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Data Compression by Wavelet Transforms
M. Shahshahani
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A wavelet transform algorithm is applied to image compression. It is observed
that the algorithm does not suffer from the blockiness characteristic of the DCT-

based algorithms at compression ratios exceeding 25:1, but the edges do not appear
as sharp as they do with the latter method. Some suggestions for the improved

performance of the wavelet transform method ar e presented.

I. Introduction

The application of wavelet transforms and multireso-
lution analysis to data compression has attracted much

attention recently. This circle of ideas is closely related to

the subband compression and the pyramid encoding tech-
niques. The general idea is to transform and reorganize

the data in a hierarchical manner so that the upper levels

of this hierarchy (or pyramid) represent the general fea-

tures of the data or the image and the lower levels supply

the details. Generally the higher levels of the pyramid are
smaller data sets than the lower levels; however, the coeffi-

cients in the latter portion are more correlated than those
in the former and are better compressed by the standard

lossless compression techniques.

The applications of wavelet representations to practi-

cal engineering problems are not limited to source coding.

For example, one encounters situations that necessitate

selecting a subset of a large data set on tile basis of cer-

tain characteristics. One may achieve this by browsing

through the higher levels of the hierarchy, which comprise

a much smaller data set, examining the general features of

the data, and making judicious choices. The coefficients

in the lower levels of the pyramid may be used for edge
detection.

As in other methods of data compression, applica-

tions of wavelet transforms to source coding assume a
priori knowledge of the tolerable level of information loss

and/or the desirable compression ratio. Data compression

is achieved by quantizing the transformed data and allo-

cating bits to the different levels of the pyramid of the

transformed data in a manner compatible with the con-
straints and the requirements of the particular application.

Naturally, in source coding applications more bits are al-

located to an individual coefficient in the higher levels of

the pyramid than to one in a lower level. In analogy with

the discrete cosine transform (DCT), one may regard the
lower levels of tile pyramid as tile high frequencies and the

upper ones as tile low frequencies.

The presentation of the general theory of wavelet trans-

forms in Section II is intended for application to data com-

pression. The literature on the subject is often inadequate

regarding the implementation of the basic ideas, and the
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theoretical aspects of the subject seem to be only remotely
relatecVto practical engineering problems. It is hoped that

the concise and concrete presentation of tile wavelet trans-
forms in Section II will make the literature more accessi-

ble to interested researchers. In Section III, the practical

aspects of image compression by wavelet transforms and

the results of the applications are reported. Further re-

search topics for the improvement of the performance of

wavelet-transform-based compression algorithms are also
suggested. Some of the advantages and disadvantages of
the wavelet transforms versus the standard DCT tech-

niques are discussed. However, no definitive judgment

can be made at this time regarding their relative merits.
While the latter approach has been studied extensively in

the past decade, the application of wavelet transforms to

image compression has not reached the level of maturity
that would warrant definitive assessment of its merits and

potential.

fine the action of Aa,b on a function _ by Aa,_(_)(z) =
a-ll2_[(z - b)/a]. It is convenient to introduce the nota-

tion _m,,,(x) = A_,,,,2.,,,(_)(x), for m and n integers, and
note that a function f E £ admits of the expansion

oo

a,, x.,,,, (2)
oo

where X is the indicator function of the interval [0,1), and

m_ f Xm,n(x)f(x)dz. The functions Xm,n are obtainedQn

from the single function X through the action of a set of
affine transformations of the lille. For each fixed m,

£m = span {Xm,,_[n E Z}

f ELm _ f(2.) e _m-i

(3)

II. Wavelet Transforms

The idea of wavelet transforms and their applicability

to signal analysis, and especially data compression, is most

easily demonstrated by focusing on the one-dimensional

From the expansion (2) one easily obtains the expansion
of f following the decomposition £ = _Cm. First observe
that

case first. A straightforward generalization of the theory 1
to two dimensions for application to image compression is Xrn-l-l,n _- --_(Xrn,2n

+ Xrn,2n+l)

indicated at the end of this section. In this case, a da_a

set is represented by an element of £ = L2(R). Consider ........ _._+1 ' 1 t_,.n m
the following sequence of partitions of R: Therefore, _. - :_"2. + a;.+z), and after a simple

calculation one obtains

oo

Partition Pm: R = U I.,m 1
v.,(:) - w+,(/) = i - -

where In,,n = [2mn, 2m(n + 1)), and let £,_ be the sub-
space of E consisting of functions that are constant on the

intervals In,._. The operator p._ of orthogonal projection
on the subspace £m is

1 : f(x)dx= i-z

1 :

Now set _o._,n = :_(X-_,2. - Xm,2n+l) to obtain the ex-
pansion

oo

f= (4)

where Ira(x) is the unique interval In,m (m fixed) contain-
ing z. The subspaces £m have the following properties:

nc. =o, Uc. =c (1)

Let gm denote the orthogonal complement of £,,_+1 in £m,

then £ admits of the orthogonat direct sum decomposi-

tion £ = @Cm. Denote orthogonal projection on Em by

rm. Let Aa,b, where a ¢ 0 and b are real numbers, de-

note the affine transformation A_,b(x) = az + b, and de-

1 m _

where bnm = 7_(a2n - a2n+l ). It is a remarkable fact, and

easy to prove, that the functions _._,_ are also obtained
from the single function _(x) = X(2z) " X(2z - 1) by

the action of the set .A = {Az,.,2,.,n[m, n E Z} of anne

transformations, and an analogue of condition (3) is valid
for the subspaces £m, namely,

(5)
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The functions {_m,n} form a complete orthonormal set
for £. The expansion (4) is an example of orthonormal

wavelet expansion, and the coefficients bnm are called the
wavelet coefficients.

To understand the intuitive meaning of the expansion

(4), assume that f E £:m for a sufficiently large nega-
tive number m. The projection of f on £m is rm(f) =

f - pm+l(f). Now P,_+l(f) is a slightly smoothed version

of f so that 7rm(f) represents the details that are miss-

ing from the smoothed version pm+l(f). Thus, r,_(f) or

more precisely, the coefficients bnm in tile expansion (4) be-
long to the lowest level of the hierarchy. The process can

be repeated with Pm+l(f) replacing f, thus leading to a

hierarchy of the coefficients of the wavelet expansion of f.

An important feature of the expansion (4) is that the

coefficients b_ and a, can be computed recursively in a
1 from a°n,simple manner. For example, to compute a n

substitute expansion (2) for m = 0 in the formula for a_
to obtain

OO

a,, = x(x - k- 2n)x( 12)d , (6)
k----

Therefore, if one defines a(k) as the integral in expansion

(6) for n = 0, one obtains the formula

oo

1 (7)

Similarly,

k_--OO

(8)

where n(k) - :_2 f X( x - k)_(xl2)dx. By a straightfor-
ward inductive extension of this calculation, one can ex-

press bnm+l and am +1 in terms of anm. The resulting fornm-

lae are identical with formulae (7) and (8) with m and m+l

replacing 0 and 1, respectively. Therefore, the wavelet co-

efficients b_m and a T can be computed by the filters defined
by a and J.

The orthonormal basis {_,,_,n} and the expansion (4)
are just one example of an orthonormal wavelet expansion.

To obtain other expansions, one has to abstract some of

the features of this illustrative example. The essential in-

gredients of the theory are an orthonormal doubly infinite

basis {_o,_,,,} for £ such that the functions _a,n,,, are ob-
tained from a single function to via tile action of the set

.4, and for which condition (5) is valid. For applications,

knowledge of the corresponding filters fl and cr is essen-

tial. Since in practical engineering problems the data are

normally in digital form, it is important to adapt the theo-
retical framework of wavelets to the discrete or digital case

before discussing other wavelet expansions.

In the digital domain, 12(Z) replaces L2(R) as the space

of one-dimensional data. One can naturally identify 12(Z)
with/::0, and therefore the theory developed above extends

to this case immediately. The only difference is

L_j=Eo, p_j =id., and _r_j =0 forj>O (9)

It follows that formulae (2) through (8) remain valid, pro-
vided that the range of the values of m is limited to 0 to _.

In practice, the domain of n is (Z rood 2N) for some in-

teger N. Therefore, _:N = R, and the linear spaces _:m

are finite dimensional. The bases {X_m} and {X_re+l, !p_ +l }

for £:m = £r_+l @gm differ by an orthogonal transforma-

tion. It follows that the coefficients {a_m} and {a_ +_, b_}
are also related by an orthogonal transformation. This

orthogonal transformation, which is the matrix represen-

tation of the filters a and fl, is given by the 2_r x 2N matrix

with 2 x 2 diagonal blocks

This means that given a data set represented by a

column vector (.f0, .-., f2N-t) _r, the application of the

above matrix transforms it into a vector (go, ..., g2N-1) t_

with the even-numbered components (g0, g2, -.., g2N-2) _
representing Pl (/) and the odd-numbered ones

(gl,g3, ..., g2N--1) lr representing 7rl(f). Here the su-
perscript tr means the transpose of the matrix or vector.

The problem of determining other orthonormal wavelet

expansions, and especially the corresponding filters, is dis-

cussed in detail in [1]. Of particular interest in practical
problems is the case where the functions a and f_ have

small support, i.e., or(j) = 0 =/J(j) for most j's. It is the

knowledge of the functions (or filters) a and /_, and not
the basis functions themselves, that is essential for appli-

cations. In [1], the filters a and fl of small support are

explicitly determined. The simplest of these filters is the

one given above. The next simplest one is the matrix Y

given by
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O_3

0

0

t_ 2

o_ 1

_I _2 _3 0 0 0 ...... 0

-a2 al -_o 0 0 0 ...... ]0 _o _I a2 _3 0 ......

0 _3 -a_ al -no 0 ......

: " ° ,, "., ",, °

_3 0 0 ......... 0 _0 _1 /

-no 0 0 ......... 0 a3 -a2 /

(1o)

where

1+`/3 3+,/3 3-,/3 1-,/3
4,/2

One should note that an important feature of the orthonor-

mal wavelet expansion is that the inversion procedure can

be implemented by the transpose of the orthogonal matrix
representing the filters a and _ ........

(go,g2 .... , g2_-2,gl,g3, ..., g2_-1). Now the process
is repeated for the columns of the matrix of the trans-

formed rows: After reorganizing, -_etransformed matrix

of pixel intensities takes the form

(gZ!: gZ_

g= \ g_Z g22 ]

where each gij is a 2N-1 x 2N-I matrlx: Since an image is

two-dimensional, the hierarchy of the wavelet coefficients

requires some elaboration. The matrix gn represents the

smoothed version of the image, wl_ile the remaining coeffi-

cients are the missing details. The coefficients g12 and g21

belong to the level of the pyramid immediately below gU,
and g22 lies at the lowest level of the pyramid. Thus, ev-

ery application of the wavelet transform generates three

levels of hierarchy for a two-dimensional image. The pro-

cess is then repeated by applying the filters a and _ to
the 2N-1 x 2 N-1 matrix glZ along rows and columns. The

resulting coefficients are then reorganized in the form

The above theory was limited to one-dimensional data.

It can be easily adapted to the two-dimensional case by

considering products of the basis functions considered in

the one-dimensional case. This is equivalent to carrying
out the one-dimensional wavelet transforms in the hori-

zontal and vertical directions. The practical aspects of
the two-dimensional wavelet transform are discussed in de-

tafl in the next sect_onl Of course, there are orthonormal

wavelet expansions that may not be separable, i.e., the ba-
sis functions are not products of the basis functions for the

one-dimensional case, but they will not be considered in
this article.

g11,11 .__ {g11,12 g11,21} _._ g11,22 ._.+ {g12,g21} ...+ g22

with the highest level at the extreme left and the lowest at

the extreme right. The process can be repeated. It may

be more convenient to organize the coefficients differently
in the following form:

gll,lZ

g11,1:_,g11,2t g11,22

gZ_,g2_ g2_

One then refers to gll,ll as SS (smooth-smooth) level 2, to
III. Application to Data Compression gll,l:Z,gtZ,2_ and g_,g_l as the SD (smooth-detail) levels

To apply the theory to data compression, one fixes an 2 and 1, respectively, and to g_,_ and g2_ as the DD

orthonormal wavelet expansion, or equivalently, the ill- (detail-detail) levels 2 and 1, respectively.

ters a and 8. In the work-rep-orteJ-here, oni); the filter _ .... =........ : ::: :
defined by the matrix 9r was used) An image is repre- In the application of wavelet transforms to i-rhage eore=

sented by a matrix f = (fij), where fij is the intensity

of the pixel (i, j). For each fixed row i, one considers
the transform gi = Ff_ _, where fi is the ith row of the

matrix f. The components of gl with even indices rep-

resent P_(fi) and those with odd indices represent rl(fi).

It is convenient to reorganize the vector gl in the form

t It is often unclear from the literature what filter is actually used.

The filter used in [3] differs from that defined by .T'.

pression, the coe_cien_ts =at _ref/t_Ieve_s ofth-e pyrsrn]d

are not equally significant and, therefore, should be en-
coded differently. The wavelet coefficients of different lev-

els were examined for several images, and certain patterns

were observed. In general, the coefficients at a lower level

of the pyramid are better approximated by a Laplacian

density function than those at the higher levels. Using
the nearest integer truncation, one also notices that the

entropies of the coefficients at the lower levels are smaller
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than those in the upper ones. Figures 1 through 4 show
the distributions of the wavelet coefficients at different lev-

els of the hierarchy for a typical image. An approximating

Laplacian density function is given in Figs. 1 through 3.
Clearly the coefficients at the highest level (Fig. 4) have a

very irregular distribution. Table 1 shows the entropies of

the wavelet coefficients for the same image.

The image compression process is done by first comput-

ing the coefficients g22, g12, g21,gl_,22,gll,z2, etc. These

coefficients are quantized according to a bit allocation
scheme similar to the one used for the standard DCT-

based algorithms. As noted above, more bits are allocated
to the higher levels of the hierarchy than to the lower ones.

In the pictures of the peppers compressed by the wavelet

transform method (Fig. 1), the coefficients in the lowest

level have been set to 0. In practice it was observed that

because of the quantization errors inherent in any floating-
point computation, it is not desirable to go beyond three
or four levels of wavelet transforms. To reconstruct the

image, the inverse filter was applied to the coefficients. As

noted above, the inverse filter is given by the transpose of

the orthogonal matrix defining the filter.

There are several issues involved in the application of
wavelet transforms to image compression. The choice of

the appropriate wavelet transform may be dictated by the

complexity of the image. It has been suggested that dif-
ferent transforms may be more appropriate for different

images or even different parts of an image. Some ideas in
this direction appear in [2] with apparently very promising

results. The problem of bit allocation and quantization of

the wavelet coefficients is similar to the analogous prob-

lem for DCT-based image compression. It may be possi-
ble to take advantage of the regularity of the coefficients
at the lower levels of the pyramid and use the Laplacian

distribution to allocate bits accordingly. However, the ex-
perimental work carried out by the author suggests that

the simpler method of truncation to the nearest integer

followed by decimation by an appropriate number of bits

provides better results. Naturally, fewer bits are allocated
to the lower levels of the pyramid than to the upper lev-

els. A different method for quantization is proposed in

[3]. These authors suggest that using the L i rather than
the L 2 norm is more compatible with the human visual

perception, and their proposed technique of quantization

method is based on minimizing the errors in the former
norm.

While a definitive comparison between the DCT-based

algorithms and wavelet transform techniques is premature,

the tests done by the author suggest some important differ-
ences. At higher compression ratios, for example at greater

than 25:1, the blockiness in the DCT-based techniques be-

comes very visible. With the wavelet transform used in the

tests, the edges were not as clearly defined as those using
the DCT-based techniques, but no blockiness was visible.

The rms error of the Joint Photographic Experts Group

(]PEG) DCT-based algorithm was smaller than that of
the wavelet transform method, but visual preference is not

necessarily reflected by the mean square error. Figure 5
shows an original image (peppers) on the upper left cor-

ner. The images on the upper right and lower left were

compressed using the wavelet transform. The compres-

sion ratios were 10:1 and 30:1, respectively. The image in

the lower right was obtained by the application of the stan-

dard DCT-b_ed ]PEG algorithm. Its compression ratio is

30:1. The rms error for the lower left image is about 11.0,

and for the one at lower right it is approximately 7.2, even

though the blockiness makes it much worse than the one

at lower left. The rms error for the image on the upper

right is about 9.4. It should be pointed out that other
methods, such as fractal algorithms, may produce images

that are visually preferable to the DCT-based methods for

high compression ratios.

The wavelet transform used in this work is the prod-
uct of a one-dimensional algorithm with itself; that is, es-

sentially separable into one-dimensional algorithms. It is

possible to modify this method to make the horizontal and

vertical directions more coupled so that the algorithm be-
comes truly two-dimensional. The visual effects of such

modification are unclear at this time. However, it is rea-

sonable to expect improvements in the clarity of the edges
if such techniques are properly employed.

IV. Conclusion

The wavelet transform method provides a new approach

to image compression. Although this approach has not

performed as well as tile DCT-based algorithms in terms of

the rms error, it appears to have certain visual advantages

especially regarding blockiness.
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Table1.Entropiesofthe
waveletcoefficients.

Level Entropy

DD-I 2.5

SD-1 3.2

DD-2 2.8

SD-2 3.8

DD-3 3.4

SD-3 4.5

DD-4 4.0

SD-4 5.0

SS-4 6.4

185



uJ
o
z
w
rr
rr

0

8
I.L
O

O
Z

8
F

3000

2000

1000

o
- 1O0

,_ WAVELET

!----.I COEFFICIENTS

0

COEFFICIENTS

100

Fig. 1. Level DS-2 wavelet coefflclents and Laplaclan density.

LU
0
Z
LU
rr
fr-

O

8
u.
o

z
LU

O
UJ
rr
LL

6O0

500

400

300 --

2O0

100

0
- 100

' I '

LAPLACIAN

X., /-- WAVELET

_. ii_ / COEFFICIENTS

o

COEFFICIENTS

lO0

Fig. 2. Level DS-3 wavelet coefficients and Laplaclan density.

100

80

w
(D
z
I.u
¢,r

g 60
o
o
O

O

o

_ 40
O

r_
ii

2O

-6O

I ' I ' I

'-- WAVELET

COEFFICIENTS

20 40 6O

COEFFICIENTS

Fig. 3. Level DS4 wavelet coefficients and Laplaclan density.

uJ
(z
n-

8
o
LL
O

Z
UJ

0
LU
O[
LL

I01 ' I '

8t-

61-

0 100

WAVELET COEFFICIENTS

Fig. 4. Level SS-4 wavelet coefficients.

AI
200

Z

=

186



BLACK

ORIGINAL pAGE

AND WHITE pHOTOGRAPH

Fig. 5. Image compression: (a) the original uncompressed Image; (b) compression ratlo of 10:1 by wavelet transform; (c) compresslon
ratio of 30:1 by wavelet transform; and (d) compression ratio of 30:1 by DCT-based JPEG algorlthm.
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