenario. The effect of these limi-

tations on the ability to do astrometry using space VLBI

is addressed, with emphasis on the application to the first

generation of dedicated space VLBI satellites that will op-
erate in the 1990s.

II. Assumptions and Definitions

It is assumed that VLBI observations are performed us-

ing one space-based telescope and one or more telescopes
on the surface of the Earth. The space- and ground-based

telescopes simultaneously observe the same set of radio

sources. The VLBI data at the ground telescopes are

recorded in the standard way on high-capacity videotapes.
The radio-source data received by the space antenna are

digitized and transmitted to a ground tracking station for

recording. The clock at the tracking station that records
ply limitations in the ability of the spacecraft to achieve the time of data reception at the spacecraft is initialized

their primary goals, by means of a tone sent up from the tracking station and

transponded by the spacecraft. Thereafter, the ground

In theory, the longer baselines available to space ra- clock is driven by th e VLBI bitstream, with the evolution
clio telescopes could provide enhanced astrometry of radio of the clock error monitored and corrected by means of a

Sources, but only if the know]e_e 0f the baselines has two-way phase: link between the tracking station and the

accuracy comparabie to that available for ground-ground- --spacecraft. =Thevi_otapes from Me ground and space

baselines. This requires position accuracies of a few cen- telescopes then are correia__ed at a central processing facil-
timeters for the space telescope, 2-3 orders of magnitude ity, where amplitude, relative phase, delay, and delay-rate

better than the accuracy of tens of meters achievable for observables are extracted for each observation. A space-
high Earth orbiters using conventional Doppler tracking craft orbit reconstructed from two-way Doppler data (e.g.,

[11]. One possible way to obtain such high accuracy is [11,15]) is assumed to be the a priori model used at the

by the use of Global Positioning System (GPS) receivers correlation facility, in this article, only the VLBI delay oh-
on board the spacecraft [12], although their use Would be servable is considered. It is assumed that a single ground

restricted Somewhat for orbits outside the GPS constella- tracking station is used during th e set of VLBI observa-
tion (altitudes of 20,000 km). It also has been suggested tions considered ....

that the VLBI data acquired On space-ground baselines
could be used to achieve the desired accuracy [13,14]. Itow- In order to visualize the deiay o:_servable and its rela-

7
..... ever, studies of this subject often have ignored potentially - tionsh!pt 0 spacecraft p o_s!tion and clock uncertainties, it is

important error sources or have not obtained the desired appropriate to define a Cartesian coordinate system whose

: -p_ion_al accuracy. Even if centTmeterLlevei basei|neac- originis at+ the location of:the/ground tracking station in
curacy could not be obtained:Using space VLBI clata, it coi_tact with the spacecraft. Instantaneous unit vectors of

Sill[is of_interest to determine the improvement in orbit that co0rdinate system are i"andjatright angles to each

determination that nfight be achieved through the use of other in the Earth's equatorial plane, with k directed to-
such data. ward the North Pole. This coordinate system is++am_ture

of the classical topocentric and equatorial coord_na{e sys-

: +T_is article represents 0neaspect of an effort to anaIyze tems and is selected because it Simplifies the analysis done

the potent!a! o_fspaceVLBI data for improvedorbit deter- below in Section Hi. A ground radio te|escope has position
mination. It has two ma_n goals_ Thefirst is'an-a--n-Mys--iS /_t = (xt,yt,zt) relative to the tracking station, while the

of the [nformat-ion contentand tile smallest p0ssible=orb_t- spacecraft position is V' = (x, y, Z), with the direction from
.......... • + .......... i

+_ _'a_-mn'-errors for delay measurements in _alfigh]y the tracking station to the spacecraft indicated by the unit
i_zed scen'_o-Of space VLBI0bservati0nsl Thls frame:

wor-k is intended to provide a limiting case that shows the

best performance that might be achieved for a hypothet-

ical VLBI satellite. The second goal is to investigate a

vector ÷. The range between tile tracking station and the
spacecraft is r. Figure 1 shows the geometry for a space

VLBI observation of a single radio source. The measured

VLBI delay r is given approximately by
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r = rg + r¢ + rp + ri + r8 (1)

In Eq. (1), rg is the geometric delay for the space-ground
baseline, rc is the delay contribution caused by the experi-

ment clocks, rv is the delay caused by propagation through
the Earth's troposphere and ionosphere, ri is the instru-

mental delay, and rj is the delay caused by radio-source

structure. Note that the propagation delays must be in-
cluded because they affect the data received by the ground

radio telescope, hence contributing to the delay measured

on the space-ground baseline.

II!. Error Analysis and Information Content
in an Idealized Case

Consider a VLBi _observation of a hypothetical radio

source located on the z-axis. In the ideal case, assume

that the radio source is a point source (1", = 0), the prop-

agation delays caused by the ionosphere and troposphere

are known perfectly (rp equals the modeled propagation

delay, rp,m), and there is no instrumental delay (rl = 0).
Further, assume that all clocks on the ground are per-
fect and that there are no errors in the determinations of

universal time, Earth rotation, or polar motion. In that

case, the only contribution to re comes from the spacecraft
clock. Suppose that the best model of tlle spacecraft posi-

tion is Fro, the best model of the ground telescope location

is r'_,m, the model geometric delay is rg,,,, and the best
model of the spacecraft clock delay is re,re. There are a
number of possible ways to find the best model of the clock

delay; details are not considered here, and the reader is re-

ferred to [16] for more discussion. If the delay is "tracked"
in the correlator by subtracting the model delay r,,,, the

measured residual delay r,j will be given by

err,1 -- (r - r.,)

= _(_g- _g,..)+ c(_o- _o,.,)

= (e- era). i - (e, - fi,.,), i + c(_o - _e,..) (2)

where the speed of light is given by c. If it is assumed fur-

ther that the locations of the ground telescope and track-

ing station are known perfectly (i.e., Ft = r_,,_), Eq. (2)
reduces to

c_r,1= (_'- era). _+ _(_o- _,,m) (3)

Tile magnitude of tile delay contributed by the space-
craft clock is the time it takes to transmit a tone between

the spacecraft and the tracking station. The clock epoch is
initialized and monitored as summarized in Section II. Be-

cause the clock's evolution is monitored precisely by means

of the two-way phase link, only the spacecraft clock delay

re at the initialization epoch need be considered here. The

transponded tone received at the tracking station at the
initialization time arrives after a delay given by the light

travel time, so the initial spacecraft data are tagged with
a time later than the time at which the VLBI data actu:

ally were received by the space radio telescope. This de-

lay must be modeled in the correlation of the VLBI data.
Since the clock delay at the initialization time to is just

ro/c, where r0 = r(t0), Eq. (3) reduces to

cT_,l = (x - xm) + (_0 - _0,._) (4)

The simple analysis above shows that the measured de-

lay residual depends on the errors in the spacecraft loca-
tion in two different (usually not orthogonal) directions.

One is the line-of-sight direction to the infinitely distant

radio source (i), while the other is the line of sight from the

tracking station to the spacecraft (÷0)- A single measure-

ment of r_,l cannot distinguish between the two. Simulta-
neous observations from other ground radio telescopes can-
not contribute new information. The location of a ground

radio telescope contributes only to the term (Ft - f't,,n)

in Eq. (2), but (by assumption) this term is negligible.

One can use as many ground telescopes as are available on
Earth, and the result still reduces to Eq. (4), one equation

in two unknowns, z and r0J

In an ideal world, one could imagine making a VLBI ob-

servation instantaneously, then slewing to another source

at infinite speed and making another instantaneous obser-
vation. If observations are made of radio sources in the j

and _" directions in this hypothetical world, the following

equations are added to the system:

and

_T_,2= (y - _._) + (_o- ,'o,.,) (5)

c_,_ = (_ - _..) + (,'0- _0,m) (6)

1Although the additional ground telescopes give no direct informa-
tion about the observable, they may provide additional constraints
that enable improved calibration of a variety of systematic errors
in an observation.
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Now, there are three equations in the four quantities x, y,
z, and r0. ttowever, a fourth useful equation expresses r

in terms of its components

r = [z2 + y2+z_]l/2 (7)

If one assumes that the clock initialization is done at the

same time as the VLBI observations, ro = r and r0,m = rm

in Eqs. (4-6). Then, the delay observables from the obser-

vations of the three radio sources carry sufficient informa-

tion to determine the spacecraft position.

After combining Eqs. (4-7) and doing some algebra,
one finds the following result for the spacecraft position:

== _ [xm- w - zm- _m+ c(_r,,-- _r,,.-- _r,3)]+

V= _ [Vm--xm-- zm-- _m+ c(_r,_-- r_,l-- rr,3)]+

z = _ [_..- ¢.. - v._- _._+ 4_'r,_- _,, - r.,_-)]+

(8)

Here, K is given by

1
g =_ [(_ + v., + _ + _m)_--_(_,1 _+ r_,__+ _,_b]

+ cr_,l(Cr_,2 + y,,, + z,_ - =m + r.,)

+ crr,e(cr_,3 + =m + z,_ - ym + vm) .......

+ cr_,3(crr,1 + zm + y,, - zm + rm) (9)

,,2 = _ "",'_ + _ _",J+ \o_-_,_) "'""

(10)

Here, the uncertainty in the measurement of the delay

residual for the measurement of radio source i is c%,.,,
and the uncertainties in the three radio-source measure-

meats have been taken to be uncorrelated. After doing

some algebra, the uncertainties in the components of the
spacecraft position are found to be

*rx2 =c 2 1 + _ - z _rr.,_ 2

2 Z 2 }+ -_KO',,.,,2+ "f-_o'T.,_ 2

,=c 2{[ + y2 _ 2_-(] 2o"v" L1 _ Y a_-.,2

=2 Z2 )+ _-_-o',-,.,,_+ _-o',,., 2

o', _"=c 2 1 + _ - z ar,._

x2 y2 }+ _--o'.,.,, 2 + _- o'.,.,.,2 (111

If the simplifying assumption is made that _r.,, = o'..,_ =

a,,._ -- _%, Eq. (11) reduces to

[ r2 _//_ ] 2 2c%'= 1 + _-_-:(- z co',-

Equations (8) and (9) provide the means of finding the
spacecraft position _' based on the model position _',_ and

the three measured quantities rr,1, r_,2, and r_,3.

The uncertainty in a component of the spacecraft posi-

tion can be computed using Eqs. (8) and (9). Taking the

z-component as an example, the uncertainty (rx in x can
be found from

,-= /-2-1__,_= 1+ _-vV2jC,,, (12)

[az 2= l + _- z c2crr 2

The expression for K [Eq. (9)] can be given in terms of

the actual spacecraft position components:
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1
K= _(x+y+z+r) _ (13)

Combining Eqs. (12) and (13) yields the following result:

[ ]_2=c_J l_(x+y+z+_)_ (x+_+z+_)(14)

determination, they should be made at a time when the
spacecraft position lies far from that circle of singularity. If

there are two or more tracking stations available, it should

be possible to select the one for which the position errors

dictated by the geometry of the VLBI delay measuremertts
are minimized and to use that station for the time transfer

to the spacecraft.

For example, take the case where the spacecraft position

is along the line of sight to one of the radio sources, say

z = r and y = z = 0. Then, evaluation of Eq. (14) shows
that ax = 0.5CO'r. Since the position error along the line of

sight to the radio source and the position error along the

line of sight to the tracking station are one and the same
quantity in this case, the signature in the delay observable

is doubled for a given position offset, or the position error
is halved for a given delay measurement error. In order

to show the range of values for az, Fig. 2 is a plot of

e% (in units of cat) as a function of x/r, assuming that

z = 0. Fig. 2(a) shows the results for y > 0, while Fig. 2(b)

displays results for y < 0. Figures 3(a) and (b) show
similar plots for er_ under the assumption that z = 0.5r.

In general, the results for the uncertainties along each of

the three coordinate axes are similar for a given set of

assumptions.

As Fig. 2 shows, _ diverges if x = -r or y = -r

(or, as not shown in the figure, if z = -r), i.e., if the

line of sight from the tracking station to the spacecraft
is opposite to the direction to one of the natural radio

sources. Consider the case where x ,,_ -r. In fact, x = -r

is not possible, since this would require the spacecraft radio

telescope to look through the Earth to see the radio source

hypothesized to be in the direction of the positive z-axis.
However, it is possible that x _ -r in the case where

the spacecraft is at a low elevation angle as seen from the

tracking station and is several Earth radii distant. For
x = -r, any error in the spacecraft position along the z-

direction is exactly compensated for by an error in the time

associated with the VLBI data, and an infinite position
error would give no signature in the delay measurement.

The denominators of two terms in Eq. (14) vanish when

+ y + z = -r, which includes (but is not limited to) the
situation where the spacecraft position is opposite to the
direction to one of the three radio sources. This is the

equation of a plane. The spacecraft position nmst lie on

the spherical surface at a range r from the tracking station;
the intersection of the plane and that spherical surface is

a circle on which the spacecraft position error becomes
infinite. Therefore, if the hypothetical VLBI delay mea-

surements were to be used to improve the spacecraft orbit

IV. Estimate of VLBI Delay Measurement
Errors

A number of practical limitations may prevent space

VLBI observations from being as useful for navigation as
indicated for the idealistic case treated above. This sec-

tion provides a discussion of some of those limitations.

For a number of effects, contributions to the delay error

ar (expressed in distance units, i.e., multiplied by c) are
estimated independently, then combined in quadrature. It

is important to recognize that the actual method of orbit

determination would involve a multiparameter fit to space-

craft and radio-source positions, as well as other quanti-

ties such as troposphere, ionosphere, and clock parame-

ters. Therefore, discussion of individual uncertainties as

though they were completely separate from one another is
an oversimplification but does serve to indicate the general

limitations imposed by a variety of effects.

A. Limited Precision of Delay Measurements

The precision of the single-band delay measurements

can be derived from the signal-to-noise ratio (SNR) of the

VLBI observations using

1

_r_ = 2rAv(SNR) (15)

where Av is the observing bandwidth. Table 1 summa-

rizes assumptions and predicted measurement precision for

three different observing frequencies (1.6, 5, and 22 Gttz)
that will be used in tile first generation of VLBI satel-

lites. Assumptions are those for the current best guesses at

the performance of the radio telescope on board Radioas-
tron; the VSOP performance may be somewhat poorer. In

distance units, the estimated delay precisions are 1.8 cm,

1.9 cm, and 4.5 cm at 1.6, 5, and 22 GtIz, respectively. Ra-

dio sources with correlated flux densities as high as the as-
sumed value of 0.5 Jy on baselines in the 40,000-80,000 km

range probably will be rare or nonexistent at all three fre-

quencies, so the above precisions will not be achievable on
the longest baselines for most sources.
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B. Ionospheric Propagation Errors

In the DSN, typical errors of 2-4 cm currently are

achieved in the calibration of the ionospheric propaga-

tion delay of 8.4-GHz radio signals at the zenith [17],
although there is some hope for improvement using sig-
nals from GPS satellites [18]. Even if it is assumed that

the radio-source signal propagating to the spacecraft suf-

fergno charged-particle delay because of tile interplanetary

me_um, the delay measurement will still be corrupted by

propagation through the Earth's ionosphere to the ground

radio telescope. Scaling from the 8.4-GIIz estimates (iono-
spheric delays are proportional to the inverse square of the

frequency), the current ionospheric calibration errors will

give respective zenith delay errors of 55-110 cm, 5-10 cm,

and 0.3-0.6 cm at the three frequencies. (Radioastron also

will operate at 300 MHz, where the ionospheric effects will

be even larger.) At elevation angles of 30 deg, which will
be much more common when several radio sources are ob-

served in very different directions, the above delay errors

should be doubled. The delay errors could be reduced

substantially if there were a capability for simultaneous

dual-frequency observations, as there is for ground-based
astrometric and geodetic experiments. Such a capability

does not exist on VSOP but might be available (at 1.6

and 5 Gtlz) on Radioastron. However, ground radio tele-

scopes currently do not have dual-frequency capabilities
at the space VLBI frequencies, implying that ionospheric

propagation errors cannot be reduced by means of dual-
frequency observations.

C. Tropospheric Propagation Errors

Troposphere fluctuations and errors in the static tro-

posphere also will have a significant effect on delay mea-
surements. Typical errors in the calibration of the zenith

troposphere delay are about 4 cm, corresponding to 8 cm

at a 30-deg elevation. By the mid-1990s, GPS calibrations
have the potential for reducing these errors by a factor

of 2-4 at ground radio telescopes, provided that GPS re-

celvers are present at the telescopes. The error caused by
troposphere fluctuations is on the order of 3 cm at low

elevations, and not readily reducible using GPS data. In

the future, this error might be reduced by using advanced

water-vapor radiometers.

D. Earth-Orientation and Timing Errors

Error_in prediction of Earth orientation and Universal

Time typically give errors of tens of centimeters or more

in effective locations of tracking stations and radio tele-
scopes on the Earth. However, a delay of several weeks will
occur between the observations and the data correlation.

With that delay, the combination of VLBI and GPS cali-
bration measurements allows reconstruction of the Earth

orientation and timing parameters to better than 2 cm

per component [19], implying similar errors in the delay
measurements.

E. Radio-Source Position Errors

In tile idealized case, it was assumed implicitly that the
positions of the radio sources observed for orbit determi-

nation were known perfectly. In fact, they are not_ For a

priori position errors of 1 nrad t_hat Will be characteristic

of the strongest compact radio sources in the mid-1990s,

the delay measurement error will be 4 cm on a 40,000-km

baseline and 8 cm on an 80,000-km baseline.

F. Summary of Delay Errors

Table 2 summarizes the minimum expected err_or con-

tributions (in length units) to space-ground VLBI de-

lay measurements for Radioastron, assuming a 40,000-kin
baseline. (The value of 40,000 km is used because for

observations of three radio sources in orthogonal direc-
tions, it is not possible for the projected baselines in all

three directions to be near 80,000 km.) This table as-

sumes the sensitivity and the improved troposphere and
Earth-orientation calibrations given in the above subsec-

tions. On longer baselines, the delay error contributed by

the source position uncertainties will be larger, while the

correlated flux densities and consequent sensitivities prob-

ably will be lower than assumed above. :E_en assuming
no instrumental errors on the ground, the minimum delay
errors derived from the rss of the individual error contri-

butions are 110 cm at 1.6 GtIz, 12 cm at 5 GHz, and
8 cm at 22 GHz. Inspection of Figs. 2 and 3 shows that

the one-dimensional spacecraft position error derived from
the VLBI data for the idealized radio-source observation

strategy can range from 0.5 to more than 10 times the de-

lay measurement error, depending on the exact geometry.
These results are for the hypothetical case of simultaneous

observations of three radio sources, and do not include the
additional considerations discussed below in Section V.

V. Other Practical Considerations in Using
VLBI Delay for Orbit Determination

A. Geometry of Radio-Source Observations

The ideal case considered above assumes observations

of radio Sources in three orthogonai directions. This sim-

plification makes the analytical development tractable but

probably is not necessary for improved orbit-determination

results. In order to solve for the spacecraft position, it is
likely that the three radio-source directions need only be

linearly independent (i.e., not coplanar). However, it will

be necessary to determine whether, in this more general
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case, there are geometries in which the position error di-

verges as it does in the idealized case. If the assumption
of orthogonM radio-source directions could be relaxed, this

would help in several ways. First, it would give a much

larger set of candidate sources for observation, which is

important in view of the correlated-flux limitations men-
tioned previously. Second, it would make it more likely

that a set of radio sources providing a reasonable geom-

etry actually can be observed; spacecraft constraints will

make it very difficult to observe sources in three orthog-
onal directions, none of which is near the line of sight to

the tracking station. Third, the total amount of slewing

necessary for the space radio telescope to observe the three
radio sources would be reduced, a consideration whose im-

portance is described further in the next subsection.

B. Nonsimultaneous Observations and Propagation

to a Common Reference Time

The idealized case considered in this article includes

the assumption that observations of three radio sources

in very different directions could be made simultaneously.
Of course, this assumption is completely unrealistic. For

VSOP, the minimum time necessary for the space telescope

to make a 90-deg slew to a new source, settle, and begin ob-

servations, is likely to be at least 60 minutes. Radioastron

should slew much more rapidly and may be able to change

sources in 15 minutes, so it is used here to derive the more

optimistic result. Assuming 5-min integration times, three
observations would take a total of 45 minutes, with refer-

ence times (scan midpoints) spanning 40 minutes. If the
reference time were chosen to be the time of the second

observation, the delay residuals at the times of the first

and third observations must be propagated to the time of
the second observation in order to solve for the spacecraft

position at that time. Typical velocity uncertainties in the
reconstructed spacecraft orbit will be about 1 cm/sec [11].

In the unlikely event that the velocity errors from one sec-
ond to the next were completely uncorrelated, there would

be an additional position error of at least 35 cm due to this

error propagation over 20 minutes. If tile correlation time
for velocity errors in the reconstructed orbit is much longer

than 1 sec, the position error at the reference time will be

considerably larger than 35 cm. For example, if the cor-
relation time for the velocity errors were 100 seconds or

more, as seem_ Iik_'elyl the position error due solely to_the
propagation to a reference time 20 minutes away would be
at least 3 meters.

If the orbit at the reference time is propagated to the

time of another VLBI observation that might be used for

astrometric purposes, the spacecraft position error at that

time will be still larger than the error at the reference time.

Uncertain spacecraft accelerations caused by mismodeling

of the Earth's gravitational field, by errors in the model

of solar pressure effects on the spacecraft, and by space-
craft maneuvers will serve to increase the spacecraft po-

sition error at times later (or earlier) than the epoch of
the observations actually used for orbit determination. In

addition, the above discussion is oversimplified because it

assumes a fixed velocity accuracy that is used to propa-

gate the position results found from the VLBI data. In

reality, the VLBI data would be acquired simultaneously
with two-way Doppler data, and both would be used to

determine the spacecraft orbit. Detailed investigation of

the orbit accuracy achievable in that case is beyond the

scope of this article.

C. Tracking Continuity

In order for the three hypothetical VLBI observations

to provide useful data for spacecraft trajectory determi-

nation, they must be referenced to the same clock. This

implies, first, that the same tracking station must be used

during all the VLBI observations. Second, it suggests that
it may be necessary to maintain a continuous link to the

tracking station between the VLBI observations. Without

that continuity, there also will be clock breaks that will

degrade the accuracy of the orbit determination. For a

spacecraft in a fairly low orbit, such as VSOP, there will
be a limited view period from a particular tracking station.

In many instances, there will not be time to make three

observations while the spacecraft is in view of the same

station, particularly since long slews with VSOP may take

up to 4 hours.

D. Possible Importance of Ranging

It was shown in Section III that in the absence of other

data, three VLBI delay measurements are needed to im-

prove on the knowledge of the spacecraft position, ttow-

ever, inspection of Eqs. (4-6) shows that a single VLBI
delay observation can determine one component of the

spacecraft position if the range r is determined accurately.
Thus, a capability for ranging from the" tracking stations

to the VLBI spacecraft could be quite useful. In fact,

any combination of three simultaneous ranging and VLBI
delay measurements sampling three linearly independent

directions should suffice to provide an accurate instanta-

neous position for the spacecraft. There is no fundamental

reason that ranging observations from two different track-

ing stations could not be made at the same time that the

spacecraft is making a VLBI observation of a radio source
in a third direction. The two ranging measurements would

provide accurate position components in two directions as

well as supply an absolute clock time to the spacecraft.

The accuracy of the VLBI delay observable still would be
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limited by the effects summarized in Section IV above and
by the clock error imposed by the limited accuracy of the

ranging system. Two simultaneous ranging measurements
with errors of 15 cm, when combined with the minimum

error of 8 cm possible for a 22-GHz VLBI delay measure-

ment, would give a total delay accuracy of about 23 cm,
implying a spacecraft position uncertainty at least as large.

There are practical limitations and implications for the

current generation of space VLBI satellites. VSOP and

Radioastron will have limited ranging capability only from

Japanese and Russian tracking stations, respectively. Ra-
dioastron will not be able to maintain a phase link dur-

ing ranging observations, so simultaneous ranging/VLBI

observations are not possible. Furthermore, neither space-

craft has multiple, independent downlink antennas. There-
fore, it will not be possible to do simultaneous ranging from

two different tracking stations. Reorientation of the down-

link antenna would be necessary to do ranging from two

different tracking stations; that reorientation would cause
a break in the clock continuity.

E. Possible Benefits of Accurate Clocks On Board

Space VLBI Satellites

Another possibility that would eliminate some of the
difficulties in solving for the position of a space VLBI satel-

lite would be the provision of a highly accurate clock on

board the spacecraft. However, at centimeter wavelengths,

monitoring of a two-way phase link from the ground, as

was done in the first space VLBI experiments [3,4] and
is planned for the first generation of dedicated missions,

can provide a clock-rate accuracy nearly equivalent to that

of the original clock on the ground. If a clock is flown

on board the spacecraft, calibration of the absolute delay
still will face the same difficulties as the calibration of the

absolute delay for a clock transmitted from the ground.

In either case, highly accurate ranging measurements are
needed to fix the absolute clock time.

Vl. ProsPects (or Lack Thereof) for Improved

Astrometry

The above analysis has shown that, with many caveats,

it may be possible to achieve improvements in orbit de-

termination through the use of space VLBI delay data.

The degree of improvement that is achievable must be de-

termined through numerical simulations, since the simple
analytical model does not include many of the practical

limitations discussed above. However, it is possible to ad-

dress some aspects of the utility of the orbit determina-

tion improvement. In particular, a desirable consequence

of highly accurate orbit determination would be the ability
to use the spacecraft as a platform for making astromet-

tic VLBI observations more accurately than could be done

using ground baselines alone. This section addresses the
feasibility of that task.

It is critical to recognize that doing VLBI with a space
radio telescope is a much more expensive and complicated

task than ground-only VLBI experiments. Therefore, it

makes no sense to do astrometry in space-ground VLBI

experiments unless it can be shown that the accuracy will

be significantly better than is possible for ground-only as-
trometry experiments. Expected improvement by a factor

of 2 or more should be the minimum requirement for at-

tempting an astrometric experiment using space VLBI.

The current delay precision achieved in the best ground-

based astrometric VLBI experiments is approximately

15 psec [20], corresponding to a distance of 4.5 mm, a fac-
tor of about 20 better than the best that could be hoped

for in space-ground VLBI using the first generation of ded-

icated VLBI satellites. The accuracy of the determination

of VLBI baselines on the ground is approximately 1 cm in
the best experiments [21], also a factor of about 35 better

than the best that possibly could be expected for space

VLBI in the 1990s. The delay precision achieved on the

ground can be used to give much better baselines, in large
part because of the ability to make many observations in

different directions in a short period of time. This enables

multiparameter fits that give excellent solutions for such

quantities as clocks and atmospheric delays. Space VLBI

observations for astrometric purposes will not be compet-
itive with ground-only observations until they are capable

of such flexibility.

The astrometric angular precision possible for wide-

angle VLBI astrometry, a¢, can be estimated from the
baseline error _B and the baseline length B as

_s (16)
O'_ _

In ground-only experiments, a baseline error of 1 cm over

a 10,000-km baseline corresponds to an angular error of

1 nrad. For Radioastron, the minimum possible baseline

error of 35 cm over a baseline length of 40,000 km gives an
angular accuracy of 9 nrad in the best possible case, not

competitive with current ground-only VLBI.

It also is important to, consider the possibility that ac-

curate differential astrometric VLBI from space might be

done over narrow angles without knowledge of the space-

craft orbit to within a few centimeters. One could imagine

J
!

|
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successive, quasi-simultaneous observations of two radio

sources separated in the sky by the small angle ¢. For

¢ much smaller than a radian, the differential astrometric
error in the source positions would be given approximately

by

_# _ ¢--_- (17)

The extra factor of ¢ compared with Eq. (16) is due to the
fact that the effect of the baseline error becomes smaller

and smaller for decreasing angular separations of the ra-

dio sources, as a larger fraction of the delay error can-
eels when the delay observations of the two radio sources

are differenced. For angular separations on the order of

0.5 deg, differential astrometry at the 0.1-nrad level has
been achieved using ground radio telescopes [22]. The

space-ground VLBI differential astrometry on a 40,000-
km baseline could yield a factor-of-two improvement at

this angular separation only if the spacecraft position were
known with an accuracy of _ 20 cm. This accuracy does

not seem achievable using space VLBI delay data.

VLBi observations of two sources in the same beams of

the radio telescopes might provide further error reduction

and the ability to do highly accurate differential VLBI.
Given the sensitivity limitations of the first generation of

space VLBI telescopes, there will be few (or no) pairs of

continuum sources with separations well under a degree
that can be observed. Thus the narrow-angle differential

VLBI might be limited to spectral-line studies of the sep-
aration of spots in water masers. Separations of different

water-maser complexes in nearby external galaxies might

be studied; for same-beam VLBI involving a 70-m ground

telescope, these complexes would need to be separated by

less than 0.01 deg. Individual water-maser sources typi-
cally span regions of 100 nrad (6 x 10 -6 deg) in this galaxy

to 1 nrad or less in external galaxies, so measurements of

spot separations within these individual complexes also

might be possible.

Ten years ago, ground-based observations of the quasar

pair 1038+528A and B, separated by about 0.01 deg,
achieved differential astrometric accuracy of 0.02 nrad

[23]. For a 40,000-km baseline and a 0.01-deg separation,

Eq. (17) predicts that the space-ground VLBI astrome-
try could achieve this accuracy if the spacecraft position
error were less than about 5 meters. Thus, it is conceiv-

able that the space observations might compete at 0.01-

deg source separations, although the current potential for

ground-only results may be significantly better than the
accuracy obtained in the early 1980s. However, lack of fre-

quency tunability will prevent Radioastron from observing

most extragalactic water masers, and the shorter baselines

sampled using VSOP will require position errors less than
about two meters for such astrometric measurements to

be more useful than the ground VLBI observations.

For source separations of 500 nrad (3 x l0 -5 deg) within

individual water maser complexes, Eq. (17) predicts that
orbit determination accuracies of 40 m on a 20,000-km

baseline would provide the potential for differential as-

trometric accuracies better than 10 -3 nrad. Such orbital
accuracies should be achievable using standard two-way

Doppler tracking [11]. Furthermore, the sensitivities of
VSOP and Radioastron probably would limit the possible
astrometric accuracy to ,,_ 5 x 10 -a nrad for water masers

[24]. Thus, improved orbit determination is not needed for
accurate differential astrometry within individual maser

complexes.

VII. Summary

An analysis has been performed to determine the infor-

mation content of VLBI delay measurements on a space-

ground baseline for improved orbit determination of an
Earth-orbiting VLBI satellite. In the idealized case of si-
multaneous observations of three different radio sources

in mutually orthogonal directions, expressions have been

given for the expected error in the orbit determination
from the VLBI data alone. Given a number of random and

systematic error sources that will be very difficult to reduce
in space VLBI, the delay measurement precision even in
the idealized case will be at least 8 cm for the VLBI space-

craft scheduled for launch in the mid-1990s; this often cor-

responds to a position error much larger than 8 cm. Other
practical aspects of space VLBI, particularly the long time

required between observations, will make the orbit deter-
mination less accurate than the prediction for the ideal

case. The long time between observations would give rise

to a minimum position error of at least 35 cm, with an

error of at least a few meters far more likely. Combination

of VLBI data with simultaneous highly accurate ranging
data from two different tracking stations shows promise

for an improved determination of the instantaneous space-
craft position for a second generation of dedicated space
VLBI observatories.

It is unrealistic to expect that an instantaneous position

accuracy as good as 35 cm can be derived from the space

VLBI delay data acquired by the first generation of space

VLBI satellites; the achievable accuracy probably will be
no better than 3 meters. Even under the optimistic as-

sumption of 35-cm position accuracy, space-ground VLBI
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cannotcompetewithground-basedVLBI for astrometry
overanglesof0.1degor larger.It isconceivablethat dif-
ferentialastrometricobservationsoversmallerseparations
mightbeuseful,althoughthelackof sensitivityof the
first generationof spaceVLBI telescopesprobablylimits
thisutility to relativemeasurementsofwater-maserspots.
Within individualmasercomplexes,theaccuracyof the
spacecraftpositionusuallyis not the limitingfactorfor
astrometricaccuracy,andorbit determinationusingtwo-
wayDopplerdatamaysuffice.

Severalchangescouldbeimplementedfor thesecond
generationof spaceVLBI observationsthat wouldpro-
videenhancedcapabilitiesfor improvedorbit determina-
tionUsingthespace-groundVLBI delaydata.First, the
capabilityfor simultaneousdual-frequencyoperationsis
neededfor both the spacecraftradiotelescopeandthe
largegroundtelescopes,in orderto solvefor andelimi-
natethechargedparticleeffectsonsignalpropagationto
the groundtelescopes.(A numberof groundtelescopes
currentlycanmakesimultaneousobservationsat 2.3and
8.4GHz,but thiscapabilityis of nousefor spaceVLBI
satellitesthat donotobserveat thosefrequencies.)Sec-
_the mostaccuratep0ssl_61ecaq_rationSmustbeused
to _n-i/nlze-:theerrorsin knowledgeOfEarthorienta_i0h
anfftr--opospherlcdelay.-Thirdlthespaceradiotelescope
mustbe moresensitive,implyingsomecombinationof

largerbandwidth,largerdiameter,andlowersystemtem-
perature.Fourth,the spaceradiotelescopemusthave
a capabilityfor veryrapidslewingandfor observinga
largenumberof sourcesin a relativelyshortperiodof
time. Fifth, ahighlyaccuraterangingsystem,including
thecapabilitiesforsimultaneousrangingfrommorethan
onedirectionandforsimultaneousrangingandVLBIdata
acquisition,isnecessaryto realizetheimprovementsdis-
cussedill thisarticle.This capabilitycouldbesupplied
eitherbyrangingfromthegroundorbyasatellitesystem,
suchasGPS,preferablywithhigherorbits. Sixth,solar-
pressureandgravitational-fieldmodelswouldhaveto be
mademoreaccurateto improvethepropagationof trajec-
toryme_urementsto aspecificreferencetime. Seventh,
simultaneousobservationswith a largenumberofground
telescopescouldbehelpfulin solvingforsystematiccali-
brationerrors.

With all the improvementslistedabove,it mightbe
possibletousespaceVLBI delaydatato determineanin-
stantaneousspacecraftpositionwithanaccuracyoftensof
centimeters.However,thisstill isnotaccurateenoughfor
space-groundVLBItocompetewithground-onlyVLBIin
makingglobalastrometricmeasurements.Instead,space
VLBi canbe usedfar:rnor-e:productivelyfor imaging
andOtherastrophysicalmeaslirementsthat dependonthe
longerbaselinesavmqable,but donotrequirehighlyaccu-
ratemeasurementsof theabsolutedelay.
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Table 1. Space VLBI delay-measurement precision.

Observing frequency, GHz 1.6 5.0 22

Correlated flux density, Jy 0.5 0.5 0.5

Observing bandwidth, MHz 32 32 32

Integration time, sec 300 300 300

Ground telescope

Diameter, m 70 70 70

Efficiency 0.60 0.60 0.50

System temperature, K 35 35 50

Space telescope

Diameter, m 10 10 10

Efficiency 0.50 0.50 0.30

System temperature, K 60 70 135

Sensitivity

at, nsec 0.06 0.06 0.15

co',-, cm 1.8 1.9 4.5

Table 2. Components of space VLB! delay-measurement

errors (cm) on s 40,O00-km baseline.

Observing frequency, GHz 1.6 5.0 22

System noise 1.8 1.9 4.5

Ionosphere 110-220 1 0-20 0.6--1.2

Static troposphere 2-4 2-4 2-4

Fluctuating troposphere 3 3 3

Earth orientation 3 3 3

Radio-source position 4 4 4

RSS 110-220 12-21 8
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Fig. 1. Geometry of the delay measurement on a space-ground
VLBI baseline.
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Fig. 2. Predicted minimum (one-dimensional) spacecraft posltion

error, in units of the delay measurement error, for a highly Idealized

set of space-ground VLBI delay measurements: (a) y> 0 and z= 0

and (b) y< 0 and z= 0.
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Rg. 3. Predicted minimum (one-dlmensional) spacecraft position
error, In units of the delay measurement error, for a highly Ideallzed
set of space-ground VLBI delay measurements: (a) y> 0 and z= 0.5
and (b) y< 0 and z= 0.5.
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Based on-realistic modeling of the electron density of the ionosphere and using a

dipole moment approximation for the Earth's magnetic field, one is able to estimate

the effect of the ionosphere on the Global Positioning System (GPS) signal for a
ground user. The lowest order effect, which is on the order of 0.1-100 m of group

delay, is subtracted out by forming a linear combination of the dual frequencies of
the GPS signal. One is left with second- and third-order effects that are estimated

typically to be ,-.0-2 cm and ,..0-2 mm at zenith, respectively, depending on the

geographical location, the time of day, the time of year, the solar cycle, and the

relative geometry of the magnetic field and the line of sight. Given the total electron
content along a line of sight, the authors derive an approximation to the second-

order term which is accurate to ...90 percent within the magnetic dipole moment
model; this approximation can be used to reduce the second-'order term to the

millimeter level, thus potentially improving precise positioning in space and on the
ground. The induced group delay, or phase advance, due to second- and third-order

effects is examined for two ground recelvers located at equatorial and mid-latitude
regions tracking several GPS satellites:

I. Introduction mospheric water vapor calibration [13,14], and ionospheric

The Global Positioning System (GPS) consists of 24 monitoring [15]. Precise positioning and other GPS-based
the applications, however, require a very good understanding

satellites, evenly distributed in 6 orbital planes around -of all effects on the GPS signal as it propagates through
globe, at an altitude of about 20,200 kin. Precise posi-
tioning of the GPS satellites, as well as ground and space

users, is now reaching a few parts in 109 [1-6]. In addition,

the GPS has been heavily utilized in a host of geodetic and

other applications. These include seismic tectonic motions

[7-9], Earth orientation studies [10,11], gravimetry [12], at-

the Earth's atmosphere, so that all effects can be solved
for or modeled.

The GPS transmits two right-hand circularly polarized

(RCP) signals at L-band frequencies: L1 at 1574.42 MHz
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and L2 at 1227.6 MHz, which correspond to wavelengths

of 19.0 cm and 24.4 cm, respectively. These are modulated

by a pseudorandom precision code (P-code) at a frequency

of 10.23 MHz [16]. [The additional lower frequency course

acquisition (C/A) modulation is not of concern here.] A

single measurement for a given transmitter and receiver
pair will consist of four observables that will be denoted

here by L1, L2 for the accumulated carrier phase mea-
surements at the two frequencies and P1, P_ for the cor-

responding P-code pseudorange. In addition to the geo-

metric range delay, the signals will experience delays, or
phase advances, dueto the presence of the ionosphere and

neutral atmosphere.

The delay due to the neutral atmosphere is the same

for all observables; its effect is on the order of 2 m and can

be solved for to better than a centimeter [13,14]. How-

ever, due to the dispersive nature of the ionosphere, the

group delay caused by it (or phase advance) is frequency
dependent, and is on the order of 0.1-100 m, depending

on the time of day, the time of year, and the solar cycle.

If the ionospheric effect on signal delay (or advance) is
expanded in powers of inverse frequencies, then the lowest

order term (l/f2), by far the most dominant, can be solved

for and subtracted out by virtue of the dual frequencies of

the GPS. Remaining higher order terms are on the or-
der of submillimeters to several centimeters, which remain

embedded in the signal and contribute to range and accu-

mulated phase errors. While the first-order term depends

simply on the total electron content (TEC), namely the

integrated electron density inside a columnar cylinder of
unit area between tile transmitter and the receiver, higher

order terms depend on the coupling between the Earth's

magnetic field and the electron density everywhere along

the line of sight. In order to estimate the higher order
effects on the GPS observables, the authors modeled the

ionosphere by a sum of Chapman layers and the Earth's

magnetic field by that of a dipole moment. Such a model
will make it possible to estimate higher order ionospheric

effects at different geographical locations on the ground a.s

well as their sensitivity to the electron density distribu-

tion. It will be demonstrated that knowledge of the TEC
can be used to calibrate most of the second-order effect

and reduce P-code and phase measurement errors to a few
millimeters.

Due to the inhomogeneity of the propagation medium,

the GPS signal does not travel along a perfectly straight
line. Moreover, since the medium is dispersive, the two

frequencies will take two slightly different pat/as. By ap-

plying the empirical formula given by Brunner and Gu [17]

on the ionospheric model used below, the residual range

error between the duai-frequency corrected range and the

true range, due to bending alone, is estimated to be ._4 mm
at a 10-deg elevation angle and less than a millimeter for

elevations above 30 deg. The bending effect will be ignored

in the following analysis; the two signals will be assumed

to travel along the same straight line.

A more elaborate modeling of higher order ionospheric

effects, where bending is taken into account, has been con-

sidered by Brunner and Gu [17]; see also [18]. In their pa-
per, the international geomagnetic reference fields (IGRF)

and a Chapman profile of the ionosphere were used to es-

timate the residual range error. They also proposed an

improved linear combination that corrects for the second-
and third-order terms, as well as for bending. Their im-

proved linear combination requires knowledge of Nm and

h,,, the electron density peak and its altitude, respectively.

In this article, the second- and third-order terms are con-

sidered separately. Here the authors estinaate that the
second-order term is dominant most of the time over the

third-order and the curvature terms. A method of mod-

eling the second-order effect based on a thin shell model

of the ionosphere and a dipole magnetic field is suggested.
The second- and third-order errors are considered at dif-

ferent geographical locations while tracking different satel-

lites. It is demonstrated that knowledge of the TEC alone

can be used to reduce the higher order effects to a few
millimeters.

II. Earth's Ionosphere

The Earth's ionosphere extends from an altitude of

about 80 to 1000 kin. It is a macroscopically neutral ion-

ized gas consisting principally of free electrons, ions, and
neutral atoms or molecules. Ions in that region are 2000

to 60,000 times more massive than electrons. Thus, at

the frequencies used for radio communication, the range
of movement of an ion caused by the electric field of a

radio wave is smaller than that of an electron by about

the same factor. This implies that the ions can, for most

purposes, be ignored [19].

The electron density profile exhibits several distinct re-

gions (E, F1, and F2) as a result of the competing processes
of particle production, loss, and transport. The maximum
electron densities (1012 to 1013 m -s) are observed at the

F2 peak; the peak altitude ranges from 250 to 350 km at
mid-latitudes and from 350 to 500 km at equatorial lati-

tudes. The F1 region, which is present during the day but

absent at night, has a peak near the 200-km altitude and

is 3-5 times smaller than that of F2. The E peak den-

sity is about one order of magnitude smaller than the F2
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peak and is typically located at the 100- to 120-kin alti-
tude. During daytime there is also a D region below the

E region, with a peak at the 80-kin altitude [20].

electrons/m s, the plasma frequency fp _ 8.9 MHz. The
gyro frequency for an electron in the Earth's magnetic field

(2 x 10 -s tesla) is f9 _ 0.59 MHz.

III. Propagation of Electromagnetic Waves in
the Ionosphere

When a magnetostatic field /30 is applied to a plasma,

the plasma becomes anisotropic for the propagation of
electromagnetic waves. That is, the scalar dielectric con-

stant of the plasma is transformed into a tensor. To study

the propagation and polarization properties of a plane

monochromatic wave in a magnetically biased homoge-

neous lossless plasma, the plasma is regarded as a con-
tinuous medium whose conductivity is zero, whose perme-

ability is equal to that of a vacuum, and whose dielec-

tric constant is a tensor. By solving the tIelmholtz wave

equation subject to proper constitutive relations, one can

obtain the expressions for the fields and for the index of

refraction. The index of refraction, n, for the Earth's iono-

sphere is given by the Appleton-Hartree formula [21], as
follows:

n]: = 1- 2x(1 - x) (1)
2(1 - X) - Y_ 4- _/Y2 + 4(1 - X)2}j_

where

X = (_)2 = (Ne2/4_r2e°m)f2 (2)

Y± = )'sin 0B; Yl] = Ycos 0B (3)

y= _ (l lBo/2 -m)f (4)

N is the number density of electrons; e and m are the

electron charge and mass, respectively; eo is the permit-

tivity of the free space; fp, fg, and f are the plasma, gyro,
and carrier frequencies, respectively; and OB is the an-

gle between the Earth's magnetic field, fi0, and the di-
rection of propagation of the wavefi'ont, k. By definition,

= eBo/27rfrn, and since e is negative, ]7 is antiparailel

to/30. The plasma frequency is the natural frequency of

oscillation for a slab of neutral plasma with density N af-
ter the electrons have been displaced frona the ions and are

alIoWed:_omove freely. The gyro........frequency iS tile natural

frequency at which free electrons circle around the mag-
netic field lines. For the Earth's ionosphere, with N = 1012
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The plus and minus signs of Eq. (1) correspond to the

ordinary and extraordinary wave modes of propagation,
respectively. IlL general, these two waves are e]][pt]-cal]ypo-

larized with left mad right senses of rotation, respectively.

As a result of different phase velocities of the two waves,

the total wave (the sum of ordinary and extraordinary

waves) undergoes Faraday rotation as it passes through

the ionosphere. When the carrier frequency is large, as
compared witla plasma and gyro frequencies, the principal

modes of propagation are dominantly circularly polarized.

This is the case for the GPS carrier frequencies.

Assuming that Y << 2] cos 0B I(1 - X)/sin 20B, the in-

dex of refraction can be expanded in inverse powers of fre-

quency. For the_IPS carrier frequencies, onehas (fv/f) =

5.65 x 10 -3 and 7.25 x 10 -3, as well as (h/f) = 3.75 x I0-4
and 4.81 x 10 -4 for L1 and L2, respectively. Therefore,

the stated assumption is valid for GPS frequencies up to a

value of OB _, 89 deg. The expansion of Eq. (I) up to the

fourth inverse powers of frequency gives

n:l: =l - 2 X-t- 2XY[cosOB [

111 ]- -X X + Y:(1 + coQ OB) (5)4

The second, third, and fourth terms on the right-hand
side of Eq. (5) are proportional to the inverse square, in-

verse cube, and inverse quartic powers of frequency, respec-

tively. The two values of n refer to the ordinary (+) and
extraordinary (-) waves. At this point it should=be noted

fi'om Eq. (5) that the index of refraction is Smaller than

unity, wlfich corresponds to a phase velocitygreater-than

the speed of light (phase advance). The group refractive

index, on the otlier hand, given by ng r°up --- n + .f(dn/df),
can be written as

n_ °up =1 + I XTXYI cos Onl

+ 43-X [1X + Y2(1 + eos20B)] (6)

The group delay of a signal passing through the iono-

sphere, relative to vacuum as a reference, can be rewritten
a,s

L

r
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.ru.: (7)

where dl is an element of length along tile line of sight, c

is the velocity of light in a vacuum, and a is the angle be-
tween the wave normal and the ray direction. This angle

has significance in anisotropic media, where the direction
of the wave normal is, in general, different from the direc-

tion of energy propagation. Angle a can be found from

the following relation: tan a = (1/n)cgn/OOB. By using

Eq. (5) and the definition of a, it is easy to show that for
the GPS Carrier fr_quehcies cos a is essentially unity. By

using Eqs. (5)-(7), the GPS observables can be written

[ignoring the left-hand circuiarlypolarized (LCP) com-

ponent of the GPS signal, which has <0.35 percent and
<2.5 percent of the total: power, for L1 and L2, respec:

tively] as

q s r (8a)

q s r (8b)

q 1 s 1 r (9a)
L1 = p"4- nl_x - f_ 2 f? 3_14

q 1 s 1 r (9b)
L2 = p + 2 3 E

where

(10)

s= / flfJ Ic°s "i d'= 7527c i NBo Icos #'i dl (11)

.:,,,,I,.,,+,.,,.,o../,.o.i,+<o,,.I,,
(12)

TEC is the total electron content along the line of Slght,

and _ is the operating wavelength. In Eqs. (8) and (9), p

corresponds to the geometrical distance plus all the nondis-

persive terms that are common to both frequencies, such
as clocks, transmitter and receiver delays, and the neutral

atmospheric delay. In Eq. (9), nl,_z and n2,_2 correspond

to unknown integer numbers of cycles that are constants

for a given transmitter and receiver pair over a continu-
ous tracking period. In addition to the terms shown on

the right-hand side of Eqs. (8) and (9), there are terms
due to multipath, thermal noise, phase center variations,
and a transmitter and receiver relative geometry depen-

dent term; however, these are not the subject of this study,

and are omitted from Eqs. (8) and (9).

IV. Ionospheric Layers and Geomagnetic
Field Models

To proceed with the computation of the higher order

delays, one has to assume models for the electron density,

N, and the Earth's magnetic field, B0. For the electron

density distribution, the Chapman layer model is chosen.
This model is derived by assuming a homogeneous com-

position for air at a constant temperature. The curva-
ture of the Earth is neglected, and it is assumed that the

atmosphere is horizontally stratified and the scale height

Ha is independent of height. As the solar radiation trav-
els downward through the atmosphere, it is absorbed and

hence ionization is produced. The rate of electron produc-

tion is a function of height above mean sea level h and

the sun's zenith angle X, which is the angle between the
ray from the sun and the zenith. From considerations of

the production of electrons by photoionization and their

removal by recombination, the following formula for the
electron density distribution can be obtained [22]:

N=Nm_xexp[l(1-z-e-_secx)] (13)

where Nmax is the maximum value of the electron density

at an altitude of hm_x and z = (h - hm_)/H,. When

X is near 90 deg, as near sunrise and sunset, the plane

Earth approximation fails. To correct for this, sec X in

Eq. (13) is replaced with the grazing incidence function

Ch(x, X). This function, which applies accurately only to
a spherically symmetric atmosphere with H, independent

of height, can be expressed as

1 el/2_ c osa X
Ch(2, X)(_'x sin X) 1/2

[ /"-1x l+erf lzcos_x (14)

where x = (Re + h)/H,, RE is the Earth's radius, and

erf(.) is the error function. The plus (minus) sign refers
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to X > 90 deg (X < 90 deg). Figure 1 is a plot of tile elec-
tron density distribution versus height for two different

solar zenith angles X = 0 deg and X = 64 deg. In obtain-

ing this distribution, three different Chapman layers were

added together so that the distribution can resemble the

ionospheric F_,/71, and E layers: the E layer with a maxi-
mum at 110 kln, the F1 layer with a maximum at 210 kin,

and the F2 layer with a maximum at 350 kin. This fig-

ure is representative of a daytime profile typical of a year

near sunspot maximum. The D layer, which is normally

present during the daytime, is not included. During night-
time, the F1 layer disappears and' the electron density for

a given height is about 10-100 times smaller than that of

daytime. In a solar mininmm, the same features (D, E,

F1, and F2 layers) are preserved with the electron density

scaled down roughly by a factor of 10.

Next, one must model the Earth's magnetic field. A

first approximation to the geomagnetic field near the sur-

face of the Earth is an Earth-centered dipole with its
axis tilted to intersect the Earth at 78.5 deg N latitude,

291.0 deg E longitude, which corresponds to the geomag-

netic north pole; and at 78.5 deg S latitude, 111.0 dcg

E longitude, which corresponds to the geomagnetic south

poke [20] (see Fig. 2).

At this point one must distinguish between two refer-

ence frames with a common origin at the Earth's center.

The geodetic frame is Earth-fixed and is given by _,_,_,
where _ is along the Earth's spin axis, and _ is point-

ing toward O deg longitude. The geomagnetic frame, on
the other hand, is obtained by first rotating the geodetic
frame by an angle fl = 291 deg around its _ axis, and

then applying a second rotation by an angle/i = 11.5 deg

around the new _r_ axis (Fig. 3). This geomagnetic frame

is denoted by _m, _m, _,_ and is constructed so that im is

along the magnetic dipole. A vector transformation from

the geodetic to the geomagnetic frame is given by

co_cosZ cos_sinZ -slna ]V,n = / -sinD cosD P (15)
/
k sin _icos fl sin/5 sin fl cos _ /

At a point on the Earth's surface, local geodetic east,

north, and vertical are denoted by X,Y, Z, and geomag-
: netic east, north, and vertical are denoted by :_:m, Ym Zm

: (Fig. 3). The magnetic field vector is given by

- Bo = Bg(R---_-E_3sinO,,Y,,-2Bg(R----_-E_ScosO,,_Z,,, (16)
\ rm ] \rrn ]

where rm is the radial distance, and Om is the magnetic

colatitude. The value Bg is the amplitude of the magnetic

field at the Earth's surface at the magnetic equator, and
is equal to 3.12 x 10 -5 tesla.

V. Analysis

A. First-Order Effect

According to Eqs. (8)-(10), the first-order ionospheric
delay can be written as 4.48 x lO-16A2TEC (meters). For

the GPS L1 and L2 frequencies, respectively, this trans-

lates to 16.2 cm and 26.7 cm of group delay (or phase

advance) for every one TEC unit (1 TEC unit = 1016
electrons/m_): Daytiine and nighttimei:_ well as solar

minimum and maximum ground TEC measurements, vary

between 1 and 500 TEC units. Therefore, first-order iono-

spheric group delay (phase advance) ranges between -..0.2
and 80 m for L1 and -..0.3 and 130 m for L2.

The first-order ionospheric term, which is about three

orders of magnitude larger than higher order terms, can
be eliminated by using the "ionospheric free" linear com-

bination, which, based on Eq. (8), is given by

fl - f_ _,f21 _ f_ / P2 :

8 r

P flf2(f2"I-.fl) .f_f_ (17)

As the first-order ionospheric term is eliminated, the dom-

inant ionospheric errors are due to the second- and third-
order terms, which are discussed below.

B. Second-Order Effect

The term B0l cosOBI in Eq. (11) represents the absolute

value of the component of tim £_0 field along the line of

propagation; therefore, it can be replaced by [B0 .k I, where

(.) represents the inner product and k is the unit vector in

the direction of propagation.

Consider a station with magnetic colatitude and lon-

gitude 0,,, and era, respectively, observing a satellite with
elevation Em and azimuth Am, where Am is measured from

magnetic north. Then k is given by

k = - (cos Em sin Ar_Xm

+ cos E,n cos AmYr, + sin EmZ,,,) (18)
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therefore,

[B0"; = Bg(RE_ 3 sinO'_cosEmcosA._
\rm /

' I- 2 cos 0,_ sin E,n (19)

where 0_, rm are the magnetic colatitude and radial dis-
tance of a point along the link, respectively. This term,

multiplied by the electron density, is the integrand of

Eq. (11), where one must think of rm and 0',_ as varying

along the line of integration: While the exact distribution
of electron density along the line of sight is needed to cal-

culate the second-order delay term, a useful approximation

can be derived by assuming that the ionosphere consists

of a very thin layer at altitude H. Then, the correspond-

ing rm and 0_ at the intersection point between the line

of sight and the ionospheric layer are given (for E,, > 10

deg) by

rm = RE + H (20a)

(5), H cos Am cos E,n + O (20b)
6., = Om RE sin Em

By combining Eqs. (8), (11), and (19), one can approxi-
mate the second-order ionospheric group delay (in units of

distance) by

second order ion. group delay = 2.61 x 10_lsA3LR_j3/'v.'_

I' ' Ix sinO,ncosEmcosA,_-2cosOrn-sinE,,_ TEC (21)

where rm and 0m are given by Eq. (20). Setting H at
300 km and ignoring the factor between the absolute signs,

Eq. (21) implies that in the dipole approximation, the
second-order ionospheric group delay is on the order of
0.16 mm and 0.33 mm for L1 and L2, respectively, for

each TEC unit. The second-order ionospheric phase ad-

vance, on the other hand, is one-half of this effect. When

forming the ionospheric free linear combination, some can-
cellation in the second-order term takes place; the residual

range error (RRE), which is defined as the difference be-
tween the dual-frequency corrected range [left-hand side

of Eq. (17)] and the true range, is then on the order of

-0.11 mm per TEC unit.

The _elations between the magnetic colatitude and lon-

gitude, Om and era, and the geographical colatitude and

longitude, 0 and _b, are given by

cos 0,_ = sin 6 cos/3 sin 0 cos ¢

+ sin 6 sin/3 sin 0 sin ¢ + cos 6 cos 0 (22)

tan ¢,n --

- sin/3 sin 0 cos ¢ + cos/3 sin 0 sin ¢

cos 6(cos/3 sin 0 cos ¢ + sin/3 sin 0 sin ¢) - sin 6 cos 0

(23)

The satellite elevation in local magnetic east-north-

vertical coordinates, Era, is the same as the elevation in

local geodetic east-north-vertical coordinates, E. On the
other hand, the azimuths in these two coordinates are re-

lated through

A m = A + arccos(sin ¢ sin ¢,,, cos 6 cos/3

+ cos ¢ cos ¢,n cos/3 + sin ¢ cos em sin/3

- cos ¢ sin ¢,, cos 6 sin/3) (24)

Figure 4 shows the absolute value of the RRE due to
the second-order term. This is shown for two stations at

different longitudes and latitudes, tracking different GPS
satellites, as indicated on the figure. These errors are

calculated using the exact integral form of Eq. (11) and

assuming the Chapman layer distribution of Fig. 1 and

the magnetic field of a tilted dipole, as described above.

The angle X in Eqs. (13) and (14) is determined based
on the assumption that the _ axis (Fig. 3) is pointing to-
ward the sun at 12h UT. The exact calculation, referred

to as truth, is compared with an approximation obtained

from Eqs. (20)-(24). According to the examples of Fig. 4,
the true second-order absolute RRE has an rms value of

1.25 cm, and can be as large as 4 cm at the lowest elevation

angle (10 deg). Using the thin-layer model at the 300-km
altitude as described above, it is possible to approximate

this effect to better than 90 percent on the average. The

difference between the truth and the approximation has an

average of 0.11 cm and a variance of 0.25 cm. This suggests
that a thin-layer model of the ionosphere can be very use-

ful in calibrating the second-order ionospheric effect and

therefore improving GPS-user range measurements.
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C. Third-Order Effect

Upon examining Eq. (12), one finds that the second

term, except during times of very strong magnetic storms,

contributes no more than a submillimeter of range error
for gigahertz frequencies. Therefore, one must consider the

first term, which can be simplified to (in units of meters,
kilograms, and seconds)

third-order ion. group delay = 3.0 x 10-zlA4/N2dl

(25)

To get an approximate estimate of tile integral of Eq. (25),
the authors use the shape parameter r/, defined by Brunner
and Gu [17] as

f N2dl (26)
77=- Nm_, f Ndl

For a single Chapman layer, q was estimated to be -,_0.66

and almost independent of elevation [23,17]. Since this

ionospheric profil e is dominated by a single layer (F2), the
authors believe that the shape parameter 77 in this case

will be close to 0.66. Therefore, one can approximate the

integral of Eq. (25) by 0.66 x Nmax x TEC. For Nm_x =

3.0 x lO12(e/m 3) and TEC = 101S(e/m _-) the third-order
term is estimated to be -,-0.86 mm for L1, -,-2.4 mm for L2,
and -v-0.66 mm for the RRE. A more exact estimate of

the third-order term based on Eq. (12) and the Chapman
distribution of Fig. 1 is shown in Fig. 4. In the examples

of Fig. 4, the delay ranges between 1 and 4 mm.

VI. Conclusion

The above results are summarized in Table 1, which

shows the amount of group delay due to first-, second-,
and third-order ionospheric terms in the zenith direction,

assuming a zenith TEC = 10IS(e/m2).

In employing a Chapman distribution and a dipole ap-

proximation for the magnetic field, it was possible to es-

timate the higher order ionospheric effects on range and
phase measurements. The second-order error can be sev-

eral centimeters for range as well as phase during daytime,
for a year near sunspot maximum. Moreover, since the

niaglietlc field is fixed tothe Earth, and the G_PS _orbit, as

seen from a ground station, repeats itself daily (shifted by

,_4 min per day), the diurnal shape of the second-order er-
ror is most likely to repeat its overall Structure for Several

days, at least to the extent that the overall electron density

distribution remains unchanged. Such daily repeatable er-
rors in range and phase will be mapped directly into orbital

and baseline estimation. This study shows that a r0ugli

ionospheric model consisting of a thin shell at 300 kin,
plus a knowledge of:the YEC, alloWS one f_cal_rate the

second-order term to better than 90 percent. This implies

reducing the second-order ionospheric error to less than 2

mm on the average and, therefore, potentially improving
orbit detcrmination and baseline solutions.
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Table 1. Estimated zenith lonospherlc group delay due to 1/f2, 1/f3, and 1/f4 terms, for an arbitrary wavelength

,,_ (microwave region), L1 and L2 frequencies as well as the residual range error with dual-frequency calibration.

It is assu_med that the zenith TEC -_ 1018 (e/m2). The phase advance can be read from this table by multiplying

each number by = 1, -1/2, and -1/3 for the 1/f 2, 1/f 3, and 1Jr 4 terms, respectively.

Ionospheric expansion term A, MKS a units L1 L2 RHE

1/f 2 4.48 x IO-la.X2TEC 16.2 m 26.7 m 0.0

1//3 _ a 2.61 x IO-lSA3TEC ',,1.6 cm _3.3 cm ,,, -1.1 cm

(0 < _ < 2)

1//4(Nm_x = 3.0 X 1012e/m 2) _ 2.0 x 10 -31 .X4Nm_,xTEC ,,_0.86 mm ,_2.4 mm _ -0.66 mm

Calibrated 1//3 based on a ,_ 1-2 mm

thln-layer ionospheric model

_Meters, kilograms, and seconds.
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The performance of the University of California at San Diego (UCSD) Table

Mountain telescope has been evaluated to determine the potential of such an instru-

ment for optical angular tracking. This telescope uses a Ronchi ruling to measure
differential positions of stars at the meridian. The Ronchi technique is summa-

rized in this article, and the operational features of the Table Mountain instrument

are descri_edl Results from _ anMytic mbdeI, simulations, and act=ual data are

presented that characterize the telescope's current perfo-r_n-ance. For a Star pair :
of Vlsual magnltude 7, the differentla] uncertainty of a 5-min -observation is about

50 nrad (I0 marcsec), and tropospheric fluctuations are the dominant error source.

At magnitude 11, the current differential uncertainty is approximately 800 nrad

(approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser

with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photo-

electron noise is the dominant error source for stars of visual magnitude 8.5 and
fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations

will be the limiting source of error at an average level of 35 nrad (7 marcsec) for

stars approximately 0.25 deg apart. Three near-term strategies are proposed for

improving the performance of the telescope to the lO-nrad level: improving the

efficiency of the optics, masking background starlight, and averaging tropospheric
fluctuations over multiple observations.

I. Introduction

A need for higher data rates and more compact space-

craft hardware has led the Deep Space Network to con-
template using optical communication for the deep-space

missions of the next century [1]. As optical conmmnica-

tion is implemented, optical tracking can also be expected
to supplement or replace the radio methods now in use.

This article explores the applicability of an optical tele-

scope with a Ronchi ruling in the focal plane ("Ronchi
telescope") to differential angular tracking of interplan-

etary spacecraft. In particular, to understand the error

==
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sources that limit both current and ultimate performance,

the limiting errors of the UCSD-Table Mountain instru-
ment have been examined using both real and simulated

data. The levels of photoelectron and tropospheric fluctu-

ations are analyzed, and analytical models are compared

with actual performance over a range of visual magnitudes.

Figure 1 shows schematically the essential features of
a Konchi ruling, which is an optical grating consisting of

alternate parallel opaque and transparent lines precisely
laid down on a polished glass substrate. Typically there

are several line pairs per millimeter, and the widths of the

opaque and transparent lines are comparable, if not equal.
On a Ronchi telescope the ruling lies in the focal plane, and

during a measurement the stars in the field of view move
across the ruling at a uniform rate. This motion can be

induced either by moving the ruling within the telescope,

or by holding the entire telescope fixed and allowing the
Earth's rotation to carry the field of view across the ruling.

In either case, a detector placed behind the ruling will

observe the intensity of starlight modulated periodically by

the ruling, as shown on the right side of the figure. If the
width of the lines is comparable to the size of the image,
the modulation will be continuous and of near-maximum

amplitude. A time series of intensity measurements will
then contain maximum information about the position of

the image on the ruling, in the direction perpendicular

to the ruling lines. If two stars are in the field of view

simultaneously, then analysis of both time series can give
a precise estimate of the difference of the stars' coordinates

in that direction. This analysis will be described in more
detail in Section II.

There are only three telescopes currently using Ronchi

rulings for astrometry. The following list summarizes their

distinguishing characteristics:

(1) Allegheny Observatory [2,3]: Refractor. Telescope
tracks to maintain a fixed field of view. Motorized

ruling moves across the field in orthogonal directions
to determine two coordinates. Masks ("platens")

for each field transmit light from only selected stars.
Dedicated detector for each star.

(2) Hipparcos spacecraft, launched August 9, 1989 [4,5]:
Reflector. Rotating telescope with slowly variable

rotation axis. Optics superimpose two fields 58 deg

apart. Fixed ruling rotates with the telescope. Elec-

tronic image dissector isolates stars.

(3) UCSD-Table Mountain [6]: Reflector. Meridian-
transit telescope rotates with the Earth, fixed ruling
rotates with the telescope. Measures right ascension

difference only. Field of view divided into 12 declina-

tion bands with separate detectors. No background

masking.

Each design has advantages for particular applications.

For spacecraft tracking, a combination of the features
listed above would be ideal. As a minimum, such an in-
strument must be able to determine differential right as-

cension and declination, have a masking capability to block

background stars, and be able to reach visual magnitudes,
my, in the neighborhood of 11. Other desirable--albeit

not altogether compatible--features include extreme opti-
cal and mechanical stability, a minimum number of parts

that move during a measurement, and freedom from opti-

cal aberrations over a wide, flat field of view.

Two lines of reasoning support the requirement given

above for m_. First, current projections suggest that

spacecraft communication lasers will have apertures of
about 0.4 m and transmit 2 W at a wavelength of

0.5 pm. 1 Calculations similar to those described in [7]

show that such a laser, transmitting from Saturn, would
have an effective m_ of about 11 as seen on Earth. Second,

tracking with a Ronchi telescope requires that a reference
star be in the same field of view as the spacecraft laser.

Suppose that the field of view is 0.5 square degree (as for

the Table Mountain telescope) and that observations are

required at the point in the ecliptic farthest from the galac-

tic equator, at galactic latitude 60 deg. According to Allen

[8], the average density of stars brighter than rn_ -- 10 at
that latitude is 4.3 per square degree, and for m_ = 11, the

density is 11 per square degree. With these parameters,
the probability that a random field is empty to my = 10 is

at least 0.12; but at m_ -- 11, the probability is less than

0.01. Thus, both arguments lead to the conclusion that

the telescope must ultimately operate at about m_ = 11.

In the material that follows, Section II describes the es-

sential features of the Table Mountain telescope and sum-

marizes the way in which data are collected and analyzed.

Section III presents the results of error modeling, simula-

tions, and data analysis that explore the telescope's cur-

rent and potential capabilities. Finally, Section IV dis-
cusses several planned improvements in the design of the

telescope that will enable it to approach its ultimate per-
formance.

!1. Instrumentation and Data Analysis

The telescope used in these measurements is a Newto-
nian meridian-circle instrument owned by the University of

1 j. R. Lesh, personal communication, CoramunJcat|ons Systems Re-
search Section, Jet Propulsion Laboratory, May 1990.
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California at San Diego and located at 3PL's Table Moun-
tain Observatory. Figure 2 is a cross section through the

telescope barrel that shows its essential features. Light

entering at the right travels down the tube and is reflected

from the parabolic primary mirror (M1), which has a di-

ameter of 32 cm and a focal length, F, of 2.443 m. The
converging beam then returns to the right along the op-

tical axis to a flat diagonal mirror (M2), which redirects

it to the primary focal plane at the Ronchi ruling (R). At

this point, the field of view has a diameter of 5 cm, cor-

responding to 1.2 deg on the sky. Stellar images at the
edge of the field are dominated by coma and are about 60

microns long.

On the Ronchi ruling (see Fig. 1), there are 400 line
pairs (transparent and opaque) oriented parallel to the

declination (north-south) direction in the image. Trans-

parent and opaque lines are equally wide, and the com-
bined width of a line pair is d = 125 microns. Thus, each

line pair subtends an angle on the sky of

Cn = d/F = 10.5545 seconds of arc (1)

During a measurement, the telescope and ruling remain
stationary while the Earth's rotation carries stellar im-

ages across the focal plane at a mean angular rate of

w = 15.0411 arcsec/sec at the celestial equator. As an
image traverses the ruling perpendicular to the lines, its

transmitted light is modulated with a period equal to the

time required to cross a line pair. This interval, the Ronchi

period, is consequently given by

(I) R

rR - w cos 6 (2a)

where/_ is the apparent declination of the star. Substitut-

ing the values given above for fir and w yields

rn = 0.70171/cos _ seconds of time (2b)

In essence, the phase of this periodic response of the

Ronchi telescope is used to determine the relative right
ascension of a star. For example, if two stars at the same

a system of transfer optics (labeled M3, L1, L2, and L3

in Fig. 2) to reimage the star field at the secondary image
plane R _. Cylindrical lens L3 produces stellar images that

are tightly focused in declination, but diffused along their

direction of motion across the field. At R', a series of 13

razor-edged steel shims extends in the right ascension di-
rection to separate the image into twelve 0.038-deg-wide

declination bands or channels. Twelve Plexiglas light pipes
convey the light from each channel to a photomultiplier

tube. The output current from each tube is then inte-

grated in a capacitor, and the resulting voltage is sampled

and digitized at intervals of At = 0.075 sec. Finally, the 12
counts collectedTor each sampling intervaIare recorded on

a storage device, such as a magnetic disk, for later analysis.

Partitioning the field of view in this way makes it possi-

ble to distinguish and analyze separately the instrument's
response to as many as 12 stars that are visible simulta-

neously. In general, of course, there will be several stars

in each declination band at any given time, even though

all of them may be faint. If the band contains a star to

be measured, the cumulative effect of these background
stars will influence the telescope's response and may be
the dominant source of error. This error consists of two

parts: The background stars increase the level of stochas-

tic photoelectron noise, and also introduce systematic off-

sets in the estimated position as their response functions

interfere with the response function of the star being mea-
sured. The background problem is discussed further in
Sections III and IV.

As the foregoing discussion makes clear, the Ronchi

telescope's response to a single star is a time series of pho-

tomultiplier counts (shown in Fig. 1) that rises and falls
as the stellar image passes in turn across transparent and

opaque lines of the Ronchi ruling. Because the width of
the lines is comparable to the maximum coma-broadened

size of a stellar image, the amplitude of the modulation is

nearly 100 percent. The average number of sample points

in a Ronchi period, Nn, is simply

Nn = rn/At = 9.3562/cos 6 (3)

Because Nn provides the most precise determination of fo-

cal length I the experimentally determined Constant 9.3562

declihation differ in right ascenslon by 0R/2 seconds of ill Eq. (3) is used to calculate rR and Ca.
arc, their response functions will be offset by half a Ronchi

cycle, and the observed phase difference can be used to de-

duce the right-ascension difference.

In order to detect the modulated starlight that has

passe_d throug_h tl_e_nclii ruling, it is convenient to use

Optical stability, and mechanical and optical simplic-
ity, were the primary considerations in the design of the

Table Mountain telescope. Nothing moves during an ob-

serving session, and the absence of lenses in the primary

optics minimizes chromatic aberration. The images do,
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however, have the coma characteristic of a single parabolic
mirror. As a result, the response function is not strictly

periodic, and systematic errors can arise in the comparison
of Ronchi phases measured at different points in the field
of view.

Coma in the Table Mountain instrument is accounted

for during data analysis. Buffington and Geller [6] argued

that even in the presence of coma, the centroid of the im-

age does move uniformly across the ruling. Furthermore,
the centroid of a single peak in the response time series

occurs when the centroid of the image crosses the midline

of one of the transparent strips on the ruling. Hence, the

problem of determining the phase of the Ronchi response
function reduces to that of determining the centroid times

of the response time series. That is, the analysis software

computes for each peak in the response the centroid time,

_]_'=1 t_A_

(t)_ = E,"--1 A, (4)

where (t)_ is the time of the kth centroid, ti is the ith sam-
ple time in the interval, and the values of Ai are the cor-

responding modulated intensities after removal of a back-

ground level that varies with time. The sum is taken over
n data points in a particular peak.

In the absence of noise, the centroidsof successive

Ronchi cyclesrecur at equal intervalsof rn, so that the

Ronchi phase of the kth centroidcan be definedas

ek = ((th - t,_s)/,'R - k (5a)

where ek is in cycles and tre! is a reference time common
to all stars. Ronchi phase can be expressed as an angular

offset in the right ascension direction simply by multiply-

ing ek by the conversion factor @n

ak - q_RCk (5b)

Ideally, ¢_ is constant for a particular star, but in

the presence of perturbations (photoelectron noise, back-

ground stars, tropospheric refraction, and so on) it fluc-
tuates. However, because the tropospheric fluctuations

are correlated for stars separated by small angles, part of
this error source cancels in a differential measurement be-

tween stars in different declination.bands. Figure 3 shows

the time series of Ronchi phase for a pair of magnitude-7

stars separated by about 23 minutes of arc. In the fig-
ure, the solid and dashed lines represent the phases of the

two stars, and dots show the difference. To show the cor-
relation of the tropospheric fluctuations more clearly, the

mean phases of the two stars have been made equal. Be-

cause the troposphere is not the only source of error, and
because the troposphere itself is not perfectly correlated,

the correlation coefficient of the two time series is only

about +0.5. In the following section, data on observed

tropospheric fluctuations are presented, and the variation

of photoelectron noise as a function of stellar brightness is
discussed in detail.

III. Results

The goal in assessing the Table Mountain Ronchi tele-

scope has been to evaluate the errors limiting its cur-

rent performance and to determine how much that per-

formance can be improved within the constraints imposed

by its basic design. Ultimately, it will be necessary to de-
cide whether such an instrument can track interplanetary

spacecraft with the required accuracy. As discussed above,

the two limiting error sources are photoelectron noise and

tropospheric fluctuations.

In order to evaluate these two sources of error quanti-

tatively, a combination of theoretical analysis, simulated

data, and actual data has been used. Figures 4 and 5 sum-
marize these results for differential observations of stars

ranging from my = 4.5 to 12. In these figures, observed
and calculated errors, in nanoradians, are plotted as a

function of my.

Along the diagonal in Fig. 4, the solid line represents
an analytic model of the component of angular error in-

duced by photoelectron noise for the current instrument.

The Appendix gives the derivation of this error for a single
centroid measurement. To extrapolate the single-centroid

calculation to a full-length (400-centroid) differential ob-

servation, a reasonable assumption was made that photo-
electron noise on different centroids, or in different detec-

tors, is statistically independent. Thus, the error on an av-
erage of 400 centroids is reduced by a factor of _ = 20

relative to a single centroid; and the error on a differen-
tial measurement is v/2 times the error on a single-star

measurement. Under this assumption, the plotted curve

represents Eq. (A-9) divided by 2v/2"_; that is,

a_ = (2089/A)(1 + 1.9604 x 10-SA) 1/2 (6)

where aa, the angular uncertainty, is expressed in nanora-

dians, A = 10°'4(12-m') is proportional to the star's bright-

ness [see Eq. (A-8)], and m_ is its visual magnitude.

107



Note that the calculation of Eq. (6) (and the plotted line)
assumes that the star is close to the celestial equator,

where there are about nine sample points in a Ronchi pe-
riod. Away from the equator, aa varies as Vf_-_, where

6 is the declination [see Eqs. (3) and (A-7)].

The six diamonds plotted in Fig. 4 represent actual dif-
ferential measurements on six pairs of stars. Table 1 lists

the stars in each pair, in order from left to right on the plot,

along with their visual magnitudes and angular separa-

tions. For each pair, the plotted magnitude is an effective
magnitude that accounts for the difference in magnitude

of the two stars and the actual spectral response of the

photomultiplier tubes.

The results for pairs 1 through 4 are derived from data
collected on seven nights between May 23 and June 2,

1990. For each pair, the rms variation over the seven nights

of the single-centroid differenced Ronchi phases was first

calculated. Then, the single-centroid standard deviations

were scaled to the length of a full observation by dividing
by 20, as described above. This procedure implicitly as-

sumes that the tropospheric, as well as the photoelectron,

fluctuations scale with time as t -1/2. Lindegren's semi-

theoretical estimate of differential tropospheric fluctua-

tions [9] implies that this relation is correct, although his
results do not strictly apply to the combination of angular

separation (3 to 25 arcmin) and time interval (_'R approxi-

mately 0.7 sec) applicable here. tIowever, for undifferenced

measurements, Lindegren [9] and his references expect the

fluctuations to scale like t -z, where _ is between 1/6 and
2/5.

At the right in Fig. 4, the points for the two brightest

pairs were obtained indirectly, by extrapolating the data

given by Buffington and Geller [6] in their Fig. 5. That
figure, based on five nights of measurements made from

June 9 to June 13, 1989, shows angular precision as a
function of integration time. Here their results have been

extended to an integration time of 300 sec, assuming the
t -11_ dependence suggested by tile plot for shorter inte-

gration times.

Examination of the points shows that the weakest pairs

lie near the theoretical photoelectron noise curve, but that,
for brighter stars, the predicted photoelectron noise in-

creasingly underestimates the actual angular uncertainty.

Thus, it appears that for stars weaker than visual magni-
tude 8.5, photoelectron noise is the dominant error source.

At magnitude 7.5, photoelectron and tropospheric fluctu-

ations contribute about equally. For stars brighter than

m_ = 7, the troposphere dominates the error budget. In

Fig. 4, the rightmost points suggest that the error has

nearly reached the asymptotic level of the tropospheric
contribution alone. The horizontal line at about 35 nrad

indicates an empirical estimate of that limit (for a single
measurement) based on the data shown in the figure. Of

course, this limit is merely representative. It depends on

angular separation and on the time and place of the mea-
surements.

Finally, the sloping line at the lower left in Fig. 4 shows

the reduction in photoelectron noise expected to result
from two improvements in telescope design discussed more
fully in section IV. First, masks are used to block back-

ground stars and remove their contribution to the noise;

and second, the efficiency of the transfer optics and light

pipes is improved by a factor of 12, so that the signal-
to-noise ratio (SNR) increases by a factor of v/_. With

tlleseimprovements, the troposphere will dominate the er-

ror budget even at m_ = 12.

Figure 5 shows again the computed angular error due
to photoelectron noise, and Compares it with the results

of tests in which the existing analysis software was used

to process simulated data. In these tests, 1200 undiffer-
enced 400-centroid observations were simulated at each of

16 visual magnitudes ranging from 4:5 tO i2 in steps of 0.5.

Gaussian noise representing photoelectron (but not tropo-
spheric) fluctuations was added to a sinusoidai approxi-

mation of the Ronchi response function, and the results
were written to a file in the same format as real data. The

analysis software was then used in the usual way to com-

pute an angular coordinate for each observation. Finally,
each observation was assigned an error equal to the dif-

ference between the computed coordinate and the model

coordinate used to generate the sinusoid. The plotted val-

ues along the solid line show the standard deviation of the

1200 errors, multiplied by v_ to account for differencing.

Except for the brightest and faintest stars, the pre-
dicted and simulated uncertainties agree remarkably well.

It is not yet well understood why the simulations perform

better than the model for stars of visual magnitude 12.

The breakdown of the assumptions underlying Eq. (A-6)

certainly plays a role, however. At the bright end of Fig. 5,
it is suspected that an undiagnosed algorithm error is lim-
iting the uncertainty derived from the simulated data at

the 6-nrad level. If so, the simulation curve will agree bet-
ter with the analytic model when the error is corrected.

Figure 6 applies the results shown in Fig. 4 to the spe-

ciaI case of spacecraft tracing. AS stated in Section i,
a spacecraft laser with nominal characteristics at the dis-

tance of Saturn would generate a response in a Ronchi

telescope comparable to that of a magnitude-ll star. As-

suming a reference star of the same magnitude, the figure
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shows the expected angular accuracy for several situations.
At the left is shown the performance of the Table Mountain

instrument, both in its current configuration and with the

improvements mentioned above. On the right are the tro-

pospheric err()rs for a single 5-rain observation (taken from

Fig. 4) and for the average of 25 statistically independent
observations. With the expected improvements and mul-

tiple measurements, the estimated accuracy is adequate

for near-term research and development demonstrations

of optical astrometry.

IV. Conclusion

Very long baseline radio interferometric astrometry can

now achieve an angular accuracy of 1 nrad or better [10].
Optical tracking methods must therefore strive toward a

comparable goal. For ground-based systems in the near
term, 10 nrad is a reasonable target. From the discussion

in Section III, it follows that the Table Mountain telescope

requires the improvements summarized below before it can

deliver the desired performance.

For bright stars one or two tenths of a degree apart, tro-
pospheric fluctuations typically limit differential accuracy

to 30 or 40 nrad for a single 5-min measurement. Tropo-

spheric error cannot be controlled, but it can be managed

to some extent by observing at high altitude and using star
pairs separated by small angles. It can also be reduced by

averaging together several measurements, as indicated in

Fig. 6.

For stars fainter than my - 8.5, photoelectron noise

dominates the error budget. As pointed out in Section I,
calculations of the apparent brightness of spacecraft lasers
and of the number of observable stars lead to the conclu-

sion that differential tracking measurements will have to
rely on stars with m_ approximately 11. For such a pair

(see Fig. 6), the differential angular uncertainty of a 5-min
measurement with the current system is about 830 nrad.

Steps are alreadybeing taken that willreduce the pho-

toelectronnoiseon starsofvisualmagnitude 11 to a level

comparable tothe troposphericnoise.An all-mirrorOffner

system [11]willreplacethe currentlenssystem of transfer

optics,increasingthe telescope'sopticaltransmissionby a

factorof4. A furtherchange inthe way the lightpipesare

connected to the photomultipliersisexpected to increase

the number ofphotons that reach the detectorsby another

factorof3. Since photoelectron noisevariesas the square

root of the incidentintensity,this12-foldincreasein opti-

calefficiencywillincreasethe SNR by a factorof x/_ and

decrease the uncertaintyof a measurement by the same

amount.

Another factor that increases photoelectron noise is

background light from fainter stars in each declination
band. Typically, the total background in a band is com-

parable to the light from a magnitude-7 star. As men-

tioned in Section II, this background introduces both ran-

dom and systematic errors into the estimated coordinates.
To remove both kinds of errors, a masking device that will

either block or ignore background light is being added. As

a preliminary implementation, mechanical masks are be-

ing designed on at least two of the channels. Each mask
will be an opaque strip that covers one declination band

and contains a pinhole to allow only the light from a sin-

gle star to pass. As the star crosses the field of view, a

computer-controlled drive mechanism will move the mask
to keep the star centered on the pinhole.

A much more versatile electronic masking system would

use a sensitive charge-coupled device (CCD) to replace

both the mechanical masks and the photomultiplier tubes.

Such a system would retain the Ronchi ruling to modulate

the starlight and would use the CCD as a masked detector.

Only those CCD pixels containing the desired image would

be processed, while those containing background would be
discarded. A more radical departure from the current de-

sign would use the CCD not only to replace the masks and

photomultipliers, but also as a metric device to replace

the ruling itself. This pure CCD design may be subject

to systematic errors that are difficult to control, however

[12,13]. Although CCD's have been used in astrometry for

over 10 years [14,15], the design envisioned here presents
new challenges. In particular, it requires CCD's that are

larger and can be read out faster than those now read-

ily available. Thus, the CCD concept would be developed

gradually only after a successful demonstration of mechan-

ical masking.

Figure 4 shows the reduction in photoelectron error

that is expected after the implementation of both back-
ground masking and improved transfer optics. With these

improvements, the photoelectron error will be reduced be-
low the tropospheric linfit even for stars of visual magni-
tude 12.

Finally, tracking applications will require the measure-

ment of spacecraft declination as well as right ascension.
This capability can be added to the existing instrument

in several ways. For example, stars would move obliquely

across the ruling during observations made before or af-
ter transit. A pair or series of such observations could be

combined to give a differential measurement of both right

ascension and declination. Of course, this option would

require modification of the telescope to allow nontransit

measurements. Another approach would use a chevron
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ruling with separate sections of lines oriented at 4-45 deg

with respect to the vertical. Still another possibility is
to move the ruling itself in the declination direction, as

Gatewood's instrument does [2,3]. Some of these methods
are affected by differential atmospheric refraction, how-

ever, and it is still unclear what will be the best approach
for two-dimensional measurements.

In summary, the following modifications would prepare
the Table Mountain Ronchi telescope for a demonstration
of its ability to track objects as faint as m_ = 11:

(1) Install the transfer optics now being developed, so
as to improve the photoelectron SNR.

(2) Reconfigure'the interface between tile light pipesand

the photomultipliers, which would also improve the
photoelectron SNR ........

(3) Design and install computer-controlled masks for at

least two declination bands to eliminate the photo-

electron noise and systematic errors caused by back-
ground stars.

The following two items offer some potential for im-

provement, but their feasibility has not yet been studied:

(1) Replace the photomultiplier tube assembly with a

CCD (positioned so the image is slightly out of fo-
cus) to investigate the use of CCD's for both detec-

tion and masking.

(2) Install a Ronchi ruling with a chevron pattern for si-

multaneous measurement of right ascension and dec-
lination.

These improvements can be implemented on the cur-

rent instrument with a modest investment, and they will

make it possible to assess the applicability of the Ronehi

technique to optical tracking.
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Table 1. Star pairs shown In Fig. 4.

Stars (SAO Separation,

Pair identification) Visual magnitudes arcmin

1 122716, 122746 7.46, 8.20 24

2 122735, 122738 6.93, 8.40 13

3 122723, 122709 6.66, 7.60 14

4 122723, 122715 6.66, 7.22 23

5 70287, 70289 6.32, 6.49 3

6 101145, 101137 3.86, 5.91 13
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Appendix

Error in Estimate of Ronchi Centroid Caused by Photoelectron Fluctuations

In the Table Mountain Ronchi telescope, 12 analog-
to-digital converters (ADC's) process the signals from 12

corresponding photomultipliers that have unequal gains.

Where numerical constants are given below, they refer

to channel 3. For other channels, the constants must be

scaled by the appropriate gain ratio.

where the index i ranges over the points in a single Ronchi

cycle, and xc is expressed in the same units as _R, the

angle subtended on the sky by one Ronchi line pair [see

Eq. (1)]. Note that the values of Ai in Eq. (A-4) are the

amplitudes of the response time series of the single star

being measured, after subtraction of the background level.

Since the response of each photomultiplier, A, is pro-
portional to the number of photoelectrons, N, and N is

proportional to the number of incident photons, the out-

put from each ADC can be written as

A = KN (A-l)

If the fluctuation of the amplitude, ai, is much smaller

than the amplitude, Ai, then the variance of xc is approx-
imately

,72 (<_nln)2_=-l i2'7_
_¢

(zl=_,,,,)'
and is proportional to the brightness of the star being ob-
served.

In the absence of a bright star in the field, there re-

mains an average background level, AB, due to faint stars.

Even if the field of view remains fixed, this background

has a stochastic fluctuation level (standard deviation), _rB.

From measurements of "empty" fields, the numerical val-

ues of these constants are found to be AB _ 100 and
_B _ 3. Since the standard deviation of the number of

photoelectrons during any interval is the square root of

the mean number during that interval (Poisson statistics),

the fluctuation of Eq. (A-l) can be written as

0" = KVr'N (A-2)

Thus, the value of K can be determined from the measured

values of AB and _rB

K = _a21AB (A-3)

where _i = K_/NB + Nsl, and the subscripts B and S re-

fer to the background and source, respectively. The value

of NB is more or less constant, but Nsi varies directly with

Ai. If the size of the stellar image on the Ronchi ruling is

comparable to, or larger than, the line spacing, then the

response function is roughly sinusoidal, and the response
time series can be approximated as

Ai = As[1 + cos(2.iln)]
2 (A-6)

Using Eqs. (A-2), (A-3), and (A-6) in Eq. (A-5) and
applying further numerical approximations, one obtains

a=o = --_n3nT(aBIAs)_ + l (1-6/Ir_)(aa/AB)(aB/As )

(A-7)

Measurements show that for a star of m_ = 7, As _ 100,
so that the relationship between signal amplitude and stel-

lar magnitude is approximately

and from the values above, K _ 0.09.

W°hen the number of sample points in a Ronchi cycle is

odd, n = 2/+ 1, the location of the centroid of the response
function can be written as

I

_i=-I iAi

xe = (_RIn) I A
Ei=-I i

(A-4)

A = 100'4(12-m') (A-8)

The approximations used in deriving Eq. (A-7) become

significant for small values of n and As. For n > 9 (the

smallest possible value) and As >__30 (corresponding to
mr _, 8), the error is at most a few percent.

When one substitutes n = 9 for stars near the celes-

tial equator, the numerical values given above for AB and
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_a, and the value of _l_ from Eq. (1), then Eq. (A-7)
becomes

If the background is removed, only the second term in

Eq. (A-9) remains

_,_o = 2.03X/(3/As) 2 + (0.2)0.03(3/As) (A-9)

where _=,, the uncertainty in the location of the star

caused by the photoelectron noise, is expressed in seconds
of arc.

_r=o = 2.03_/(0.2)0.03(3/As) (A-10)

Eq. (A-10) is correct within a few percent for stars brighter

than my _ 11. For stars fainter than the specified limits,

Eqs. (A-7) and (A-10) both overestimate the actual uncer-
tainties.

117

i



TDA ProgressReport 42-110 August15,1992

Deep-Space Navigation ApplicationS Of improved

Ground-Based Optical Astrometry

G. W. Null, W. M. Owen, Jr., and S. P. Synnott

Navigation SystemsSection

Improvements in ground-based optical astrometry will eventually be required
for navigation of interplanetary spacecraft when these spacecraft communicate at

optical wavelengths. Although such spacecraft may be some years off, preliminary

versions of the astrometric technology can also be used to obtain navigational im-

provements for the Galileo and Cassini missions. This article describes a technology-

development and observational program to accomplish this, including a cooperative

effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based as-
trometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by

a factor of 3 to 6. This would reduce the requirement for onboard optical naviga-

tion pictures, so that more of the data transmission capability (currently limited

by high-gain antenna deployment problems) can be used for science data. Also,

observations of European Space Agency (ESA) Hipparcos stars with asteroid 243

Ida may provide signit_cantly improved navigation accuracy for a planned August

1993 Galileo spacecraft encounter.

I. Introduction

There is an active technology development effort [1,2]

at JPL, supporting possible implementation of a ground-

based Deep Space Optical Reception Antenna (DSORA),

consisting of a 10-m segmented receiving mirror for the
downlink and a smaller, roughly l-m, uplink telescope.

This system would provide laser communications between

the DSN and interplanetary spacecraft. Although the pri-

mary purpose of the DSORA would be to improve deep-

space downlink conwnunication, optical tracking systems

could also provide new capabilities for interplanetary nav-

igation.

For example, it may eventually be possible to directly

image the spacecraft relative to solar system target bodies,

thus providing ground-based optical navigation roughly
comparable to the current onboard optical navigation ca-

pability, and with approximately the same linear accuracy

at the distance of Jupiter. This will eventually require sig-

nificant improvements in existing astrometrjc instruments

and techniques. Since laser-emitting spacecraft will proba-

bly not be available in the 1990s, it is necessary to develop

astrometric systems for observing these spacecraft without
initially being able to observe them. Fortunately, a suit-

able astrometric replacement is to observe natural bodies

(satellites or asteroids) together with background stars.

As the instrument development proceeds, the improved

instruments can also provide improved mission target loca-

tion accuracy for conventional radio metric missions, such
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as Galileo. Such improvements are especially important

since, as will be discussed, target location is the limiting

error source for the most critical portions of these mis-

sions. Two potentially significant improvements are iden-

tified in this article: supporting navigation of the Galileo-

Jupiter orbit tour and a possible Galileo flyby of asteroid

Ida. Similar benefits may be possible in the future during

the Cassini-Saturn orbit tou r.

Most long:term development options are expensive and

technically difficult, but some simpler near-term options

have been identified for filled-aperture instruments with

narrow (<1 deg) fields. These near-term options and their

potential navigation benefits are the subject of the present

article. It will focus on optical astrometry for target loca-

tion, i.e., measurement of the angular sky-plane position

of solar system objects relative to one another or to back-
ground stars.

One option, which is being actively pursued in cooper-

ation wit h the United States Nayal Observatory (USNO)
Flagstaff Station (NOFS), is to observe Jupiter's Galilean

satellites with NOFS's 1.55-m astrometric reflector and
a modern, large format 2048x2048 charge-coupled device

(CCD) detector. Although the ll-arcmin field is unusu-

ally large for a CCD detector, it is quite small as compared

with a conventional photographic field.

The near-term goal is to achieve per-night accuracy of

roughly 50 nrad (_0.01 arcsec), although useful results can

still be achieved with larger errors. This goal represents an

appropriate trade-off between mission needs and near-term

observational limitations, as will be explained later. If

this observational goal can be achieved, then the Galileo--

Jupiter tour navigation performance can be significantly

improved.

The key technology challenge with an 11-arcmin CCD

field 1 is to accurately determine the instrument scale (for

CCD's, in arcsec/pixel measured on the focal plane), even

though, within this field, existing star catalogs do not pro-

vide an adequate number of stars with accurately known

positions. Observations of star fields are currently being

acquired and analyzed by NOFS so that candidate scale-

determination techniques can be assessed. These tech-
niques are discussed in Section IV.A.

Five major sections are included in this article: In-

troduction, Navigation Overview, Instrument Overview,

Galilean Satellite CCD Observation Techniques, and Sum-

mary and Conclusions.

z D. G. Monet, personal communication, NOFS, February 12, 1992.

II. Navigation Overview

A. Galileo-Jupiter Orbit Tour

The Galileo spacecraft will be injected into orbit about

Jupiter in late 1995, followed by a series of close encoun-

ters with Jupiter's Galilean satellites. Unfortunately, the

spacecraft high-gain antenna did not fully deploy and cur-

rently is completely unusable. The low-gain antenna is

available, but the data rate from Jupiter allows transmis-

sion of only a few full-field CCD science or onboard optical

navigation (OPNAV) pictures per encounter (there is one

encounter per 14-28 day orbit). Obviously, it would be
beneficial to take more science and fewer OPNAV images,

provided that mission navigation requirements can still be
met.

Before the antenna deployment problem, roughly 30
onboard OPNAV pictures were planned for each satellite

flyby, but now, even with data compression, there is a

strong benefit if the number of pictures can be signifi-

cantly reduced. Also, having both OPNAV and ground-

based optical information can provide increased navigation
reliability, and can also provide a quick, accurate three-

dimensional target-location position fix by combining an-
gular observations from two different lines of sight.

Close-up OPNAV satellite images can provide an accu-

racy of about 15 km (about 25-nrad, geocentric). If the
50-100 km a priori position accuracy of the Galilean satel-

lites can be improved to the OPNAV accuracy levels, then

the originally planned spacecraft navigation accuracy can

be achieved with just a few OPNAV pictures to locate the
spacecraft relative to the already well-known position of

the target satellite.

As will be discussed later, the orbit improvements

would be made with ground-based intersatellite observa-
tions. Figure 1 shows a schematic representation of typ-

ical observing geometry for these observations. Figure 2

shows an actual CCD frame containing four exposures of
the Galilean satellites, taken with the NOFS 1.55-m tele-

scope. The shutter was closed and the pointing was offset

between each exposure. The leftmost satellite of the left-
most exposure is outside the field; otherwise, Jupiter and

all four satellites are imaged for each exposure, and they

are nearly collinear, roughly in the ecliptic plane. The

satellites appear at a shallow, roughly 30-deg angle from

the horizontal; the leftmost three satellites are somewhat

below the Jupiter location.

The outermost Galilean satellite (Callisto) has a longer

period and larger intersatellite angular separations than
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the other Galilean satellites and, therefore, its data cov-

erage, particularly for eclipses [3] and mutual events [4],

is Significantly less complete. Thus, it is not surpris-

ing that Callisto actually has the'least accurate orbit of

any Galilean satellite, with a longitude standard error 2 of
about 90 kin, and there is a high pridrity on improving the

Callisto orbit. Since the angular diameter of the Galilean

system is about 16-20 arcmin, larger instrument fields (10

arcmin and greater) are advantageous. This will influence

the choice of telescope and detector.

B. Galileo Flyby of Asteroid Ida

The key information provided by orbit determination

with long arcs (half an asteroid orbit period or more) of
ground-based angular star-relative asteroid observations

consists of accurate target ephemeris coordinates in three

orthogonal directions [5; pp. 31-34]. When coupled with

accurate DSN radio tracking of the spacecraft, this enables

accurate determination of the spacecraft's time of arrival,

which is orthogonal to the spacecraft-target sky-plane, and

so is poorly determined by onboard OPNAV imaging. Be-
cause of time-of-flight uncertainties, the Galileo Project

must schedule a picture mosaic to be sure of capturing a

close-up picture of the asteroid. Since most of these pic-

tures will capture only blank sky, there is a definite need to

improve the ground-based asteroid observational accuracy
so that the near-encounter picture budget can be used for
actual observations of the asteroid.

Galileo has already successfully concluded a historic
first encounter with asteroid 951 Gaspra on October 29,

1991. Pre-encounter ground-based astrometric observa-
tions obtained by the astronomical community and an-

alyzed at JPL 3 provided critical Gaspra target-location

improvement to enable accurate Galileo spacecraft instru-

ment pointing. Recent star-relative observations of Gaspra
from the NOFS 1.55-m sidereal CCD instrument and 0.2-

m CCD transit instrument were a major contributor to

the success of the encounter navigation, which achieved

orbit prediction errors of less than 100 km (similar to the
standard errors from the solution covariance matrix). This

provided improved instrument pointing accuracy and en-
abled successful acquisition of several close-up images of

Gaspra.

2D. W. Murrow, "Integrated Covariance for the Galilean Satel-
lites from E3," JPL Interomce Memorandum 314.3-779 (internal
document), Jet Propulsion Laboratory, Pasadena, California, Jan-
uary 21, 1988.

3D. K. Yeomans, P. W. Chodas, M. S. Keesey, W. M. Owen, Jr.,
and R. N. Wlmberley, "Ground-based Ephemeris Development for
Asteroid 951 Gaspra," JPL Interomce Memorandum 314.6-1417
(internal docm_ent), Jet Propulsion Laboratory, Pasadena, Cali-
fornia, March 24, 1992.
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There will also be a close encounter with asteroid 243

Ida on August 28, 1993. An observation program similar to

the Gaspra program is being conducted for Ida. All these

observations are limited by inaccuracies in the available

star catalogs, so that the star-relative observation noise is

about 1450 nrad (0.29 arcsec)--a large value when com-
pared with the technology development goal of 25-50 nrad

per night. This motivates an effort to obtain a more accu-

rate star catalog, both to support navigation technology
development and to improve the Ida target prediction ac-

curacy.

Fortunately, the European Space Agency (ESA) Hip-

parcos Earth-orbiting observatory has been acquiring star

observations for a global star catalog since late November

1989. Recent estimates [6] of expected catalog accuracy,

assuming three years of data, predict star positional accu-

racies better than 10 nrad + (10 nrad/yr) T, where T is the

time in years past the end of the catalog data span. Cat-

alog density would be about 2.5 stars per square degree,
roughly in an even distribution over the celestial sphere.
Eventually, of course, a second Hipparcos mission would be

required to reduce the effect of the 10 nrad/yr star proper

motion errors, but, in any case, the Hipparcos catalog is

expected to enable dramatically improved astrometry.

A special Hipparcos input catalog (not based on Hip-

parcos data) was obtained from ESA, containing approxi-
mate coordinates of 50 Hipparcos stars lying near the Ida

track on the sky. Further processing 4 at JPL identified
about nine stars within 10 arcmin of the Ida track dur-

ing the Spring 1992 observing season, including an oppor-

tunity to observe Ida simultaneously with two Hipparcos

stars for over a week during the post-opposition stationary

point.

Observations of Ida relative to several of these Hippar-

cos stars were obtained by the NOFS 1.55-m telescope

(CCD with 11-arcmin field), including observations taken
over several days capturing Ida and two Hipparcos stars.

The appearance of two stars with Ida during an Ida sta-

tionary point was a fortuitous but highly unlikely event,

which may allow accurate scale and orientation calibra-

tions for these observations and thus provide accurate an-

gular positions of Ida, possibly with 50 nrad or better ac-

curacy.

One of the actual NOFS CCD observations, taken in

early 1992, is shown in Fig. 3. Ida is the faint (magnitude

4 W. M. Owe.n, Jr., "Opportunities for Observing 243 Ida Relative to
Hipparcos Stars," JPL Interoffice Memorandum 314.8-819 (inter-
hal document), Jet Propulsion Laboratory, Pasadena, California,
January 20, 1992.



rnv= 14.0) object surrounded by the cursors, and the two

Hipparcos stars (my = 8.3 and 8.8) are the brightest and

largest star images in the field. While the large difference

in brightness between Ida and the Hipparcos stars may
i possibly degrade the measurement accuracy, it is impor-

tant to note that the NOFS 2048x2048 CCD is the first

astrometric CCD with wide enough dynamic range to en-
: able these measuremenis: Por _x-aiiiple, an 800x800 CCD

i of the type used b_y-_aliieobr _he ltubble Space Telesc0pe

j! would have been satumted by more than a factor of 6 un-
der similar circumstances, s

Initial ESA plans were for a four-year data-reduction in-

terval between the last Hipparcos observation (which de-

pends on the spacecraft's lifetime) and final catalog re-

lease. The Galileo Project has requested preliminary cat-

alog positions for the observed stars (based on actual Hip-

parcos data), but it is still not known whether it is feasible
to obtain these positions prior to the August 1993 Ida en-
counter.

If early catalog delivery is not possible, then there will

be no navigation benefit for the Ida encounter. However,
for technology demonstration purposes, catalog delivery

after Ida encounter would still provide a useful demon-

stration, since Ida's heliocentric orbit will be known very

accurately after the encounter, so that computed residuals

for the Hipparcos-relative observations could be used to

verify the data accuracy.

III. Instrument Overview

This section reviews the characteristics of current pho-

tographic, Ronchi, and CCD astrometric instruments, re-

views their capability to accurately observe the Galilean

satellites, and provides the rationale for choosing a CCD

instrument for the present Galilean-satellite observing-
technology demonstration.

For readers desiring more information about CCD or

Ronchi systems, there is an excellent astrometric review by

Monet [7]. Readers who wish to accept t'he outcome of this

section (i.e., the choice of the NOFS CCD for a Galilean

satellite technology demonstration) can skip to Section IV,

Galilean Satellite CCD Observation Techniques, without

losing any information required for understanding the rest
of this article.

A. Photographic Instruments

Photographic detectors have serious systematic defects

(nonlinear response and emulsion shifts), and their quan-

D. G. Monet, op. cir.

turn efficiency is only a few percent. In practice, the non-

linearity leads to magnitude-dependent, position-

dependent changes in star image locations; adequate cali-

bration of these effects is very difficult. Nevertheless, pho-

tographic techniques enable observation over wide fields;

these techniques have been extensively used for Galilean

intersatellite observations since the early 1900s, with er-

rors in the best cases as small as +250 nrad (0.05 arcsec)

[8].

Recent NOFS photographic observations and analyses

by Pascu et al. [9] show Galilean intersatellite errors of

about 200 nrad for angular separation S < 100 arcsec,

and of about 550 nrad for a complete set of measurements,

including many at larger separations. The latter value

is more applicable to the present navigation application,

since, as discussed, it is important to observe the entire

region out to S < 600 arcsec.

Pascu et al. attribute this error pattern to scale errors,

whose effect is proportional to S. This can be confirmed

by acquiring repeated observations of bright star fields,

then examining the night-to-night reproducibility of the
plate-constant solution residuals. Such results effectively

remove all errors that are functions of star position, color,

or brightness, and therefore the reproducibility is an un-
derestimate of the actual observational errors.

For example, photographic Observations of the star field

surrounding 51 Andromedae were acquired and analyzed

by Stein and Castelaz 6 in support of the present $PL tech-

nology development effort. This work, performed with the

Allegheny Observatory 0.76-m reflector (a different tele-

scope from the Allegheny 0.76-m refractor used for Ronchi-

ruling observations), showed night-to-night reproducibility
of about 100 nrad. Stein and Castelaz also found that

repeated photographic observations of Galilean satellites

(all taken within about 1 hour) showed reproducibility

of about 150-250 nrad, after being reduced to a common
scale value a-nd extral3olated for satellite motion. Obser-

vations of asteroid 243 Ida (my = 15) were unsuccessful

because of various difficulties in observing such a faint ob-
ject with the 0.76-m photographic reflector.

All these results suggest that it might be possible to

achieve 100- to 200-nrad photographic single-observation

accuracy for the Galilean satellites, if accurate calibra-

tions can be made for instrument scale and systematic

e j. W. Stein and M. W. Castelaz, Acquisition and Data Analysis o]
Ronchi Ruling and PhotograpAic Data and Crossing Point Mea-
surements o] Asteroids, Final Report on Proposal IC-6-8063, work
performed for the Jet Propulsion Laboratory, at the Allegheny Ob-
servatory of the University of Pittsburgh, Pittsburgh, Pennsylva-
nia, 1991.
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errors. However, navigation system development eventu-
ally will require 25-nrad observational accuracy and a ca-

pability to observe faint Sixteenth-magnitude objects, and

this accuracy appears to be well beyond the capabilities

of photographic techniques. Therefore, modern photoelec-

tric detectors appear to provide the best opportunity for

a technology demonstration that could support long-term

development plans and potentially provide better accuracy

than with photographic detectors.

B. Ronchi Ruling Instruments

Ronchi ruling devices receive the light from each object

(star or solar system body) in a separate photometer. This

light is modulated by a moving grating, consisting of pre-
cisely ruled alternating opaque and clear strips. The dif-

ference in modulation phase between the various observed

objects can be analyzed to provide accurate angular dif-

ferences in the direction of grating motion. Two observers

are actively using Ronchi astrometric instruments. The

first, A. Buffington [10] (Table Mountain Observatory),

has a fixed meridian-transit instrument (0.29-m reflector),
which currently can observe only in right ascension and is

very sensitive to scattered light from bright sources, such

as Jupiter. The second, G. Gatewood [11] (Allegheny Ob-

servatory), has a sidereally guided 0.76-m refractor, but
this instrument would require major modifications to keep

the image of the moving satellites in the photometers dur-

ing an exposure. Since observations in both right ascen-

sion and declination are required, moving bodies must
be observed, and major near-term instrument renovations

should be avoided, neither of these instruments is suitable

for the present target-location applications.

C. CCD Instruments ---_

Finally, CCD instruments potentially can accurately

observe the GaliIean satellites. These instruments have

high quantum efficiency, essentially linear response, and

a stable, precise metric. However, as discussed, it is im-

portant to have a very large format CCD, so that a good
trade-off of field size and pixel size can be achieved. The

NOFS 1.55-m instrument, which NOFS recently upgraded
with a 2048 × 2048 chip for their own purposes, is currently

unsurpassed in this regard, with an 11-arcmin field and a

small, roughly 0.3-arcsec pixel size. Therefore, the tech-

nology demonstration for Galileo is being conducted with
this instrument.

IV. Ga!!!eanSateiliteCCD Observation
Techniques

This section presents an overview of narrow-field CCD

observational techniques, in the context of obtaining accu-
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rate ground-based intersatellite observations of the

Galilean satellites. Some analysis results will also be pre-

sented. As discussed, the 1-a accuracy goal is about 50

nrad per night.

A. Scale-Determination Techniques

Ground-based instrument scale changes significantly

with temperature and other environmental conditions,

with nightly changes in fractional :scale [8, p. 75] of as
much as 10 -4. This would induce unacceptable 300-nrad

errors for 600-arcsec angular separations.

By scale-change calibration with measured tempera-

tures and coefficients of expansion for the focal plane sur-

face, it may be possible to improve this situation slightly

for instruments such as the NOFS 1.55-m telescope, which
has flat secondary mirrors. For example, analysis of

three seasons of 51-Andromedae star field observations,

taken with the Allegheny Observatory 0.76-m refractor

and Ronchi instrumentation, showed 7 that variations in
temperature-calibrated fractlonai scale had a standard er-

ror of about 3 x 10 -5. This corresponds to about 90 nrad

(0.018 arcsec) over a 600-arcsec field, still not accurate

enough for present purposes. Since environmental calibra-

tions do not appear to provide sufficient scale accuracy

for the 50-nrad per night accuracy goal, it will be neces-

sary to determine the scale roughly coincident with each
astrometric observation.

Traditionally, astronomers have determined the instru-

ment scale value by simultaneously observing two or more

stars, whose positions must be available from a star cat-

alog. Then, the scale in arcsec/pixel can be computed,

because for each star both the angular position (in arcsec,

from the star catalog) and linear position (in pixels, from

image centroids) are available. Figure 4 shows a multistar

sky-plane observing geometry with three stars. Since this

geometry provides a large angular separation in two or-

thogonal sky-plane directions, the instrument scale is well
determined in all directions.

However, narrow-field CCD instruments usually can-

not observe any stars without overexposing a bright tar-

get such as a fifth-magnitude Galilean satellite (stars with

dim asteroids are much easier to observe). Even if the

instrument is pointed away from the target so that long
exposures bring up stars, then the observed faint stars will

usually not have accurate a priori positions.

r G. W. Null, "Preliminary Analysis of Allegheny MAP Data (51-

Andromedae Star Field)," JPL interoffice memorax3_dum 314.5-1404

(internal document), Jet Propulsion Laboratory, Pasadena, Call-
fornia, February 1, 1990.



NOFS is investigating various combinations of two

generic techniques to overcome these narrow-field scale-
determination problems, s The first uses catalog densifica-

tion with another, wider field instrument, and the second

observes image motion across the CCD field.

Catalog densification involves observation of numerous

faint stars relative to a few stars whose catalog positions

are accurately known. This provides a densified catalog

with many accurately known stars, which in turn provides
three or more well-distributed, accurately known stars in

the same CCD field with the target body. Then the scale

can be computed. Densification usually requires a wide

field to capture sufficient numbers of bright stars.

NOFS is performing catalog densification with the

NOFS 0.2-m transit instrument [7, pp. 428 and 432] which

clocks outthe CCD charge at the sidereal rate. This in-
strument potentially Could- achieve 50-nrad accuracy.

Image motion scale-determination techniques take ad-

vantage of the fact that, although the angular position of a

star or target body may be poorly known, angular motion

expressed as the difference of positions at two epochs is

usually accurately known. This angular motion can either

be from target motion relative to the star background [12]

(since target mean motion is usually well known) or appar-

ent motion induced by stopping and starting the telescope

drive 9 (thus making use of the Earth's well-known rota-

tion rate). In either case, the time interval between obser-
vations is usually chosen so that the image moves across
most of an instrument's field of view. Then the scale is ob-

tained by the ratio of the angular change (in arcsec, from
the product of the time interval and angular rate) to the

linear change (in pixels, from the brightness centroid at

each epoch).

When possible, there should be observations of two or

more stars in the field (not necessarily with accurate cata-

log positions), so that observations taken during the image

motion can all be accurately reduced to the same scale.

Otherwise, it is necessary to rely on scale stability during
this interval.

B. Orientation-Determination Techniques

If two or more catalog stars are in the field of view,

then the instrument orientation (i.e., angular orientation

about the optical axis) can be determined. Otherwise, the

orientation can be obtained by the previously discussed

image-motion observations.

sD. G. Monet, op. clt.
9 Ibid.

C. Calibration for Albedo Variations

Analysis [5, p. 21-23] of digitized Voyager Galilean

satellite mosaic maps [13] obtained centroid shift versus

satellite rotational longitude; the maximum centroid shift

caused by albedo variations was about 0.05 satellite ra-

dius. The error in extrapolating these results from Voy-

ager's vidicon (strong blue response) to a CCD (strong red

response) was found to peak at about 0.01 radius.

These results were obtained using moment centroid al-

gorithms; analysis of simulated ground-based CCD images
for the NOFS 1.55-m instrument indicate that when a two-

dimensional Ganssian is used for the centroid fit, the max-

imum effect is reduced by about a factor of three, i.e.,

to 0.017 radius. This corresponds to about 25 to 45 km,

depending on satellite radius, still somewhat larger than

the desired 15-km (25-nrad) orbit accuracy. The two-

dimensional Ganssian is roughly comparable to centroid

fitting functions actually used at NOFS.

Although mosaic maps could be used for albedo-shift

calibration, recent analysis l° has indicated that seams

in these maps create unacceptable errors. Work is in

progress 11 to perform the necessary calibrations with fit-

every-pixel techniques applied to the original Voyager

satellite images. This effort will be verified by using some

Voyager images to predict albedo shifts for other Voyager

images. If successful, it should be possible to adequately

calibrate the ground-based Galilean satellite images.

V. Summary and Conclusions

This article has described some near-term technology
development to support future optical astrometric tracking

of laser-emitting spacecraft, target bodies, and stars. Since

there currently are no such spacecraft, a good development

substitute is to track target bodies relative to each other

or to the star background.

A narrow-field CCD observing option has been iden-
tified, which can be tested without a major development

effort and which potentially can provide significant nav-

igation target-location benefits to the Galileo mission.

A cooperative arrangement has been made with USNO

Flagstaff Station to obtain and analyze observations with

10p. j. Dumont, personal communication, Optical Systems Analysis
Group, Jet Propulsion Laboratory, Pasadena, California, April 15,
1992.

11 j. E. Riedel and P. J. Dumont, personal commtmication, Optical
Systems Analysis Group, Jet Propulsion Laboratory, Pasadena,
California, April 15, 1992.
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a 1.55-m telescope, whose CCD detector provides an l l-
arcmin field of view.

The key technology challenge is to demonstrate that

it is possible to accurately calibrate the instrument scale,

since the narrow field will usually not capture enough cat-
alog stars for traditional scale-determination methods. To

test scale-calibration techniques, observations of stars, now

in progress, will be analyzed with two alternative scale-

determination methods. First, catalog densification with

the NOFS 0.2-m CCD transit instrument will provide a lo-
cal star catalog with enough stars to enable scale determi-

nation for the sidereal instrument. Second, image motion
across the ll-arcmin CCD field will be used to determine
the scale.

Then, after demonstration of adequate scale-
determination methods, intersatellite observations will be

acquired for Jupiter's Galilean satellites. The 50-nrad per
night accuracy goal for these intersatellite measurements

appears to be potentially achievable. If acceptable accu-
racy is achieved, then these observations will be included

in the Galilean satellite ephemeris determination.

The ephemeris goal is to reduce the positional standard

error (currently 50-100 kin) down to about 15 km (about
25 nrad), by combining many observations. This would

have an important navigation benefit for the Galileo-

Jupiter tour, since an accurate position of the spacecraft
relative to the target satellite could be obtained with a

much smaller set of onboard-optical pictures than would

otherwise be required. This would enable:ixiore science

pictures to be transmitted to Earth with the currently re-

stricted spacecraft antenna configuration.

Current efforts to obtain NOFS CCD observations of

Galileo asteroid target 243 Ida relative to the ESA Hip-

parcos star catalog were also discussed. A few nights of

observations containing 243 Ida and two Hipparcos stars

were obtained; these observations potentially could pro-
vide very accurate angular positions of this asteroid. If

the Hipparcos output catalog is available prior to Galileo's

August 1993 encounter with Ida, these data could provide

valuable navigation improvements; in any case, it proba-

bly will be possible to conduct a technology demonstration
to demonstrate the accuracy of Hipparcos-relative obser-
vations.
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This article presents a method for modeling discontinuities in a coaxial transmis-

sion line. The methodology involves the use of a nonlinear least-squares fit program

to optimize the fit between theoretical data (from the model) and experimental data.

When this method was applied to modeling discontinuities in a slightly damaged

Galileo spacecraft S-band (2.295-Gltz) antenna cable, excellent agreement between
theory and experiment was obtained over a frequency range of i .70_-2.8__5_GHz._ The _.---_ :--:_:_
same technfque can be applleiffor diagnostics and ]ocat'ing un_no__uit_ies :_-!_ _:_ ? :i

in other types of microwave transmission 11nes, such as rectang_ular, circularl and

beam waveguides.

I. Introduction

The Galileo spacecraft, launched on October 18, 1989,

is currently on its interplanetary journey to encounter

Jupiter in 1995. One of the important experiments to be

performed with this spacecraft in 1993 is the gravitational

wave experiment to support Einstein's General Theory of

Relativity.

Prior to launch, Galileo underwent environmental test-

ing in the Space Simulator at JPL. After these tests, it

was discovered that the S-band output power had dropped
about 0.2 dB at the transmit frequency of 2.295 GItz.

More alarming were the radical changes observed_in the
subsequent measured insertion loss versus frequency char-
acteristics of the S-band antenna cable. Instead of the

small peak-to-peak sinusoidal variations seen previously

on the pre-environmental test frequency response curves,

numerous nonperiodic humps and valleys (of unusual am-

plitudes) were seen on the post-environmental test curves.

This author (consulting on an emergency basis) diag-
nosed the problem and provided a satisfactory mathemat:

iCal modeFSf the slTg_tly_damage_b_e: TlJs mS_l_e- m"

picted the Galileo cable as having developed Crimps _t

two different cable clarfii;l-octit;pn-_.a, anr_on_teg_ _ [
ment between theory and expe_w_ obt_ne_i ° _-

t_-er_alysis indicated that if the magnitudes of disconti-

nuities doubled during Galileo's interplanetary journey to

Jupiter, an additionM 0.2-dB lo_ss increase would occur at -

the 2.295-GHz transmit frequency, but this worst-case ex- _-
pected loss increase (0.4-dB total degradation) would still

be acceptable.

Based upon the author's satisfactory explanation of the

phenomenon, the Galileo Project decidedth-at the S'band

cable did not have to be replaced, and the spacecraft was

shipped to Cape Canaveral on schedule. The decision not

to replace the cable was partially based upon the fact that

X-band (8.415 GHz) was the prime data channel for ra-
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dio science experiments and S-band was less important.
Now that S-band has become the prime data channel due

to problems with the X-band high-gain antenna, the ex-

pected S-band antenna performance characteristics should

be reanalyzed.

The purpose of this article is to transfer the technology

gained from the successful modeling of the discontinuities
in the Galileo S-band antenna cable. This technique can

be applied to obtaining models of discontinuities in other
types of transmission lines, including rectangular, circular,

and beam waveguides. Once a good analytical model is de-

veloped, it can then be used for diagnostic purposes or for

analytical studies of worst-case situations. For example,
models of transmission lines with discontinuities can be

used to determine the effects of nmltiple reflections that

are known to degrade the frequency stability and noise

temperature performance of a receiving system.

The writing of this article was also motivated by the

desire to provide radio scientists and gravitational wave
experimenters with an accurate model of the damaged S-

band antenna cable on Galileo. Such a model might as-

sist in the error analyses of radio science data, should the
need arise in the near future. Discontinuities in a cable

give rise to multiple reflections that affect Doppler phase,

frequency, and group delay stability. Cable movement and

cable temperature changes can cause the phases of individ-

ual reflected waves to change, thereby affecting the overall

phase and amplitude of the output signal. Continued flex-

ing of the cable during Galileo's interplanetary journey to
Jupiter can also make the magnitudes of the individual

reflections worse. An accurate model can help to estab-

lish error bounds (on radio science data) associated with

worst-case signal level and frequency stability degradation
situations.

In the following sections, the methodology is described

and then demonstrated by applying it to the Galileo cable

problem for which experimental data were already avail-

able. Comparisons are given showing results obtained with
a trial-and-error method versus the proposed new method.

lh Previous Models of the Galileo Cable

As was described in a 1989 report, 1 Model 1 was the
first trial model that was derived. It consisted of shunt sus-

ceptances (representing discontinuities) separated by dif-

ferent lengths of coaxial line. The first necessary step

a T. Y. Otoshi, "Galileo Cable Study Report," JPL Interoffice Mem-
orandum 3328-89-0108, (internal document), Jet Propulsion Lab-
oratory, Pasadena, California, May 17, 1989.

of the modeling procedure was to obtain time domain
plots from measured S-parameters over a frequency range

centered at the particular frequency of interest. The S-

parameters for the Galileo cable were obtained with the

HP 8510B automatic network analyzer. Then the shunt

susceptance magnitudes _ and approximate locations of
discontinuities in the cable were estimated from the return

loss-time domain plots.

When the unaltered values (extracted directly from re-

turn loss-time domain plots) were used in Model 1, the

agreement between theoretical and experimental data was

poor. The parameters for the subsequently developed

Model 2 were almost the same as those of Model 1, except

that the line lengths between discontinuities were adjusted

slightly to cause all the individual reflection coefficients to

add up in phase at the input port at 2310 MHz. As can

be seen in Fig. 1, Model 2 provided satisfactory agreement

between theory and experimental data. Figure 2 shows

the equivalent circuit for Model 2. From this equivalent

circuit, it was determined that a total of four discontinu-

ities existed near the connector regions and cable clamp

locations (see Fig. 3).

The agreement between theory and experiment for

Model 2 was considered to be satisfactory (even very good)
in 1989. However, it was known then that the model was

incomplete because at least one more discontinuity had to
be added near one of the connectors. This was known be-

cause when all discontinuities were removed, except those

representing the connectors, the periodicity of the inser-

tion loss versus frequency curve was wrong, and there-

fore the agreement between the calculated and the pre-

environmental cable test data was not good. It appeared

that adding one more discontinuity in the connector region
closer to the end of the cable would have resulted in a bet-

ter model. However, further attempts to develop improved

models after adding an additional discontinuity and then

readjusting the line lengths (by trial and error) for a good

fit proved to be excessively time-consuming and fruitless.
It was clear that some type of least-squares fitting pro-

gram was required to obtain a better model. The effort to

obtain a better model was temporarily abandoned.

III. Computer Program

Although not tasked to find an improved model for the
Galileo cable, the author continued working on the prob-

lena on a low-priority basis because of his desire to learn

how to perform curve fits between mathematical models

See Eqs. (A-a) and (A-4) in Appendix A.
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and experimental data. It is common practice just to fit

experimental data with polynomial curves because a poly-
nomial curve-fitting process is easy to perform and useful

for displaying trends and calculating intermediate values.

What is not generally known, as has been pointed out

by C. Lawson of 3PL, is that it is almost as easy to per-

form curve fits between experimental data and the theoret-

ical results from any mathematical model. If the physical

phenomenon associated with the experimental data can

be modeled mathematically (no matter how involved and

complex), then curve fitting can be done between theoret-
ical and experimental data through the use of a nonlin-

ear least-squares fit (NLSF) program. Variance, correla-

tion coefficients, and standard deviations can also be easily

computed from the residuals of the nonlinear curve-fitting

process.

A linear model is defined here as one whose coefficients

ai can be expressed explicitly in the form

y(x) = ao + alfl(x) + a2f ( ) +-..

+ ad (x) +... +
(I)

Polynomials are a subset of the general linear form given

by the above Eq. (1). A nonlinear model differs in that the

coefficients to be solved for (best-fitted) can be expressed

within any of the expressions for fi(z) or in almost any

mathematical form. As long as the program steps can be

written to calculate values of y(z) for input values of z,

then a nonlinear least-squares fit can be performed to solve
for the unknown coefficients.

With Lawson's assistance, a subroutine computer pro-

gram was written to find a best-fit model of the Galileo

cable by using the existing International Mathematical Sci-
entific Library (IMSL)I_L-S-F computer program already

available on the UNIVAC at JPL in 1989. The problem
with that program was that it did hot allow the user to

specify bounds on the parameters to be adjusted and best'

fitted. Occasionally the IMSL program gave best-fit pa-
rameter results that were not physically realizable.

After further consultation with Lawson, it became clear

that JPL needed an improved NLSF program that could

be used for various types of ongoing modeling problems at

JPL. To fulfill this immediate need, Lawson performed an

extensive search of available NLSF programs in industry
and academic institutions. As a result, he recommended

the use of a particular NLSF program a that was later de-

3 This program was a later version of the original release of NL2SOL
by David Gay and Linda Kaufman, now at AT&T Bell Labora-
tories.

scribed in another JPL publication [1]. This program was

unlike most available least-squares fit programs in that it
allowed the user to specify bounds on the parameters to be

best-fitted. This program has the additional advantages of

being public domain software and can be run on a personal

computer. The input data required for this program are
(1) the measured data; (2) the theoretical values for the

mathematical model calculated from a subroutine; and (3)
estimates of the nominal, upper, and lower bound values
of the parameters to be best-fitted.

The Fortran subroutine ultimately developed for the

Galileo cable-modeling study calculated the overall S-
parameters for a cable that had seven or more discontinu-

ities separated from each other by lengths of coaxial line
whose attenuation constant and relative dielectric constant

could be specified. Program steps were written to calculate

the S-parameters of a basic network consisting of a shunt

discontinuity and a length of lossy line. The equations for

two types of shunt discontinuities used in this study are
given in Appendix A. Another subroutine was written to

compute the overall S-parameters of two 2-port networks
that were cascaded. When the overall S-parameters of |

two basic networks are cascaded, the cascaded network )

becomes_he equivalent 2-port that is cascaded with the !
next basic network. The overall S-parameters are again
calculated and stored. This procedure was repeated until
all seven basic networks were cascaded.

The insertion loss in decibels of the final overall network
was then calculated from

IL = 20 lOglo IS:_ll (2)

where S_1 is the S-parameter for the transmission coeffi-

cient of the overall cascaded network when terminated in !

a nonreflecting load [2]. The insertion loss is computed !
at each frequency to form the theoretical data set for the

model. Then comparisons are made with the experimental i

insertion loss data file which was read into the program.

The parameters to be adjusted were (1) the discontinuity -=

magnitudes (in terms of shunt susceptance or capacitance
values) and (2) the line lengths separating the disconti- -

nuities. The program finds the parameter values (within -"

the specified bounds) that give the best fit (using a least- *
squares convergence criterion) between theoretical and ex-

perlmentai values. Even though the distances between the

discontinuities were allowed to be adjusted within speci-

fied bounds, the program was written so that the resulting

overall length of the cable for the model had to be equal

to the actual physical length of the cable.
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IV. Improved Models

After the development of Model 2, it was known that
additional discontinuities in the cables existed near the

connector interfaces. Examinations of detailed drawings

of the connector regions revealed locations of potential dis-
continuities that were not taken into account in Model 2:

Figure 4 shows potential discontinulties _ being the _ack

ends (or sharp edges) of the rigid Kynar sleeves located
about 2.9 inches from the faces of the cable connectors.

Bending of the cable at these points can cause crimps or

make permanent deep creases on the outer diameter. An-

other type of potential discontinuity bccurs at the con-

necting regions (Fig. 5) where there are changes in diame-
ter dimensions and dielectric materials within the coaxial

transmission line.

When the NLSF program (described in Section III) be-
came available, new models were developed that included

the above-described discontinuities. Two likely equivalent

circuits for the cable discontinuities are (1) shunt capaci-

tances whose susceptance values are functions of frequen-

cies and (2) capacitive shunt susceptances whose values

do not change over the frequency of interest. The mod-

els corresponding to these two types of discontinuities are
denoted as Models 3 and 4 and are described below.

A. Model 3

Model 3 represents the cable discontinuities as

constant shunt capacitances. The constant shunt capac-

itance might occur in practice when the reduced outer di-
ameter of the cable is squashed over some physical length

(e.g., the cable clamp width). For this type of discontinu-

ity, the magnitude of $11 of the individual discontinuity

changes with frequency. For this model with nominal val-
ues, the final best-fit parameters determined by the NLSF

program are shown in Fig. 6. Note that the locations of
discontinuities of the model occur very close to actual lo-

cations of the cable clamps, the edges of the Kynar sleeve,
and the connector discontinuities.

Figure 7 shows the comparison between theoretical and
measured insertion losses. It can be seen that the agree-

pre-environmental test data becomes progressively worse

at the higher frequencies.

B. Model 4

Model 4 is based upon representing the discontinuities

as constant susceptance values over the frequency range of

interest. This type of discontinuity could be a deep crease,

or crimp, on the outer diameter of the cable. Such a dis-
continuity in practice can be created by bending the cable

against the edge of a cable clamp or the edge of a Ky-
nat sleeve. This type of discontinuity can be represented

as two shunt capacitances separate_ by a short distance

(less than 0.005 wavelength, or a single shunt susceptance,
as discussed in Appendix C). The overall equivalent _cir-
cult and locations of the discontinuities along the cable

are shown in Fig: 9. Model 4 is the result of best-fitting 15

parameters (seven discontinuities and eight line lengths)

by using 101 frequency points for a frequency range of
1.7 to 2.85 GHz. The Model 4 discontinuity locations,

shown in Fig. 9, correspond very closely with the actual

locations of cable clamps, the edges of the Kynar sleeve,

and internal discontinuities of the connectors. The loca-
tions of the modeled discontinuities are estimated to be

within q- 0.5 in. of the actual cable discontinuities. As

with Model 3, the line losses between discontinuities for

Model 4 were properly accounted for.

It can be seen in Fig. 10 that the theoretical values for

this model agree well (within + 0.02 dB) with experimen-

tal data. Good agreement between theoretical and exper-
imental return losses was also obtained, as can be seen in

Figs. 11-12. Figure 13 shows that when all internal discon-
tinuities except the two outer discontinuities are removed,

the agreement between the model and pre-environmental
test data is still excellent.

To ensure that Model 4 is, in all respects, the correct

model of the cable, the phases of S_1 were considered, as

well as the magnitudes. However, attempts to fit both

magnitudes and phases to experimental data were unsuc-
cessful. Also, the attempt to do similar least-squares fit-

ting to the $11 and $22 experimental data proved unsuc-
cessful. It was later revealed that special adapters had

meat is significantly better than that of the Model 2 fitted been used to measure the reflection coefficients $11 and

curve shown in Fig. 1. To obtain such a good fit, it was
necessary to use accurate values of cable attenuation due to

line losses between the shunt discontinuities. Appendix B

describes the procedure that was used to accurately de-

termine cable attenuation (minus connectors). Although
Model 3 appears to be an excellent model, it was found

to .be incorrect. As may be seen in Fig. 8, when all the

discontinuities are removed except the two outer connec-

tor discontinuities, the agreement between theory and the

S_. When the effects of the adapters were gated out, 4

the measurement planes might not have been properly re-
ferred back to the connector interface planes of the cable, s

4 See Hewlett Packard 8510B Operating Manual for a discussion of

gating techniques for the purposes of removing external disconti-

nuity effects from the measured S-parameter data.

5 W. FolweU, personal contmurtlcation, Spacecraft Teleconununica-

tions Equipment Section, Jet Propulsion Laboratory, Pasadena,

California, 1990.
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It is difficult to best-fit phase data if the measurement and

model reference planes do not coincide.

Due to the difficulty of obtaining a good fit between the

theory and the model, based on both S-parameter ampli-

tude and phase data, another method was used to verify

the model. This method compared experimental and theo-

retical time domain plots. Time domain plots require both

magnitude and phase information over a wide frequency

range. Figures 14-16 show time domain plots for $21, St l,
and $22 data, respectively. Good agreement was obtained

for S2t, but for theSli and $2_. time domain plots, _he

reference planes had tobe shifted by an-a_-l_0unt-approxi-

mately equal to the lengths of the special adapters used in

the measurement. The necessity to shift reference planes

for Sn and $22 is consistent with the possibility that the

measurement plane nfight not have been correctly refe_-

enced back to the _bTec0nneCtor interface planes: _ii'_

Despite the described difficulties with the reference

plane problem associated with the Sll and $22 time do-

main plots, good agreement was obtained for the $21 time

domain plot. One can conclude from the data presented

that Model 4 is an excellent representation of the Galileo
S-band cable after the environmental tests.

The sharp edges of the cable clamps and the Kynar

sleeves are the probable causes of the discontinuities on the
outer diameter of the cable. As was stated in the previ-

ously cited report, s the cable clamps should be redesigned

6 T. Y. Otoshi, op. cir.

so that crimping or creasing will not occur when the cable

is bent against the clamps. It was also stated that only
a 0.02-in. reduction in outer diameter of the Galileo cable

could produce discontinuities of the magnitudes presented

in the models studied. For future spacecraft cables, the

edges of the currently rigid Kynar sleeves should also be

redesigned and be made flexible.

VoConclusions

A model lias been found that gives excellent agreement
betweei_--tl-feory and experiment _for iheGaiiho Spacecraft

S-band antenna cable. The current model now has seven

discontinuities (including connectors) instead of four ob-

tained for the previous model.

Tlle excellent results described would not have been

possible without the use of the NLSF program. This pro-

gram was easy to use, and formal documentation 7 is now

available. Engineers are encouraged to use this program
for their modeling work.

The method presented here was demonstrated for a

coaxial cable, but the technique can be extended to the

modeling of discontinuities in other types of transmission

lines, such as rectangular, circular, and beam waveguides

(with a shroud).

7 Math77, Release 4.0, A Library o] Mathematical Subprogram, ]or

Fortran 77, JPL D-1341, Rev. (3 (internal document), Jet Propul-

sion Laboratory, Pasadena, California. May 1992.
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Appendix A

S-Parameters of a Basic Network

The basic network used in the modeling work is shown in Fig. A-1. The elements of the network are a capacitive

shunt susceptance followed by a length of lossy transmission line. The S-parameters for this network are

1 [-jb 2e -Tt ][S] - 2 +jb 2e-_l -jbe-_'rlJ (A-l)

where b is the normalized shunt susceptance, 7 is the complex propagation constant and _ is the line length.

For the Constant Capacitance Model

b = 2_ICZo (A-2)

where f = frequency in hertz, C is the capacitance in farads, and Z0 is the transmission line characteristic

impedance in ohms.

For the Constant Shunt Susceptance Model, b = a constant. The nominal value of b for both models can be obtained

from experimental return loss-time domain plots by using the relationship

b - 21S_1
X/1 _ IS_,I_ (A-3)

[Sn[ = 10 -(RL'12°-Adsll°) (A-4)

where RL1 is the positive decibel return loss value measured at port 1 and AdB is the positive decibel value for the

transmission line loss between the discontinuity and port 1.
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Appendix B

A Method for Determining Cable-Only Attenuation From Measurements

Made on a Cable Having Mismatched Connectors

When a cable has connectors, the method normally

used to determine the attenuation of a cable (minus its

connectors) is to calculate it from the slope of the mea-
sured insertion loss versus frequency curve. When the

connectors are mismatched, this method yields an inser-

tion loss that is higher than the cable (minus connector)
attenuation. Accurate determination of cable attenuation

was critical for the modeling work that was done to obtain

the results presented in this article.

From Table B-l, whose equations were derived from
those given in [3],

[t11[_" IS.l_.,x + IS.lmi.
2 (B-l)

In2_l._ IS221m_,x+ IS2_1.,_. (B-2)
2

- -I ==l')e-._ (B-3)IS2,1m_,=,,/(1 It,ll=)O .
l-h

IS=,lmi,_= .,/(1- It,, I_)(1- 1.2=i_)e_Ot
1+ h (B-4)

where

h = It,_n=21e-2'_

Then from Eqs. (B-3) and (B-4), tlle average value of
IS2_[ is derived as

:i:!
o

IS2_l,vg= IS2IIm,x+lS2zlmi.
2

?(1 - It.P) (1 - I.==1)=
e-al

1 - h_

(B-5)

146

But h2 is normally less than 0.01 and can be dropped from

Eq. (B-5) so that

IS=_I-,,g_ x/(1 - [fll P) (1 - [n22r)e -'_z

then the cable (minus connector) attenuation is

AdB -- 20log10 e -_t

(B-6)

= 201og10 [$21 [,.vg (B-7)

- 101Og,o[0-le-F)0 -I-_F)]

From the pre-environmental cable testdata, itwas found

that near 2 GIIz,

and the average loss of the cable shown in Fig. 13 between
2.015 and 2.055 GHz is

20 log10 ]S_1 lavg = -0.557dB

Substitution of these values into Eq. (B-7) gives AdB equal
to --0.514 dB. The contribution of the mismatched connec-

tors from the last term on Eq. (B-7) is about 0.043 dB. For
the Galileo cable, the length of the section without con-

nectors is 59.647 in., so the attenuation of the cable (mi-
nus connectors) is -0.00861 dB/in. This calculated value
compares favorably with the stated manufacturer's data

of approximately -0.1 dB/ft or -0.00833 dB/in. How-
ever, it was not previously known that the manufacturer's

approximate value was close to the true value. Although
the corrections seem small, significantly better curve fits

between experimental and theoretical data (for Models 3
and 4) were obtained when the more accurate values of the

cable attenuation were used at each frequency.
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Appendix C

Equivalent Circuits of a Cable With a Reduced Outer Diameter Section

The equivalent circuits of the section of coaxial trans-

mission line with a reduced outer diameter over length t

are shown in Fig. C-1. The characteristic impedance of the

nominal and reduced sections Z01 and Zoo, respectively,
are

Z01 = ---_, _n,,/4 t_)
(c-i)

60 [Do2 _
Zo2 = _tn (c-2)

where D01 and D02 are the diameters of the outer conduc-

tors for the nominal and reduced sections, respectively.
The symbols Dn and DI2 are the diameters of the inner

conductors for the nominal and reduced sections, respec-

tively, and e_ and e_ are the relative dielectric constants

of the media in the nominal and reduced sections, respec-
tively.

Using the equations for the equivalent circuit shown

in Fig. C-l(b) given by Beatty [4], the value of [$111 can

be calculated. That value is then used in Eq. (A-3) to

compute an equivalent shunt susceptance corresponding i
to the equivalent circuit shown in Fig_ C-2(c). if length

t is very short (<0.005 wavelength), representing a crimp

or deep crease in the outer cable, then the discontinuity

should be represented as a shunt capacitive susceptance b

of constant value over the frequency range of interest. If

the length t is about (0.1-0.25 wavelength), or about equal -
to the width of a ca])le cIamp, then the equ{valent b should !

be represented as a shunt susceptance with a capacitance
of constant value.

_-zT- , 7

=

==

E
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(b)
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_1- I_l _" _ _- I'Oequ2alen_tl_1

/b Zo1

--_ ,, _. }_.__

Fig. C-1. Cable with a section of reduced outer diameter: (a)
physical representation; (b) equivalent circuit with two capacitive
shunt discontinuities separated by s line length of reduced sec-
tion; and (c) equivalent circuit with a single shunt discontinuity

and equivalent line lengths.
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DSS-13 Beam Waveguide Antenna Frequency Stability
T. Y. Otoshi and M. M. Franco

Ground Antennas and Facilities Engineering Section

Measurements made on the frequency stability of the DSS-13 34-m-diameter

Beam Waveguide (BWG) antenna showed that at 46.5- and 37-deg elevation angles,

the BWG antenna stability at 12.2 GHz was between 1.3 and 2.2 x 10 -15 for 7"=

1024 sec and good weather conditions. These frequency stability values apply to

the portion of the antenna that includes the main reflector, subreflector, tripod legs,

and the six BWG mirrors. The test results reported in this article are believed to

be the first known successful measurements of the stability of the microwave optics

portion of a large antenna to a level of I or 2 parts in 1015

I. Introduction

As was pointed out in a previous article [1], attempts

have been made in past years to measure the frequency

stability of a large antenna using various techniques in-

cluding (1) a probe on the reflector surface method, (2) a

spacecraft Doppler measurement method, (3) a collimation

tower method, and (4) very long baseline interferometry

(VLBI) methods. Most of these methods have been unable
to measure frequency stabilities to better than a few parts

in 1014 or had other disadvantages discussed in [1].

A new method proposed in 1991 [1] involved the recep-

tion of far-field signals from geostationary satellites posi-

tioned at various elevation angles. The proposed method
had the advantages of being simple and inexpensive to im-

plement and could enable stability data to be obtained

in a short time frame. Except for a new fiber-optic sub-

system, most of the components and instruments required

were already available. Since the antenna now remains the

limiting factor that would prevent successful gravitational
wave experiments to be performed in the near future, there

existed an urgency to obtain antenna stability data that

could help establish realistic performance requirements for
new DSN antennas.

In addition to the goal of obtaining data in a short time

frame, another goal of the new method was to demonstrate
that fiber-optic cables could be used to carry microwave

frequencies over long distances with negligible degradation

to amplitude and phase stability. This article presents
data that demonstrates the new method was successfully

employed, and that all of the primary goals have been
met for good weather conditions. BWG antenna stability

data, applicable for inclement weather conditions, are not

yet available.

II. Methodology

Figure 1 shows a block diagram of the test configura-

tion. The method involves the use of far-field signals in
the ll.7-12.2-GHz region from geostationary satellites, a

stable reference antenna, and a phase detector Allan de-
viation measurement instrument. One of the main advan-

tages of the test method is that it does not require refer-
ence signals that are coherent with the station clock. By

receiving the far-field signals simultaneously with a refer-
ence antenna and the 34-m antenna under test, the phase

variations common to both paths tend to cancel at the
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output of a mixer contained in the Allan deviation mea-

surement instrument [2].

For the proposed BWG antenna stability measurement

method to yield useful and accurate data to the 1 x 10 -15

level, it is required that the 12-GHz reference path have a

fractional frequency stability of better than 1 or 2 x 10 -16

for r = t000 sec. The fulfillment of this requirement by

the fiber-optic system has been reported in [3].

A Ku-band test package [4] is installed at the pedestal

room focal point F3. For this test configuration, the por-

tions of the BWG antenna being tested are the instabilities

of the main reflector, subreflector, tripod legs, mid six mir-

rors of the BWG system.

Specific satellites selected for this method are posi-

tioned at 47-, 37-, and 12-deg elevation angles. Minor
antenna-pointing corrections, of about +50 mdeg max-

imum during a 24-hr period, are required to keep the
antenna beam peak pointed at the satellite. Althougli

these antenna pointing changes are small compared with

those involved in an actual spacecraft track, phase change

measurements could uncover problems associated with an-

tenna pointing due to hardware Or software. The method

is intended primarily to measure instabilities of the BWG
antenna due to outside air temperature and wind condi-
tions.

Even though the measurements are made at Ku-band,

the information can be inferred back to mechanically re-

lated changes and is therefore useful for determining sta-

bility at other frequencies.

III. Test Results

Figure 2 shows the block diagram of the test configu-

ration that was used to measure the stability of the BWG

antenna at a 46.5-deg elevation angle. The DSS-13 BWG
antenna was pointed at a 46.5-deg elevation angle and a

156.9-deg azimuth for receiving a i2.2-GHz beacon signal

from the geostationary satellite GSTAR I owned by the
GTE Corporation. The signals from the reference antenna

via the fiber-optic system and the 34-m antenna tinder test
are connected to the Allan deviation measurement instru-

ment, which contains a microwave phase detector. Band-

pass filters (centered at 12.2 GHz) were used to remove

unwanted signals.

:F!gure 3 shows the Allan deviation plots obtained
March 4 and 5, 1992 for two _-i_0ur-i0ng runs. Tlae first

was from 4 p.m. to 1 a.m. PST and the second was from

5 a.m. to 2 p.m. PST. The Allan deviations for r = 1024
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sec were 2.16 xl0 -15 for the first run and 1.64 x 10 -15

for the second run. These results were about a factor of 3

better than expected.

Also shown in Fig. 3 is the fiber-optic-system-only sta-

bility value of 1.64 x 10 -is for I- = 1024 sec. The fiber-

optic-only path is the baseline reference that sets the lower i
limit of stability that can be measured for the 34-m BWG

antenna. Descriptions of the fiber-optic-only path and test !

procedures were described previously in [3].

For interest, Fig. 4 is presented to show the raw phase

data corresponding to the Allan deviation result of the :

above 5 a.m.-2 p.m. run. In addition, the outside air tem-

perature and wind conditions that prevailed during the

tests are shown in Figs. 5 and 6, respectively. It can be seen

from Fig. 6 that the air temperature varied from about 6

to 15 deg C and the wind was typically less than 30 km/hr.

A graphic description of the wind data (Fig. 7) shows that _:
the wind was blowing both into the back and into the o

front of the main reflector surface at angles of about 16

deg (back side) and 52 deg (front side) off the main z-axis :
direction.

Figure 8 shows the block diagram of the test configu-
ration used to measure the stability of the BWG antenna

at a 37-deg elevation angle. The DSS-13 BWG antenna

was pointed at a 37-deg elevation angle and a 132.9-deg :
azimuth so as to receive a 12.2-GtIz beacon signal from

the geostationary satellite Satcom K1 owned by the GE

American Communications Corporation. This test config-

uration differs slightly from that shown in Fig. 2 in that

one additional 12.198-GtIz filter and 20-dB gain amplifier |
were used: For these tests and all su_se_lue_tests, a new

calibration procedure was developed for verification of the

test setup. The calibration procedure was to move the
subreflector in :k0.1-in. offset in the z-axis axial direction

from the nominal setting. It is known from previous work

[5], that the effective pathlength change was approximately

1.77 times the z-axis offset subreflection position on a 64-m
: y_

Cassegrahl antelma. At 12.2 GHz, this pathlength ch-ange,

Apz, corresponds to a phase change in degrees of

6ph = 3--6_°(1.77_p_) (1)

where A = free-space wavelength in centimeters. For

Apt = 0.254 cm (0.1 in.), then ,fVh = 65.9 deg. With --

tlie34-m BWG antenna Iiaving shaped main- and subre, !
flector surfaces, the 1.77 factor might be closer to 1.7 so =

that 5ph = 63 deg. The measured phase changes resulting

from moving the subreflector -4-0.1 in. was about +60 deg



asshownin Fig.9. Thisprocedureprovideda meansof
verifyingthat, for a particulartest configuration,phase
changesthat occurred in the antenna path above F1 were

actually observed and correctly measured.

Figure 10 shows the Allan deviation plot obtained when
the DSS-13 BWG antenna was pointed at a 37.0-deg ele-

vation angle. The Allan deviations measured for r = 1024
sec was 1.26 xl0 -i5 for a 9-hour time period between 4

p.m. to 1 a.m. the next morning.

For interest, the raw phase data for the first run be-

tween 4 p.m.-1 a.m. are shown in Fig. 11 along with out-

side air temperature and wind data in Figs. 12 and 13,

respectively. It can be seen from these figures that the air

temperature varied between 12 and 7 deg C and the wind

was typically less than 24 km/hr. As depicted in Fig. 14,

the wind was blowing into the face of the main reflector

surface, but at a direction between 29 to 53 deg off the
main reflector z-axis.

IV. Future Test Plans

Comparisons of the results showed that for the 4 p.m.-

11 a.m. runs, the Allan deviations were 2.16 xl0 -15 and

1.26 xl0 -15 for r = 1024 sec at a 46.5- and 37-deg ele-

vation angles, respectively. For future tests, it would be

of interest to perform 9-hour runs between 8 p.m. and 5

a.m. when the least amount of air temperature variations

generally occur.

For the future, plans are being made to obtain data at

the 12-deg elevation as well. It is also of interest to obtain

data for the more severe (>32 km/hr) wind conditions that

were shown in Figs. 6 and 13.

V. Conclusions

The initial test results presented in this article show

that the proposed methodology was successfully employed

and the goals were met. Data have been provided to

the gravitational wave experimenters in a relatively short

time frame (about 14 months) from conception of a new
method, followed by the procurement, fabrication, and in-

stallation phases, and then the test phase. More data still
have to be obtained to determine the stability of the BWG

antenna under more severe weather conditions. However,

this article has presented the first known stability data ob-

tained on a large microwave antenna to a level of 1 or 2

parts in xl015 for r of approximately 1000 sec.
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Locally Adaptive Vector Quantization: Data Compression
With Feature Preservation

K.-M. Cheung

CommunicationsSystems Research Section

M. Sayano
California Institute of Technology

This article presents a study of a locally adaptive vector quantization (LAVQ)

algorithm for data compression. This algorithm provides high-speed one-pass com-
pression and is fully adaptable to any data source and does not require a priori

knowledge of the source statistics. Therefore, LAVQ is a universal data compression

algorithm. The basic algorithm and several modifications to improve performance
are discussed. These modifications are nonlinear quantization, coarse quantization

of the codebook, and lossless compression of the output. Performance of LAVQ on

various images using irreversible (lossy) coding is comparable to that of the Linde-

Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has

potential for real-time video compression. Unlike most other image compression al-

gorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless
data compression algorithm is comparable to that of Lempel-Ziv-based algorithms,

but LAVQ uses far less memory during the coding process.

I. Introduction

Data compression is the art of packing data, the process
of transforming a body of data to a smaller representation

from which the original or an approximation to the orig-

inal can be computed at a later time. Most data sources
contain redundancies such as nonuniform symbol distri-

bution, pattern repetition, and positional redundancy. A

data compression algorithm encodes the data to reduce
these redundancies.

Data compression has not been a stmldard feature

in most communication/storage systems for the following

reasons: Compression increases the software and/or hard-

ware cost; compression/decompression is difficult to in-

corporate into high data rate (greater than 10 Mb/sec)

systems; most compression algorithms are not flexible

enough to process different types of data; the unpre-

dictability of compressed data file size presents space allo-

cation problems. These obstacles are less significant today
due to recent advances in algorithm development, high-

speed very large-scale integrated circuit (VLSI) technol-

ogy, and packet switching communications. Data com-

pression is now a feasible option for those communication

or storage systems for which communication bandwidth

and/or storage capacity are at a premium. If present
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trends continue, the volume of speech and image data in

the near future will become prohibitively large for many

communication links or storage devices.

A number of applications require data compression for

efficient data storage. To facilitate fast processing, main-
tain accurate records, and recall old records quickly, a

number of businesses are optically scanning their docu-

ments and saving them on magnetic media. This takes

up large amounts of memory; efficient storage requires

data compression. Documents are stored for archival pur-

poses, so a short delay in retrieval (decompression) is not
detrimental. A similar application exists in law enforce-

ment, security, and intelligence agencies, where facial, fin-

gerprint, and other images are kept on file for fast retrieval,

analysis, and matching.

Data compression is required also in limited bandwidth

communications; the two best examples of this are video

telephony and high-definition television (HDTV). Video

telephony requires transmission of images over a small

bandwidth; this can be as small as 4 kHz in the standard

voice communication channel. Sending an image, even a

small one, without data compression is not feasible. For

HDTV, data compression is also needed if signals are to be

sent digitally over a standard television channel: HDTV

signals require roughly four times the bandwidth of stan-

dard TV signals. High-speed algorithms which compress

the image without substantially degrading image quality

are requirements for both video telephony and HDTV. As
more and more information must be transmitted over the

same size bandwidth, data compression becomes impera-

tive to maintain transmission rate and data fidelity.

Vector quantization (VQ) is an efficient data compres-

sion technique for speech and images. VQ maps a sequence

of continuous or discrete vectors into a digital sequence

suitable for transmission over a digital channel or storage
in a digital medium. The goal is to reduce the volume

of data while preserving required fidelity levels. In [1], a
well-designed VQ scheme was shown capable of providing

high compression ratio with good reconstructed quality.

Unilke scalar quantization where the actual coding of

continuous Or discrete samples into discrete quantities is

done on single samples, the input data of a VQ encoder

are multidimensional blocks of data (input vectors). An

important technique in VQ is the training of codebooks

prior to transmission [1]. Extensive preprocessing is per-

formed on sample source data to construct the codebook

to be used in the compression session. The encoder and

decoder must first agree on the same codebook before data
transmission. The closeness between an input vector and

a codeword in the codebook is measured by an appropi-

ate distortion function. During the compression session,
distortions between an input vector and codewords in the

codebook are evaluated; the codeword closest to the input

vector is chosen as the quantization vector to represent the

input vector. The index of this chosen codeword is then

transmitted through the channel. Compression is achieved

since fewer bits are used to represent the codeword index

than the quantized input data. The decoder receives the
codeword index and reconstructs the transmitted data us-

ing the preselected codebook.

Traditional VQ schemes have a few inherent disadvan-

tages. (1) The generation of a good codebook requires a

priori knowledge of the source data, which in practice are

not often easily available. (2) Traditional VQ schemes are

static schemes. They assume that the statistical proper-

ties of the source data remain the same for all compression

sessions and the codebooks are optimized based on this

assumption. Real-world data tend to have varying charac-

teristics, and static algorithms may not be efficient enough

to process diverse sources. (3) Both codebook generation

and codeword search for input vectors involve computing -
the distortion between input vectors and codewords in the

codebook; these are usually computationally intensive pro-

cesses, especially when the codebook size is large.

A new class of data compression algorithms, locally

adaptive vector quantization (LAVQ) algorithms, was sug-
gested in [2] and [3]. Unlike traditional VQ algorithms,

LAVQ algorithms do not require a priori knowledge of the
source, nor do they require the tedious process of codebook

generation, as the codebook is generated on the fly during

encoding, and the decoder mimics the operations of the
encoder to maintain an identical codebook at all times.

This algorithm does not require a full codebook search:

The codebook is updated after each use to maintain the

most recently used codewords at the front of the codebook;

a codeword which is within the error allowance is typically

found in the top one-fifth to one-tenth of the book through

a sequential search. This algorithm dynamically adapts to
the local features of the source and is particularly good in

compressing sources with varying characteristics.

In this articIe the basic algorithm suggested in [2] and

[3] will be described. Subsequent sections will be devoted

to the analogy of LAVQ to a vector differential pulse code

modulation (DPCM) algorithm, improvements to the ba-
sic LAVQ algorithm, and application to lossless data com-

pression. The algorithm has been fully implemented in

software; a brief description of this implementation is in-

cluded. Experimental results on both lossy image coding

and lossless data compression are also presented.
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II. Basic Algorithm

The basic LAVQ algorithm provides a simple yet effec-

tive one-pass data compression strategy (refer to Fig. 1).

The encoder has a codebook containing codewords (vec-

tors) where the index of the codeword corresponds to its
position in the codebook. A block is taken from the image

and compared to the stored codewords; if there exists a

codeword sufficiently close to the image block (within the

error allowance), the index itself is sent, and that codeword
is moved to the top of the codebook. If no such codeword

exists, a special index is sent. This index is followed by the
block itself. This block becomes a new codeword and is

placed at the top of the codebook. All other codewords are

pushed down, and if the number of codewords exceeds the
maximum allowed, the last codeword is lost. Initially, the

codebook may be empty or full from the previous image
encoded.

On the decoder side, the decoder expects an index. If

this index is the special one denoting that a new block was

sent, the decoder expects a block to be received immedi-

ately following the special index; this block is placed at the

top of the codebook and all other codewords are pushed

down. If the codebook is already full, the last codeword
is discarded. This new block is also placed into the image

being built by the decoder. If the index is not one desig-
nating a new block, then tile codeword corresponding to

the index is put into the image being built, and that code-

word is moved to the top of the codebook. Thus, if the

encoder and decoder start with the same codebook, they

will have the same eodebook at each step, and the image

will be successfully sent [2-4].

The LAVQ strategy maintains the most recently used

vectors in the codebook in the order of last usage; this

allows the algorithm to efficiently code any image on the

fly without codebook training: The algorithm needs only

one pass of the image to code it entirely. In serial imple-

mentation, LAVQ has time complexity O(nm) and storage

complexity O(m), where n is the number of pixel s in the
image and m is the number of codewords in the codebook.

Most of the time spent on encoding is taken by finding tile

closest codeword in the codebook and determing if that

match is close enough. Rearranging tile codebook and

sending the required index, and possibly a new block, can

be done quickly in serial implementation using lookup ta-
bles, linked lists, and other software techniques. To min-

imize the amount of time spent on codebook searching
and to improve performance, a partial search of the code-

book can be used: Instead of searching serially for the best

match, the encoder can stop searching at the first instance

of a close-enough match, with the criterion dictated by the

error allowance given.

The basic LAVQ algorithm, however, has poor per-

formance compared to traditional VQ strategies such as

the Linde-Buzo-Gray (LBG). Several adjustments can be
made to improve the algorithm without degrading the ad-

vantage of one-pass high-speed implementation. Two ap-

proaches can be used to improve rate. First, the statistics

of the coded indices can be skewed toward small values (re-

cent indices) by (1) a partial codebook search as outlined

above, (2) using tall and narrow blocks (N x 1 pixels) to
make each block more similar to the blocks immediately

previous to it in a raster scan, and (3) coding only the dif-

ferential value of each block by removing the mean value

and reinserting it later. Second, the number of bits used

to send new codewords can be reduced by (1) reducing

the number of bits used to describe each new pixel and (2)

using nonlinear quantization of these new codeword val-

ues. These two approaches, combined with lossless adap-

tive arithmetic coding of the output, improve the perfor-

mance of LAVQ to be comparable to that of LBG. These

improvements will be discussed ill detail in a subsequent
section.

III. LAVQ as a Vector Analogy of DPCM

Differential pulse code modulation (DPCM) data com-

pression algorithms are efficient and have low complexity.

They are particularly effective in encoding gray-scale im-

ages, which are dominantly characterized by an autore-

gressive (AR) stochastic model or an autoregressive mov-

ing average (ARMA) model. DPCM operates on individ-

ual samples x(n) and encodes the quantized difference e(n)

between a predicted value k(n) and z(n). The prediction

is based on the pixels neighboring x(n). The error e(n)
tends to be small rather than large, and compression is

achieved by assigning fewer bits to smaller values of e(n)
and more bits to larger values of e(n).

From an information theoretic point of view, given a
data source, it is always advantageous to encode vector

quantities rather than scalar quantities. A vector exten-

sion of DPCM coding involves encoding a vector of dif-

ferences E = [el(n), e_(n), ..., eg(n)], where N is the

vector size. However, the number of combinations of E in-

creases exponentially with N; especially for large N, this

quickly becomes too large to be practically feasible for effi-

cient encoding. Another drawback of DPCM is its inflexi-

bility: DPCM performs well when coding sources are char-

acterized by the AR or ARMA models (e.g., speech and

image data); however, for data sources dominantly charac-
terized by pattern repetitions (e.g, data base records and

engineering data), DPCM performs poorly.
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LAVQ is analogous to DPCM in a sense: Both DPCM

and LAVQ can be viewed as consisting of a preprocess-

ing stage and a compression stage. DPCM preprocesses a

sample by taking the difference between the sample value

and its corresponding predicted values and sends the quan-

tized difference to be entropy coded. LAVQ, on the other

hand, preprocesses a vector of samples by matching:it to

the codeword vectors in a dynamic codebook followed by a
move-to-front codebook update, and sends either a code-

book index or an uncoded vector to the decoder. The ma-

jor difference is that DPCM encodes the scalar difference,
whereas LAVQ encodes the vector recency, which can be

considered as a different measure of difference (vector dif-
ference). Thus, LAVQ uses the locally adaptive move-to-

front preprocessing unit to convert the hidden statistical

and correlational redundancy to a scalar statistical redun-

dancy. This allows representation of vectors as scalars and

approaches vector entropy, which, in the information the-

oret]c Sense, is smaller than the corresponding scalar en-

tropy. This was proven in [2] and is verified in the results

given here.

IV. Improvements to LAVQ for Image
Compression

A. Index Coding

1. Difference Coding. The most significant visual
artifact of LAVQ is the sawtooth or staircase effect. This

occurs from using discrete vectors to represent a set of vec-

tors within a threshold set by the error allowance; thus,

differences between codewords can be large enough to be

noticeable. In particular, if the pixels are slowly varying

across the image, as is the case with most images, the

encoded blocks do not track this variation closely. That
is, adjacent blocks are coded with the same block while

the amount of error is within the allowance; when that

allowance is exceeded, suddenly a different block is used.

This difference can be noticeable and, since most images
have regions of slow variations or of constant color or in-

tensity, quite common.

This assumption of images having regions of slowly

varying or constant pixels implies that adjacent blocks

have similar mean values. Thus, the mean can be removed,

and only the differential values of the image can be coded.
Each vector now represents the difference between the ac-

tual pixel valueand a reference value equal to the distorted
mean of the previously coded block. This distorteffmean

is a valid choice of reference because both the encoder and

decoder can compute it exactly from the previous block's

distorted pixel values. The small difference vectors are

more likely to be well approximated by the recently occur-
ring difference vectors maintained in the current codebook.

Thus, slowly varying or constant regions can be more ac-
curately coded without extensive use of new codewords.

The mean must be updated after each block is processed
at both the encoder and the decoder. This ensures that

both have the same mean to remove and to reinsert into

the image at each step.

2. One-Pass Index Compression. Because of the

move-to-front codebook rearrangement strategy and be-

cause most images have similar adjacent blocks, the smal !-
est indices are most likely to be used more often. There-

fore, they can be coded using a lossless compression code

to obtain better performance. However, to maintain one-

pass compression, the lossless code must also be one-pass.
Furthermore, the statistics of the coded indices are un-

known a priori, and no assumption can be made regarding
them.

The code which yields the most promising results with

minimal increase in computational complexity is the adap-

tive arithmetic code. This algorithm is the static arith-

metic code implemented with probabilities of each symbol -
updated after each use. By starting with the same initial

distribution at the encoder and decoder, lossless coding

can be obtained. The arithmetic code approaches global
symbol entropy closely; in some cases, it does even bet-

ter: The average entropy of the adaptive arithmetic code
is average local entropy based on symbol statistics.from

the start to the symbol being coded. Global entropy is
derived from the statistics of each symbol based on the

entire sequence; local entropy is derived from the statistics

of each symbol based on part of the sequence in the neigh-

borhood of the symbol being coded. The global entropy
is always greater than or equal to the global average of all

the local entropies. Thus, for sources which have localized =

characteristics which vary throughout the sequence, using _
localized adaptive coding methods is more advantageous

than using global, nonadaptive coding methods.

B. Codeword Data Coding

1. Bit Stripping. Bit stripping of new codeword val-

ues can be used independently from or in conjunction with

difference coding to obtain higher compression rates. The :

least-significant bits of either a block of pixels or a vec-

tor of differences tend to be uniformly random therefore, s

stripping these bits before sending data to the decoder -
and: reinserting a mean value at the decoder decreases the

number of bits sent when a new codeword is generated
for the codebook, with a small increase in distortion. The

amount of additional error incurred is not readily notice-

able in most images.
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2. Nonlinear Quantization. When difference coding

is used with bit stripping, only a few values typically occur,

and these may be represented by a relatively small number

of quantization levels. However, there may be sharp edges

in the image which will have large differences in value be-
tween adjacent blocks. This Can cause large errors at edges

if linearly quantized difference values are too small to keep

up with the rapid change in pixel values. To minimize this

error, nonlinear quantization can be used. The choice of

quantization step sizes'is not cl@£rly defined, as the im-

age statistics are unknown to the encoder and cannot be
easily transmitted to the decoder. Therefore, design of

the quantizer cannot be made adaptive, and an arbitrary
choice must be made beforehand. Quantizer design has

some criteria, however. Initial step sizes (near zero) should

be small, and subsequent sizes should increase. Based on

this assumption, a fixed logarithmic quantizer is used.

C. Interpolation and Smoothing

As mentioned earlier, since LAVQ uses discrete vec-

tors to represent a set of vectors within a threshold set by
the error allowance, there is noticeable blockiness in the

output. Difference coding helps remove this effect, but it
is insufficient: Since zeroth order estimation of the next

block is used--the mean is assumed to be identical across

adjacent blocks--regions with gradual pixel value changes

can cause a sawtooth or staircase visual artifact at high

compression rates. In addition, difference coding does not
remove the block boundaries visible in the vertical direc-

tion. In cases where difference coding is used and where it

is not, horizontal interpolation can remove the horizontal

artifacts, and vertical smoothing can remove the vertical
artifacts; if done carefully, both techniques do not exces-

sively destroy detail or cause a blurry appearance.

Horizontal interpolation essentially interpolates across

those blocks represented by different codewords. Each

block is classified as either a repeat of the previous block

or not; the first occurrence of a block that is not a repeat

of the previous block is recorded; the rest are initially left

blank. These blank blocks are filled with a pixelwise lin-

ear interpolation of the edges of the two closest nonblank

blocks. However, this can smear edges which occur in the

image; therefore, a threshold is used: If the difference be-

tween two differing blocks is larger than this threshold,

no interpolation is done. This threshold must be adjusted

externally.

Vertical smoothing averages the pixels on the vertical
block borders. If both blocks on the border are not new

codewords, that is, both already exist in the codebook,

then the two border pixels are averaged; this average value

is substituted for the border pixels. If both blocks are new

codewords, nothing is done. If only one is new and the

other is an existing codeword, then the new block is un-

altered; the existing block's boundary pixel is substituted

with the average of the boundary pixel of the new block

and the two boundary pixels (the boundary and the pixel

vertically adjacent to it) of the existing block. In this way,
new codewords, which usually describe detailed areas, are

unaltered, while existing codewords, which describe areas

of low detail, are smoothed.

V, Lossless Data Compression

As mentioned earlier, the LAVQ algorithm is also suit-
able for lossless compression of database records and other

data dominantly characterized by pattern repetitions. Ex-

amples of these data sources include textual data, account-

ing and payroll database data, telemetry data, and engi-

neering data. Lossless compression using LAVQ can be

achieved easily by setting the error allowance to zero. In

the lossless compression mode, the basic LAVQ encoder

becomes a locally adaptive move-to-front (MTF) algo-
rithm.

Lossless LAVQ works best on data with fixed record

sizes. Data represented in fixed-size packets and with

patterns confined to the packets or fixed subfields within

them are the best candidates for LAVQ. tIowever, ar-

bitrary fixed-length blocking of data can also be used

on other sources without defined block sizes without sig-

nificant detriment. Universal data compressors such as

Lempel-Ziv (LZ) -based algorithms assume no structure
of the source except for intersymbol correlation; however,

many of these algorithms require large amounts of mem-

ory during coding, use complex tree data structures such
as the "Patricia tree" to maintain their dictionaries, and

have sophisticated pruning techniques to update the code

tree. LAVQ requires relatively less memory and less com-

plex data structures; it uses a simple codebook updating

algorithm (MTF in this case) with a much smaller data

buffer. Several high-performance LZ-based algorithms use

back-end entropy coders to further improve performance;

LAVQ can be likewise equipped. In short, lossless LAVQ

can achieve rates comparable to the best LZ-based algo-
rithms.

VI. Software Implementation

Software implementation of LAVQ, complete with all

improvements, has been completed. To minimize source

code complexity, the arithmetic coder has been imple-

mented separately from the encoder. Parameters variable
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in the encoder include block dimensions, codebook size,
error tolerancel number of bits stripped, first or best oc-

currence of an acceptable codeword, and difference cod-

ing. Furthermore, to allow use of the encoder for image

sequences, as in video, codebook preservation is also pro-

vided. This allows the codebook from the previous frame
to be used in the subsequent one.

A. LAVQ Encoder and Decoder

The encoder program first reads in all the data, then

converts the image into a linked list of blocks. The code-

book is specified as a doubly linked list to facilitate speed

in rearrangement: Only ten pointers at most need be

changed to do a complete codebook rearrangement. The

codebook is initially assumed empty. At each step, a block
is compared with the codebook entries and the best or first

occurrence of an acceptable codeword is found. The code-

book is updated as needed, and the requisite yalues are
output. The program can also calculate global ent)61_),--of

the encoded file to give an estimate of the highest compres-

sion possible with these parameters. The decoder program

reverses this arrangement, with each input being an index

or a new codebook value, and the codebook is rearranged

in a manner identical to the encoder codebook. The image

is rebuilt as a linked list and is then converted to image
format and output.

B. Adaptive Arithmetic Coding

The arithmetic coder implemented is one described in

[5]; it is used here with only minor modifications; the most
notable of these is the ability to input symbols of alphabet

size less than 256. The assumption is made at first that the

symbols are all equiprobable; after each symbol is encoded,
its statistics are modified to reflect this. Two encoders and

decoders are used: One pair encodes and decodes only the

indices from the output of the LAVQ eneoder and ignores

the new codeword information; the second pair codes and
decodes these new codeword values.

The basic arithmetic code operates in the following

manner: The symbols are arranged in some order and

are assigned regions of size corresponding to their prob-
abilities. These regions span the space from 0 to 1. The

coding region is initially defined to be [0,1). When a sym-

bol is coded, the symbol space [0,1) is scaled to fit the

coding region, and the new coding region is defined by the

region specified by the symbol coded. Therefore, at each
step, the coding region becomes more and more narrow. In

practice, the coding region is scaled in size as each unam-

biguous most significant bit is transmitted. The decoder

reverses this by scaling up the coding region as symbols

are decoded. A detailed discussion of arithmetic codes is
available in [5].

VIi. Experimental Results

A. Image Compression

The LAVQ algorithm was tested on a number of mono-

chrome 8-bit 512 x 512 pixel images. Global pixel en-
tropies, which are entropies estimated over the whole im- :

ages, are listed in Table 1. These images were selected to

provide a diverse cross section of images to examine the
flexibility of LAVQ. A portrait ("lena"), a Wildlife/natural

scene of a seal on a rocky seashore ("seal"), a high de-
tail overhead view of Los Angeles International Airport

("lax"), the cratered surface of Mercury ("mercury"), the

rings of Saturn ("saturn"), and a medical CAT scan image
("eat01") were used. The images are shown in Fig. 2.

Performance parameters are measured in mean squared :

error (MSE) for distortion and required bits per pixel for
rate. MSE is defined as

MSE =

5122
1

5122 E [Poriginalj -- Pprocessed,i] 2
i=1

for images of size 512 x 512 pixels.

The LAVQ parameters used were8 x i blocks with

255 codewords in the codebook. Difference coding was
used, and 4 bits with logarithmic quantization levels were

used to represent each new codeword value. There is not

much difference in performance between finding the best

match in the codebook (complete codeword search) and

stopping after the first inStance of an acceptable (within

error allowance) codeword in the book (partial codebook

search, typically one-fifth to one-tenth of the entire book);

therefore, the latter strategy is used to maximize speed
and to favorably skew the index statistics. Codebook and

block sizes were selected to obtain good results; block sizes

larger or smaller than 8 × 1 yielded worse results, and in-

creasing codebook size beyond 255 had only marginal rate
improvement with substantial increase in computational

complexity. Block interpolation and smoothing are used
with-a threshold of 32. The LBG algorithm using blocks

of size 4 x 4 pixels (found to yield good results in general
and better results than LBG with 8 × 1, 4 x 2, or 16 × 1

pixel blocks) is presented for comparison.

In the rate-distortion curves generated for all six images

(see Figs. 3 through 8), the LAVQ blocks are 8 x 1 pixels;
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255 codewords are in the codebook, the difference coding

has 4 bits per codeword value, and there are logarithmic

quantization, block interpolation, and smoothing, except

for Fig. 5, which lacks block interpolation and smoothing.
'LBG was done with 4 x 4 pixel blocks. LAVQ sends the

codebook simultaneously with the indices while compress-

ing the image; therefore, a true comparison should include

the cost of sending the codebook for LBG as well. The

LBG curves were generated using 4 x 4 pixel blocks and

varying codebook sizes (from 16 t0 8i92). LAVQ curves
were generated using the parameters outlined above. The

curves have differing scales because each image has differ-

ent characteristics which alter the algorithms' ability to

compress them.

In most cases, LAVQ does better (defined as having a

lower distortion for a given rate or vice versa) than LBG

in the low-distortion regions (high-rate regions); in this

region, LAVQ sends more new codewords, and these new
codewords are more accurate renditions of the original im-

age than the codewords used by LBG, which are the cen-
troids of many blocks. Because LAVQ requires that more

codewords be sent than LBG for low-distortion cases, this

factor by itself would seem to make the rate for LAVQ

worse than for LBG. However, LAVQ can take good ad-

vantage of lossless entropy coding of indices and new code-

words. In contrast, because LBG's codebook search algo-

rithm distributes its codewords to span the space in which

the image's vectors exist, in general LBG does not profit

as much as LAVQ does from lossless compression. Only

about a 5-percent improvement using arithmetic coding

was noted, compared to over 50-percent improvement ob-

tained for LAVQ using arithmetic coding of both indices

and codewords. As a result, LAVQ often has the potential

for better performance than LBG after entropy coding is

applied to LAVQ.

At lower rates (and higher distortions), LBG takes time
to select a good codebook and therefore can do much bet-

ter than LAVQ, which does not train a codebook at all.
This is the dominant factor which can make LAVQ per-

formance worse than LBG: Since LAVQ does not train

a codebook, it relies on recently occurring vectors for a

source of new codewords. These do not necessarily reflect

a good choice of codewords, so for a given rate, the distor-

tion for LAVQ can be higher than for LBG.

Such generalizations, however, have many exceptions.

For example, two images in the set used here, "cat01" and

"saturn," have large regions of uniformity compared to

the other images. In the high-rate (low-distortion) region,

these low-detail regions are better coded by LBG than
by LAVQ because the LBG codewords can code regions of

low detail with less distortion; this effect is enough in these

two images to defeat the advantage that LAVQ gains by

lossless compression of the indices and codewords.

In the low-rate (high-distortion) region, "cat01" and
"saturn" are better coded with LAVQ than with LBG.

With other images, the time spent by LBG in developing

a good codebook made the performance of LBG better

than what LAVQ could achieve without training. With

these two images, however, LAVQ can code the low-detail
regions quite easily with very few new codewords while the

details are better preserved in the high-detail regions. This

can be enough to offset the disadvantages mentioned ear-

lier that LAVQ encounters in the low-rate (high-distortion)

region.

Each LBG rate-distortion curve of 10 data points took

approximately 100 hours of computation on a Sun Sparc 2,

while one LAVQ curve with 24 data points, complete with
lossless compression, was done in about 1 hour: LAVQ is

much faster than LBG and can achieve performance com-

parable to LBG if the cost of the codebook is included.

Furthermore, LAVQ preserves detail better than LBG,

but does so with increased blockiness in low-detail regions.
This detail-preserving feature of LAVQ is discussed in the
next section.

B. Detail Preservation

As mentioned in the previous sections, LAVQ operates

by matching a vector to the codewords in the codebook us-

ing a predetermined fidelity criterion, and new codewords
are entered verbatim from the examined vector if no match

occurs within this error allowance. Therefore, those vec-

tors which are significantly different from previous Vectors

are coded without distortion; these occur at edges or areas

of high detail. The cost of preserving these details, how-

ever, is increased distortion in low-detail ("smooth") ar-
eas. Codewords are not optimized to best represent these

regions, so they exhibit more blockiness. Thus, LAVQ pre-

serves details and is potentially very attractive to military

intelligence and space applications: These applications re-
quire close examination of details to identify and differen-

tiate among various objects.

These effects are illustrated in Figs. 9 and 10. In Fig. 9,

the upper right edge of the hat brim of "lena" is shown.
The LBG codebook size, to be comparable to LAVQ, is

fixed at 256. The LAVQ error allowance was adjusted to

yield a distortion comparable to LBG. LBG achieves 43.83

MSE at 0.50 bits/pixel (compression ratio of 16:1). LAVQ

achieves 43.68 MSE at 0.56 bits/pixel (compression ratio

of 14:1). The edge of the hat brim is rendered with much
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less blockiness with LAVQ; the drawback is that the low-
detail areas exhibit noticeable blockiness.

In Fig. 10, the lower right edge of the upper terminal

of "lax" is shown. The LBG codebook size is again fixed

at 256. LBG achieves 166.8 MSE at 0.50 blts/pixel (com-

pression ratio of 16:1). LAVQ achieves 166.0 MSE at 0.77

bits/pixel (compression ratio of 10:1). Here, LBG does

poorly in preserving the details of the aircraft, terminal,
and service vehicles; details of the terminal and several ser-

vice vehicles have disappeared. LAVQ does much better

on these details, but exhibits more blockiness than LBG

when representing the tarmac, which has less detail. With

LAVQ, it is possible to identify aircraft type, while it is

more difficult with LBG. For the two aircraft in Fig. 10,

the fuselage and wing shapes, engine locations, and other

details are preserved more clearly by LAVQ than by LBG.

C. Lossless Data Compression

Demonstration of lossless compression of structured

data was conducted on Magellan space-probe engineer-

ing data. The Magellan spacecraft engineering data file

"mdata" consists of 1692 records of 100 bytes each; each

record consists of 15 fields of various sizes ranging from

4 bytes to 16 bytes. Many good existing LZ variants can

achieve compression ratios for "mdata" of 2.2:1 to 5:1 of

the original file size, depending on the amount of mem-

ory consumed. The UNIX program "compress" achieves a

compression of 3:1 at a cost of 544 kbytes of memory used.
:_ _ .... : : 5: :__: ..............

The Magellan engineering data have both natural pars-

ing (a frame marker at the beginning of each record) and
artificial parsing (the record size is fixed, 100 bytes) prop-

erties. Most real-world data sources like texts, images, and

engineering data records possess either or both of these two

parsing properties. To apply LAVQ to these data, the file

was first blocked in sequential order into 5-byte blocks.

LAVQ was then applied to each block position; thus, all

of the first 5-byte blocks (bytes 1 to 5 in the 100-byte
record) were coded using one encoder, all of the second

5-byte blocks (bytes 6 to 10 in the 100-byte record) were

coded using a second encoder, and so on.

The resulting LAVQ output, both indices and new
codeword values, was then coded with the adaptive arith-

metic coder used earlier. Results using a Q-coder [6,7] and

the theoretical limit reached by nonadaptive means (com-

puted from the global entropy) are also included for com-

parison. The Q-coder is essentially an adaptive arithmetic
coder; it differs from the arithmetic coder used above: The

arithmetic coder maintains a FunnTng total of frequency of

use of each symbol and uses this to determine probabilities

for arithmetic coding. The Q-coder uses a fixed probability
table accessed by an adaptive finite state machine. This

finite state machine adapts with the previous symbols; its

state is determined by the bits in each byte.

Two differing approaches are taken. First, the code-

book size is fixed at 256, and only one coder is available.

Thus, a large buffer is needed to store the data to allow

sequential coding of each of the 20 blocks in each record.

Results tabulated in Table 2 show that the best perfor-

mance is obtained from using large buffers: Larger files
have more opportunities for repetitions and patterns of

codeword usage. In Table 2, compression ratios of Magel-

lan engineering data are of 169,200-byte size. Tabulated

are compression ratios achieved by the adaptive arithmetic
coder used for LAVQ, the Q-coder, and the theoretical

maximum using a global entropy coder. This last value

is derived from the global per-symbol entropy. Note that

larger buffer sizes provide greater compression. Arithmetic

coder compression approaches the theoretical value (global

entropy) closely. Even better results are sometimes ob-
tained. The Q-coder and arithmetic coder sometimes ap-

pear to have results better than entropy; this occurs be-

cause these adaptive coders code on the basis of local en-

tropy (entropy over a localized window of characters) as

opposed to the global entropy listed here. The Q-coder

does better than arithmetic coding, which does about as

well as theoretically possible with a global entropy coder.

in the second approach, the codebook size is allowed

to vary, and all 20 coders are available for parallel cod-

ing. No additional buffer is needed in this case, as the 20
blocks are coded simultaneously. Again, the indices and

new codeword values are coded with the adaptive arith-

metic coder and compared with the Q-coder and the global

entropies; results are listed in Table 3. In this table, as in

Table 2, compression ratios of Magellan engineering data
are of 169,200-byte size. No data buffer is allowed here,

but 20 coders are operating in parallel, In this case, the

arithmetic coder does slightly better than the Q-coder.

Again, the Q-coder and arithmetic coder sometimes ap-
pear to have results better than entropy for the same rea-

son given for Table 2. Best performance is obtained with

larger codebooks; large codebooks can record codewords

farther into the past and therefore have more opportuni-
ties for codeword matching. Here, the arithmetic coder

does better than entropy and the Q-coder. In both cases,

LAVQ performance is comparable to LZ-based algorithms.

The advantage of LAVQ is that far less memory is required
than for LZ algorithms; this is of importance in systems

with size, weight, or complexity constraints, as is the case

with deep-space probes. _ •
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VIII. Conclusion

The LAVQ algorithm provides a fast, one-pass data

compression algorithm. Improvements to the basic algo-

rithm maintain this one-pass high-speed property while

increasing performance measurably. Experimental results

in image compression yield performance not significantly

inferior to LBG, but at a fraction of the complexity. Dis-

tortion in images occurs as blockiness in low-detail areas,

while high-activity areas maintain sharp details. LAVQ

also performs well in ]ossless compression, again with low

complexity as compared with other algorithms.
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Table 1. Plxel entropies. Global plxel entropies
of Images.

Imag_ Entropy, bits/pixel

"cat01" 5.503

"lax" 6.827

"lena" 7.445

"mercury" 6.416

"saturn" 6.885

"seal" 7.356

Table 2. Magellan data compression: sequential compresalon.

Buffer Codebook

size, bytes size

Compression ratio achieved by

Arithmetic Q-coder Global
coder entropy

169200 256 3.957 5.053 3.887

84600 256 3.752 4.764 3.748

56400 256 3.635 4.556 3.640

42300 256 3.429 4.2i0 3.440

28200 256 3.285 3.929 3.296

14100 256 2.913 3.320 2.921

:r

Table 3. Magellan data compression: simultaneous compression.

Codebook
size

Compression ratio achieved by

Arithmetic Q-coder Global
coder entropy

256 3.957 3.912 3.887

128 3.873 3.815 3.798

64 3.411 3.290 3.314

32 2.973 2_814 2.949

16 2.747 2.545 2.6076
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3
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CODEWORD DOES NOT EXIST IN CODEBOOK:
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ORIGINAL IMAGE

NEW
CODEBOOK CODEBOOK

RECONSTRUCTED

Fig. 1. E_ncoder qnd decoder: An Image block Is compared to the codebook (A); If a codeword close enough

exlsts, that codeword Is moved to the top of the codebook (B) and the Index Is transmltted (C). II it does not exist

(D), then lhe block Is Inserted at the top of the codebook (E) and the Index m Jr 1 and the block are transmllted

(F). On the recelver side, if an Index Is recelved, the corresponding codeword (G) Is moved to the top of the

codebook and the block Is Inserted into the reconstructed image (H). If the special index m + I Is recelved (I), a

raw block Is anticipated Immediately foliowlngi this block Is placed In the codebook and also In the reconstructed

Image (J).
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0

"cat01" "lax"

"lena" "mercury"

"saturn" "seal"

Fig. 2. Orlglnal Images. All images are 512 X 512 pixel, 8-bit monochrome.
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ORIGINAL LBG LAVQ

Fig. 9. Detail of "lena," Note that LBG has more blockiness st the edge, but represents low-detail ("smooth") areas without as much
blockiness as LAVQ.

ORIGINAL LBG LAVQ

Fig. 10. Detall of ;;lax."
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Data Compression by Wavelet Transforms
M. Shahshahani

CommunicationsSystemsResearchSection

A wavelet transform algorithm is applied to image compression. It is observed

that the algorithm does not suffer from the blockiness characteristic of the DCT-

based algorithms at compression ratios exceeding 25:1, but the edges do not appear
as sharp as they do with the latter method. Some suggestions for the improved

performance of the wavelet transform method are presented.

I. Introduction

The application of wavelet transforms and multireso-

lution analysis to data compression has attracted much

attention recently. This circle of ideas is closely related to
the subband compression and the pyramid encoding tech-

niques. The general idea is to transform and reorganize

the data in a hierarchical manner so that the upper levels

of this hierarchy (or pyramid) represent the general fea-
tures of the data or the image and the lower levels supply

the details. Generally the higher levels of the pyramid are

smaller data sets than the lower levels; however, the coeffi-

cients in the latter portion are more correlated than those
in the former and are better compressed by the standard

lossless compression techniques.

The applications of wavelet representations to practi-

cal engineering problems are not limited to source coding.

For example, one encounters situations that necessitate

selecting a subset of a large data set on the basis of cer-

tain characteristics. One may achieve this by browsing

through the higher levels of the hierarchy, which comprise

a much smaller data set, examining the general features of

the data, and making judicious choices. The coefficients

in the lower levels of the pyramid may be used for edge
detection.

As in other methods of data compression, applica-

tions of wavelet transforms to source coding assume a

priori knowledge of the tolerable level of information loss

and/or the desirable compression ratio. Data compression
is achieved by quantizing the transformed data and allo-

cating bits to the different levels of the pyramid of the

transformed data in a manner compatible with the con-
straints and the requirements of the particular application.

Naturally, in source coding applications more bits are al-

located to an individual coefficient in the higher levels of

the pyramid than to one in a lower level. In analogy with

the discrete cosine transform (DCT), one may regard the
lower levels of the pyramid as the high frequencies and the

upper ones as the low frequencies.

The presentation of the general theory of wavelet trans-

forms in Section II is intended for application to data com-

pression. The literature on the subject is often inadequate

regarding the implementation of the basic ideas, and the
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theoretical aspects of the subject seem to be only remotely
related to practical engineering problems. It is hoped that

the concise and concrete presentation of the wavelet trans-
forms in Section iI will make the literature more accessi-

ble to interested researchers. In Section III, the practical
aspects of image compression by wavelet transforms and

the results of the applications are reported. Further re-

search topics for the improvement of the performance of

wavelet-transform-based compression algorithms are also

suggested. Some of the advantages and disadvantages of
the wavelet transforms versus the standard DCT tech-

niques are discussed. However, no definitive judgment
can be made at this time regarding their relative merits.

While the latter approach has been studied extensively in
the past decade, the application of wavelet transforms to

image compression has not reached the level of maturity
that would warrant definitive assessment of its merits and

potential.

II. Wavelet Transforms

The idea of wavelet transforms and their applicability
to signal analysis, and especially data compression, is most

easily demonstrated by focusing on the one-dimensional

case first. A straightforward generalization of the theory

to two dimensions for application to image compression is
indicated at the end of this section. In this case, a data

set is represented by an element of Z: = L_(tZ). Consider
the following sequence of partitions of R:

co

Partition P._ : 1% = U I,_,ra

where I,,,m = [2ran, 2m(n + 1)), and let £ot be the sub-
space of £ consisting of functions that are constant on the

intervals In,,-,. The operator pot of orthogonal projection
on the subspace £ot is

2 j.r (_)

where Ira(x) is the unique interval In,m (m fixed) contain-
ing x. The subspaces £ra have the following properties:

,cra+,__.,cra,N,<:,,,=o, (1)

Let Eot denote the orthogonal complement of £m+l in £ot,

then £ admits of the orthogonal direct sum decomposi-

tion £ = @Era. Denote orthogonal projection on Sot by
rrra. Let An,b, where a # 0 and b are real numbers, de-

note the affine transformation A,,b(x) = ax + b, and de-

fine the action of Aa,b on a function _o by Aa,b(_o)(x) =
a-_/2_[(x - b)/a]. It is convenient to introduce the nota-

tion _ot,,(x) = A2-, 2=,,(_)(x), for m and n integers, and
note that a fimction f E Z: admits of the expansion

oo

an Xra,n (2)
oo

where X is the indicator function of the interval [0,1), and
ot.

an = f Xot,,,(x)f(x)dz. The functions Xot,n are obtained

from the single function X through the action of a set of

affine transformations of the line. For each fixed m,

L:ot = span {Xra,,,In E Z}

(3)
f e £ra _ f(2.) e J_rn-1

From the expansion (2) one easily obtains the expansion

of f following the decomposition £ = (9£ot. First observe
that

1

=  /-5(xot,2. + xra,2.+ )

Therefore, a_ _+1 1 ra ot= :_7_(a2,., + a2n+l), and after a simple
calculation one obtains

1 __,(a_ - az_+l)(Xot,2n - Xot,:n+i)pot(i) - pm+ (i) = 7 .

1 #

Now set Wot,n = :_(Xra,_n - Xot,2n+l) to obtain the ex.
pansion

co

f= E b_ot,n (4)

where b_ = 1 Zara remarkable fact, and:_t 2n -a_+l). It !s a

easy to prove, that the functions _ra,n are also obtained

from the single function _(x) = X(2x) -X(2x - 1) by
the action of the set .A = {A2=,_=nlm, n E Z} of af_ne

transformations, and an analogue of condition (3) is valid
for the subspaces got, namely,

(5)

=
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The functions {_rn,,,} form a complete orthonormal set
for _. The expansion (4) is an example of orthonormal
wavelet expansion, and the coefficients bm are called the
wavelet coefficients.

To understand the intuitive meaning of the expansion

(4), assume that f E _m for a sufficiently large nega-
tive number m. The projection of f on £,_ is _r,_(f) =

f - p,n+l(f). Now Pm+l(f) is a slightly smoothed version

of f so that r,n(f) represents the details that are miss-

ing from the smoothed version pm+l(f). Thus, rm(f) or
more precisely, the coefficients b_ in the expansion (4) be-

long to the lowest level of the hierarchy. The process can

be repeated with pm+l(f) replacing f, thus leading to a

hierarchy of the coefficients of the wavelet expansion of f.

An important feature of the expansion (4) is that the
mcoefficients b,m and a, can be computed recursively in a

1 from 0simple manner. For example, to compute a,, an,

substitute expansion (2) for m = 0 in the formula for ala
to obtain

oo

a, = X(x - k - 2n)x(zl2)dz
k

(6)

Therefore, if one defines a(k) as the integral in expansion

(6) for n = 0, one obtains the formula

oo

1a. = 2n)a° (7)
k=-oo

Similarly,

v. = n(k- 2n)a7
]g_-- OO

(s)

where fl(k) = _ f X(X - k)_(xl2)dz. By a straightfor-
ward inductive extension of this calculation, one can ex-

press b_m+l and a_ +1 in terms ofa_. The resulting formu-

lae are identical with formulae (7) and (8) with m and m+l
replacing 0 and 1, respectively. Therefore, the wavelet co-

rn
efficients bnm and an can be computed by the filters defined
by a and _.

The orthonormal basis {_m,,) and the expansion (4)
are just one example of an orthonormal wavelet expansion.

To obtain other expansions, one has to abstract some of

the features of this illustrative example. The essential in-

gredients of the theory are an orthonormal doubly infinite

basis {_m,n} for L: such that the functions _m,n are ob-
tained from a single function _ via the action of the set

A, and for which condition (5) is valid. For applications,

knowledge of the corresponding filters /? and a is essen-

tial. Since in practical engineering problems the data are

normally in digital form, it is important to adapt the theo-
retical framework of wavelets to the discrete or digital case

before discussing other wavelet expansions.

In the digital domain, 12(Z) replaces L2(R) as the space

of one-dimensional data. One can naturally identify 12(Z)
with L:0, and therefore the theory developed above extends

to this case immediately. The only difference is

E-i=£.o, p_j =id., and _-_j=0 for j>_0 (9)

It follows that formulae (2) through (8) remain valid, pro-
vided that the range of the values of m is limited to 0 to co.

In practice, the domain of n is (Z mod 2N) for some in-

teger N. Therefore, _g -- R, and the linear spaces L:,_

are finite dimensional. The bases {X_} and {X_m+l , _+l}

for l:,_ = Em+l q_ £m differ by an orthogonal transforma-

tion. It follows that the coefficients {a_} and {a_ +_, b,m}
are also related by an orthogonal transformation. This

orthogonal transformation, which is the matrix represen-

tation of the filters a and _, is given by the 2N x 2N matrix

with 2 x 2 diagonal blocks

This means that given a data set represented by a

column vector (f0, .-., f2_-l) t_, the application of the

above matrix transforms it into a vector (go, .-., g2N-l) _

with the even-numbered components (go, g_, ..., g2N-2) t_
representing pl (f) and the odd-numbered ones

(gl,g3, ..., g_.n--1) tr representing 7h(f). Here the su-
perscript tr means the transpose of the matrix or vector.

The problem of determining other orthonormal wavelet

expansions, and especially the corresponding filters, is dis-

cussed in detail in [1]. Of particular interest in practical

problems is the case where the functions a and _ have

small support, i.e., a(j) = 0 - _(j) for most j's. It is the

knowledge of the functions (or filters) a and _, and not
the basis functions themselves, that is essential for appli-

cations. In [1], the filters a and _? of small support are

explicitly determined. The simplest of these filters is the

one given above. The next simplest one is the matrix 2"

given by
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1oo oi o2 o3 0 0 0 ...... 0

03 --_2 01 --00 0 0 0 ...... 0

0 0 oo oi o2 _3 0 ...... 0

0 0 o3 -_ oi -ao 0 ...... 0

_2 o3 0 0 ......... 0 oo oi

_01 --_0 0 0 ......... 0 03 --a 2

(I0)

where

0 0 _

1+j3 3+43 3-43 I-,/3
4,/2 4,/2 4,/2 ' 442

One should note thatan important featureofthe orthonor-

mal waveletexpansion isthat the inversionprocedure can

he implemented by the transposeof the orthogonal matrix

representingthe filterso and D.

The above theory was limited to one-dimensional data.

It can be easily adapted to the two-dimensional case by
considering products of the basis functions considered in

the one-dimensional case. This is equivalent to carrying
out the one-dimensional wavelet transforms in the hori-

zontal and vertical directions. The practical aspects of
the two-dimensional wavelet transform are discussed in de-

tail in the next section. Of course, there are orthonormal

wavelet expansions that may not be separable, i.e., the ba-

sis functions are not products of the basis functions for the
one-dimensional case, but they will not be considered in
this article.

Ill. Application to Data Compression

To apply the theory to data compression, one fixes an

orthonormal wavelet expansion, or equivalent!_(, thg fil-
ters o and ft. In the work reported here, only the filter

defined by the matrix .T was used) An image is repre-

sented by a matrix f = (fij), where fij is the intensity
of the pixel (i, j). For each fixed row i, one considers

the transform gi = Ff_", where fi is the ith row of the

matrix f. The components of gi with even indices rep-

resent Pl(fi) and those with odd indices represent 7h(fl).
It is convenient to reorganize the vector gi in the form

] It isoften unclear from the literature what falteris actually used.

The filterused in [3]differsfrom that defined by .7r.

(go,g2 .... , g2N-2,gl,g3, ..., g2__1). Now the process
is repeated for the columns of the matrix of the trans-

formed rows. After reorganizing, the transformed matrix
of pixel intensities takes the form

gll g12)g = \g21 g22

where each gi.i is a 2N- IX 2N- I matrix. Since an image is
two-dimensional, the hierarchy of" the wavelet coefficients

requires some elaboration. The matrix gll represents the

smoothed version of the image, while the remaining coeffi-

cients are the missing details. The coefficients gl_ and g21

belong to the level of the pyramid immediately below gU,
and g22 lies at the lowest level of the pyramid. Thus, ev-

ery application of the wavelet transform generates three

levelsof hierarchy-fora tw0:dlmensi0nal image. The pro:
cess is theft repeated by applying {he filters o and _ to
the 2N-1 x 2 g-1 matrix gn along rows and columns. The

resulting coefficients are then reorganized in the form

g11,11 ..., {gll,12,gll,21} ---. g11,22 --. {g12,g21} ..., g22

with the highest level at the extreme left and the lowest at

the extreme right. The process can be repeated. It may

be more convenient to organize the coefficients differently
in the following form:

giLil

z" %
gll,12 g11,21 g11,22

1 1
g12 g21 g22

One then refers to gn,n as SS (smooth-smooth) level 2, to

glLl_,gn,_l and g12,g_1 as the SD (smooth-detail) levels

2 and 1, respectively, and to g11,22 and g22 as the DD
(detail-detail) levels 2 and 1, respectively. : _

In the application of wavelet transforms to image com-
pression, the coefficients at different levels of the pyramid

are not equally significant and, therefore, should be en-
coded differently. The wavelet coefficients of different lev-

els were examined for several images, and certain patterns

were observed. In general, the coefficients at a lower level

of the pyramid are better approximated by a Laplacian

density function than those at the higher levels. Using
the nearest integer truncation, one also notices that the
entropies of the coefficients at the lower levels are smaller
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thanthc_ein the upper ones. Figures 1 through 4 show
the distributions of the wavelet coefficients at different lev-

els of the hierarchy for a typical image. An approximating

Laplacian density function is given in Figs. 1 through 3.

Clearly the coefficients at the highest level (Fig. 4) have a

very irregular distribution. Table 1 shows the entropies of
the wavelet coefficients for the same image.

The image compression process is done by first comput-
ing the coefficients g_2, g12,g_Z,gZZ,_2,glZ,12, etc. These

coefficients are quantized according to a bit allocation
scheme similar to the one used for the standard DCT-

based algorithms. As noted above, more bits are allocated

to the higher levels of the hierarchy than to the lower ones.
In the pictures of the peppers compressed by the wavelet

transform method (Fig. 1), the coefficients in the lowest
level have been set to 0. In practice it was observed that

because of the quantization errors inherent in any floating-
point computation, it is not desirable to go beyond three
or four levels of wavelet transforms. To reconstruct the

image, the inverse filter was applied to the coefficients. As
noted above, the inverse filter is given by the transpose of

the orthogonal matrix defining the filter.

There are several issues involved in the application of
wavelet transforms to image compression. The choice of

the appropriate wavelet transform may be dictated by the

complexity of the image. It has been suggested that dif-
ferent transforms may be more appropriate for different

images or even different parts of an image. Some ideas in
this direction appear in [2] with apparently very promising

results. The problem of bit allocation and quantization of

the wavelet coefficients is similar to the analogous prob-

lem for DCT-based image compression. It may be possi-
ble to take advantage of the regularity of the coefficients

at the lower levels of the pyramid and use the Laplacian

distribution to allocate bits accordingly. However, the ex-

perimental work carried out by the author suggests that
the simpler method of truncation to the nearest integer

followed by decimation by an appropriate number of bits

provides better results. Naturally, fewer bits are allocated

to the lower levels of the pyramid than to the upper lev-

els. A different method for quantization is proposed in
[3]. These authors suggest that using the L 1 rather than

the L 2 norm is more compatible with the human visual

perception, and their proposed technique of quantization

method is based on minimizing the errors in the former
norm.

While a definitive comparison between the DCT-based

algorithms and wavelet transform techniques is premature,
the tests done by the author suggest some important differ-

ences. At higher compression ratios, for example at greater

than 25:1, the blockiness in the DCT-based techniques be-

comes very visible. With the wavelet transform used in the

tests, the edges were not as clearly defined as those using
the DCT-based techniques, but no blockiness was visible.

The rms error of the Joint Photographic Experts Group

(JPEG) DCT-based algorithm was smaller than that of
the wavelet transform method, but visual preference is not

necessarily reflected by the mean square error. Figure 5

shows an original image (peppers) on the upper left cor-

ner. The images on the upper right and lower left were

compressed using the wavelet transform. The compres-

sion ratios were 10:1 and 30:1, respectively. The image in

the lower right was obtained by the application of the stan-

dard DCT-based JPEG algorithm. Its compression ratio is
30:1. The rms error for the lower left image is about 11.0,

and for the one at lower right it is approximately 7.2, even

though the blockiness makes it much worse than the one

at lower left. The rms error for the image on the upper

right is about 9.4. It should be pointed out that other

methods, such as fractal algorithms, may produce images
that are visually preferable to the DCT-based methods for

high compression ratios.

The wavelet transform used in this work is the prod-
uct of a one-dimensional algorithm with itself; that is, es-

sentially separable into one-dimensional algorithms. It is

possible to modify this method to make the horizontal and

vertical directions more coupled so that the algorithm be-
comes truly two-dimensional. The visual effects of such

modification are unclear at this time. However, it is rea-

sonable to expect improvements in the clarity of the edges

if such techniques are properly employed.

IV. Conclusion

The wavelet transform method provides a new approach

to image compression. Although this approach has not

performed as well as the DCT-based algorithms in terms of
the rms error, it appears to have certain visual advantages

especially regarding blockiness.
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Table1.Entropiesofthe
waveletcoefflclents.

Level Entropy

DD-1 2.5

SD-1 3.2

DD-2 2.8

SD-2 3.8

DD-3 3.4

SD-3 4.5

DD-4 4.o

SD-4 5.0

SS-4 6.4
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I. Introduction and Summary

Huffman coding is optimal (in the sense of minimiz-
ing average codword length) for any discrete memoryless

source, and Huffman codes are used widely in data c_om_-
pression applications. In many situations it would be use-

ful to have an easy way to estimate the longest Huffman
codeword length for a given source, without having to go

through ttuffman's algorithm, but since there is no known

closed-form expression for the Huffman codeword lengths,

no such estimate immediately suggests itself. I-Iowever,

since the longest codeword will always be associated with
the least-probable source symbol, one way to address this

problem is to ask the following question: Ifp is the smallest

source probability, how long, in terms of p, can the longest

tIuffman codeword be? It turns out that this quantity, de-

In this article, the authors consider the following question about Huffman coding J .. -:-
which is an important technique for Compresslng_ta from a discret_ource. It'p _ :-- :
is the smallest source probability, how long, in terms of p, can the longest Huffman

codeword be? It is shown that if p is in the _ign_-O<--p-<-l/2,-and-ff K is tlie _-....... _ ......

unique indexsuch that I/FK+3 < p <_ I/FK+2, where FK denotes the Kth Fibonacci
number, then the longest Huffman codeword f6r a sburci who_se least pr-obabi[lity is _ "

p is at most K, and no better bound is possible. Asy-_p-tOtJcally, this ]mp_es th'_ _ :: _: :: :_-_:- :-:

surprising fact that for small values of p, a Huffman code's longest codeword can " :: :

be as much as 44 percent larger than that of the corresponding Shannon code.

noted by L(p), is easy to calculate, and so L(p) provides an
"easy estimate" of the longest ttuffman codeword length:

The formula for L(p) involves the famous Fibon_ci
num_=(/_,)_>0, which are defined-recursively, as fo]10ws:

F0 = 0,/'1 = 1, and Fn = Fn-I + Fn-_ for n > 2 (1)

Thus, F2 = 1,/'3 = 2, F4 = 3, Fs = 5, Fs = 8, etc. The

Fibonacci numbers and their properties are discussed in

detail in [1, Section 1.2.8]. Here is the main result of this

article. (Note that since the definition of L(p) assumes p
to be the smallest probability in a source, p must lie in the

range 0 < p _< 1/2.)
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Theorem 1. Let p be a probabilityin the range 0 <

p _ 1/2,and letK be the unique index such that

1 1

FK+ < p-< (2)

Then L(p) = K. Thus p E (1/3, 1/2] implies L(p) = 1,

p e (1/5, 1/3] impies L(p) = 2, p e (1/8, 1/5] implies

L(p) -- 3, etc.

It is easy to prove by induction that the Fibonacci num-

bers satisfy the following inequalities:

¢.-2 < F. < ¢.-1 for n >_3 (3)

where _ = (1 +vr5)/2 = 1.618... is the "golden ratio." By

combining inequality (3) with Theorem 1, one sees that

log¢ 1 _ 2 < L(p) < Iog_1 (4)
P P

which, in turn, implies that

lim L(p)
-0 = i

Since log¢ z - (log 2 x)/(log_ _b) = 1.4404 log s x, Eq. (5)
implies the surprising fact that for small values of p, a Huff-

man code's longest codeword can be as much as 44 percent
larger than that of the corresponding (in general, subopti-

mal) Shannon code [2, Chapter 5], which assigns a symbol

with probability p a codeword of length _log_ _].

Theorem 1 is closely related to a result of Katona and

Nemetz [4], which identifies the length of the longest pos-

sible Huffman cod.eword for a source symbol of probability

p (whether or not p is the smallest source probability).

Denoting this quantity by L*(p), their result is as follows:

Theorem 2. (Katona and Nemetz [4]) Let p be a prob-

ability in the range 0 < p < 1, and let K be the unique
index such that

1 1

FK+--< p < (5)

Then L'(p) = K. Thus, p e [1/2, 1) implies L,(p) = 1,
p e [1/3, 1/2) implies L*(p) - 2, p e [1/5, 1/3) implies

L*(p) = 3, etc.

By comparing Theorems 1 and 2, one sees that L*(p) =

L(p) + 1 unless p is the reciprocal of a Fibonacci number,

in which case L*(p) = L(p). x

li. Proof of Theorem 1

The proof of Theorem 1 is in two parts. First, it will be

shown that ifp > 1/FK+3, then in any Huffman code for

a source whose smallest probability is p, th e longest code-
word length is at most K. In fact, a considerably stronger
result will be proved. The class of efficient prefix codes

will be defined, and it will be shown that any ttuffman

code, and in fact any optimal code for a given source, is

efficient. Then it will be shown that if p > 1/FK+3, in any

efficient code for a source whose smallest probability is p,

the longest codeword length is at most K. In the second

half of the proof, it will be shown that ifp < 1/FK+2, there
exists a source whose smallest probability is p, which has

at least one ttuffman code whose longest word has length

K. As an extension, it will be seen that if p < 1/FK+2,

there exists a source whose smallest probability is p, and

for which every optimal code has the longest word of length

K. (If p = 1/FK+_, however, there is no such source.)

Now comes the definition of efficient prefix codes, which

is best stated in terms of the associated binary code tree

(see Fig. 1). Each source symbol and its corresponding

codeword is associated with a unique terminal node on
the tree. Also, each node in the tree is assigned a proba-

bility. The probability of a terminM node is defined to

be the probability of the corresponding source symbol,
and the probability of any other node of the code tree
is defined to be the sum of the probabilities of its two
"children." The level of the root node is defined to be

zero, and the level of every other node is defined to be

one more than the level of its parent. Two nodes de-
scended from the same parent node are called siblings.

Figure 1 shows two different code trees for the source

[3/20, 3/20, 3/20, 3/20,8/20]. The tree in Fig. !(a) :cor-

responds to the prefix code {000,001,01, 10, 11}, and the

tree in Fig. l(b) corresponds to {000,001,010,011, 1}.

Definition. A prefix code for a source S is efficient if

every node except the root in the code tree has a sibling,

and if level(v) < level(v') implies p(v) >_p(v').

1 In fact, however, if one were to make a subtle change in the deft-
nition of L(p), this special case would disappear. The change re-
quired is to define L(p) as the minimum maximum Huffman code-
word length over all Huffman codes for a source with p as the least
probability, where the outer minimum is over MI Huffman codes
for a given source.
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GaIIager [3] noted that every Huffman tree is efficient,
but in fact it is easy to see more generally that every op-

timal tree is efficient. This is because in an ine_icient

tree, with nodes v and v' such that level(v) < level(v')

but p(v) < p(v_), by interchanging the subtrees rooted

at v and v _, one arrives at a new code tree for th=e same
source, whose average length has been reduced by ex-

actly (level(v')- level(v))(p(v')- p(v)). However, it is
not true that every efficient code is optimal. Indeed,

Fig. 1 shows two different efficient code trees for the source

[3/20, 3/20, 3/20, 3/20, 8/20]. The code in Fig. l(b) is op-
timal, but the one in Fig. l(a) is not.

Theorem 3. Ifp > 1/FK+3, then in any efficient prefix
code for a source whose least probability is p, the longest

codeword length is at most K.

Proof: The contrapositive will be proved, i.e., if p is the

least probability in a source that has an efficient prefix

code whose longest word has length > K + 1, then p <

I/FK+3.

Thus, suppose that S is a source whose least proba-
bility is p and that there is an efficient prefix code for S

whose longest word is of length > K + 1. In the code
tree for this code, there must be a path of length K + 1

starting from the terminal node, which corresponds to the

longest word and moves upward toward the root. This

path is shown in Fig. 2 as the path whose probabilities are

p0,pl,--. ,PK+I. Since the code is assumed to be efficient,
each of the vertices in this path (except possibly the top

vertex) has a sibling; these siblings are shown in Fig. 2 as

having probabilities q0, ql,..., qK. Now one can prove the

following:

Pi >_ Fi+2p for i = 0, 1 .... , K + 1 (7)

The proof of (7) is by induction. For i = 0, (7) merely says
that P0 > P, which is true since P0 -" P, by definition. Also,

note that q0 > P since p is the least source probability.

Thus, pl = po + qo >_ p + p = 2p = F3p, which proves

(7) for i = 1. For i > 2, one has Pi = pi-1 + qi-k: But
pi-1 > Fi+lP by induction, and qi-I :> Pi-2 since the
code is efficient (qi-1 is a higher level node than Pi-2)-

Thus, one has qi-1 _> Pi-2 >_ rip by induction, and so

Pi = pi-1 + qi-1 > (Fi+l + Fi)p = Fi+2p, which completes

the proof of (7).

Now consider the probability PK+I. On one hand,

PK+I < 1; but on the other hand, PK+I >_ FK+3P, by

(7). Thus, p < 1/FK+3, which completes the proof. O

Theorem 4. If p < 1/FK+_, there exists a source
whose smallest probability is p and which has a Huffman

code whose longest word has length K. If p < 1/FK+2,

there exists such a source for which every optimal code has

a longest word of length K.

Proof: Consider the following set of K + 1 source proba-
bilities:

p FI F_ Fx-1 FK+I ]' F_:+_'FK+2' .... FK+2' FK+2 P (8)

Note that p is the minimal probability for this source, since

p < 1/FK+z = F1/FK+2. Now, consider the code tree for

this source depicted in Fig. 3, which assigns the source

probability p a word of length K. This tree is in fact a
Huffman tree for these probabilities, i.e., a code tree that

arises when Huffman's algorithm is applied to the source

of (8). To see this, one first proves that the internal vertex
probabilities pi in Fig. 3 are given by the following formula:

Pi "- Fi+2/FK+_ - h, for i = 0, 1,..., K - 1 (9)

PK = 1 (1o)

where h = 1/FK+2 --p.

To prove (9), one uses induction. For i = 0, by def-
inition: p0 -- p = 1/_b'_K+2 h = F2/$'K+I - h. F6_

i >_ 1, one then has pi -" pi-1 + FI/Fx+2 "- (F/+I/FK+I -
h) + Fi/FK+2 = Fi+2/FK+2 - h. To prove (10), note

that Px = PK-1 + (FK + 1)/FK+2 -- p. But from (9),

PK-1 = (FK+I/FK+2 -- h), so that PK = (FK+I/FK+_ -

h) + (FK/FK+_ + h) = FK+2/FK+2 = 1. Thus the prob-

abilities in (8) sum to one.

It now follows that the tree in Fig. 3 is a Huffman tree,

for from (9) one Sees that at the ith stage (i = 0, ::-, K-I),

the "collapsed" source consists of the probabilities

[F/+2/FK+ 2 -- h, Fi+l/FK+2, Fi+2/rK+2, . .. ,

- :FK'IlFK+2, FK/FK+2 "b hi (11)

Plainly the two leftmost probabilities in (11), namely

Fi+_/FK+2 - h and Fi+I/FK+2, are two of the smallest

probabilities, and so the tree of Fig. 3 is a ttuffman tree,
as asserted.

Finally, note that if h > 0, i.e., if p < 1/Fx+2, that

the leftmost two probabilities in (11) are nniquely the two
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smallest probabilities in the list, so that the ttuffman tree

in Fig. 3 is the unique ttuffman tree for the source of

Eq. (8). And since the set of codeword lengths in any

optimal code is the same as the set of lengths in some
Huffman code, the last statement in Theorem 4 follows.

[3

By combining Theorems 3 and 4, one obtains a result

that is stronger than Theorem 1.

Example I: Let p = 2 -8. Then l/F14 -" 1/377 < p <

1/Fls = 1/233, and so by Theorem 1, L(2 -s) = 11. More

concretely, Theorem 3 shows that no Huffman code for a
source whose smallest probability is 2 -s can have a code-

word whose length is longer than 11. By Theorem 4, on
the other hand, every optimal code for the source

proofs are entirely similar to tile proofs of Theorems 3
and 4.

Theorem 5. Let S be a source containing a symbol a

whose probability is p. Ifp > 1/FK+2, then in any efficient

prefix code for S, the length of the codeword assigned to

the symbol a is at most K.

Theorem 6. Let p < 1/FK+I. Then there exists a

source S containing a symbol a whose probability is p, and

such that every optimal code for S assigns a a codeword

of length K. Explicitly, one such source is given by

= 1 p- e,p, FK+I' F_,'+I"'" FK+I

(13)

2_ 1 1 2 3 5 8 13 21'233' 233' 2"_' 2-_' _'3' 233' 233' 233'

34 55 90 2_81 (12)J233' 233' 233

has a longest word of length 11. O

III. Extension of the Katona-Nemetz
Theorem

In this section, two theorems are stated without proof.

When taken together, they yield a result that is slightly

stronger than Katona and Nemetz's Theorem 2, The

where e is any real number such that 0 < e < 1/FK+2 --p.

Example 2: Let p = 2 -8 . Then 1/F14 = 1/377 < p <

1/Ft3 = 1/233, and so by Theorem 2, L*(2 -s) = 12. In-
deed, by Theorem 6, every optimal code for the source

1 _2_ 8 1 1 2 3 5 8- e, 2 -8 , 233' 233' 233' 233' 233' 233'

13 21 34 55 89 1

23"-3' 233' 233' 233' 233 -be J (14)

where 0 < e < 1/233 - 1/256, assigns the symbol with
probability 2 -s a codeword of length 12. O
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(a) (b)
1 1

3[20 3/20 3[20 3[20 3[20 3/20

Fig. 1. Two code trees for the source [3/20, 3120, 3/20, 3120, 3120]:
(a) a tree that Is efficient but not optimal (average length = 2.3) and
(b) s tree that Is optimal (average length = 2.2).

LEAST-
PROBABLE
SOURCE
SYMBOL

PK+I

P2 _ qK-1

\q2

Pl

Po

Fig. 2. A portion of an efficient code tree, In which the longest
codeword has length > K+ 1. P0 Is the least source probability.

PK

PK-I_

F2/FK+2

P = PO' FI[FK÷2

Fig. 3. A Huffman code tree for the source in (8). Its smallest

probablUty Is p, where p _ IIFK+ 2, and Its longest codeword
length is K.
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In this article, the performance achieved by some specific data compression al-

gorithms is compared with absolute limits prescribed by rate distortion theory for
Gaussian sources under the mean square error distortion criterion. These results

show the gains available from source coding and can be used as a reference for the

evaluation of future compression schemes. Some current schemes perform well, but
there is still room for improvement.

I. Introduction

The theoretical limits on the performance of source and

channel coding are welt known for several source and chan-

nel models [1,2,5]. In this article, the authors calculate
the theoretical limits for one- and two-dimensional Gauss-

Markov sources used as models for planetary images. The

formulas underlying these calculations are well known; the
aims in this article are first to collect and graphically dis-

play these results, and then to compare them with the

performance of specific data compression algorithms.

These results show the gains available from source cod-
ing and can be used as a reference for the evaluation of

present an d future compression schemes. Theseresults
also suggest that large improvements in information trans-

mission in future missions can be achieved by advanced
source coding.

II. Theoretical Rate Distortion Limits

The authors consider time-discrete continuous-

amplitude sources that produce identically distributed

output samples x governed by a probability distribution

P(x) with density p(x). Each Source sample x is recon-

Structed after source coding and cleco-ding into a recon-
structed sample y. The accuracy of reproduction is mea-

sured by a nonnegative function d(x, y) = (x- y)2 called a
squared error distortion measure. The aver_age distortion

/V--1 2

D on a sequence of N samples is (I/N))"_i=0 (xi - Yi)
and is called mean square error (MSE) distortion.

A. One-Dimensional Gausslan Sources

For a Gaussian memoryless source, p(x) is the Gaussian
probability density with variance 0"_, and the rate distor-

tion function for MSE distortion is [1]

1 a_ 2
R(D)=_log 2-_-, 0_<D<a= (1)

where the rate R is measured in bits/sample.

A time-discrete stationary Gaussian source with spec-
tral density function

m
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where ¢(n) is the autocorrelation function, has a rate dis-

tortion R(D) given in the parametric form [1]

T[

D(0) = _ J_,
rain [_, (I) (o3)] dcd (3)

and

l f: [ 1, _(_)lR(e) = 2-; , max 0, 3 _og2T] d_ (4)

where 0 is the parameter.

Consider the special case of a first-order Gauss-Markov

source of variance q_ with samples

xi =pxi-l+wi (5)

where {wi} is an independent, identically distributed
(i.i.d.) zero-mean Gaussian sequence with variance a'_ =

a_(1 - p2). This source will be called the one-dimensional
causal model, or 1DC model, and is characterized by an

exponentially decaying memory given by the autocorrela-
tion function

¢(n) = _ hi", 0 < p < 1 (6)

which gives

_(1- p) (7)
(I)(w) = 1 - 2pcosw +p_

Incidentally, the power spectral density function is always

easy to find, given the definition of the model that gener-

ates the samples {xi), as described in [3].

B. Two-Dimensional Gausslan Sources

The rate distortion function R(D) for a two-

dimensional Gaussian source is given by [7]

lffD(0) = (_)2 min[0, (_(¢al,w_.)]dwldw2 (s)

an d

(9)

A two-dimensional Gauss-Markov (autoregressive) causal
source is defined by

xij = plzl-lj + p2xi,j-1 + pi,2xi-l,j'l + wij (10)

where {wi,j} is a two-dimensional i.i.d, zero-mean Gaus-

sian sequence with variance a_. If Pl,2 = -PIP2 is chosen,

the source model in Eq. (10) becomes separable and will
be called the two-dimensional causal (2DC) model. Then

the variances of the sequences {wi,i } and {xij } are related
by a_ -" a_(1 - p_)(1 - p_), and

• (_,,_) =
a_(i-p_)(1 -p_)

(1 - 2pi coswl+p_)(1 - 2p_ cosw2+p_)

(11)

This causal separable model has an autocorrelation func-

tion ¢(nl, n2) given by

¢(nl,n_)=a_lpll_'tp2[ "" (12)

which displays an undesirable nonisotropic behavior, as
discussed later in tiffs section.

Figure 1 shows the rate distortion functions for the ]DC
model and the 2DC model with Pl = P_ -- P for several

values of p. The values of the correlation coefficient p
have been chosen to illustrate the effect of correlation on

the rate necessary to represent the source. At low distor-

tion, these values give rate distortion curves spaced by an
integer number of bits from the curve for the memoryless

source. Each successive correlation value in Fig. 1 repre-

sents (asymptotically for low distortion) one extra bit of
information that can be extracted from each sample's cor-

relation with its neighbors, and thus need not be spent to

represent the source.

A more realistic model for images, the two-dimensional

noncausal (2DNC) model, is given by

Xi,j -" a(Xi,j-1 + "_i,j+l "+ Xi-l,j "_ _gi+l,j) + Wl,j,

I_l< 1/4 (13)

=
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This is a noncausal model with a power spectral density

o_
a(w"w:) = il -" 2.(coswx + cosw._)] _

2 _r_q, andwhere ow =

(14)

(1)2/_r/:
0_ 1 1

- _ . _ [1- 2c_(coswl + cosw2)] "_

The autocorrelation of this model was computed numeri-

cally, and it was found to behave ahnost isotropically at

small displacements. Figure 2 shows a comparison of the
autocorrelations for the causal and noncausal models for

correlation coefficients p that are representative of typical

planetary images. The function

¢(nl, n2) = a_lpl v_? + 'q (16)

is an example of exactly isotropic autocorrelation [4], but
the authors do not presently know a model that realizes
such an autocorrelation.

The qualitative behavior of the autocorrelation func-
tions for the 2DC and 2DNC models is illustrated in the

contour plots of Fig. 3. Note that for small values of nl

and n2 the contours for the 2DNC model are nearly circu-

lar, indicating that this model is nearly isotropic for small
displacements.

The rate distortion functions for the 2DC and 2DNC

models are'shown in Fig. 4 with the same parameter values

used in Fig: 2. SinceHle_u-t6cbrrelation function t'0r-the
2DNC model decays more rapidly than for the 2DC model

when both models have the same value of ¢(1, 0) fixed, the
rate distortion function of the 2DNC model lies above that
of the 2DC model.

!11.Quantization

Given a time-discrete continuous amplitude source, the

simplest form of data compression is scalar (sample-by-

sample) quantization. An M-level quantizer is a device
with an input that can assume any real value z and an

output y that can assume only M values {L1, ..-, LM}.
Usually, the number of levels is a power of 2, so that a B-bit

quantizer has 2 s levels. Given the quantization thresholds

{T1, ..., TM-1}, the output is y = L_ if and only if
Tk-1 < z _< Tk, k = 1, ..., M, where To = -oo and

TM = +oo. The input-output characteristic of a four-

level quantizer is shown in Fig. 5.

Let {zl, ..., ZN} be a sequence of random samples

generated by a source and let {yl, "", YN} be the corre-

sponding quantized samples produced by an M-level quan-

tizer. Then the quantized sequence has rate B = log 2 M
bits and MSE distortion

1 N

D _ _ Z E[(xi - yi) 2] = E[(xi - yl) 2]
i=1

M Wk

ZfTk (x-- Lk)2p(x)dx
k=l -a

(17)

where p(z) is the probability density of the source. There-

fore, the M-level quantizer realizes the point (B,D) on

the rate distortion plane. The optimum quantizer, which

achieves the lowest possible MSE for given source statis-

tics, has been determined in terms of the reproduction

levels {Lk} and the thresholds {Tk} using an Optimization
technique developed by Lloyd and Max in 1960. If the

quantizer iS restricted to liave equally Spaced thresholds,

i.e., a uniform quantizer with constant step size Tk - Tk-1

is considered, a slightly lfigher distortion_for Correspond:
ing rates is obtained, as shown in Fig. 6 for the Gaussian

memoryless source. An optimum uniform quantizer is a
uniformqu-antizer that minimizes the MSE distortion.

Improved rate performance can be obtained by using

entropy coding after _tuantization, since the probability

P_ = Pr(y = Lk) = fT___ p(z)dze tha t a quantizer output

will be Lk is not a constant (except for degenerate cases),

and therefore the entropy of the quantized samples y is
strictly less than B

N

H(y) = - E Pk log_ Pk < B (18)
k=l

The entropy coded performance of the two quantizers con-

sidered above is also shown in Fig. 6, where it is apparent
that the advantage of the Lloyd-Max quantizer over the

uniform quantizer disappears after entropy coding. Re-
sults on entropy coded quantizers were obtained from the

literature [3] and reproduced by computer _Jmulation.

Instead of quantizing individual source samples, one

could collect a whole vector x = (za, .--, zn) and then
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vector quantization. The performance of vector quantiza-
tion methods will be discussed in a future article.

If one replaces the memoryless Gaussian source with
a one-dimensional Gauss-Markov source with correlation

coefficient p between successive samples (1DC model), a
simple method to exploit the source rhem0ry is to take

differences between successive quantized samples and then

apply entropy coding. The performance of such a one-step

predictor on samples produced by an optimum uniform

quantizer is shown in Fig. 7.

The proposed Joint Photographic Expert Group

(JPEG) image compression standard [6] uses, in its base-

line version, discrete cosine transform (DCT) processing,
quantization, and Huffman coding. The performance of

this compression scheme on the 2DC model has been evalu-

ated and compared with the rate distortion limits in Fig. 8.
The performance of the entropy coded one-step predictor

on the 2DC model is also shown in Fig. 8 for compari-

son. For most science purposes, a typical planetary image

is considered acceptable at normalized distortions D/o'_

up to approximately 10 -2, corresponding to about 5 gray

......... _. ..... levels of rms error out of 256 levels for typical images. In
in practice, the continuous amplitude source is initially thls range of interest, the JPEG scheme is superior to the

quantized to B bits, typically 8 bits. In the following dis- entropy coded predictor, but the theoretical limit leaves
cussion of practical compression algorithms for images, it ample space for improvements. The performances of the

is assumed that the source has been quantized to 8 bits JPEG scheme and the entropy coded one-step predictor

per sample by an optimum uniform quantizer, on the 2DNC model are compared in Fig. 9.

IV. Comparisons of Practical Compression
Algorithms and Theoretical Limits

The performance of specific compression algorithms de-

signed for 8-bit input data can be measured experimentally

by generating in software a Gauss-Markov random field ac-

cording to one of the models described in Section II and by

quantizing the resulting samples to 8 bits with an optimum

uniform quantizer.

The entropy coded one-step predictor described in the

previous section is a simple example of a practical com-

pression scheme, and it is essentially the image compres-

sion scheme used in Voyager, where the source was initially

quantized to 8 bits by the camera. The point denoted by 8
in the rate distortion plot of Fig. 7 represents the so-called

lossless performance of such a scheme. This scheme per-

forms reasonably well at low distortions (as compared with

the rate distortion function) when it is applied to the one-

dimensional source IDC. One will see that its performance

is no longer attractive when applied to two-dimensional
sources 2DC or 2DNC.

V. Conclusion

The theoretical limits computed in this article and the

experimental results on source models verify the gains

available by source coding, and can be used as a refer-

ence for the evaluation of present and future compression

schemes. These results also suggest that large improve-
ments in information transmission in future missions can

be achieved by advanced source coding.

Mathematical source models studied in this article in-

elude both relatively simple one- and two-dimensional
causal Gauss-Markov models and a two-dimensional non-

causal model whose nearly isotropic correlation function

more closely resembles that of real images.

More work is necessary in relating the mathematical

models to actual image sources, in evaluating the per-
formance of other practical compression schemes, and

in understanding the actual quantlzation performed in
the camera.

197



References

[1] T. Berger, Rate Distortion Theory, Englewood Cliffs, New Jersey: Prentice Hall,
197!.

[2] S. Dolinar and F. Pollara, "The Theoretical Limits of Source and Channel Cod-

ing," TDA Progress Report 42-102, vol. April-June 1990, Jet Propulsion Labo-

ratory, Pasadena, California, pp. 62-72, August 15, 1990.

[3] A. K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, New
Jersey: Prentice Hall, 1989.

S

_: :-'-:_: ::::: [4] N. S.:_ayant'and P._ No_, _Digita[Coding of:Waveforrns, Englewood Cliffs, New

Jersey: Prentice Hall, 1984.

[5] R. J. McEliece, The Theory of Information and Coding, Reading, Massachusetts:

Addison Wesley, 1977.

[6] F. Pollara and S. Arnold, "Emerging Standards for Still Image Compression: A

Software Implementation and Simulation Study," TDA Progress Report 42-104,

vol. October-December 1990, Jet Propulsion Laboratory, Pasadena, California,
pp. 98-102, February 15, 1991.

[7] J. A. Stuller and B. Kurz, "Intraframe Sequential Picture Coding," IEEE Trans-

actions on Communications, vol. COM-25, no. 5, pp. 485--495, May 1977.

-- . _ . =

=

198



100

10-1

10-4

10-5

10-6

0 1 2 3 4 5 6 7 8 9 10

RATE R, BITS/SAMPLE

Fig. 1. Rate distortion functions for 1DC and 2DC models.

(s) (b)

n 1 n 1

0 1 2 0 1 2

0 1.000 0,900 0,810 0 1.000 0.904 0,772

n 2 1 0.900 0.810 0329 n2 1 0,904 0.845 0.737

2 0.810 0.729 0,656 2 0372 0.737 0.660

P=Pl =P2 =0'9 a = 0.245

n 1 n 1
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n2 1 0,980 0.960 0.941 n 2 I 0.974 0,956 0.916

2 0.960 0.941 0.922 2 0.929 0.916 0.884

P = Pl = P2 = 0.98 a = 0.249

Fig. 2. Two-dimensional normalized autocorrelatlon functions

_(nl, n2)/O'2x: (a) 2DC model and (b) 2DNC model.

(a) 2DC MODEL, p = 0.9 (b) 2DNC MODEL, a = 0.245

7 f/I .... t'X_ I 7
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n 1 n 1

Fig. 3. Contour plots: (a) causal and (b) noncausal autocorrelatlons.
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Cascaded Convolutional Codes

F. Pollara and D. Divsaiar

CommunicationsSystemsResearchSection

I. introduction

Due to the hardware design of Galileo's Command and Data Subsystem (CDS),
the channel code usable in an S-band (2290-2300 MHz) mission must include the
NASA standard (7,1/2) convolutional code. Galileo's hardware encoder for the

(15,1/4) code is not usable in S-band mode. However, the need for higher coding
gain dictates the use of long constraint length convolutional codes. Theoretical

results show how a large subclass of such codes is realizable by using a software
encoder in the CDS cascaded with the hardware encoder for the NASA standard
code.

Several options for improving Galileo's telemetry down-
link performance at Jupiter if the high-gain antenna fails to

deploy were evaluated in the Galileo Options S_udy 1 spon-

sored by the Telecommunications and Data Acquisition

(TDA) Office. Specific recommendations were developed
in the subsequent Galileo S-Band Mission Study. 2

In this article, the authors describe one of the proposed

options to improve Galileo's S-band (2290-2300 MItz)
downlink performance based oa the use of advanced long

constraint length convolutional codes.

The Command and Data Subsystem (CDS) of Galileo
provides two output paths to the Modulation/Demodu-

lation Subsystem (MDS): a low-rate telemetry output

(40 bps) and a high-rate telemetry output (10 bps to
134.4 kbps). The low-rate output is directly connected

to the low-gain antenna path. The high-rate output may

use the low-gain antenna only through a hardware (7,1/2)
convolutional encoder, as shown in Fig. 1. Galileo's hard-

ware encoder for the (15,1/4) code is not usable in S-band
mode.

One of the options to improve Galileo data return

through its low-gain antenna is to use advanced channel

coding techniques, including long constraint length convo-
lutional codes. This could be achieved by uploading a soft-

ware (15,1/4) encoder in the CDS and using the low-rate

output connected to the S-band telemetry path. However,

the encoder output rate would be fixed to 40 symbols per
second, which is not compatible with the desire for higher
rates.

1L. Deutsch, Galileo Options Study (internal document), Jet
Propulsion Laboratory, Pasadena, California, November 5, 1991.

2L. Deutsch aa_d J. Mar L Galileo S-Band Mission Study Final Re-
port (internal document), Jet Propulsion Laboratory, Pasadena,
California, March 2, 1992.

The only way to send S-band telemetry at higher rates

is to use the high-rate CDS output, which then forces the

use of the hardware (7,1/2) convolutional encoder. There-

fore, methods are to be sought for realizing long constraint

-=
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length convolutional codes by cascading a software encoder
with the existing hardware (7,1/2) encoder.

II. Cascaded Convolutional Codes

The best solution would be to find a method for bypass-

ing the (7,1/2) hardware encoder by realizing an inverse
software encoder preceding it. Any desired code would
then be realizable in software.

It is well known that a noncatastrophic encoder has a

feed-forward inverse [1]. Denote N as the (7,1/2) hardware

encoder on Galileo with generator polynomials go and gl,
and N -1 as its inverse. Then it is possible to undo the

operation of N, as shown in Fig. 2, where M is a multi-

plexer and the relative symbol rates are shown below each
connection.

For the (7,1/2) standard NASA code having generator
polynomials go =l+z+z 2+z 3+z 6 andgl =l+z _+
x 3 + z 5 + z s, the feed-forward inverse is delay-free, since

the greatest common divisor (GCD) (g0,gl) = 1, and is
given by f0 = l+z+z 2+z 3+z 4 and fl = z 2+z 4,

since GCD (9o,91) = g0f0 + gill = 1. The feed-forward

inverse can be used to recover the information sequence a
from the encoder output y. This inverse cannot be used

in the Galileo CDS configuration since the output of the
hardware encoder is not accessible.

However, the problem of constructing a preinverse of N
such that the sequences w and y are identical, as shown

in Fig. 3, has no solution in general. This is clear from

an information-theory point of view, since w can be any

binary sequence while the sequence y is restricted to being
a code word of the specific code in use.

A. Structure and Design of Cascaded Codes

An alternative method for realizing a longer constraint

length code with some form of processing preceding the

hardware encoder is shown in Fig. 4.

The structure shown in Fig. 4 is just an example of one

of the possible structures for obtaining a rate 1/4 code

equivalent to code D, shown in Fig. 5. This structure
cannot obtain all desired codes but just a certain subclass
of codes.

A simplified strategy for designing a (15,1/4) cascaded
code is to assume that a code C specified through f0 and

fl is given and then compute the resulting equivalent code
specified by ho,hl,h2 and h3. One has

yo(_)= a(_)/o(_)

y1(_) = a(_)/l(_)

z(_) = yo(_2)+_yl(_ _)

_0(_) = z(_)g0(_)

which gives

w(z) = a(z4)[.fo(z 4) + z2fx(Z4)][go(z2) + Zgl(Z2)]

and, from Fig. 5,

q(_)=s0(_4)+_sx(_4)+_%(_)+_%(_ _)

which gives

so(,)= _(,)ho(,)

sx(z) = a(m)hl(x)

s2(z) = a(z)h2(z)

,_(_) = _(_)h_(_)

q(z) -- a(2:4)[ho(z 4) + xhl(z 4) + x2h2(z4) + x3hz(z4)]

Since one wants

q(_) = w(_)

to hold, the condition becomes

[h0(z 4) + xhl(z 4) q-x2h2(z4) .q.-x3h3(x4)] (1)

L
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By expanding the left-hand side of Eq. (1) and identi-
fying terms of equal power, one can find polynomials ho,

hi, h2, and h3 satisfying this equation. The memory of a

convolutional code is the maximum degree among its gen-

erator polynomials. If one defines by mc, rnN, and mD

the memories of codes C, N, and D, Eq. (1) implies that

2rnD = 2me .-k mN

The same result applies to the respective constraint

lengths, since for these codes the constraint length K is
equal to m + 1.

B. Example

In this example, it is assumed that go, gl, fo, and ]1

are given and a solution for ho, hi, h2, and h3 is sought.

In particular, if one chooses

f0(X) = 1 + _9 + xll

fl(z) = 1 + z a + x 6 + x 9 +x 11

one gets h0 = 57347, hl = 71526, h2 = 02245, and h3 =
52207, in octal representation. This yields a rate r = 1/4

code with memory m = 14 (constraint length K = rn +

1 = 15), i.e., a (15,1/4) code with free distance d! = 30,

while the experimental code on Galileo had d! = 35 with
the same parameters. Searching over f0 and fl may yield
better codes.

A more explicit solution for Eq. (1) can be found by

defining go and gl in terms of their even and odd parts

(2)

Then it follows that

h0(x) =Yo(z)g0,(z)+z/l(z)goo(z)

hi(x) =fo( )gle(X) + zfl(x)glo(X)

h2(x)=fo(x)goo(X)+fl(x)goe(X)
(3)

As a verification, the results obtained in the previous ex-

ample can be reproduced by using this explicit solution.

Convolutional codes with high coding gain, includ-

ing the original (15,1/4) Galileo code, are such that the
first and last coefficient of all generator polynomials are

equal to 1, i.e., h_j = 1,i = 0,1,2,3,j = 0,14, where

hi(x) _- _4_ o hi,jxJ. Therefore, it is interesting to deter-
mine whether a cascaded code having this property exists.

From Eqs. (3) one has

fO,OgOe,O = ho,o

f0,0gle,O = hl,o

fo,ogoo,o + fl,0g0e,0 = h2,0

fo,oglo,O + fl,ogle,O = h3,o
==

where fi(z) a 11E =o and " 6= = _#=ogipJz • In
order to get hl,o= 1 and i = O,1,2,3,one should have

goe,o= g1_,o= 1 and goo,o--gio,O

Also, from Eq. (3) one has the following conditions, on the
coefficients of x 14

f0,11goe,3 h- fl,llgOo,2 = h0,14

fo,llgte,3 + ft,llgto,2 = ht,x4

fl,llffOe,3 --'_ h2,14

fl,llgle,3 = h3,14

In order to get hi,14 -- 1 and i = 0, 1, 2, 3, one should
have

g0e,3 "- gle,3 -- 1 and g0o,_ = glo,2

But, for the (7,1/2) NASA code, one has

.q0e,0--gle,0 : 1

g0o,O = landglo,0=0
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flOe,3 : gle,3 : 1

goo,2 : 0 and gio,2 - 1

which implies goo,o _ gto,O and goo,2 _ 91o,2. Thus, it

is impossible to get hl,o = 1 for all i's and/or hi,14 = i for
all i's.

possible

and

When the NASA code is used, the following is

ho,o = hl,o = 1 and h2,o 7_ h3,o

hoj4 # h1,14 and h2,14 -- h3,14 _- 1

III. Conclusion

A method is presented for realizing long constraint
length convolutional codes as a cascade of two codes in-

cluding the NASA standard (7,1/2) code. This analysis
shows that a large class of codes can be realized using this
construction method. These results led to the inclusion of

one of these cascaded codes in the design described in the

Galileo S-Band Mission Study.
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Binary Weight Distributions of Some
Reed-Solomon Codes

F. Pollara and S. Arnold

CommunicationsSystemsResearchSection

The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes
and their duals are computed using the MacWiIIiams identities. Several mappings

of symbols to bits are considered and those offering the largest binary minimum

distance are found. These results are then used to compute bounds on the sort-

decoding performance of these codes in the presence of additive Gaussian noise.
These bounds are useful for finding large binary block codes with good performance

and for verifying the performance Obtained by speCi_c sort-decoding algorithms
presently under development.

i. Introduction

Reed-Solomon (RS) codes are currently used in the

DSN as outer codes in a concatenated coding system. For

this application, they are decoded by algebraic techniques
using operations in the field over which the code is de-

signed. An (n, k) RS code C over GF(2 m) has codewords
of length n = 2m - 1 symbols, where each symbol is a
binary m-tuple. Let Ai be the number of codewords of

weight i in C, then the vector (Ao,AI,...,An) is called

the weight distribution of C, where the weight (Hamming
weight) of a codeword is the number of its nonzero coor-
dinates. The term "coordinate" assumes different mean-

ings depending on how one views the code: One may as-

sume that there are n coordinates, each having a value in
GF(2m), or one may consider the binary expansion of the

code, i.e., a binary (am, kin) code, where each coordinate

is a single bit. Hence, one may be interested in the symbol

weight distribution or in the binary weight distribution of a
(nonbinary) code. The latter depends on the specific sym-

bol to binary m-tuple mapping that was chosen. Which

of these distributions is of interest depends on which type

of decoding algorithm one plans to use, since weight dis-

tributions are essential in evaluating the error-correcting
performance of a code. The symbol weight distribution of

RS codes is well known [1] and can be used to find the per-

fo(mance of algebraic decoders working On S),m-_ols. The

full error-correcting power of a code is obtained when soft,

maximum-likelihood decoding is used, working directly
on unquantized vectors in the nm-dimensional Euclidean

space. Soft, maximum-likelihood decoding is superior to
its hard quantized version by more than 2 dB. Further-

more, the algebraic decoding techniques usually employed
for RS codes are not maximum-likelihood, but rather "in-

complete" decoding techniques with a nonzero probability
of decoding failure.

II. Binary Weight Distribution

This article focuses on evaluating the soft, maximum-
likelihood decoding performance of RS codes, and there-

fore one needs to compute the binary weight enumerators

of these codes. Such a task is a long-standing open prob-

K
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lem in coding theory due to its intrinsic complexity. How-
ever, approximate results have been found and results for

special classes of codes are known.

In general, one could think of using an exhaustive enu-

meration to find the numbers Ai by considering each code-

word. Unfortunately, such a method is limited to fairly

short codes, even on the most powerful computers avail-
able.

It was possible, for example, to find by exhaustive enu-

meration the weight distribution of a (21,15) binary code
obtained from the (7,5) RS code over GF(23), but it was

impractical to find that of a (60,36) binary code obtained

from the (15,9) RS code over GF(24), since it involves 236

codewords. Fortunately, a well-known result from coding

theory, the MacWilliams identities [2], can be used to re-

late the weight distribution of a code to that of its dual.
For example, one can find the binary weight distribution

of the (15,9) RS code from that of its (15,6) dual code, by

exhaustive enumeration on 2 24 codewords instead of 236
codewords.

Let the weight enumerator of a code C be defined as

Wc(x,y) = _=o Aix'*-iY i" Then the weight enumera-
tor of the dual code C ± of a binary code C is given by

[MacWilhams identity over GF(2)]

Wc_- = _-_Wc(z + y,z - y)

The generator polynomial of an (n, k) RS code C may
be written as

n-k

g(=)= 1-I(=-
i=1

together with the distribution of the (21,6) dual code as-

sociated with the (7,2) RS code. Results are shown for
different values of the parameter b that correspond to dif-

ferent assignments of symbols to binary m-tuples. These
are only a small subset of all possible assignments. The

weight distributions shown in Table 1 could be found by

exhaustive enumeration. For the (7,2) RS code, the largest

binary minimum distance found was 8, which is the best

possible according to [4]. For the (7,5) RS code the best re-

sult was drain = 4, which meets the Griesmer upper bound

[3].

The weight distribution of the (60,36) binary code was
found by using the MacWilliams identity for binary codes,

by a procedure shown in Fig. 1. First, the (15,6) dual

code was generated by using the parity check polynomial

of the (15,9) code as its generator. Then, the (15,6) code
over GF(24) was represented as a binary (60,24) code by

mapping symbols in GF(24) to binary 4-tuples by using

the representation of field elements given by the irreducible

polynomial 1 + x + x 4 over GF(2). The weight distribution

of the (60,24) code was found by exhaustive enumeration,

and finally, the weight distribution of the (60,36) code was
computed by the MacWilliams identity for binary codes.

The missing arrow in the block diagram of Fig. 1

stresses the fact that the resulting (60,36) code is not nec-

essarily related to its nonbinary parent, the (15,9) code, by

the same mapping relating the (15,6) code to the (60,24)
code. Table 2 shows the binary weight distributions for

some (60,24) codes derived from the (15,6) RS code, where
the largest minimum distance found was 13. It is known

[4] that at least one (60,24) code exists for some value of
dr*in in the range 16 to 18. Table 3 shows similar results

for the (60,36) code, where the largest minimum distance

found was 8. At least one (60,36) code exists for some

value of dr,in in the range 9 to 12 [4].

III. Performance Evaluation
where b can be chosen among the values 0,1,...,n- 1,

and a is a root of the primitive polynomial over GF(2) The soft decoding performance of block codes can be
defining the field GF(2r*). The parity check polynomial

h(=) of the code C

z" - 1

h(=)= g(=) = ]'I (=_
i=n-k+l

estimated by union bounding techniques. Specifically the
word error probability Pro is upper bounded by [5]

is the generator of the dual code C ±.

The binary weight distribution of the (21,15) binary
code derived from the (7,5) RS code is shown in Table 1

where R = kin is the code rate, M = 2k is the number

of codewords, and wj is the weight of the jth codeword.
The bound on Pw may be easily rewritten in terms of the

weight distribution Ai as
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Pw < _A_.= erfc

Similarly, for hard quantized, maximum-likelihood decod-

ing one can derive the union bound [5]

M

j=2

where p = ½erfc (_/_.

At a high signal-to-noise ratio (SNR), the approxima-

tion erfc(z) m e-rU/zv/_ may be used. Considering only

the contribution of codewords at drain, for soft decoding,

one has the approximation

1 e -us

where u = _/RdminEb/No. The probability of bit error
P_- may be approximated by Pb _ (drain/n) Pw, as shown

in Fig. 2.

The word error probability Pw can be related to the : Experience with Simulation results for smaller codes in-

average bit error probability Pb by observing that when at
least t+ 1 errors occur, the decoder produces an errroneous

codeword containing at least d,nin = 2t + 1 errors over n
symbols. Therefore, kdmin/n is the average number of
erroneous bits. Since in a codeword there are k bits, one

has

These bounds and approximations were used in Fig. 2

to evaluate the performance of the (60,36) binary code
derived from the (15,9) RS code with b = 0.

dicates that this approximation is usually close to the true

performance, while the bounds become loose at Pb larger
than 10 -6 .

iV. Conclusion

By computing the binary weight distribution of block

codes, it is possible to estimate their performance with

soft, maximum-likelihood decoding. This is useful in order
to find large binary block codes with good performance,

and to verify the performance obtained by specific soft-

decoding algorithms presently under development.
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weight

Table1.Binaryweightdlstrlbutlonsforthe(7,2)and(7,5)codes.

(21,6)CODE (21,t5)CODE
b=0, b=l b=2, b=6 b---3,b=4, b=5 b---0,b=4 b=l, b=2, b=3 b=5, b=6 ]

I

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 28 21 0

0 0 0 84 91 210

0 0 0 273 322 0

0 0 0 924 875 1638

3 0 0 1956 1809 0

0 21 14 2982 3129 6468

7 0 0 4340 4585 0

21 0 21 5796 5551 10878

21 0 0 5796 5551 0

7 42 21 4340 4585 9310

0 0 0 2982 3129 0

3 0 7 1956 1809 3570

0 0 0 924 675 0

0 0 0 273 322 651

0 0 0 84 91 0

0 0 0 28 21 42

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 1 0
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Table 2. Weight dlstributlons of the (60,24) code.

weight b=0, b=5 b=l, b=4 b=2, b=3 b=6, b=14 b=7, b=t3 b=8, b=12 b=9, b=11 b = 10

1 1 I 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 O 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 12

0 0 0 0 0 0 0 0

0 0 15 30 30 0 15 0

15 75 90 0 0 0 0 0

150 300 180 450 375 420 390 465

676 659 679 0 0 0 0 0

2250 2160 2490 5190 4125 4530 4500 4425

6555 5520 5505 0 0 0 0 0

14720 13220 13265 23420 28760 27485 27225 27240

29565 29760 29955 0 0 0 0 0

56304 60690 60795 135420 120585 121875 123000 120204

113255 115460 117455 0 " 0 0 0 0

318760 206520 205410 361140 408810 407565 407565 416895

342285 342180 339525 0 0 0 0 0

493400 531470 525185 1185680 1058015 1060295 1056500 1043975

758583 756000 753105 0 0 0 0 0

1079040 1000860 1018335 1778220 2016660 2016945 2020005 2034210

1277425 1275280 1281835 0 0 0 0 0

1414125 1519215 1509690 3387720 3046005 3040095 3043830 3017910

1665945 1669170 1666155 0 0 0 0 0

1831108 1719736 1717876 3013272 3414132 3418617 3413237 3450383

1665945 1669170 1666155 0 0 0 0 0

1414125 1519215 1509690 3403485 3040170 3041160 3041205 3012720

1277425 1275280 1281835 0 0 0 0 0

1079040 1000860 1018335 1779060 2015760 2015895 2018235 2027940

758583 756000 753105 0 0 0 0 0

493400 531470 525185 1176580 1061395 1059385 1058160 1057440

342285 342180 339525 0 0 0 0 0

218760 206520 205410 360300 409950 408615 409575 411105

113255 115460 117455 0 0 0 0 0

56304 60690 60795 138168 119493 122493 122148 119361

29565 29760 29955 0 0 0 0 0

14720 13220 13265 23780 28100 27035 26375 28070

6555 5520 5505 0 0 0 0 0

L
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weight b=O,b=5

2250

676

150

15

0

0

0

0

0

0

0

0

0

0

0

0

1

Table 2 (contd).

b=l,b=4 b=2, b=3 b=6, b=14- b=7. b=13 b=8, b=12 b=9. b=11 b= 10

2160 2490 4890 4305 4245 4755 4350

859 679 0 0 0 0 0

300 180 390 525 495 465 480

75 90 0 0 0 0 0

0 15 20 20 65 30 30

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 0 0 0

weight

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

Table 3. Weight distributions of the (60,36) code.

b=O. b=5 b=1, b=4 1>=2,b=3 b=6, b=14 b=7.1>=8, b=12 b--9, b=11 b = 10 b = 13

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 60 0 0 15 0

105 36O 27O 105

66O0

9135

105

765

75

945

135

1065

6O

1005

8067 9012 4350 4470 4500 4380 4605

0 0 0 20940 21045 20655 19995 20505

171290 170045 166730 84250 84370 84360 85950 84955

0 0 0 307620 308790 306720 310305 306690

2051130 2063850 2069655 1036980 1029780 1033080 1025820 1025910

0 0

17857290 17841435

0 0

110247955 110242255

499868640 499744149

3166OO60 3169396 3172656 3163509 3171106

17827110 8879100 8926260 8909250 8920440 8933025

0 23084220 23077425 23080_95 23067975 23087925

110291800 55057350 55138110 55169540 55153100 55148985

121876260

24888O3O9499677249

121900185

249779349

121870485

249773439

121962285

249831315

121868505

249692244
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Table3(contd).

weight b=O.b=5 b=l,b=4 b=2,b=3 b=6,b=14 b=7,b=8,b=12 b=9,b=11 b=lO b=13
475934000475793915475896440
843841440843707280844133640

0 0 0
168654540016874295601687309875

0 0 0
429996009042973375204297910160

0 0 0
8326857870833180Q6708330907000

0 0 0
12370476540i'236363945012364329360

0 0 0
140914484121409687(726814098595918

0 0 0
123702883651236379681512364040385

0 0 0
832705323083315951108331101280

475905260475911560
84694488O843913200
13938889201393820040
21404960502148328210
30943993683094425258

..... ®==

4181824860 41 68545740

1393856400

2148448550

3094374858

41 68496360

139393335O

2148756230

3094295130

4165579800

1393917240

2148052240

3094397658

4166607690

5245474360 5245577050 5245564790 5245776110 5245426450

6158040345 6180719145 6180621765 6182602565 6181074915

6821742120 6821681060 6821687280 6821545530 6821775660

7048404138 7050221828

6821545530 6821775660

6182602665 6181074915

7076641208 7050800888 7050973648

6821742120 6821661060 6821687280

6158040345 6180719145 6180621765

5245474360 5245564790 5245776110 5245426450

4166496360 4165579800 4166607690

5245577050

4181824860 41 56545740

0 0 0 3094399368 3094425268 3094374858 3094295130 3094397658

4299922280 4297448770 4297957910 2140496050 2148328210 2148448550 2148758230 2148052240

0 0 0 1393888920 1393820040 1393856400 1393933350 1393917240

1686443640 1687462200 1687212030 846944880 64391 3200 843841440 643707280 844133640

475905260 475911560 475934000 475793915 4758964400 0 0

499970973 499664856 499699626

0 0 0

110224195 110285095 110300020

248880309 249779349

121900185

55138110

23O77425

121876260

892626O

31660O6

1029780

249773439

121870485

55169540

23080395

8909250

31 72658

55357350

230842200 0 0

17833530 17831625 17829870 6879100

0 0 0 3169396

2071290 2066730 2063835 1036980 1033080

249831315

121962265

55153100

23067975

8920440

3163509

1025820

249692244

121868505

0 0 0

168120 167845 168400

0 0 0

8895 8715 9O0O

0 0 0

360 345 225

0 0 0

0 0 15

0 0 0

55148985

23087925

8933025

3171106

1025910

307620 308790 306720 310305 306690

84250 84370 84360 65950 64955

20940 21045 20655 19995 20505

4350 4470 4500 4380 4605

1065 1005

135 60

15 0

0 0 0

0 0 0

o 0 o

o o o

0 0 0

94566O 765

105105

6O

75

1
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(1&6)
RS CODE

GF(2 4)

(15,9)
RS CODE

MacWlLLIAMS J

(60,24) IDENTITY _- (60 36)

BINARY CODE GF(2) BINARY CODE

Flg. 1. Method used to find the blnary weight

dlatrlbutlon.
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Fig. 2. Performance of (60,36) hlnary code derlved from (15,9)
RS code.
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Multiple symbol Partially Coherent Detection of MPSK

M. K. Simon

TelecommunicationsSystemsSection

D. Divsalar

CommunicationsSystemsResearchSection

In this article, it is shown that by using the known (or estimated) value of car-
rier tracking loop SNR in the decision metric, it is possible to improve the error

probability performance of a partially coherent multiple phase-shift-keying (MPSK)
system relative to that corresponding to the commonly used ideal coherent decision

rule. Using a maximum-likelihood approach, an optimum decision metric is derived

and shown to take the form of a weighted sum of the ideal coherent decision metric

(i.e., correlation) and the noncoherent decision metric which is optimum for differ-

ential detection of MPSK. The performance of a receiver based on this optimum
decision rule is derived and shown to provide continued improvement with increas-

ing length of observation interval (data symbol sequence length). Unfortunately,
increasing the observation Ieng(h doe_ not eliminate the error floor associated with

the finite loop SNR. Nevertheless, in the limit of infinite observation length, the av-

erage error probability performance approaches the algebraic sum of the error floor

and the performance of ideM coherent detection, i.e., at any error probability above
the error floor, tEere is no degradation dUe to the partial coherence. It is shown

that this limiting behavior is virtually achievable with practical size observation
lengths. Furthermore, the performance is quite insensitive to mismatch between

the estimate of loop SNR (e.g., obtained from measurement) fed to the decision

metric and its true value. These results may be of use in low-cost Earth-orbiting or
deep-space missions employing coded modulations.

!. Introduction

It is well known that for ideal phase coherent detection

of multiple phase-shift-keying (MPSK), the decision rule
that minimizes average bit error probability is based on

a correlation metric and leads to bit-by-bit decisions. In

practical situations, the phase introduced by the transmis-

sion over the channel is unknown and thus the assumption

of perfect knowledge of this parameter at the receiver is

idealistic. Typically, if the channel phase is reasonably
well behaved, the receiver will attempt to estimate it via

some type of phase synchronization subsystem, such as a
carrier phase tracking loop. Since the estimate is made in

the presence of the ever-present additive channel thermal

noise, the receiver's phase estimate used for demodulation

purposes is not perfect. Detection under these circum-

stances is known as partially coherent detection.

Ordinarily in this environment, one continues to use the

ideal coherent detection correlation metric despite the fact
that it is no longer optimum for partially coherent detec-
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tion. In particular, the presence of a phase error between
the true channel and the receiver's estimate of it intro-

duces memory into the observation, and thus any metric

leading to bit-by-bit detection cannot be optimum. In-
stead, one must resort to sequence estimation where the

length of the sequence is proportional to the duration over

which the phase error can be assumed constant.

In this article, a maximum-likelihood approach to par-

tially coherent detection is taken, an approach not unlike

that previously applied to noncoherent and coherent de-

tection. It will be shown that considerable performance

improvement can be gained by using the optimum metric

which leads to a maximum-likelihood sequence estimation

(MLSE) type of algorithm.

II. Maximum-Likelihood Partially Coherent
Detection of MPSK Over an AWGN
Channel

Consider the transmission of MPSK signals over an ad-

ditive white Gaussian noise (AWGN) channel. The base-

band representation of the transmitted signal in the inter-

val (kT, (k + 1)T) has the complex form

sk = 2v_d_' (1)

where P denotes the constant signal power, T denotes
the MPSK symbol interval, and Ck the transmitted phase

which takes on one of M uniformly distributed values

_,n = 2_rm/M;m = 0, 1 .... ,M - 1 around the unit circle.
Assume that in addition to AWGN, the channel introduces

a phase 19which can be constant (independent of time) over
a duration of N data symbols and uniformly distributed

in the interval (-r, 7r). Thus, the received sequence r is
expressed as

r = se is + n (2)

where r = (ro,rl,...,rg-l),S = (So,Sl,...,SN-1), and
n - (no, hi, ..., aN-l) are the received sequence, transmit-

ted sequence, and noise sequence, respectively. Also, nk is

a sample of zero mean complex Ganssian noise with vari-

ance (per dimension) a_ = No/T where No is the single-

sided power spectral density of the noise process n(t) at
the receiver input.

For partially coherent detection, the receiver provides

a carrier phase synchronization subsystem, e.g., a tracking
loop, which derives a complex reference signal eje whose

phase _ is an estimate of the unknown channel phase 19.

After demodulating r with this reference (complex conju-

gate multiplication of tile two signals), one gets

I:t -- re -j_ = sed_` -4-ne -j$ (z)

where ¢_ _t9 - 0 is the carrier phase error and typically

has a Tikhonov probability density function (pdf) [1], i.e.,

P(¢e) = exp(p cos ¢c). I¢_1< 7r (4)
2-I0(p) ' -

Here p is a parameter related 1 to the tracking loop SNR

and I0(.) is the zeroth-order modified Bessel function of
the first kind.

For the assumed AWGN model for n, the a posteriori
probability of the demodulated received sequence R given

the transmitted sequence s and the carrier phase error Ce

follows from Eq. (3) and is

I For first-ordertracking loops, p isindeed the loop SNR. For second-

order loops, p is approximately the loop SNR for suf_ciently large

values [1]. In what follows, p is referred to simply as the loop SNR
which is assumed to be known or estimated.

P(RIs,¢o) = (2_ra_)N exp _-_n2

(2"_)N exp -2-_._t,=0
÷I._,1

I i=O
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where

O( = tan -1

yN-1 * ]

Im _[ i_=o Rk-iSk-i _

Averaging Eq. (5) over the pdf in Eq. (4) gives, upon simplification,

/:p(RIs) = p(RIs, ¢_)p(¢o) e¢o
f

{ 1__1[,__o ]}1 1 - 2--_'n_= Io(p) (2_ra_) N exp E IR*-ilu + I_k-*l_

x/o 2/r Isin) )cos a +p_// + Rk__s*k_ i a
\1 i=0

Since

(6)

(7)

; E Rk-lS*k-i Im Rk_is*__ i (8)Rk , __, cos a = Re Rk_is*k_ i sina
i=0 / i=0 i=0 k i=0

Eq. (7) further simplifies to : : :

P(RIs) = Io(p)(27ran_) N exp 1-2--__2 E [IRk-,l' + Isk-,I2]
I, n i=0

XI0 (_n2_(Rel {i_=oRk_is._i}+p_2n)2N-1 (Im /_ 1 //2)+ .,:0. ,°,
Note from Eq. (1) that for MPSK, Is_l2 is constant for all transmitted phases 3m. Thus, since Io(x) is a monotonic
function of its argument, maximizing p(RIs ) over s is equivalent to finding

}8" 8" =max Re R_-i k-i + p_2n + Im Rk-i _-i
$ k i=0 k i=0

s = ._'s* • 2po'2n Re Rk_i81_ is* + pcr_. R_ , __, +
max I, I i=0 Rk-i _-i max I, l i=o _, i=o

(10)
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This, using Eq. (1),resultsin the decisionrule

choose ¢_, ¢k-1,..., Ck-N+l if Rk__e -j_'-'
I i=O

+ _ Re I _ Rk-ie-Y_'-' ismaximum (11)
k i=0 )

where 8#, _t-1,...,#_k-N+1isa particularsequence ofthe

transmitted phases _m. In Eq. (11), the firstterm in-

side the braces representsthe component of the decision

metric associatedwith noncoherent (differential)detec-

tion[2],i.e.,totallack ofknowledge of the uniformly dis-

tributed channel phase 0. The second term insidethe

braces representsthe component of the decisionmetric

for idealcoherent detection,i.e.,complete knowledge of

the channel phase 0. Thus, the partiallycoherent decision
metric isa linearcombination of the coherent and non-

coherent decisionmetrics with the weighting of the two

terms in proportion to the product of the trackingloop

SNR and the channel noise variance. Note that for any

nonzero value ofp, thisdecisionruleisunique because the

second term insidethe bracesin Eq. (11)isunique but not

the firstterm. For p = 0,which corresponds to differen-

tiallycoherent detection,there isa phase ambiguity since

the addition ofan^arbitraryfixedphase, say Ca, to allN
estimated phases Ok, Ok-l, ...,¢t-N+1 resultsinthe same

decisionforC. In [2],the authors observed that by letting

Ca = ¢t-2v+1 and differentiallyencoding the input phases

at the transmitter,

¢,= ¢k-_+ ACk (12)

where now ACk denotes the input data phase correspond-

ing to the kth transmissionintervaland Ct the differen-

tiallyencoded versionofit,the decisionrulecan turn into

one in which the phase ambiguity isresolved.From now

on, assume p _ 0 and thus that thereisno formal require-

ment fordifferentiallyencoding the data phase symbols.

Figure 1 is an illustrationin complex form of a re-

ceiverimplemented on the basisof Eq. (11). Note that

this receiverrequiresknowledge of the loop SNR p, the

signalpower P, and the noise varianceo-_.The accuracy

of this knowledge, which must be obtained by measure-

ment, wil]have an impact on the ultimate performance

of thisreceiver.Later, in Subsection E, the authors in-

vestigatethe sensitivityof the receiverto a mismatch be-

tween the true loop SNR and the value supplied to the

receiverimplementation in Fig. i. In the next section,

except in Section III.E,it is assumed that the receiver

has perfectknowledge ofp, and thus should outperform a

conventionalbit-by-bltcorrelationreceiverwhich does not

make use of thisknowledge. The followingsectionsdeter-

mine how much the optimum partiallycoherent sequence

receiveroutperforms the conventionalbit-by-bltcorrela-

tionreceiver.

III. Bit Error Probability Performance

To obtaina simple upper bound on the averagebiterror

probability,P#, of the proposed N-bit detectionscheme,

use a union bound analogous tothat used forupper bound-

ing the performance of error correctioncoded systems.

In particular,the upper bound on P6 is the sum of the

pairwiseerrorprobabilitiesassociatedwith each N-bit er-

ror sequence. Each pairwise errorprobabilityisthen ei-

ther evaluated directlyor itselfupper bounded. Math-

ematically speaking, let _b = (Ck,Ck-l,...,Ck-N+l) de-

note the sequence of N transmitted information phases
and ¢= ((_,,_k-1,...,¢k-N+,) be the corresponding se-

quence of detected phases. Let u be the sequence of

b = N log: M information bits that produces ¢ at the
transmitter and let fi be the sequence of b bits that results
from the detection of ¢ Then, since MPSK is a symmetric

signalling set, i.e., it satisfies a uniform error probability
(UEP) criterion, one gets an upper bound on the bit error
probability,

1 _ w(u, fi) Pr {_ > r/[ ¢, ¢c} (13)Pb(Ce) <_ N log 2 M

where the decisionstatistic_ isdefinedfrom Eqs. (I0) and

(11) by2

rt = j _=0 Rk-le-JC_h-' +
(14)

Note that when compared w|th Eq. (11), n of Eq. (14) includes the

additional constant (po2n/V_) 2 . This, however, has no effect on

_he declslon-rna_ng process and thus one can use the convenient

form of Eq, (14) with no loss in genera]ity,
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and the corresponding error statistic 0 is identical to
Eq. (14) with each Ck replaced by ¢_. In Eq. (13), w(u,fi)

denotes the Hamming distance between u and fl, (ib is

any input sequence (e.g., the null sequence (0,0,...,0) =

0), and Pr {_ > _ I ¢, Ce} denotes the pairwise probabil-

ity that _ is incorrectly chosen when indeed _b was

sent. Note that the bound in Eq. (13) is computed for
a fixed carrier phase error, Ce, which accounts for the

notational dependence of Pr{_)> O l ¢,¢e} and thus
Pb(¢e) on ¢¢.

A. Evaluation of the Pairwise Error Probability_

To compute Pr {_) > 01 ¢, ¢o}: the approach taken in [2] is used for evaluating the performance of multiple symbol

differentially coherent detection of MPSK. In particular, letting 17= [zl[ 2 and _) = [zz[ 2 [see Eq. (14) and the statement
below it for the definitions of zl and zz], then [3]

1 [1-¢(,z, + i(o,b)Pr {,) > '71 ¢, ¢0}= (15)

where Q(x, y) is the Marcum q function [41 and

{b} 1 {S,+&-21_lvrS-S?cos(O,-O2+_) S,-S_ }a = 2N_ 1-[5l 2 -1-_-- ---- (16)

where the + sign and - sign correspond to b and a, respectively, and

81 = P N+ 2E, INo = + E, IN ° cos¢¢ + 2E'_No

1__ N NoN" = "ikl - _l = V

= _--_(zl -_)(z2 -_)* = _; v = arg_ = arg_

=5-- : :

and

{ " }01 = arg _ = arg NeJ_° + 2E,/"""_o '

N-I

02 = arg _2_= arg 6eJ_ + 2E,/No
(17)

_f = _ e/(¢'-'-qi'-')0 (18)
i=O

which is a normalized time cross correlation between s and _. Also, E,/No _ PT/No denotes the symbol energy-to-noise

spectraI density ratio arld_-s-re]ated to the bit energ-y-t_noise spectral density ratio Eb/No by E,/No = (Eb/No) log 2 M.
Substituting Eq. (17) into Eq. (16) results, after considerable simplification; in
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{[ </2 ]}E. 1 p 1 P (N - lalcos,_)
_o _ 1+_ _ c_o+2N(_ 16t_)

(19)

Now some specialcasesofpracticalinterestare considered.

B. Case 1: Binary PSK With Two-Symbol Observation and Detection (M = 2, N = 2)

In this case, E,/No = Eb/No. There are M 2 - 1 = 3 possible error sequences each of length 2. The pertinent results
related to the evaluation of Eqs. (18) and (19) are

0 7r 0

7r 0 0

_r r -2

For the first two error sequences, Eq. (19) evaluates to

b= _-_-;04+2 cos¢o+_

(20)

For the third error sequence, both a and b approach infinity (the ratio a/b, however, approaches unity) as 6 approaches

-2. Thus, one must evaluate the pairwise error probability Eq. (15) separately for this case. It is straightforward to
show that

_:_ = _ erfc - (21)
a/b.-_ l

Furthermore, in the general case where 6 --* -N, Eq. (21) evaluates to

6--N _ erfc cos¢o (22)

which for N = 2 and M = 2 becomes

lira f(a,b) ----erfc coseC (23)
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Finally, noting that the Hamming distance w(u,d) is equal to 1 for the first two error sequences and is equal to 2 for
the third sequence, substituting Eqs. (23) and (15) combined with Eqs. (19) and (20) into the expression for bit error
probability in Eq. (13) gives

(24)

Finally, the upper bound on average bit error probability Pb is obtained by averaging the upper bound in Eq. (24) over
the pdf in Eq. (4). Figures 2 and 3 are plots of this upper bound on average probability versus Eb/No in decibels for

values of p = 7 dB and 10 dB, respectively. For the purpose ofc0mparison, the exact results (i.el, not an upper bound)
for the conventional ideal coherent metric operating in a noisy carrier synchronization environment are

Pb = • _ erfc _V_oo ¢c p(¢c)d¢¢ (25)

where p(¢c) is given by Eq. (4). Even with only one additional observation symbol interval, considerable savings in
Eb/No can be achieved at a fixed error probability, particularly in the region of the knee of the curve where the system

begins approaching its irreducible error probability 3 asymptote (error floor).

C. Case 2: Binary PSK with N-Symbol Observation and Detection (M= 2, N arbitrary)

For N arbitrary, 6 takes on values -(N - 2i);i = 0, 1, 2,...,N - 1. The number of error sequences corresponding

to each of these values of 6 is binomially distributed, i.e., there are (N) sequences that yield a value 6 = -(N- 2i).

Furthermore, the Hamming weight associated with each of the sequences that yield a valUe 6 = --(N - 2i) is

w(u,6) = N - i. Finally then, using the above in Eqs. (19) and (22) and substituting the results in Eq. (13), the
conditional bit error probability is upper bounded by

= - erfc cosec +
2 i=1

(26)

where

fb_t = Eb {IN-I-/ P /c°s¢_+ 1 I P /2] [ _I P / ]}a, 2N0 _ _z 2E3N o =t: 29/_- i) + _ cosec (27)

3 It is well known [1] that conventional PSK systems exhibit an irreducible error probability (i.e., a fudte error probability in the limit

as Eb/No approaches infinity) when a noisy carrier synchronization reference witl* timed /_01#er is used as a demodulation signal. This is

observed by examJning a curve of Pb versus Eb/No with loop SNR, p, held fixed. The value of this irreducible error probability is given

by [1] Pblirr = f_2 p(¢c)d¢c. Note that in practice, as the observation length increases, one should decrease the loop bandwidth of the

phase-locked loop (PLL), which results in an increase in the loop SNR, Also, as the blt SNR increases, the loop $NR (for fixed modulation
index) increases and thus the exTor floor decreases.
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The upper bound on unconditional average bit error probability is now obtained by averaging Eq. (26) over the pdf in

Eq. (4). The numerical results are illustrated in Figs. 2 and 3 for values of N = 4, 6, and 8. As N gets large, the curves

appear to approach an asymptote. This asymptotic behavior is analytically evaluated as follows:

ForlargeN,the rs torminEq:i2 ) :: ........ "' when integrated over the pd£ in 'Eq. i_) approaches the irreduclble error

11" dprobability Pb]_rr = f:/2 P(¢c) ¢¢. Also, the dominant term in the summation term of Eq. (26) corresponds to i = N- 1,

i.e., $ = N - 2. Thus, for large N, the second term of Eq. (26) approaches ](aN-i, bN-1) where

{b.,}
Since from Eq. (28), _ >> _ - av/'_'_'T_l, then using the asymptotic form of Eq. (15) for a and b large (see

Appendix A of [5]), namely,

(29)

The value f (aN-l, bN-1) is obtained as

f(aN-!,bN-1) --_ _ erfc (30)

independent of Co. Finally then, for large N, the asymptotic behavior of the average bit error probability is approximately

upper bounded by

1 b+
P, < _ erfc 2 p(¢c)d_bc (31)

/2

namely, the sum of the bit error probability for ideal coherent detection and the error floor. Equation (31) is in very close

agreement with the curves for N = 8 in Figs. 2 and 3.

D. Case 3: Quaternary PSK With Two-Symbol Observation and Detection (M = 4, N = 2)

In this case, E,/No = 2E6/No. There are now a total of M _ - 1 = 15 possible error sequences each of length 2. Of

these, only eight produce distinct combinations of 161and v. These are tabulated below:

Error
Case _bk - _k Ck-1 -- _k-1 [_1 V

sequence

1,2,3,4 1 r,O,3r/2,_/2 O,r,r/2,3r/2 0 0

5,6 2 0,./2 ./2,0 v/_ ,/4
7,8 3 0,3_/2 3g/2,0 v/2 -r/4

9,10 4 rt2, r _,_/2 _ 3r/4
11,12 5 _,3_/2 3_/2,_ v/2 -3_14

13 6 r/2 ,12 2 ./2

14 7 3r/2 3,/2 2 -,i2
15 8 , r 2 r
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The corresponding values of a and b for each of the first five cases which correspond to [_1_ 2 are given as follows:

a i- N"-_ 2E'_No

a ,-_o 2+ 2E'_/No

cos ¢o + _ (_ ± cos

co_co+_ _ ± ¢_+_ 2--E_/N0(cosCo+sine°)

1( ' )2] [ 1 ( P )(cosec-sinCe)I}cosco+_ 2E_No * _+_ 2E3m

(32)

Forcases6 and 7,thefollowingisanalogoustoEq. (22):

$--*_:jN _ erfc (cos C¢ _ sin C¢)
\ ¥ _lv0

which for N = 2 and M = 4 becomes

lim /(a, b) = erfc (cos Cc :Esin Co)

Finally, for case 8, Eq. (22) is used to obtain

(33)

(34) z:

lim l( a, b) = erfc cos C¢
6--.*-2 (35)

Evaluating the Hamming distances for the 15 error sequences and substituting the above results into the expression for
the bit error probability bound in Eq. (13) gives

<1
Pb(C¢) _ 4 {6f (al, hi) + 2f (a2, b2) + 2f (a3, b3) -t- 4f (a4, b4) -t- 4f (as, bs)}

+ 1 { erfc (_'N'-0b (c°sCc +sine=)) + erfc ('212/_#_,VNo (cosCc- since)) + erfc (_ob cosC_) } (36)
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Figures 4 and 5 are comparable to Figs. 2 and 3 for the M = 4 (QPSK) case. The analytical exact result corresponding
to the ideal coherent metric operating in a noisy carrier synchronization environment is now [1]

Pb = -_ erfc ¢_ + ',_ \v-o ,Eerfc_v._o , ¢_-sin¢_) p(¢o)d¢_
(37)

Analysis and plots for larger values of N are not included here, but they would show furtt{er]mprovement as was true
for the binary case.

E. Performance Sensitivity to Mismatch

In Loop SNR

Here the authors investigate the sensitivity of the aver-

age bit error probability (in terms of its upper bound) of
the MLSE receiver to a mismatch between the true loop

SNR, p, and the estimate of it,/5, supplied to the imple-

mentation of Fig. 1. in particular, the authors evaluate,

for the special cases of Sections III.B and III.C, the upper
bound

fP_ __ P_u (¢e; _)p(_be)d¢c (38)
7

where Pb,, (¢¢;_) is given by the upper bound in Eq. (24)

or Eq. (26) with p replaced by fi -- p[1 ÷ (fi-p)/p]

p(1 +e) and p(¢¢) is as given by Eq. (4). Figures 6 and

7 are illustrations of Eq. (38) for M = 2, p = 10 dB, and
N = 2 and 8, respectively, with fractional mismatch e as
a parameter. One observes that even with mismatches as

much as 50 percent (e = 4-0.5), there is negligible effect
on the error probability performance. Thus, the authors

conclude that the MLSE receiver is quite insensitive to

mismatch in the loop SNR.

IV. Conclusions

By making use of the known (or estimated) value of
loop SNR in the decision metric, it is possible to im-

prove the error probability performance of a partially co-

herent MPSK system relative to that corresponding to

the commonly used ideal coherent decision rule. Using

a maximum-likelihood approach, an optimum decision
metric was derived and shown to take the form of a

weighted sum of the ideal coherent decision metric (i.e.,

correlation) and the noncoherent decision metric previ-
ously shown to be optimum for differential detection of

MPSK. The performance of a receiver based on this op-

timum decision rule improves with the increasing length

of the observation interval (data symbol sequence length).

Furthermore, the performance is quite insensitive to mis-
match between the estimate of loop SNR (e.g., obtained

from measurement) fed to the decision metric relative and
its true value.
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Parameter and Configuration Study of the
DSS-13 Antenna Drives

W. Gawronski and J. A. Mellstrorn

GroundAntennasand FacilitiesEngineeringSection

The effects of different elevation and azimuth drive configurations on DSS-13

antenna performance are presented as well as a study of gearbox stiffness and mo-

tor inertia. Small motor inertia and rigid gearboxes would improve the pointing

accuracy up to a certain limit. The limit is imposed by critical values of gearbox
stiffness and motor inertia introduced in the article. The critical values depend

on the lowest structural frequency of the rate-loop model. The tracking perfor-
mance can be improved by raising gearbox stiffness to the critical stiffness and

reducing motor inertia to the critical inertia. An azimuth drive configuration with

four driven wheels was also investigated. For the four-wheel drive configuration

in azimuth, the cross-coupling effects are reduced and wind disturbance rejection
properties improved. Pointing is improved substantially in the cross-elevation but

is relatively unaffected in the elevation direction. More significant improvements

can be achieved through either structural redesign (stiffening the structure) or new
control algorithms or control concepts, which would eliminate the effect of flexible

deformations on the antenna pointing accuracy. Although the study is performed
for the DSS-13 antenna, the results can be extended for other DSN antennas.

I. Introduction

This article investigates the DSS-13 antenna drives and

their effect on antenna pointing accuracy. Each elevation

and azimuth drive consists of a pair of motors and gear-
boxes. The size of a motor and a gearbox is determined

from such criteria as static wind loads, which do not di-

rectly reflect pointing performance The purpose of this

study was to determine criteria for sizing motors and gear-
boxes so that the pointing accuracy is accounted for. For

control system design purposes, the motor size is given in

terms of motor inertia, while the gearbox size is given in

terms of gearbox stiffnes§. Gearbox inertia is neglected
since it is less than 10 percent of motor inertia when the

gear ratio is taken into account. Different locations of

drives in azimuth and elevation are also investigated. One
drive in elevation and two drives in azimuth are compared
with two smaller drives in elevation and four smaller drives

in azimuth, each at a different location. The effect of this

drive configuration on antenna pointing accuracy is inves-
tigated.

I!. Performance Criteria

Tracking performance and wind disturbance rejection

are used to evaluate the pointing performance of motors
and gearboxes in the elevation and azimuth drives. The
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: rate-loop bandwidth is used as a measure of tracking per-
formance and rms pointing error due to wind gusts as a

..... measure of wind disturbance rejection. For the purpose
of this article, the rate-loop bandwidth is defined as a fre-

:= quency range from zero up to the lowest lightly damped
mode in the rate-loop transfer function (rate command to

rate output). This definition is used for the PI controller
design, and the lowest lightly damped mode determines

the frequency range of the controller action. A lightly
damped mode is detected as a resonant peak in the plot of

magnitude of the transfer function (Fig. 1). The wider the

open-loop bandwidth is, the better the closed-loop track-

ing performance is. The wind disturbance rejection prop-

erties are evaluated through simulations using the antenna

model developed in [1] and the wind model described in

[21,

III. Parameter Study

In this section, the effect of motor inertia and gear-

box stiffness on antenna performance is investigated. It

is obvious that a rigid drive would significantly improve a
rigid antenna performance. For a flexible antenna, even a

rigid drive cannot prevent its flexible deformations, thus
the performance improvement through gearbox stiffening

is limited, This is analyzed in detail below.

For the DSS-13 antenna performance evaluation (at a
60-deg elevation position), the model developed in [1] is

used. The rate-loop model is shown in Fig. 2, where for
clarity only the elevation drive is presented. The model

consists of the antenna structure model (21 modes, up

to 10 Hz, including two free-rotating modes), gearbox

model, motor armature, and amplifiers. The elevation
and azimuth drive configuration in the rate-loop model

is shown in Fig. 3. The nominal motor inertia is J,_, =
0.!4 N m sec _, (1.236 lb in sect), and the nominal gearbox

stiffness is kgn = 1.65 x 10e N m/tad (1.5x 107 lb in./rad).

The effect of the gearbox stiffness on the antenna per-
formance is investigated by observing the change of the

imaginary components of the rate loop-poles with respect
to gearbox stiffness, see Fig. 4, The imaginary parts of the

roots represent the structural natural frequencies. Natural

frequencies of the structure and the gearbox are shown in

this figure. The lowest structural frequency and the gear-
box frequency define the bmldwidth as shown in Fig. 4,

The bandwidth grows with the gearbox stiffness, up to

the critical value kgc = 1.1xl0 s N m/rad (10 T lb in./rad).
For

k9 > bgc (1)

the tracking performance remains unchanged. Thus, the

critical stiffness kec defines the minimal stiffness of a gear-
box, which assures reasonable tracking properties.

The bandwidth and the critical stiffness are also seen

in the transfer function plots, Fig. 5. For kg < kg¢, the
gearbox resonant peak, which is smaller than the critical

bandwidth, defines the bandwidth (Fig. 5a). For k 9 >

k9¢, the bandwidth changes insignificantly (Fig. 5b), since
it is determined by the lowest natural frequency of the

structure.

The wind disturbance rejection properties have been

simulated for z-direction wind (along the elevation axis),

and y-direction wind (horizontal direction orthogonal to

the elevation axis). The results are summarized in Ta-
bles 1 and 2, The tables show that high gearbox stiffness

improves wind rejection properties for y-direction wind,
while the z-direction wind pointing remains almost un-

changed,

The effect of motor inertia on antenna pointing perfor-

mance is investigated in a similar fashion. The variations

of the rate-loop poles due to motor inertia changes have
been evaluated, and their imaginary parts are plotted in

Fig. 6. The structural natural frequencies and the gearbox
frequency are distinguished in this plot. The lowest natu-

ral frequency of the structure and the gearbox frequency
determine the bandwidth. For

>J o (2)

the bandwidth is constant, and decreases for Jm > Jmc,

deteriorating the antenna tracking properties. Thus,
J,n_ -- 50 lb in sec _ is the critical value of inertia. The

phenomenon can be observed in the transfer function plots

(elevation rate command to elevation rate), Fig. 7, where

for small inertia (small when compared with the critical
one) the bandwidth is constant and for large inertia the
bandwidth narrows.

Tables 1 and 2 summarize wind disturbance rejection
properties. They show that the properties do not improve
with motor inertia decrease below the critical value.

IV. Configuration Study

The existing drive configuration of the DSS-13 antenna

is shown in Fig. 3. It consists of one elevation and two

azimuth drives. A new configuration is compared. The

number of drives in this configuration is doubled, and they
are mounted at different structural locations. Motors are
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sized so that their total power is the same as in the original

configuration.

Due to the high stiffness of the bullgear, two elevation
drives at different locations of the bullgear have the same

effect as two drives at the same location. Therefore, two

drives are equivalent to one drive with a properly sized

motor (the motor inertia of the two-drive configuration is
38 percent of the motor inertia of the one-drive config-

uration). Hence the two-elevation drive case reduces to

the one-drive parameter study presented previously. The

transfer function plots in Fig. 7 compare one- and two-
elevation drive cases. They show that the bandwidth in

azimuth and elevation remains the same. Thus, no im-

provement in tracking accuracy is observed. Also, simula-

tions show no improvement in the x-direction wind distur-

bance rejection and moderate improvement in y-direction

wind disturbance rejection (assuming rigid enough gear-
boxes).

Since the stiffness of the alidade is comparable with

the stiffness of gearboxes, the problem of four-azimuth

drives cannot be reduced to an equivalent two-drive prob-
lem. In the four-azimuth-drive configuration, each drive is

mounted on a separate azimuth wheel. The same gear-
box stiffness is assumed, and the motor inertia is 2.6
times smaller than the motor inertia of the two-drive case.

The tracking performance is evaluated through bandwidth

comparison of two- and four-azimuth drives (Fig. 8), and

through step response simulations (Fig. 9). In Fig. 8(a)
the bandwidth in azimuth is slightly larger, and in eleva-

tion it remains the same in the four-drive case, while the

cross-transfer function (from elevation to azimuth rate and
from azimuth to elevation rate) shows significant change.

It is confirmed by the closed-loop unit step responses. The

responses to an azimuth step command differ slightly for
two- and four-azimuth drives, and the responses to an el-

evation step command overlap in both cases, while cross-

coupling responses show significant differences between the
four- and two-drive case.

Wind disturbance rejection for the two- and four-

azimuth-drive case is compared in Fig. 10 and Tables 3

and 4. The tables show improvement in x-direction wind
rejection properties in the four-drive case, but additional

stiffening of drives does not improve the wind disturbance

rejection properties.

V. Conclusions

The article has defined criteria for drive comparison

purposes and determines conditions imposed on gearbox

stiffness and motor inertia so that the tracking errors are

minimized and wind disturbance rejection properties are

improved. It showed the critical values of gearbox stiffness
and motor inertia limit tracking performance improve-

ment, The gearbox stiffness should be larger (but not

necessarily much larger) than the critical stiffness, and

the motor inertia should be smaller (but not necessarily

much smaller) than the critical inertia in order to pre-

serve tracking accuracy. The existing (nominal) param-
eters of the DSS-13 antenna satisfy these demands. An

overdesigned drive is a drive with a gearbox stiffness much

larger than the critical one and/or motor inertia much
smaller than the critical one. Overdesigned drives do not

significantly improve the tracking performance, although
an overdesigned gearbox improves wind disturbance rejec-

tion. Also, the four-azimuth-drive configuration does not
improve the tracking performance (bandwidth remains al-

most unchanged), but improves the cross-dynamic prop-
erties and wind disturbance rejection properties for winds

from y-direction.

Improvements due to stiffening gearboxes to downsiz-

ing drive motors, and to multiple drives are non-negligible,
but not dramatic. Thus, for moderate improvement of

performance it is advised to stiffen the gearboxes and

use four-azimuth drives. Significant improvement may be

achieved only through more innovative approaches, such

as antenna structure redesign (more rigid), application of
a new control algorithm (with vibration suppression prop-

erties), or implementation of either new or additional sen-

sots/actuators (e.g., active truss members for structural
vibration damping).
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Table 1. Polnting errors due to x-dlrectlon wlnd.

Drive parxmeters kg_, J_n I0k9,_, Jm_ kg_, O.SJmn

Elevation pointing error, mdeg 2.81 2.30 2.89

Cross-elevation pointing error, mdeg 1.64 2.01 1.69

X-band loss, dB 0.03 0.03 0.03

Kn-band loss, dB 0.44 0.39 0.46

Table 2. Pointing errors due to y-dlrectlon wind.

Drive parameten kg,, Jmn 10k9,, 3ran kgn, 0.5Jrnn

Elevntion pointing error, mdeg 3.77 2.09 4.10

Cross-elevation pointing error, mdeg 0.55 0.32 0.77

X-band loss, dB 0.04 0.01 0.0,5

Kn-band loss, dB 0.60 0.19 0.72

Table 3. Pointing errors due to x-dlrectlon wlnd disturbances for two- and four-azimuth drives.

Drive parameters 2AZ, kgn 4AZ, kgn 2AZ, lOkgn 4AZ, lOkgn

Elevation pointing error, mdeg 2.81 2.43 2.51

Cross-elevation pointing error, mdeg 1.64 0.43 2.08

X-band loss, dB 0.03 0.02 0.03

Ka-band loss, dB 0.44 0.25 0.44

2.40

0.36

0.02

0.24

Table 4. Pointing errors due to y-dlrsctlon wlnd disturbances for two- and four-azlmuth drives.

Drive parameters 2AZ, kgr, 4AZ, kan 2AZ, 10kgr, 4AZ, lOkgn

Elevation pointing error, mdeg 3.77' 3.77 3.51

Cross-elevation pointing error, mdeg 0.55 0.53 0.34

X-band loss, d]3 0.04 0.04 0.04

Ka-band loss, dB 0.60 0.60 0.52

3.92

0.50

0.04

0.65
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SETI Low-Frequency Feed Design Study for DSS 24

i
P. H. Stanton and P. R. Lee

Ground Antennas and Facilities EngineeringSection

The Search for Extraterrestrial Intelligence Sky Survey project requires operation

from I to 10 GHz on the beam waveguide (BWG) antenna DSS 24. The BWG

reflectors are undersized in the 1- to 3.02-Gtlz range, resulting in poor performance.

Horn designs and a method for implementing 1- to 3.02-GHz operation on DSS 24

are presented. A combination of a horn and a shaped feed reflector placed above
the main reflector is suggested. The horn and feed reflector could be hidden in the

RF shadow of the subreflector and struts. Results from computer analysis of this

design indicate that adequate performance could be achieved.

I. Introduction

The DSS 24 34-m beam waveguide (BWG) antenna
will be used for the Search for Extraterrestrial Intelligence

(SETI) Sky Survey project over a frequency range of 1
to 10 Gttz. The antenna's BWG reflectors are undersized

for low noise operation at the low end of this frequency
range. Therefore, an alternate method of feeding the an-

tenna from 1 to 3.02 GItz is presented in this article. A

corrugated, 29-dB-gain horn located at the Cassegrainian

focus would give acceptable RF performance but would be
physically large and would block the normal BWG trans-

mission path. To reduce the size of the feed horn and

facilitate swift clearing of the BWG path for normal DSN

operation, a smaller feed horn in combination with a mov-

able shaped reflector could be used instead, This feed re-
flector would sit over the BWG aperture in DSS 24's main

reflector during SETI operations (see Fig. l(a)) and would
be moved into a storage position during DSN operations.

The SETI horn-reflector combination could be hidden in

the RF shadow of the subreflector and struts as shown in

Fig. l(b). Major RF system requirements I are listed in
Table 1.

II. Horn Design and Analysis

Two small-aperture, corrugated horns were used to
cover the lower frequency range of the SETI sky survey

(horns number one and number two would operate over

the ranges of 1 to 1.73 GHz and 1.61 to 3.02 GHz, respec-

tively). The aperture diameter of each of these horns was

constrained to three wavelengths, at their lowest operating
frequency, in order to help limit its weight and cost. The

1G. A. Zimmerman, Search ]or Extra-Terrestrial Intelligence Mi-
crowave Observing Project Sky Survey Element, 1720-4100 (inter-
rtal document), Jet Propulsion Laboratory, Pa.sad_aa, California,
November 12, 1991.
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outputflare angles of the horns were adjusted along with
the shape of the feed reflector to empirically arrive at an

acceptable performance across the two frequency ranges.

Once the frequency range, aperture size, and output

flare angle were established, the detailed wideband horn

design followed the procedures outlined in [1]. The cor-

rugation profile of the 1- to 1.73-GHz horn is shown in
Fig. 2, with its various sections labeled in accordance with

[1] (mode converter, frequency transition, angle transition,

and output flare).

The corrugated feedhorns were analyzed with a JPL

computer program s that uses modal field-matching tech-

niques to determine the transverse electric (TEmn) and

transverse magnetic (TMmn) scattering matrix of the
horns [2]. From the scattering matrix, the return loss and

aperture fields were known. Using the radiation integral,
the radiation patterns of the horns were calculated from

the aperture fields. Table 2 summarizes the performance
of the horns at several frequencies.

III. Feed Reflector Design and Analysis

The shaped feed reflector was designed to optimize sys-
tem performance at the lowest frequencies, where system

spillover was expected to be the highest and to result in

higher noise temperature and lower gain. The center of the
feed reflector was chosen so that the feed reflector would

be located a little above the main reflector. To approxi-

mate the location of the first geometric optics (GO) focal
point of the feed reflector, a 25-dB horn pattern was used

to illuminate the subreflector. This pattern was moved
along the axis of the subreflector, and the overall gain of

the system was calculated using JPL computer programs 3

that employ physicM optics (PO) techniques. At the loca-
tion resulting in the best gain, the far-field phase center of

the horn pattern was 437 cm above F1, the focal point of

the main reflector and subrefiector system [see Fig. l(a)].
The first GO focal point of the feed reflector was placed

445 cm from the reflector. The second GO focal point
was placed in the desired location of the feedhorn far-field

phase center. This location was chosen so that the horns

would be close to the feed reflector without blocking re-
flected radiation. The resulting shape was an ellipsoid.

2 D. J. Hoppe, Scattering Matrix Program for Ring-Loaded Circular
Wa_eguide Junctions (internal document), Jet Propulsion Labora-
tory, Pasadena, California, August 3, 1987.

3R. E. Hodges and W. A. Imbriale, Computer Program POMESH
,for Diffraction Analysis o`[ Reflector Antennas (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California, February
1992.

The reflector parameters, horn location, and horn flare

angle were varied until the performance was acceptable in
the 1- to 1.73-GHz range. The performance was then eval-

uated in the 1.61- to 3.02-GItz range. The horn location

and flare angle were varied to achieve acceptable perfor-

mance. Other reflector parameters were also tried, but the

performance was not improved. Figure 3 shows the final

reflector design.

The main reflector and subreflector system was de-

signed to work optimally with a 29-dB pattern that has

its near-field phase center at F1 and using an observation

distance to the subreflector. How the system performs
with the GO focal point of the feed reflector so far above

F1 was investigated. The phase centers (PC's) of the 1-
GHz and 3.02-GHz patterns generated from the horn and
feed reflector combination were calculated in the far field

and at various distances (R equals observation radius) in

the near field (see Fig. 4). As the observation distance

moved further into tlmnear field, the phase center moved
along the z-axis in a negative direction. Defocus curves

of antenna system gain versus feed reflector location were

generated by moving the patterns along the axis of the

antenna system (see Fig. 5). At the high-frequency limit,
the far-field phase center of a focused system is located at

the focal point of the ellipsoidal reflector, which is 508 cm
above the reflector.

At 1 GHz, the far-field phase center is 208 cm above

the feed reflector. The reflector is only about 10 wave-

lengths in diameter at 1 GItz, so the system will not focus
well in any case, but it appears to be somewhat in focus.

With the feed reflector at the design location and using
an observation distance to the subreflector, the near-field

phase center is 7 cm below F1. Using the best gain loca-

tion from Fig. 5(a), which yields only a 0.05-dB increase in
gain, the near-field phase center is 69 cm below F1. Since

a wavelength is 30 cm long, the phase centers are reason-
ably close to F1. At this long wavelength, the system is

fairly insensitive to movement of the feed reflector along
the main reflector axis.

At 3.02 GHz, the horn and feed reflector system is out
of focus, causing the far-field phase center of the reflected

pattern to be 155 cm below the reflector. With the feed

reflector at the design location, and using an observation

distance to the subreflector, the near-field phase center

is 320 cm below F1. With a wavelength of 9.9 cm at
3.02 GHz, the phase center is very far from F1. Perfor-

mance at this frequency could be improved by redesigning
the feed reflector to move the near-field phase center close

to F1. Simply moving the feed reflector does not improve

performance, as shown in the defocus curve of Fig. 5(b).
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in an attempt to focus the system some and increase the

: overall gain_ the subreflector was moved along its axis. By

=_ _moving the subreflector 1.6 cm towards the main reflector,

the gain was increased by 0.16 dB.

IV. Results

Table 3 summarizes the antenna system performance

as calculated with the PO programs. In the 1- to 1.73-

GHz band, the system performs well at one horn location.
In the 1.61- to 3.02-GHz band, however, the horn must

be moved to four different locations to achieve acceptable

performance.

A study of the BWG at 1 GHz was performed using

cos"(O) patterns as the horn input. The best gain-to-noise
temperature ratio (G/T) achieved was 28.24 dB, with a

gain of 47.74 dB and a noise temperature of 83.16 K. Com-

pared to the results from horn number one plus the shaped

reflector, the noise temperature increases 56.69 K, the gain
decreases 2.02 dB, and the G/T decreases 7.30 dB.

V. Conclusion

DSS 24, operating in its normal configuration with the

BWG, performs unacceptably at the low frequencies in the

SETI 1- to 10-Giiz range. By putting a horn and shaped
reflector above the main reflector, the BWG could be by-

passed, and acceptable performance could be achieved.

The horn and shaped reflector would have minimal impact

on the other DSS 24 operations since the horn and reflec-
tor would be placed in the RF shadow of the subreflector
and struts.

The results presented in this article indicate that the

suggested configuration would meet SETI system require-

ments with the two exceptions of noise temperature and

beam efficiency. The noise temperature is slightly high in
the lower frequencies of both the 1- to 1.73-GtIz band and

the 1.61- to 3.02-GtIz band; however, the G/T is higher

than the target G/T over the entire frequency range. The

beam efficiency is lower than the system requirements over

most of the 1- to 3.02-Gttz range. The minimum beam
efficiency is 81 percent at 2.21 Gttz, and the system re-

quirement is 90 percent over the entire range.
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Table 2. Horn performance.

Return loss, dB Maximum cross-
Frequency, GHz Gain, dB

(TEn mode) polarization, dB

1- to 1.73-GHz horn

Table 1. System raqulrements.

Parameter Required value

Noise temperature

Polarization

Instantaneous bandwidth

Aperture efficiency

Beam efficiency

1.00 17.0 -33 --33.1
_< 25K

1.15 17.2 -41 -30.6

RCP a and LCP b (simultaneous) 1,32 18.0 -51 -42.7
> 360 MHz
- 1.51 18.6 -49 --37.0

_> 65 percent
3.02 19.5 --47 --37.3

> 90 percent

= Right-circular polarization.

b Left-clrcular polarization.

1.6i- to 3.02-GHz horn

1.61 17.1 --65 -- 29.8

1.88 18.2 -46 --35.6

2.21 19.0 --50 --47.0

2.58 19.7 --47 --37.8

3.02 20.6 -48 --41.7

Table 3. System performance.

Noise G/T, Target G/T b , Aperture Beam
Frequency, GHz Gain, dB

Temperature*, K dB/K dB/K efficiency efficiency

1.0- to 1.73-GHz horn

1.00 26.47 49.77 35.54 35.18 0.747 0.861

1.15 24.68 50.93 37.01 36.40 0.739 0.871

1.32 22.06 52.08 38.65 37.59 0.731 0.915

1.51 21.10 53.11 39.87 38.76 0.708 0.935

1.73 20.55 54.19 41.06 39.94 0.691 0.945

1.61- to 3.02-GHz horn

1.61 26.52 53.60 _ 39.37 39.32 0.698 0.814

1.88 24.68 54.92 40.99 40.66 0.692 0.854

2.21 24.02 56.47 42.66 40.07 0.716 0.809

2.58 23.46 57.81 44.10 43.41 0,715 0.830

3.02 23.03 59.10 45.47 44.78 0,703 0.867 i
i

z

= The noise temperature includes contributions from the sky and atmosphere, the reflectors, the horn, and the low-noise

amplifier (LNA) assembly. Sky and atmosphere and LNA assembly values from: JPL-ARC Front-End Design Team,

NASA SETI Common Radio Frequency System Design Team Report (NASA internal report), Appendix D, p. 6, NASA,
Washington, DC, August 1, 1991.

b The target G/T is for 65-percent aperture efficiency and 25-K noise temperature.
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Feed-Forward Control Upgrade of the Deep Space
Network Antennas

W. Gawronski

GroundAntennasand FacilitiesEngineeringSection

In order to improve the accuracy o[ high-rate tracking of NASA's DSN antennas,
the posltion-loop controller has been upgraded with a [eed-[orward loop. Conditions
for perfect and approximate tracking with the feed-forward loop are presented. The

feed-[orward loop improves tracking per[ormance and preserves wind disturbance

rejection properties o[ the previous c!osed-]oop system.

/o

Pointing accuracy of a proportional and integral (PI)

control system for the DSN antennas [1] is satisfactory
for slow-tracking antennas but significantly deteriorates

when tracking fast-moving objects. In order to improve
the tracking accuracy in the latter case, a PI control sys-
tem has been augmented with a feed-forward loop, as

shown with the block diagram in Fig. !. In this diagram,

Gp, Go, G j, and G w denote transfer functions of the an-
tenna's rate loop, PI controller, feed-forward gain, and

wind disturbance, respectively; andr is a command, y is

output (elevation and azimuth angles), e is tracking error

in azimuth and elevation, u is plant input, and w is wind

disturbance. The plant transfer function Gp(w) is a 2 x 2

matrix, with elevation and azimuth rates as inputs and

elevation and azimuth angles as outputs.

In order to analyze the impact of the feed-forward gain

on the closed-loop system performance, the transfer func-
tion from the command r and wind disturbance w to the

tracking error e was derived. From Fig. 1, one obtains

e = r - y (la)

y = Gpu + G_w (Ib)

u = G/r +Gee (lc)

Assuming I + GpG¢ to be nonsingular and denoting that
Go = (1 + Cpao)-', from Zqs. (la), (lb), and (lc), one
obtains

e = Go(I- GpGl)r - GoG.w (2)

From the above equation one obtains perfect tracking (i.e.,

e = 0) in the absence of wind disturbances for the feed-

forward gain G/such that

a_(w)a!(_) = X (3)

In the case of the DSN antennas, the condition (3) can

be satisfiedin a certainfrequency range only. Simply by

inspectionofthe magnitudes ofthe planttransferfunction

inFig.2(a-d),one can seethat forfrequencies0 _ w _<2_r

=

=-

7
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rad/sec (0 _<:I _< i Hz)_the plant transferfunctionGp

can be approximated with an integrator

-= = (j )-Ix2for0< < 2.rad/sec(4)

Thus, the feed-forward differentiator

G! = jwI2

will satisfy Eq. (3) in the frequency range 0 _< _ _ 2r

tad/see. In Fig. 2(a), the diagonal terms of the differen-

tiator transfer function of Eq. (5) are shown with dotted

lines. Their inverses (dashed lines) are equal to the plant

transfer function, as in Fig. 2 for frequencies up to l Hz.
The off-diagonal terms of Eq. (5) (transfer functions from

elevation command to azimuth position, and from azimuth

command to elevation position) should be zero; actually,

they are small for frequencies up to 1 IIz, as in Fig. 2(b)

and Fig. 2(d).

The closed-loop transfer functions for a system with

and without the feed-forward gain are compared in Fig. 3.
Figures 3(a) and 3(c) show that for frequencies up to

1 Hz, the system with the feed-forward gain has supe-

rior tracking properties when compared with the system

without feed-forward gain. This is confirmed by tracking
simulations with a trajectory like that in Figs. 4(a) and

4(b). The DSS-13 antenna, with the proportional gain

kp = 0.5, and the integral gain ki "- 1.8 in azimuth and el-

evation, was investigated. The tracking errors in elevation
and cross-elevation are compared for the antenna with the

feed-forward loop (Fig. 5) and without the feed-forward

loop (Fig. 6). A significant improvement in tracking ac-
curacy for the system with the feed-forward loop was ob-

served, namely, from 73.1 to 1.4 mdeg in elevation, and
from 60.1 to 0.2 mdeg in cross-elevation. However, the

high-frequency components of the command are strongly

amplified for the system with feed-forward gain when com-
pared with the system without feed-forward gain. This

effect can be observed from the transfer function plots in

Fig. 3, where the resonance peaks of the system with feed-

forward gain are much higher than the ones of the system

without feed-forward gain. Also the intensive oscillatory

motion in the pointing error plots (see Fig. 5) is observed.
As a result, any sharp change in the command may cause
excessive vibrations of the antenna.

Despite the increased sensitivity to the command in-
puts, the disturbance rejection of the antenna with feed-

forward gain remains the same as that for the antenna

without feed-forward gain. This follows from Eq. (2),

where it is shown that the tracking error e due to wind

disturbance w is independent of the feed-forward gain G].

Thus the pointing errorsdue to wind gust disturbances

are comparable with the resultsobtained for the DSS-13

antenna with the PI controller(see[2]).

References

[1] W. Gawronski and :I. A. Mellstrom, "Modeling and Simulations of the DSS 13

Antenna Control System," TDA Progress Report _-106, voi. April-June, :let
Propulsion Laboratory, Pasadena, California, pp. 204-248, August 15, 1991.

[2] W. Gawronski, B. Bienkiewicz, and R. E. Hill, "Pointing-Error Simulations of
the DSS-13 Antenna Due to Wind Disturbances," TDA Progress Report _$-

108, vol. October-December, Jet Propulsion Laboratory, Pasadena, California,

pp. 109-134, February 15, 1992.

254



Fig. 1. Antenna control system with the feed-forward loop.
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Availability Analysis of the Traveling-Wave Maser

Amplifiers in the Deep Space Network
Part I: The 70-Meter Antennas

T. N."Issa

TDA MissionSupportand DSN Operations

This article describes the results of the reliability and availability analyses of

the individual S- and X-band traveling-wave maser (TWM) assemblies and their
operational configurations in the 70-meter antennas of NASA 's DSN. For the pe-
riod 1990 through 1991, the TWM availability parameters for the Telemetry Data

System are: mean time between failures (MTBF), 930 hr; mean time to restore

service (MTTRS), 1.4 hr; and the average availability, 99.85 percent. In previously
published articles, the per[ormance analysis o[ the TWM assemblies was confined to

the determination of the parameters specified above. However, as the mean down
time (MDT) for the repair of TWMs increases, the levels of the TWM operational

availabilities and MTTRS are adversely affected. In this article, a more comprehen-

sive TWM availability analysis is presented to permit evaluation of both MTBF and

MDT effects. Performance analysis of the TWM assemblies, based on their station

monthly failure reports, indicates that the TWMs required MTBF and MDT levels
of 3000 hr and 36 to 48 hr, respectively, have been achieved by the TWMs only

at the Canberra Deep Space Station (DSS 43). The Markov Process technique is

employed to develop suitable availability measures for the S- and X-band TWM

configurations when each is operated in a two-assembly standby mode. The derived

stochastic expressions allow for the evaluation of those configurations' simultaneous
availability/or the Antenna Microwave Subsystem. The application of these ex-

pressions to demonstrate the impact of various levels of TWM maintainability (or

MDT) on their configurations' operational availabilities is presented/.or each of the
70-m antenna stations.

I. Introduction

The traveling-wave maser (TWM) assemblies exist as

part of the Antenna Microwave Subsystem (UWV) at each

Deep Space Station (DSS). They are used on the large an-

tenna sti'uctures at the Goldstone, Madrid, and Canberra

communication complexes. The technical performance of

TWMs as well as their operational availability are critical

factors in the performance of the DSNI The import_,nt per-

formance and operational characteristics of these TWMs

are presented in Section II.C of this article.

Previous analyses of the performance reliability and
availability of the DSN TWMs are described in [1,2].
These were confined to the mean time between failure
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(MTBF) determinati0n__rWMs network-wlde, and
their average availability-for the DSN Telemetry System

_ for the period 1981 through 1983. The results indicated

that the averaged MTBF (1200 hr) was considerably below
the desired level and the averaged MTTRS (2-5 hr) was

very long as compared with the requirements. Therefore,
a number of recommendations were made to improve the

TWM assembly availability characteristics.

Achieving high levels of reliability and availability for
the TWM assemblies is a very demanding task. It requires

continued improvements in the TWM assembly mainte-

nance procedures, as well as in the assembly's engineering

development process. In recent years, it has become ap-

parent that the availability of the TWM assemblies has

been degrading. Their operational MTBF is currently be-
lieved to be in the range of 1000 to 1400 hr (except for the

Canberra complex). This situation demonstrates the need
to quantitatively assess the operational availability of the
TWMs.

This article is the first of two on the availability mod-

eling and analysis of the DSN TWM configurations. The

analysis in this article, Part I, was performed on the TWM

configurations in the 70-m antenna subnet. Part II will

present the results of the analysis performed on the TWM
configurations in the 34-m antenna subnets.

Section II of this article provides the functional descrip-

tion and operational characteristics of these TWMs. Sec-
tion III presents the application of the Fault Tree Analysis

(FTA) technique to the failure analysis of a TWM assem-

bly and provides the results of the quantitative availabil-

ity evaluation of individual TWMs. Section IV applies a
Markov Process tech:nique to derive the steady-state avail-

ability expressions for the TWM configurations. Section

V describes the application of the derived expressions to
the availability analysis of the TWM configurations in the

70-m antennas. Section VI provides a discussion of the

study findings and related observations. The last section
includes a summary and concluding remarks.

II. Description of TWM Configurations
in the 70-M Antennas

A. Functional Configuration

The TWM assemblies are the dominant elements of the

UWV at each of the 70-m antenna stations (DSS 14, DSS

43, and DSS 63). There are two TWM assemblies pro-

viding low-noise amplification at each of the S-band and

X-band frequency feeds. Figure 1 represents a functional

block diagram of these TWM configurations as part of a
70-m Antenna Microwave Subsystem.

A single TWM assembly consists basically of a maser

(amplifier) and its closed-cycle refrigerator (CCR), re-
ferred to simply as the TWM assembly. Figure 2 shows

the TWM and CCR equipment connections.

B. Theory of Operation

The TWM assembly provides low-noise amplification

for the received S- or X-band frequency. To accomplish

this, the maser (amplifier) is cooled to approximately
4.5 K using closed-cycle refrigeration. To initiate a maser

cooldown, the helium compressor (Fig. 2) circulates he-

lium gas to and from the helium refrigerator at controlled

pressure and flow rates. The helium refrigerator cools the
helium until some of the gas reaches a liquid state (4.5 K)

at the bottom of the refrigerator (the cold station). The

maser is physically attached to the cold station and is

cooled to the correct operating temperature of 4.5 K by
metallic conduction, l

C. Functional Requirements

This section contains data related to the performance

requirements and operational characteristics (reliability

and availability) of the TWM assemblies in the 70-m an-
tenna subnet.

1. Performance Requirements. The TWM assem-

blies perform the function of low-noise amplification for

the received S- and X-band frequencies. The basic perfor-
mance requirements for the TWMs at each frequency feed

are given in Table 1.

The total performance of the entire antenna system

(i.e., Antenna Mechanical and Antenna Microwave Sub-

systems) is impacted by gain and noise temperature contri-
butions of the TWMs, as well as by other critical elements

of the system.

2. Operational Characteristics. The TWM assem-

blies were designed to demonstrate an operational (field)
performance that meets the following characteristics: 2

(1) Functional availability of at least 0.998, since the
desired availability for the Antenna Microwave Sub-

system is at least 0.996.

t General Procedures, "S-Band Traveling-Wave Maser Group Block

IV," TM03703 (internal document}, Jet Propulsion Laboratory,
Pasadena, California, September 15, 1979.

2 Communication Complex System Functional Requirements (1991-

1996), "Antenna Microwave Subsystem," 824-16 (internal docu-

ment), Jet Propulsion Laboratory, Pasadena, California, November

1, 1091.

264



(2) An MTBF level in excess of 3000 hr.

(3) MTTRS for a single-channel operation (TWM
backup is available) of 5 min. with a maximum of
10 min.

(4) Mean down time (MDT) of a TWM assembly for
repair maintenance is a maximum of 48 hr.

A TWM failure (due to its CCR failure) is recognized

by the operator when deviations from requirements are

detected in the CCR operating parameters (temperature
levels, pressure levels, and helium flow rates). Also, major

discrepancies in the observed antenna gain to system noise
temperature ratio would indicate a possible TWM failure.

lU. Individual Performance Analysis of
TWM Assemblies

In this section, the individual performance analysis of

TWM assemblies is presented using both qualitative and

quantitative approaches. The two basic objectives of this

analysis are

(1) To develop an understanding of the TWM failure
characteristics pertinent to various failure modes

and their effects, which could be a useful tool for

TWM-CCR design reviews (Section III.A).

(2) To identify relevant operational performance mea-
sures related to reliability, maintainability, and avail-

ability of the TWM assemblies (Section III.B).

A. Qualitative Failure Analysis

1. Failure Cause-Effect Analysis. The failure anal-

ysis of a TWM assembly is primarily concerned with iden-
tification of its failure effects, referred to as top events, and

determining how these can be caused by individual or com-
bined lower level failures or faults. Standard symbols are

then used for developing an FTA to describe failure events

and their logical connections in relation to predefined top

events (effects). The FTA technique and its applications

to reliability assessment are discussed in greater detail in

[3,4].

To demonstrate the application of the FTA technique

to the TWM-CCR failure analysis, data related to failure

modes and fault events of TWMs were collected and orga-

nized into some general canse-eff¢ct relationships. Using

only the DSN Discrepancy Reports (DRs) and the sta-

tions' monthly failure reports, only top failure effects and
contributing failure events were possible to identify. The

logical connections between failure events were difficult to
determine based on the current station reporting forms.

Therefore, only a simple FTA is shown in Fig. 3 for a

TWM assembly, in which the top event is an operational
J

failure. The FTA shows that this failure may be caused by

any of the first-level failure modes (four-input OR gate).

The analysis then proceeds, as shown, by determining how
each of the lower level failure events can be caused by in-
dividual basic faults or events ....

It is noteworthy that a different FTA will have to be

constructed for each top failure event of the TWM as-

sembly that can be caused by various relations between
lower failure events. Therefore, individual FTA shoul d be

performed for the major failure effects of the TWM, such

as cooldown failure, refrigerator low flow, and compressor

failure. These analyses are particularly relevant to the de-

velopment, operation, and maintenance improvements of
the TWM assemblies, since critical levels of failure would

indicate their contributions to the TWM reliability and

availability.

2. Failure-Cause Distribution. Analysis of 1990-

1991 TWM station failure reports gave the probability dis-
tribution of the major areas (causes) contributing to the

70-m TWM assembly failure. The distribution is sum_

marized in Table 2. Refrigerator contamination and low

helium flow proportions constitute about 65 percent of to-

tal TWM failures. More than 75 percent of the refriger-
ator failures were attributed to contamination of the he-

lium gas. A significant proportion of TWM failure was

attributed to the helium compressor failure.

B. Quantitative Availability Analysis

In this section, relevant availability factors and mea-
sures are quantitatively determined for the individual
TWM assemblies in the 70-m antenna subnet. The fac-

tors include MTBF, MDT for corrective maintenance, and

mean preventive-maintenance time (MPT); the measures
include operational availability (Ao) and achieved avail-

ability (An).

Data related to TWM assembly outages and service

restorations (during spacecraft scheduled support periods)

were taken from the DR System. However, since TWM
assembly failures (basically hardware-fault related) occur-
ring over nonspacecraft support periods are not reported

by the DR system, it is thought that the station monthly
failure and maintenance reports should also be reviewed

for this analysis.

1. ReHabillty (MTBF) Analysis, Earlier analy-
sis of the TWM failure data based on the DSN DRs was

reported in [1,2]. Network-wide estimates of MTBF as re-
ported for three different periods are shown in Table 3. An

L
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operational MTBF l_v_oximately 2500 to 3000 hr
was considered a desirables and achievable reliability target
for individual TWM assemblies.

This reliability analysis considers the individual perfor-

mances of the TWMs at DSS 14, DSS 43, and DSS 63.

The MTBF analysis is based on the station monthly fail-

ure reports for the period from November 1990 through
December 1991. Estimated MTBF levels for the individ-

ual TWMs at each station are summarized in Table 3. An

MTBF level of 2400 to 3000 hr has been achieved by the

TWMs at the Canberra Complex (DSS 43). The TWMs
at DSS 14 demonstrated an MTBF level in the range of

1400 to 1600 hr, whereas the MTBP level for the TWMs

at DSS 63 is in the range of 1400 to 1900 hr.

2. Availability Analysis. Determination of TWM

availability includes (1) a data-availability estimate of

TWMs relative to each DSN data system, which is de-
termined for a total scheduled mission-support time over

a given period and (2) an overall-availability estimate of
TWMs determined for the total period considered (includ-

ing mission and other activity support times).

a. Data-Availability of TWMs. This availability for

any data system is a function of both MTBF (or data-

outage rate) and MTTRS. Separate analyses were con-
ducted on the Antenna Microwave Subsystem availability

for the Telemetry Data System and the individual 70-m

station TWM availability for the Telemetry Data System

for the period 1990 through 1991. The outage data for
these analyses were obtained from the DR system, and

the results are shown in Tables 4 and 5, respectively.

The average TWM availability for telemetry data is
99.8 percent. The average MTBF of a TWM assembly

(approximately 930 hr) is good relative to that of other

major Telemetry System elements; however, it is consider-
ably lower than the desired MTBF level of 2500 to 3000 hr.

The average MTTR,S (1.4 hr) is relatively high and far off

the service restoration requirements (these include mean
and maximum durations of 15 and 30 rain, respectively,

for all support activities).

b. Overall availability of TWMs. This availability in-

eludes the determination of the TWM operational avail-
ability (Ao) and achieved availability (An) levels. For eval-

uating these measures, failure and maintenance data were

taken from the 70-m stations' TWM monthly performance

reports. Then operational and achieved availabilities for

the individual TWMs were determined, as shown in Table

6, for the period November 1, 1990, through December 31,

1991, using the relationships provided in [3,4] as follows:

Ao = MTBF/(MTBF+MDT) (1)

A, = MTBF/(MTBF+MDT+MPT) (2)

where

MTBF =

MDT =

MPT =

MTTF (mean time to failure only)

(waiting-time to restore service

+ logistic delay time

+ corrective maintenance time

+ CCR decontamination time

+ assembly cooldown and testing time)

(preventive-maintenance time

+ decontamination time

+ cooldown and testing time)

The lower MDT levels for DSS-43 TWM assemblies in-

dicate an improvement in both repair and operating pro-
cedures. The TWMs at both DSS 14 and DSS 63 demon-

strated relatively higher MDT leveh.

IV. Operational Availability Modeling
of TWM Configurations

In thissection,the operationalavailabilityperformance

ofthe X- and S-band TWM configurationsisbeing consid-

ered formodeling. Each configurationismost frequently

operated as a two-assembly standby configuration.The

availabilitymeasure for the case of the two-assembly par-

allelconfigurationwas derivedin [5,6].

The purpose of this modeling effortis to derive the

steady-stateavailabilitymeasures for the TWM standby

configurationusing the Markov Process technique dis-

cussed in [6,7].In the followingsubsections,the model

assumptions, model formulation,and the derived avail-

abilitymeasures for the TWM standby configurationare

presented.

A. Model Assumptions

The following are the basic assumptions of the Markov

model for the TWM configurations under study:

(1) The model represents an S- or X-band TWM

standby configuration consisting of two redundant

assemblies and a single maintenance technician.
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(2) Thestochasticfailureandrepairprocessesfor the

operating assembly are stationary (constant failure

and repair rates).

(3) The repair activity and its duration (total downtime)
of the failed TWM covers the time for corrective
maintenance and the total time for decontamination

and cooldown processes.

(4) The backup TWM is warm (power-connected) but

in a nonoperating mode (i.e., it receives only a du-
plicate signal and does not provide output to other

processors in the link). Therefore, it is assumed that

the standby TWM has a negligibly small failure rate

(an approximate zero rate) relative to that of the

prime operating TWM.

(5) In the initial operating state of the TWM configu-

ration, State 1, one of the TWM assemblies is in an

operable standby mode.

(6) During the TWM operation, only one change can

take place in the state of the configuration at each
instantaneous increment of time.

B. Model Formulation

The state-space diagram associated with the TWM

standby configuration under study is shown in Fig. 4. The

following symbols are associated with this diagram:

i denotes the ith state of the TWM configuration, for

i = 1, 2, 3; where i = 1 (one assembly is operating,

the other assembly is in standby mode); i -- 2 (one
assembly failed and is under repair, the other assem-

bly is linked and operating); i = 3 (both TWMs axe

down, and one of them is under repair).

Pi denotes the steady-state probability that the TWM
configuration is in State i, for i -- 1, 2, 3.

A denotes the constant failure rate of the operating
TWM assembly.

p denotes the constant repair and maintenance of the

failed TWM assembly.

The steady-state availability model for this configura-

tion is developed using the frequency-balance principle of

the Markov Process theory as described in [5,7]. The fre-

quency balance equations for the three-state availability
model of Fig. 4 can be written as

State 1: _PI-pP_ (3)

State 2: (2+#)P_=_PI+pP3 (4)

State 3: pP3=_P2 (5)

as follows:

Using Eqs. (3) and (5) and the unity equation PI +

P2 + P3 "- 1, the state probability expressions axe defined

Pl = u_l (_ + _f,+ _,2) (6)

P2 = )_P/ (_2 + )_p + p2) (7)

ps = _2/(_2 + _ + u:) (8)

C. The Availability Measures

In the state-space model shown in Fig. 4, States 1 and 2

represent the operating (up) states and State 3 represents

the failed (down) state of the configuration. Thus, using

the state probabilities given in Eqs. (6)-(8), the steady-

state operational availability measure of the standby con-
figuration, denoted by Ao, is given by

(9)Ao = (_a+ _u) / (:_ + _. + ._)

and the steady-state unavailability measure of the standby

configuration, denoted by Uo, is given by

(10)Uo= ,_2/(._2+ :q,+ _?)

The availability measure given in Eq. (9) can also be
used to develop a simultaneous availability measure of X-

and S-band configurations for the UWV operational sup-
port at each 70-m antenna station. This is defined as

Ao(for antenna microwave) = Ao(X-band) x Ao(S-band)

(11)

The application of Eqs. (9) and (11) to evaluate the

availability of the X- and S-band TWM configurations at
each 70-m ante_n_a st atig_n is presented in Section V.

V. Applications and Analysis

For the application of the availability measures given in

Eqs. (9) and (11), pooled MTBF and MDT levels were es-

timated for the X- and S-band TWM configurations using
their individual assembly MTBF and MDT levels, which

were computed earlier and listed in Table 6. The pooled

MTBF estimate for a TWM was computed as the average

of MTBF levels of the individual assemblies (in a configu-

ration) reduced by 30 to 35 percent of the total variation

=

E:

-7
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of an assembly MTBF level from that average MTBF. On
the other handLthe pooled MDT estimate for a TWM was

computed as the average of MDT levels of the individual

assemblies (in a configuration) rounded off to the closest

integer representing an average number of 12-hr mainte-
nance cycles (shifts) required for a TWM repair comple-
tion.

The estimates of pooled MTBF and MDT for the TWM
assemblies and their use for availability evaluation of the

X- and S-band configurations at each 70-m antenna station
are described as follows.

A. Availability of TWMs at DSS 14

The estimates of pooled MTBF and MDT for the prime

and backup assemblies of the X-band TWM configuration
are

MTBF = 1615 hr, or ;_ = 0.000619 failure/hr

MDT = 84 hr, or # = 0.011904 repair]hr

and the estimates for each TWM assembly in the S-band

configuration are

MTBF = 1560 hr, or A = 0.000641 failure/hr

MDT = 84 hr, or # = 0.011904 repair/hr

The application of the availability measure given in

Eq. (9) to the TWM configurations at this station results
in

Ao(X-band configuration) = 0.997435

Ao(S-band configuration) = 0.997256

The application of the availability measure given in

Eq. (11) results in the following simultaneous availability
of TWM configurations for the UWV subsystem:

Ao(for antenna microwave)= Ao(X-band) x Ao(S-band)

= 0.9947

The simultaneous availability of TWM configurations,

which is 0.9947, is slightly lower than its predicted re-

quirement (i.e., 0.996) for the antenna microwave. The

operational availability of each individual configuration is
approximately 0.997, as compared with a desirable level of

0.998. This deviation is primarily attributed to both a low

MTBF level (1500 to 1600 hr) and a considerable MDT of

84 hr (3 to 3.5 days), as compared with the corresponding

parameter levels for the TWMs at the other stations.

The impact of improved TWM assembly reliability on

a configuration's operational availability at various levels

of assembly MDT is demonstrated in Fig. 5(a). An ex-
amination of the plots in this figure indicates that the op-

erational availability requirement for each TWM configu-

ration, which is 0.998, can be achieved or even exceeded

when the reliability (MTBF) and maintainability (MDT)

parameters of its assemblies meet any of the following prac-
tically feasible combinations:

(1) MTBF > 1500 hr; MDT < 60 hr

(2) MTBF > 2000 hr; MDT _< 84 hr

B. Availability of TWMs at DSS 43

The estimates of pooled MTBF and MDT for each

TWM assembly in the X-band configuration are

MTBF = 2350 hr, or _ = 0.000425 failure/hr

MDT = 36 hr, or # = 0.027777 repair/hr

and the estimates for each TWM assembly in the S-band

configuration are

MTBF=5080 hr, or A=0.000196fMlure/hr

MDT = 36 hr, or # = 0.027777 repair/hr

The application of the availability measures given in

Eqs. (9) and (11) to the TWM configurations at this sta-
tion results in the following individual and simultaneous
availabilities:

Ao (X-band configuration) = 0.999768

Ao (S-band configuration) = 0.999950

Ao(for antenna microwave) = 0.9997

The operational availability of both TWM configura-

tions at this station, which is 0.9997, is greater than the
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predicted requirement of 0.996 for the period 1990 through
1991. The availability of individual configurations is rel-

atively high and in the range of 0.9997 to 0.9999 for this
period. This is primarily attributed to both a reasonable

MTBF level (2300 to 2500 hrs) and an acceptable MDT
of 36 hours (or 1.5 to 2 days).

The impact of improved TWM assembly reliability on a

configuration's operational availability at various levels of

assembly MDT is described in Fig. 5(b). The plots demon-
strate that the operational availability for each TWM con-

figuration will always meet or exceed the requirement at

the current MTBF level (greater than 2000 hr) for as long
as the MDT level remains at or below 60 hr.

C. Availability of TWMs at DS$ 63

The estimates of pooled MTBF and MDT for each

TWM assembly in the X-band configuration are

MTBF = 1820 hr, or A = 0.000549 failure/hr

MDT = 60 hr, or p = 0.016666 repair/hr

and the estimates for each TWM assembly in the S-band
configuration are

MTBF = 2525 hr, or _ = 0.000396 failure/hr

MDT = 36 hr, or p = 0.027777 repair/hr

The application of the availability measures given in

Eqs. (9) and (11) to the TWM configurations at this sta-
tion results in the following individual and simultaneous
availabilities:

Ao (X-band configuration) = 0.998948

Ao (S-band configuration) = 0.999799

Ao (for antenna microwave) = 0.9987

The operational availability of both TWM configurations
at this station, which is 0.9987, is slightly higher than the

predicted requirement of 0.996 for the period 1990 through

1991. The availability of the X-band TWM configuration
exceeds the required level of 0.998. For the S-band TWM

configuration, the availability is relatively high for this pe-

riod as a result of both a reasonable MTBF level (2525

hours) and an acceptable MDT level of 36 hours (less than
2 days).

The impact of increased TWM assembly reliability on a

configuration's operational availability at possible levels of

assembly MDT is described in Fig. 5(c). The plots demon-
strate that the operational availability for each TWM con-
figuration will always exceed a level of 0.998 at the current

MTBF level (greater than 2000 hrs) for as long as the MDT
level remains at or below 48 hours.

VI. Discussion of the Findings and
Observations

In this section, the results of the operational reliability

and availability analysis of the TWM configurations are

discussed. The appropriate ite_related to the improve-
ment of the TWM assembly availability characteristics are
also presented.

A. Discussion of the Findings

(1) Failure analysis of TWM assemblies shows that the

helium refrigerator contamination is the dominant

cause of TWM failure (55 to 65 percent of total fail-

ures). An earlier investigation of this problem im-
plied the feasibility of detecting the development of

contamination 1 or 2 days in advance of a TWM
failure.

(2) The proportions of compressor and refrigerator

drive-unit failures (12 and 15 percent, respectively)
are considered significant, as compared with the fail-
ure percentages for other TWM elements. If their

failure frequencies were reduced, the TWM MTBF

would be considerably improved.

(3) The DR data show that the average MTTRS for the

TWMs (1.4 hr) relative to the DSN Telemetry Data
System is about two to three times as long as the

MTTRS of other telemetry elements. Improving the
MTTRS of the TWM assemblies to a desirable level

of 0.7 hr would essentially require improved TWM

backup availability. This is accomplished when re-
pair durations, and consequently MDT levels of the
TWMs, are reduced.

(4) Analysis of the 1990-1991 TWM station failure data

shows a significant variation in the MTBF level

at different complexes. The higher MTBF lev-

els for the TWMs at DSS 43 appear to have re-
sulted from improved repair procedures as well as

an increased level of preventive-maintenance activ-

ity prior to early 1990. On the other hand, TWMs at
DSS 14 and DSS 63 have demonstrated lower MTBF
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- (5)

-_ levels, which are _ved to have resulted from less
efficient repMr and preventive maintenance processes
at these stations.

Analysis of the 1990-1991 TWM station repair data
shows a variation in the level of MDT for repair at

different complexes. For the TWM assemblies at

DSS 43, the MDT level is relatively good (36 hr) and
lower than MDT levels demonstrated at the other

--stations (84 hr at DSS 14 and 48-60 hrs at DSS 63).

That is perhaps indicative of improved repair prac-
tices as well as better trained maintenance personnel

at the Canberra complex.

(6) TWM operational availabilities at the individual sta-

tions (computed by using the proposed measures),

are in close agreement with their average availabili-

ties for the Telemetry Data System (generated from

the DR system). These availabilities at the individ-
ual stations are compared in Table 7.

The variations in corresponding TWM availabilities at
different stations are primarily attributed to the effect

of incorporating the MDT parameter into the proposed

TWM availability measures. The use of TWM MDT is
more appropriate than the MTTRS parameter for their op-

erational availability evaluations since the former is more

representative of TWM actual unavailable (repair) times.

B. Observations

The following observations, which are primarily drawn
from the previous work reported in [2], are based on the

findings of the TWM failure-cause analysis.

(1) Solution of tile helium gas contamination problem
would reap the greatest dividends. The composition
and sources of contamination have to be better under-

stood. Some of the items related to this area include

(a) Implementation of the previously proposed com-
puter-based monitoring and data-collection and

analysis system for the TWM CCRs would improve

the identification of possible CCR faults before they
cause TWM failure.

(b)

(c)

Improved field techniques for measuring gaseous im-

purities and other contaminants in helium would be

very valuable.

Improved gas flow meters and gauges of the helium

refrigerators and compressors would allow for the

detection of helium low flow and improve the quality

of recorded performance data.
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(2) An understanding of the contribution of the compres-
sor oil to contamination at increased temperatures is

needed, as is a mechanism to replace in-service com-

pressor filters and adsorbers without affecting maser

operation.

(3) A detailed failure mode analysis, preferably using the
FTA technique, for the helium compressors and refrig-

erators to reduce their current significant contributions

to TWM failure is yet to be done and would be part of

another phase.

The following observations are based primarily on the

findings of the reliability and availability analyses of the
TWMs:

(1)The preventive-maintenance schedules and proce-
dures for the TWM equipment at both DSS 14 and

DSS 63 need to be reviewed to achieve higher MTBF
levels for their TWM assemblies.

(2) The TWM corrective-maintenance procedures and

support equipment at DSS 14 and DSS 63 need
to be evaluated for possible improvements in order

to achieve reduced repair durations and improved

TWM backup availabilities. This is essential to re-

duce the average MTTRS for the TWMs network-
wide.

(3) Improving and sustaining training for the maser op-

eration and maintenance personnel would help to

achieve a TWM availability performance consistent
with the specified requirements.

VII. Summary

This article has reported the results of the reliability

and availability analyses of the TWM assemblies at the

70-m antennas and has presented a stochastic availabil-

ity evaluation model of their operational configurations.
The dominant cause of TWM failures is contamination of

the helium gas in the CCRs. This is consistent with the

findings of a previous study; however, another important

finding is that proportions of TWM failures attributed to

compressor and refrigerator drive-unit failures have almost
doubled in recent years. The current MTBF level of the

TWMs for spacecraft support (approximately 930 hr) can

practically be improved. The average MTTRS can be re-
duced to 0.7 or 0.8 hr if TWM backup-assembly availabil-

ity is improved.

The MTBF and MDT levels of the TWMs at the Can-

berra Complex DSS 43 indicate that it is possible to

achieve the desired levels of these parameters (MTBF of



2500-3000hr; MDT of 36-48 hr) for the present TWMs

at both DSS 14 and DSS 63 when operation and mainte-
nance procedures are consistently improved and practiced.
Individual availabilities of TWMs at DSS 14 are consid-

erably lower than corresponding levels for the TWMs at
DSS 43 and DSS 63. That is indicative of the adverse im-

pact of the relatively higher MDT (84 hr) for the TWMs
at DSS 14.

The derived stochastic expressions provide adequate

measures of the S- and X-band TWM standby configura-

tion availabilities and allow for the evaluation of simultane-

ous operational availability of these configurations for their _ -:

Antenna Microwave Subsystem. The application of these

availability express_bns to the 70-m antenna TWbl config-
urations indicates a relatively lower operational availabil-

ity level achieved at DSS 14. That is primarily attributed

to the higher MDT of the failed TWM at this station. The
proposed measures can be Considered as useful tools to

examine possible MTBF and MDT trade-offs that would

result in an improved TWM configurations' operational
availabilities at the 70-m antennas.
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Table 1. Basic performance requirements of the 70-m antenna TWM assemblies.

Performance parameter S-band (Block IlI, IV, V) X-band (Block IIA)

Frequency, MHz 2270--2300 8400-8500

Gain contr_ution, dB
Peak 45 45

Minimum 44 44

GMn stability, dB

Stationary-10 sec 0.03--0.05 0.03

Stationa_ry-12 hr 0.5 0.5

Moving 0.5-2.0 0.5

Noise temperature contributions, K 8-10 Block IH <4.0

<5.0 Blocks IV,V

Table 2. Failure-cause distrlbutlon of the 70-m antenna TWM assemblies.

A
Area of failure

Number of TWM failures

DSS 14 DSS 43 DSS 63

Number of failures Total

(subnet) failures, percent

Z

Helium refrigerator 24 16 25 65 69.8

Contamination (19) (12) (20) (51) (54.8)

Other (drive unit, etc.) (5) (4) (5) (14) (15.0)

Helium compressor 4 2 5 II 11.8

Low flow 4 2 3 9 9.7

Power supply/clJstribution 2 1 2 5 5.4

Miscellaneous (pump, 0 2 1 3 3.3

lclystron,maser, etc.)

TotM 34 23 36 93 100
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Table3.MTBFhistoryoftheDSNTWMassemblies.

Time period Approximate MTBF, hr Remarks

DSN DR's data for

Late 1960s 1000-1300

Late 1970s (1979-1981) 3000

Early 1980s (1982-1983) 1000-1200

Station reports' data for

Early 1990s (1990-1991)

1400-1600 (S-band)

1600 (X-band)

5000 (S-b_d)

2400-4000 (X-band)

1900-2500 (S-band)
1400-1800 (X-band)

All complexes/stations
All complexes/stations

All complexes/stations

Goldstone Complex; only DSS14

Canberra Complex; only DSS 43

Madrid Complex; only DSS 63

Table 4. Telemetry data system availability based on Its major subsystem contributions.

Number of Total outage, MTBF, MTTRS, Telemetry
Subsystem

outages hr hr hr availability, percertt a

Antenna Mechanical 229 200 171 0.9 99.50

Antenna Microwave 69 96 567 1.4 99.76

(TWM included)

Radio Frequency Interference O0 160 244 0.9 99.61

Receiver 195 74 220 0.4 99.82

Telemetry 472 271 92 0.6 99.35

Facility 34 35 3760 0.6 99.94

aData availability ---- MTBF/(MTBF + MTTRS)

Table 5. Telemetry data availability analysis based on the contributions of the 70-m station TWMs.

Schedule Total

Station TWMs support time, Number of MTBF, MTTRS, Telemetry
hi" outages outage,hr hr hr availability, percent •

DSS 14 8356 15 14.6 557 0.97 99.83

DSS 43 9165 1 8.3 9165 8.3 99.91

DSS 63 9533 13 17.4 734 1.3 99.82

Total/average 27054 29 40.3 933 1.4 99.85

a Data availability = MTBF/(MTBF + MTTRS)
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Table8.Aval:abllitycharacteristics of TWM assemblies In the 70-m antenna subnet,

DSS complex TWM
type

Availability factor Availability measure

MTBF t MDT b MPT c Ao Aa

!
I

i

t "
i

DSS 14 t Goldstone, $1 1361 92.6 48 0.93629 0.90636
California $2 1963 72.0 48 0.96462 0.94239

X 1 1628 68.0 48 0.95990 0.93348

X2 1601 95.0 48 0.94399 0.91800

DSS 43, Canberra, S1 5070 42.0 N/A d 0.99178 0.99178
Australia $2 5091 21.0 N/A 0.99589 0.99589

X 1 5079 33.0 N/A 0.99354 0.99354

X 2 1232 46.75 N/A 0.96344 0.96344

DSS 63, Madrid, $1 1987 38.4 32 0.98104 0.96578
Spain $2 5056 20.0 36 0.99605 0.98905

X1 1070 54.0 30 0.95196 0.92721

X2 3568 64.0 36 0.98238 0.97274

=

=

The MTBF levels shown are calculated as the total operating hours of each TWM divided by the

number of TWM failure (outage) events for the period considered.

b The MDT shown is caiculated as the total outage times and repair times divided by the number

of reported failures for each TWM assembly.

c The MPT shown is calculated as the total preventive-maintenance time divided by the number of

preventive activities performed for a period.

d Indicates that preventive-maintenance activities were not scheduled for the period considered.
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Table 7, A comparison of TWM availabilities st the 70-m stations.

DSS-TWMs Operational availability Average availability
(proposed measures), percent (DSN DR system), percent

DSS 14 99.73-99.75 99.83

DSS 43 99.97-99.99 99.91

DSS 63 99.89-99.97 99.82
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This article provides a model for estimating the cost required t 0 do a cost es-

timate for DSN projects that range from $0.1 to $100 million. The cost of the

cost estimate in thousands of dollars, CE, /s found to be approximately given by

CE = KCp 0"35, where Cp is the cost of the project_ being estimated in ml]]ions of

dollars and K is a constant depending on the accuracy of the estimate. For an

order-of-magnitude estimate, K - 24; for a budget estimate, K = 60; and for a

definitive estimate, K = 115. That is, for a specific project, the cost of doing a

budget estimat_ is about 2.5 times as much as that for an order_of-magnltvde es,

timate, and a definitive estimate_costs about twice as much as a budget estimate.

Use of this model should help provide the level of resources required for doing cost

estimates and, as a result, provide insights towards more accurate estimates with

less potential fo_c6s=_o_s. _

=

h Introduction Ray Observer (98 percent), Space Telescope (98 percent),

! Galileo (100 percent), Tracking and Data Relay Satellite

Large cost overruns for major projects are a frequent System (130 percent), and Pegasus (700 percent). Consid-
occurrence. For example, the following projects are re-

ering the current emphasis on fiscal responsibility within

ported to have had final costs that exceeded the original NASA-and-other government agencies, cost overruns are

cost estimates by over 45 percent. 2 These were Landsat-D a major problem. Overruns may lead to cancellation of

(48 percent), Infrared Astronomical Satellite (60 percent), the project. In some cases, a potential overrun results in

Earth Radiation Budget Experiment (61 percent), Gamma modifying the project to a design-to-cost task.

I Consultant to the TDA Plannlng_-'on. .............
There are many reasons for cost overruns, but one of

H. W. Partma and W. E. Ruhland, PredictingFinancialRi_kfor

- theDevelopmen_ o] S_ace FlightProjec_ (internaldocument), Jet

_- PropulsionLaboratory,Pasadena, Callfor_da,September 1988.
_5

L .

the key factors is the lack of resources (time, money, and

staffing)spent to do proper up-front cost estimates. An-

=
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i
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other major reason is that the implementers did not do the
estimating. The purpose of this article is to address the
issue of the cost to do a cost estimate. The authors will

report on how others handle this issue, offer suggestions
on how the DSN should estimate the amount to spend on

a cost estimate, and discuss its impact on reducing the
probability of a cost overrun.

The authors will report on their literature search and

actual data from JPL Procurement on what others charge
the Laboratory for a cost estimate. The goal is to de-

termine guidelines and a methodology for estimating how

much to spend on a cost estimate to achieve a desired ac-

curacy. Underallocation of resources for producing a cost
estimate is not uncommon. All the necessary cost elements

are usually not included because of time constraints. This

leads to cost overruns and/or descoping of the functional

requirements of projects.

Ih The Cost of Estimating Accuracy

The cost of doing a cost estimate depends on how well

the project is defined, who is doing the estimate, the
amount of information available, and the level of accuracy

required. An order-of-magnitude estimate will cost much

less than a definitive estimate. The accuracy of a cost
estimate increases within certain limits as the amount of

resources spent on the cost estimate increases. The au-
thors defined a metric for the cost to do a cost estimate as

the percent of the cost of thcestimate as compared with

the total cost of the project.

cost of a cost estimate (percent) =

cost of the estimate (CE)

total cost of the project (Cp)
x 100 percent

Figure 1 shows the relative cost of a cost estimate [1]

as a function of the accuracy of an estimate for a project
costing approximately $3 million that the authors up-

dated to 1990 dollars using the NASA Inflation Index [3].

For example, an estimate that is accurate enough to be

within -I-30 percent would cost 0.2 percent, or $6 thousand,
whereas an estimate accurate to within :t=10 percent would

cost 1.5 percent, or $45 thousand, of the total project cost.

The more one invests up front in defining the requirements
and the deliverables, the more accurate the final estimate
will be.

For projects much larger than $3 million, the cost of the

estimate as a percent of the total project cost would be less

than that shown in Fig. 1, whereas for smaller projects
costing much less than $3 million, the percent spent on

the cost estimate would be higher. Figure 1 represents a

model typical of the process industry; however, the concept
applies to the DSN. The authors will now report on a

recent set of data that is applicable to the DSN.

This second set of data [2] shows the cost to prepare C_t

estimates for three accuracy ranges varying from order of

magnitude, -30 to +50 percent; budget, -15 to +30 per-
cent; and definitive, -5 to +15 percent, for projects rang-

ing from approximately $0.1 to $80 million. Notice that

the high limits of the ranges are greater than the low lim-
its because there is usually a ia_ of consideration of all

the necessary cost elements. As a result, there is usually

more chance of a cost overrun than an underrun. By mak-

ing several smoothing assumptions and updating the data

to 1990 using the NASA Inflation Index [3], the authors

plotted the resulting data set as shown on a log-log plot

in Fig. 2. A model developed based on these parameters
is described below.

II!. Model for the Cost of Estimating
Accuracy

On the log-log plot of Fig. 2, a set of straight lines con-
formed closely to the data points. On a log-log plot, a

straight line represents a convenient power function equa-

tion of the form C1_ = KCp R. That is, by taking the log

of both sides of the equation, one gets

log CE=R log Cp+log K (1)

This represents a straight line where R is the slope of the

line in Fig. 2 and log K is the Y intercept. The lines
shown in Fig. 2 therefore reflect a convenient power func-

tion equation that can be used as a model.

CE = KCp R (2)

where

CE -- cost of the cost estimate in thousands of dollars

Cp = cost of the project being estimated in millions of
dollars

K = a constant depending on the accuracy of the es-
timate

R = slope of lines

L
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-_--_ Figure 2 shows the sio_pe_:and.the constant K for each

2

-=

class of cost estiniat_e. For each class of estimate, R = 0.35

for project costs in the range of $0.1 to $100 million. The
constant K is 24 for an order-of-magnitude estimate, 60 for

a budget estimate, and 115 for a definitive estimate. Or to

look at it another way, a budget cost estimate costs about
two-and-one-half times as much as an order-of-magnitude

estimate, and a definitive estimate costs about twice as

much as a budget estimate.

IV. Discussion of Levels of Cost Estimates

The levels of cost estimates discussed in this article cor-
relate with the condensed classification of cost estimates

proposed by the American Association of Cost Engineers

[2]. These are as follows:

Class Accuracy, percent

Order of magnitude -30 to +50

Budget -15 to +30

Definitive -5 to +15

An order-of-magnitude level of cost estimate is usuMly
based on very preliminary statements of requirements.

This is done in the requirements definition stage when

there is a preliminary listing of deliverables. This class

of estimate roughly coincides with that needed for a Level

A design review 3 when a maximum uncertainty of 30 per-
cent is desired.

The budgetary level of a cost estimate is based on sys-

tem functional requirements with at least preliminary de-

liverables, receivables, and schedules presented by a sub-

system. This class of cost estimate is appropriate for

Level B and/or Level C design reviews when a maximum

u_ncertainty of 20 percent is desired.

The definitive level of a cost estimate is based on a sub-

system functional design, and the deliverables, receivables,
and schedules are carefully defined and final. This class of

cost estimate is appropriate for a Level D design review

with a maximum uncertainty of I0 percent.

3R. P. Mathison and P. T. Westmoreland, "C_t Review Format,"
JPL Interoffice Memorandum 3300-88-08 (internal document), Jet
Propulsion Laboratory, Pasadena, CMiforlaia, January 6, 1988.

A more detailed description of the DSN classes of cost

estimates as they relate to design reviews is presented
in the Mathison-Westmoreland JPL Interoffice Memoran-

dum. 4

V. Example Using the Model

Assume that one has to estimate the cost required to

do a cost estimate for a project that is expected, based on

other similar projects, to cost approximately $20 million.

Use Eq. (2) or Fig. 2 where

CF. = KCp R

Cp = 20, R = 0.35, and K = 24, 60, and 115 for an
order-of-magnitude, a budget, and a definitive estimate,

respectively. Using CE = 24 x 20 °'35, one gets $68,000 for

an order-of-magnitude estimate. For a budget estimate,

one gets $171,000 and a definitive estimate costs $328,000.
Armed with these data, a decision can be made to proceed

with the cost estimate after allocating the necessary funds.

This method may reduce underallocation of resources

for producing cost estimates, and thereby more realistic

project cost . estimates may be obtained. Of course, if the
actual estimate of the project turns out to be more or

less than the so-called ballpark guesstimate, the budget
for doing the cost estimate can be adjusted accordingly.

In the next section, data obtained from :IPL Procurement

will be presented on the cost of actual cost estimates.

VI. JPL Procurement Data for Cost
Estimates

The authors obtained data based on JPL procure-
ments for outside contractors to do cost estimates for DSN

projects, s,s,7 These data points are summarized in Ta-

ble 1. The first data point reflects a Motorola estimate

4 Ibid.

5 R. S. Hughes, personal communication, Radio Frequency and Mi-
crowave Subsystems Section, Jet Propulsion Laboratory, Pasadena,
California, December 5, 1989.

e R. L. White, personal communication, Ground Antennas and Fa-
cilities Engineering Section, Jet Propulsion Laboratory, Pasadena,
California, January 23, 1991

L. H. Kushner, personal communication, Ground Antennas and Fa-
cilities Engineering Section, Jet Propulsion Laboratory, Pasadena,
California, February 5, 1991.
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for a significant supplement to an existing Motorola con-
tract. The second and third data points show the costs

of two externally generated Preliminary Engineering Re-

ports (PER's) that developed the estimated costs for cost-
of-facilities projects

The costs of the cost estimates for these three projects
varied from 1.3 to 2.9 percent of the total project cost.

The high value of 2.9 percent was for a relatively small

project of about $2 million, whereas the lower values of 1.3

to 1.5 percent were for projects in the $11 to $24 million
range. These results fall into the band of curves shown in

Fig. 2. This provides an independent check of the model
proposed earlier.

VII. Summary

A model for estimating how much should be allocated

to-do DSN cost estimates for new-capabilities has been
developed. This model may help the DSN make better cost

estimates and thereby reduce the possibility ofproducing
cost estimates that are too low. These low cost estimates

could lead to cost overruns or reduction of some functional

requirements or both.
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Table 1. JPL procured cost estimates in FY'90 dollars.

Source Ct,, millions of dollars CE, thousands of dollars (C£/Cp)lO0, percent

Motorola a 1.96 56 2.9

Section 332 b PER c 10.83 148 1,3

Section 332 PER d 24.00 360 1.5

s Modification to Motorola contract (Ma_;ellan gro_d hardware) for adding C-band uplink capability

to DSN receiver-exciter subsystems.

b Ground Antennas and Facilities Engineering Section.

c For 34-m antenna JPL support effort plus contractor production of PER.

d For new Telecommunication Research Laboratory (building).
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