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Based on realistic modeling of the electron density of the ionosphere and using a

dipole moment approximation for the Earth's magnetic field, one is able to estimate
the effect of the ionosphere on the Global Positioning System (GPS) signal for a

ground user. The lowest order effect, which is on the order of 0.1-100 m of group
delay, is subtracted out by forming a linear combination of the dual frequencies of

the GPS signal. One is left with second- and third-order effects that are estimated

typically to be ...0-2 cm and ...0-2 mm at zenith, respectively, depending on the

geographical location, the time of day, the time of year, the solar cycle, and the
relative geometry of the magnetic field and tt_e line of sight. Given the total electron

content along a line of sight, the authors derive an approximation to the second-
order term which is accurate to ..-90 percent within the magnetic dipole moment

model; this approxinmtion can be used to reduce the second-order term to the

millimeter level, thus potentially improving precise positioning in space and on the

ground. The induced group delay, or phase advance, due to second- and third-order
effects is examined for two ground receivers located at equatorial and mid-latitude

regions tracking several GPS satellitesl

I. Introduction

The Global Positioning System (GPS) consists of 24

satellites, evenly distributed in 6 orbital planes around the

globe, at an altitude of about 20,200 kin. Precise posi-

tioning of the GPS satellites, as well as ground and space
users, is now reaching a few parts in 10"_[1-6]. In addition,

the GPS has been heavily utilized in a host of geodetic and

other applications. These include seismic tectonic motions

[7-9], Earth orientation studies [10,11], gravimetry [12], at-

mospheric water vapor calibration [13,14], and ionospheric

monitoring [15]. Precise positioning and other GPS-based
applications, however, require a very good understanding

of all effects on the GPS signal as it propagates through
the Earth's atnmsphere, so that all effects can be solved

for or modeled.

The GPS transmits two right-hand circularly polarized

(RCP) signals at L-band frequencies: L1 at 1574.42 MHz
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and L2 at 1227.6 MHz, which correspond to wavelengths

of 19.0 cm and 24.4 cm, respectively. These are modulated

by a pseudorandom precision code (P-code) at a frequency

of 10.23 Mttz [16]. [The additional lower frequency course

acquisition (C/A) modulation is not of concern here.] A

single measurement for a given transmitter and receiver
pair will consist of four observables that will be denoted

here by L1, L2 for the accumulated carrier phase mea-
surements at the two frequencies and P1, P2 for the cor-

responding P-code pseudorange. In addition to the geo-

metric range delay, the signals will experience delays, or

phase advances, due-to the presence of the ionosphere and

neutral atmosphere.

The delay due to the neutral atmosphere is the same

for all observables; its effect is on the order of 2 m and can

be solved for to better than a centimeter [13,14]. ttow-
ever, due to the dispersive nature of the ionosphere, the

group delay caused by it (or phase advance) is frequency
dependent, and is on the order of 0.1-100 111, depending

on the time of day, the time of year, and the solar cycle.

If the ionospheric effect on signal delay (or advance) is

expanded in powers of inverse frequencies, then the lowest

order term (l/f2), by far the most dominant, can be solved
for and subtracted out by virtue of the dual frequencies of

the GPS. Remaining higher order terms are on the or-

der of submillimeters to several centimeters, which remain

embedded in the signal and contribute to range and accu-
mulated phase errors. While the first-order term depends

simply on the total electron content (TEC), namely the
integrated electron density inside a columnar cylinder of

unit area between the transmitter and the receiver, higher

order terms depend on the coupling between the Earth's

magnetic field and the electron density everywhere along
the line of sight. In order to estimate the higher order
effects on the GPS observables, the authors modeled the

ionosphere by a sum of Chapman layers and the Earth's

magnetic field by that of a dipole moment. Such a model
will make it possible to estimate higher order ionospheric

effects at different geographical locations on the ground as
well as their sensitivity to the electron density distribu-

tion. It will be demonstrated that knowledge of the TEC
can be used to calibrate most of the second-order effect

and reduce P-code and phase measurement errors to a few
millimeters.

Due to the inhomogeneity of the propagation medium,

the GPS signal does not travel along a perfectly straight
line. Moreover, since the medium is dispersive, the two

frequencies will take two slightly different paths. By ap-

plying the empirical formula given by Brunner and Gu [17]
on the ionospheric model used below, the residual range

error between the dual-frequency corrected range and the

true range, due to bending alone, is estimated to be -,,4 mm
at a 10-deg elevation angle and less than a millimeter for

elevations above 30 deg. The bending effect will be ignored

in the following analysis; the two signals will be assumed
to travel along the same straight line.

A more elaborate modeling of higher order ionospheric

effects, where bending is taken into account, has been con-

sidered by Brunner and Gu [17]; see also [18]. In their pa-

per, the international geomagnetic reference fields (IGRF)

and a Chapman profile of the ionosphere were used to es-
timate the residual range error. They also proposed an

improved linear combination that corrects for the second-

and third-order terms, as well as for bending. Their im-

proved linear combination requires knowledge of No, and

hm, the electron density peak and its altitude, respectively.
In this article, the second- and third-order terms are con-

sidered separately. Here the authors estimate that the
second-order term is dominant most of the time over the

third-order and the curvature terms. A method of mod-

eling the second-order effect based on a thin shell model

of the ionosphere and a dipole magnetic field is suggested.
The second- and third-order errors are considered at dif-

ferent geographical locations while tracking different satel-
lites. It is demonstrated that knowledge of the TEC alone

can be used to reduce the higher order effects to a few
millimeters.

II. Earth's Ionosphere

The Earth's ionosphere extends from an altitude of
about 80 to 1000 km. It is a macroscopicaIly neutral ion-

ized gas consisting principally of free electrons, ions, and

neutral atoms or molecules. Ions in that region are 2000
to 60,000 times more massive than electrons. Thus, at

the frequencies used for radio communication, the range

of movement of an ion caused by the electric field of a
radio wave is smaller than that of an electron by about

the same factor. This implies that the ions can, for most

purposes, be ignored [19].

The electron density profile exhibits several distinct re-

gions (E, F1, and F2) as a result of the competing processes
of particle production, loss, and transport. The maximum

electron densities (10 _2 to 1013 m -3) are observed at the

F2 peak; the peak altitude ranges from 250 to 350 km at

mid-latitudes and from 350 to 500 km at equatorial lati-
tudes. The F1 region, which is present during the day but

absent at night, has a peak near the 200-km altitude and

is 3-5 times smaller than that of F2. The E peak den-

sity is about, one order of magnitude smaller than the F2
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peakandis typicallylocatedat the100-to 120-kmalti-
tude.DuringdaytimethereisalsoaD regionbelowtile
E region,withapeakat the80-kinaltitude[20].

!11. Propagation of Electromagnetic Waves in

the Ionosphere

When a magnetostatic field /_0 is applied to a plasma,

the plasma becomes anisotropic for the propagation of

electromagnetic waves. That is, the scalar dielectric con-

stant of the plasma is transformed into a tensor. To study
the propagation and polarization properties of a plane

moribchromatic wave in a magnetically biased homoge-

neous lossless plasma, the plasma is regarded as a con-
tinuous medium whose conductivity is zero, whose perme-

ability is equal to that of a vacuum, and whose dielec-
tric constant is a_ tensor. By solving the tIelmholtz wave

equation subject to proper constitfitive relations, one can

obtain the expressions for the fields and for the index of
refraction. The index of refraction, n, for the Earth's iono-

sphere'°is given by the Appleton-Hartree formula [21], as
follows:

" _ " - 2X(1" X)
.I= 1- (1)

2(1 --X)- Y_ 4-¢y4 + 4(1 --X)2]q_

where

X = (_) 2 = (Ne2/47r3¢°m)f2 (2)

Y.t = Y sin OB : ]fll = Y cos On " (3)

..... r_

N is the number density of electrons; e and m are the

electron charge and mass, respectively; ¢o is the permit-

tivity of the free space; fp, fg, and f are the plasma, gyro,
and carrier frequencies, respectively; and 0B is the an-

gle between the Earth's magnetic field, _0, and the di-
rection of propagation of the wavefront, k. By definition,
¢ = eJ_o/2rfrn, and since e is negative, ? is antiparallel

to/_0. The plasma frequency is the natural frequency of

oscillation for a slab of neutral plasma with density N af-
{_er the electrons have been displaced fl'om the ions and are

allowed to move freely. The gyro frequency is the natural

frequency at which free electrons circle around the mag-
netic field lines. For the Earth's ionosphere, with N - 101_

electrons/in 3, the plasma frequency fp _ 8.9 MHz. The

gyro frequency for an electron in the Earth's magnetic field

(2 x 10 -s tesla) is fa _ 0.59 MHz.

The plus and minus signs of Eq. (1) correspond to the
ordinary and extraordinary wave modes of propagation,

respectively. In general, these two waves are elliptically po-

larized with left mad right senses of rotation, respectively.
As a result of different phase velocities of the two waves,

the total wave (the sun]. of ordinary and extraordinary
waves) undergoes Faraday rotation as it passes through

the ionosphere. When the carrier frequency is large, as
compared with plasma and gyro frequencies, the principal

modes of propagation are dominantly circularly polarized.

This is the case for the GPS carrier frequencies.

Assuming that Y << 21cos 0B I(1 -- X)/sin 2 0B, the in-

dex of refraction can be expanded in inverse powers of fre-

quency. For the GPS carrier frequencies, one has (h/f) =
5.65 x 10 -3 and 7.25 x 10 -3, as well as (fg/f) = 3.75 x 10 -4
and 4.81 x 10 -4 for L1 and L2, respectively. Therefore,

the stated assumption is valid for GPS frequencies up to a

value of 0B _. 89 deg. The expansion of Eq. (1) up to the
fourth inverse powers of frequency gives

1 1n± =I-_X+ XYIcosOBI

1 oos,0 ,]- + O)

The second, third, mad fourth terms on the right-hand
side of Eq. (5) are proportional to the inverse square, in-

verse cube, and inverse quartic powers of frequency, respec-

tively. The two values of n refer to the ordinary (+) and
extraordinary (-) waves. At this point it should be noted

from Eq. (5) that the index of refraction is smaller than
unity, which corresponds to a phase velocity greater than

the speed of light (phase advance). The group refractive

index, on the other hand, given by ng r°up = n + f(dn/df),
can be written as

n_:r°up =1 + 1XTXYI cos OBI

+ 3X [2 X + Y_-(1-I- cos20a)] (6)

The group delay of a signal passing through the iono-

sphere, relative to vacuum as a reference, can be rewritten

|
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= cos - 1)gl (7)

where dl is an element of length along the line of sight, c

is the velocity of light in a vacuum, and a is the angle be-

tween the wave normal and the ray direction. This angle

has significance in anisotropic media, where the direction

of the wave normal is, in general, different from the direc-

tion of energy propagation. Angle a can be found from

• the following relation: tan a = (1/n)On/OOB. By using

Eq. (5) and the definition ofa,it is easy to show that for
the GPS carrier frequencies cos c_ is essentially unity. By

using Eqs. (5)-(7), the GPS observables can be written

[ignoring the left-hand circularly polarized (LCP) com-

ponent of the GPS signal, which has <0.35 percent and
<2.5 percent of th_ total power, for L1 and L2, respec-

tively] as

q S r

 =p+ff+ff+ 

S r
(8b)

q ls lr

L1 = p -t- nlAx f? _31 3 3 f_ (9a)

q ls lr

Lz = p + n2A2 f_ 2 f_ 3 ]_ (9b)

where

1/f,_ /q = _ dl = 40.3 Ndl = 40.3 TEC (10)

2437 / Nldl + 4.74x 10 22 / NB_ (I + cos 2 OB)dli"

(12)

TEC is the total electron content along the line of sight,

and A is the operating wavelength. In Eqs. (8) and (9), p
corresponds to the geometrical distance plus all the nondis-

persive terms that are common to both frequencies, such

as clocks, transmitter and receiver delays, and the neutral

atmospheric delay. In Eq. (9), nlA1 and n2A2 correspond

to unknown integer numbers of cycles that are constants

for a given transmitter and receiver pair over a continu-

ous tracking period. In addition to the terms shown on

the right-hand side of Eqs. (8) and (9), there are terms
due to multipath, thermal noise, phase center variations,

and a transmitter and receiver relative geometry depen-

dent term; however, these are not the subject of this study,

and are omitted from Eqs. (8) and (9).

IV. Ionospheric Layers and Geomagnetic
Field Models

To proceed with the computation of the higher order
delays, one has to assume models for the electron density,

N, and the Earth's magnetic field, B0. For the electron

density distribution, the Chapman layer model is chosen.

This model is derived by assuming a homogeneous com-
position for air at a constant temperature. The curva-

ture of the Earth is neglected, and it is assumed that the

atmosphere is horizontally stratified and the scale height

H_ is independent of height. As the solar radiation trav-

els downward through the atmosphere, it is absorbed and
hence ionization is produced. The rate of electron produc-

tion is a function of height above mean sea level h and

the sun's zenith angle X, which is the angle between the
ray from the sun and the zenith. From considerations of

the production of electrons by photoionization and their

removal by recombination, the following formula for the

electron density distribution can be obtained [22]:

where Nmax is the naaximuln value of the electron density

at an altitude of hmax and z = (h- hrnax)/Hs. When
X is near 90 deg, as near sunrise and sunset, the plane

Earth approximation fails. To correct for this, sec X in

Eq. (13) is replaced with the grazing incidence function

Ch(x, X). This fimction, which applies accurately only to
a spherically symmetric atmosphere with H, independent

of height, can be expressed as

1 ) i/2Ch(x,X) = _Tr2sinx eI/'_°_x

1 2 (14)

where x = (RE + h)lH_, Re is the Earth's radius, and

err(.) is the error function. The plus (minus) sign refers
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to X > 90 deg (X < 90 deg). Figure 1 is a plot of tile elec-

tron density distribution versus height for two different
solar zenith angles X = 0 deg and X = 64 deg. In obtain-

ing this distribution, three different Chapman layers were
added together so that the distribution can resemble the

ionospheric F2, F1, and E layers: the E layer with a maxi-

mum at 110 km, the F1 layer with a maximum at 210 kin,

and the F2 layer with a maximum at 350 kin. This fig-

ure is representative of a daytime profile typical of a year

near :_nspot maximum. The D layer, which is normally
present during the daytime, is not inc_fiJ(ied: During night-

time, tile F1 !ayer disappears and the electron density for
a given height is about 10-100 times smaller than that of

daytime. In a solar minimum, the same features (D, E,

F1, and F2 layers) are preserved with the electron density

scaled down roughly by a factor of 10.

Next, one must model the Earth's magnetic field. A

first approximation to the geomagnetic field near the sur-
face of the Earth is an Earth-centered dipole with its

axis tilted to intersect the Earth at 78.5 deg N latitude,

291.0 deg E longitude, which corresponds to the geomag-
netic north pole; and at 78.5 deg S latitude, 111.0 dcg

E longitude, which corresponds to the geomagnetic south

pole [201 (see Fig. 2).

At this point one must distinguish between two refer-

ence frames with a common origin at the Earth's center.

The geodetic frame is Earth-fixed and is given by _,_,_,
where _ is along the Earth's spin axis, and _ is point-

ing toward 0 deg longitude. The geomagnetic frame, on

the other hand, is obtained by first rotating the geodetic

frame by an angle fl = 291 deg around its _ axis, and

then applying a second rotation by an angle 6 = 11.5 deg
around the new _',_ axis (Fig. 3). This geomagnetic frame

is denoted by 5_m,:gm, _.,_ and is constructed so that i,n is

along the magnetic dipole. A vector transformation front

the geodetic to the geomagnetic frame is given by

cosScosfl cos6sin/3 -sin6

- sin/3 cos/3 0

sin 6 cos/3 sin 6 sin/3 cos 6

_7 (15)

At a point on the Earth's surface, local geodetic east,

north, and vertical are denoted by x,_r Z, and geomag-
netic east, north, and vertical are denoted by _:,_, Ym, Zm

(Fig. 3). The magnetic field vector is given by

()3/_0 = Bg _RE sin0mYm - 2Bg(RE]3cosOmZ,,,\r--m-/ (16)

where r,, is the radial distance, and O,n is the magnetic

colatitude. The value Bg is the amplitude of the magnetic
field at the Earth's surface at the magnetic equator, and

is equal to 3.12 x 10 -5 tesla.

V. Analysis

A. First-Order Effect

According to Eqs. (8)-(10), the first-order ionospheric
delay can be written as 4.48 x Io-lsAUTEC (meters). For

the GPS L1 and L2 frequencies, respectively, this trans-

lates to 16.2 cm and 26.7 cm of group delay (or phase

advance) for every one TEC unit (1 TEC unit = 1016

electrons/m2). Daytime and nighttime, as well as solar
minimum and maximum ground TEC measurements, vary
between 1 and 500 TEC units. Therefore, first-order iono-

spheric group delay (phase advance) ranges between --.0.2
and 80 m for L1 and --.0.3 and 130 m for L2.

Tile first-order ionospheric term, which is about three

orders of magnitude larger than higher order terms, can

be eliminated by using the "ionospheric free" linear com-

bination, which, based on Eq. (8), is given by

f? - f_) P_ - \ A - f_-)

$ r

P flf2(f2 + fl) _ (17)

As the first-order ionospheric term is eliminated, the dom-

inant ionospheric errors are due to the second- and third-
order terms, which are discussed below.

B. Second-Order Effect

The term B0] cos OB[ in Eq. (11) represents the absolute

value of the component of the B0 field along the line of

propagation; therefore, it can be replaced by [fro "/'1, where
2

(.) represents tile inner product and k is the unit vector in
the direction of propagation.

Consider a station with magnetic colatitude and lon-

gitude 0m and era, respectively, observing a satellite with
elevation Em and azimuth Am, where Am is measured from

magnetic north. Then k is given by

k = - (cos Em sin Arn_:m

+ cos Em cos A,nY,,_ + sin ErnT, m) (18)
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therefore,

\rm J

- 2 cos 0_ sin Em (19)

where 8:n , rm are the magnetic colatitude and radial dis-

tance of a point along the link, respectively. This term,

multiplied by the electron density, is the integrand of
Eq. (11), where one:must think of r,, and 0" as varying

along the line of integration. While the exact distribution
of electron density along the line of sight is needed to cal-

culate the second-order delay term, a useful approximation

can be derived by assuming that the ionosphere consists

of a very thin layer ataltitude H. Then, the correspond-
ing rm and 0_n at the intersection point between tile line

of sight and the ionospheric layer are given (for E,_ > 10

deg) by

r,n = RE + H (20a)

, H cos A,n cos Em+ O (20b)
0m = 0,n RE sin Em

By combining Eqs. (8), (11), and (19), one can approxi-
mate the second-order ionospheric group delay (in units of

distance) by

{ _R 3
second order ion. group delay = 2.61 x IO-lSA3Ir_E ]

\rm J

I' ' I× sinOmcosEmcosAm-2eosO_sinE, n TEC (21)

where r,n and 0:n are given by Eq. (20). Setting H at

300 km and ignoring the factor between the absolute signs,

Eq. (21) implies that in the dipole approximation, the
second-order ionospheric group delay is on the order of

0.16 mm and 0.33 mm for L1 and L2, respectively, for
each TEC unit. The second-order ionospheric phase ad-

vance, on the other hand, is one-half of this effect. When

forming the ionospheric free linear combination, some can-
cellation in the second-order term takes place; tile residual

range error (RRE), which is defined as the difference be-

tween the dual-frequency corrected range [left-hand side

of Eq. (17)] and the true range, is then on the order of
-0.11 mm per TEC unit.

The relations between the magnetic colatitude and lon-

gitude, 0,, and ¢,,,, and the geographical colatitude and

longitude, O and 8, are given by

cos 0,,_ = sin 6 cos/3 sin 0 cos ¢

+ sin 6 sin/3 sin 0 sin ¢ + cos 6 cos 0 (22)

tan ¢_n --

- sin/3 sin 0 cos ¢ + cos/3 sin 0 sin ¢

cos 6(cos/3 sin 0 cos ¢ + sin/3 sin 0 sin ¢) - sin 6 cos 0

(23)

The satellite elevation in local magnetic east-north-

vertical coordinates, E,n, is the same as the elevation in

local geodetic east-north-vertical coordinates, E. On the
other hand, the azimuths in these two coordinates are re-

lated through

A m = A + arccos(sin esin ¢,,, cos 6 cos/3

+ cos ¢ cos ¢,, cos 13+ sin ¢ cos em sin/3

- cos ¢ sin ¢,, cos _ sin/3) (24)

Figure 4 shows the absolute value of the RRE due to
the second-order term. This is shown for two stations at

different longitudes and latitudes, tracking different GPS

satellites, as indicated on the figure. These errors are

calculated using the exact integral form of Eq. (11) and
assuming the Chapman layer distribution of Fig. 1 and

the magnetic field of a tilted dipole, as described above.

The angle X in Eqs. (13) and (14) is determined based

on the assumption that the _ axis (Fig. 3) is pointing to-
ward the sun at 12h UT. The exact calculation, referred

to as truth, is compared with an approximation obtained

from Eqs. (20)-(24). According to the examples of Fig. 4,
the true second-order absolute RRE lies an rms value of

1.25 cm, and can be as large as 4 am at the lowest elevation

angle (10 deg). Using the thin-layer model at the 300-kin
altitude as described above, it is possible to approximate

this effect to better than 90 percent on the average. The

difference between the truth and the approximation has an

average of 0.11 cm and a variance of 0.25 cm. This suggests

that a thin-layer model of the ionosphere can be very use-

ful in calibrating the second-order ionospheric effect and

therefore improving GPS-user range measurements.
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C. Third-Order Effect

Upon examining Eq. (12), one finds that tile second

term, except during tlmes'0f ver_#str_ong magnetic storms,
contributes no more than a submillimeter of range error

for gigahertz frequencies. Therefore, one must consider the
first term, which can _besimplified to (in units of meters,

kilogramsl and seconds)

/third-order ion. group delay = 3.0 x 10-3i,_ 4 N2dl

. (25)

To get an approximate estimate of the integral of Eq. (25),
the authors use the shape parameter r/, defined by Brunner

and Gu [17] as

f N_dl
(26)

77- Nm_x f N dl

For a single Chapman layer, r] was estimated to be ,-_0.66

and almost independent of elevation [23,17]. Since this

ionospheric profil e is dominated by a single layer (F2), the
authors believe that the shape parameter r] in this case
will be close to 0.66. Therefore, One can approximate the

integral of Eq. (25) by 0.66 x Nmax x TEC. For Nmax =
3.0 x 1012(e/m 3) and TEC = 101s(e/m 2) the third-order
term is estimated to be -v0.86 mm for L1, _,2.4 mm for L2,

and ,_-0.66 mm for the RRE. A more exact estimate of

the third-order term based on Eq. (12) and the Chapman

distribution of Fig. 1 is shown in Fig. 4. In the examples

of Fig. 4, the delay ranges between 1 and 4 mm.

VI. Conclusion

The above results are summarized in Table 1, which

shows the amount of group delay due to first-, second-,

andthird-order ionospheric terms in the zenith direction,

assuming a zenith TEC = lOiS(e/m?).

In employing a Chapman distribution and a dipole ap-

proximation for the magnetic field, it was possible to es-

timate the higher order ionospheric effects on range and

phase measurements. The second-order error can be sev-
eral centimeters for range as well as phase during daytime,

for a year near sunspot maximum. Moreover, since the

magnetic field is fixed to the Earth, and the GPS orbit, as

seen from a ground station, repeats itself daily (shifted by

_4 min per day), the diurnal shape of the second-order er-
ror is most likely to repeat its overall structure for several

days, at least to the extent that the overall electron density

distribution remains unchanged. Such daily repeatable er-

rors in range and phase will be mapped directly into orbital
and baseline estimation. This study shows that a rough

ionospheric model consisting of a thin shell at 300 km,
plus a knowledge of the TEC, allows one to calibrate the
second-order term to better than 90 percent. This implies

reducing the second-order ionospheric error to less than 2
mm on the average and, therefore, potentially improving
orbit determination and baseline solutions.
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Table 1. Estimated zenith Ionospheric group delay due to l/f 2, 1/f 3, end 1/f 4 terms, for an arbitrary wavelength

A (microwave region), L1 and L2 frequencles as well as the residual range error with dual-frequency calibration.

It is assumed that the zenith TEC= 1018 (e/m2). The phase advance can be read from this table by multiplying

each number by = 1, -1/2, and -1/3 for the 1/f 2, 1/f 3, and 1/f 4 terms, respectively.

Ionospheric expansion term ),, MKS _ units L1 L2 RRE

1/f 2 4.48 X IO-16X2TEC 16.2 m 26.7 m 0.0

Ill 3 _ a 2.61 X IO-18AaTEC "1.6 cm _3.3 cm _ -I.I cm

(o < _ < 2)

l/f4(Nmax = 3.0 X 1012e/m 2) _ 2.0 X lO-31A4NmaxTEC ,,_0.86 mm _2.4 mm ,-, -0.66 m2m

Calibrated 1If 3 based on a ,_ 1-2 mm

thin-layer ionospheric model

_Meters, kilograms, and seconds.
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Fig. 1. Ionospheric profile modeled as 1he sum of three

Chapman layers.
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Fig. 2. The Earth's magnetic field modeled as an Earth-centered

dipole, aligned along the geomagnetic axis.

Fig. 3. A graphical Illustration of all the frames used In the text.

The vectors £, _, and _ correspond to the geodetic frame; the

vectors £m, _m, and _m correspond to the geomagnetic frame;

the vectors _m, _'m, and 2m correspond to geodetic local east,

north, and vertical; end the vectors _m, '_m, and 2m correspond

to geomagnetic local east, north, and vertical.
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Fig. 4. TEC and absolute second- and third-order Ionospheric residual range errors along the line of sight for different GPS-ground

receiver pairs. Shown also are the elevation and azimuth of the observed satellite as functions of time: (s) GPS 1, station at 40 deg

N latitude, 0 deg longitude; (b) GPS 9, station at 0 deg latitude, 75 deg W longitude; (¢) GPS 20, station st 40 deg N latitude, 0 deg

longitude; and (d) GPS 16, station at 0 deg latitude, 75 deg W longitude.
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