
GLACIATION IN ELYSIUM. Duwayne M. Anderson,

Texas A&M University, College Station "IX 77843-3115,

USA.

Results of a study of high-resolution Viking Orbiter

images of the northwestern slopes of Elysium Mons, utilizing

a variety of image analysis techniques, provide striking

evidence of an extended period of glaciation that involved a

large ice sheet of greater than 1.2 km thickness and subice

fluvial activity that contributed to the formation of the
channels of Hrad Valles and Granicus Valles. These two

unusual channel systems begin on the lower slopes of

Elysium Mons and extend into Utopia Planitia in the region
lying between 215 ° and 230°W and between 25° and 45°N.

Key indicators are the presence of serrated volcanic

constructs whose dimensions and morphology indicate an

origin involving successive, localized, subice fissure

eruptions. The channels visible in I-ll'ad Valles bear a striking
resemblance to subice fluvial features found in the dry valleys

ofAntarcticaattheperipheryofthismassivecontinentalice

sheet. Crater size distributions and crater morphologies are

quite consistent with this interpretation, as arc certain other

topographic features suggesting the presence in the past of

ice-rich permafrost that, while having undergone significant

degradation, still remains.

ORBITAL, ROTATIONAL AND CLIMATIC R-
ACTIONS: LESSONS FROM EARTFI AND MARK

Bruce G. Bills, Geodynamics Branch, NASA Goddard Space

Flight Center, Greenbelt MD 20771, USA.

Introduction: Though variations in orbital and rota-

tional parameters of the Earth and Mars ate widely rec-

ognized as plausible sources of significant climatic variation
on 103-10S-yr timescales, many aspects of the connection

between orbital, rotational, and climatic variations remain

poorly understood. In general, the orbital histories are very
well known, the rotational histories are less well known, and

the climatic histories (especially for Mars) are very poorly

known. A brief review will be given of recent progress in

computing orbital and rotational secular variations, and in

connecting them to climatic change. The emphasis will be on

highlighting those areas that limit our present understanding.
It is obvious that mass redistributions associated with cli-

matic change (giaciations) are an important source of crustal
deformation and geodynamic change on the Earth, and may

have played a similar role on Mars in the distant past. It is
much less widely appreciated, however, that rates, phases,

and amplitudes of deformation of the deep interior of the

planetcan influence climate.The mantleand core,ifcom-

pletelydecouplcd,would precessatquitedifferentrates,and

evenwith plausiblecouplingstrengths,some degreeofdif-

ferentialprecessionispossible.Mass flow associatedwith
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glaciations can influence the precessional dynamics of the
Earth or Mars, and changes in orbital and rotational parame-
ters influence the latitudinal and seasonal pattern of insola-

tion. Previous attempts to account for astronomically forced

climatic change have usually only considered extremely

simplisitic models for the response of the solid planet to ex-

ternal torques and surface loads.

The Traditional Perspective: The latitudinal and sea-

sonal pattern of incident solar radiation depends on the ec-

cenWicity of the planetm3, orbit and the orientation of the spin
axis relative to both the orbit normal and the aspidal line.

Unit vectors s and n characted_ the directions of the spin

axis and orbit normal respectively. Two angles completely
characterize the relative orientation of the spin axis. The

obliquity ¢ is simply the angle between the orbit normal and

the spin axis

= c,os-1(n.s) (l)

The ascending node of the orbit plane on the instantane-

ous equator plane has an orientation given by ($ x n), and the

longitude of porihelion to is just the angle in the orbit plane
from that node to perihelion. It is widely appreciated that

secular variations in these three parameters (e,c,to) produce

majorclimaticchange[1,2 I. In fact, sp_tral analysesoflong,

high-resolutionmarinesedimentisotopicrecordsshow sig-

nificantvariance at periods near 100 kyr, 41 kyr, and

19-23 kyr,which are generally attributedtospectrallinesin

the radiative forcing fluctuations associated with e, c, and e

sin(to) respectively.
The causes and effects of the orbital changes are quite

well understood. Gravitational interactions with the other

planets cause the shape and orientation of the orbit to change

on timcscales of 104-106 yr. The inclination I and nodal lon-

gitude f) determine the orientation of the orbit plane. The ec-

centricity e and perihelic longitude co determine the shape of
the orbit and its orientation within the plane. Note that co is

measuredfrom an inertiallyfixeddirection,ratherthanthe

movingnodeasisthecaseforto.The secularevolutionofthe

orbitalclerncntpairs(I,_)and (e,co)canbe convenientlyrep-

resentedintermsofPoissonseries

p = sin(1)sin(_)= _Njsin(sit+ gi)

q = sin(1)cos(n)= _'Njcos(sit+ gj)
(2)

h =esin(co)=YMjsin(rjt + fj)

k =eco_co)= r.MjcoRrjt+ fj)
(3)

In the lowest-order solution, there are as many frequencies

rj and sj as there are planets. However, the frequencies rj and

sj are chaxacteristic modal frequencies (eigenvahies) of the
coupled system of oscillators and are not each uniquely asso-
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ciated with a particular planet [3] The frequencies r. are all• j
positive, indicating that the perihelia advance. In the lowest-

order solution, the apsidal rates are all in the interval

(0.667 < rj < 28.221 arcsec/yr). The corresponding periods
are 45.92 kyr to 1.943 m_y. One of the frequencies, sj, is zero,
and all the others are negative, indicating that the nodes re-

gress. In the lowest-order solution, the nonzero nodal rates

are all in the interval (0.692 < sj < 26.330 arcsec/yr). The
corresponding periods are 49.22 kyr to 1.873 m.y. In higher-
order solutions, variations in (e,c0) become coupled to vari-

ations in (I,f_), but the solutions can still be cast in terms of

Poisson series like equations (2) and (3).

I_kar [4] has recently published a secular variation

theory that is complete to fiRli order in eccentricity and
inclination. Agreement between this secular variation model

and strictly numerical computations [5,6] is much better than

for any previous analytical model. The inclination and

eccentricity series for Earth and Mars each contain 80 distinct
terms.

In computing these secular orbital variations, the Earth,

Moon, and planets can all be treated as point masses. No in-
ternal structure or processes are relevant to orbital evolution.

The physics of the process is simple and well understood,

though development of proper mathematical tools to repre-

sent the long-term evolution mamins an area of active re-

search [4,6,7]. On the other hand, the rotational evolution
does depend rather sensitively on various aspects of the struc-

ture and dynamics of the interior.
Lunar and solar gravitational torques acting on the oblate

figure of the Earth cause the spin axis s to preeess about the
instantaneous orbit normal n. If the Earth is considered to be

a rigid body, the evolution of the spin axis orientation is

given by

ds/dt -- ct(n. s)(s x n) (4)

where

3(C- A) Crmi 3sin2(li)}
= b] ,I-

(5)

is a scalar rate factor that depends on intrinsic properties of

the Earth, such as polar and equatorial moments of inertia

(C,A) and rotation rate n, and on exhinsic influences, such as
masses m, orbital inclinations I, and semiminor axes b, of the

Moon and Sun. The solar and lunar torques together produce

a precession of the spin axis of the Earth at a rate of tt(n.

s) -- 50.38 arcsec/yr [8,9].
Unfor_nately, in the ease of Mars, the precession rate is

still rather poorly known. The best estimates at present come

from analysis of the Viking Lander range data, which yield
values of 9.6 + 0.6 aresec/yr. Much smaller relative errors are

frequently cited, but all such optimistic estimates are directly

dependent upon an assumed value for the moment of inertia
of Mars, which is highly model dependent [10], precisely be-

cause the axial precession rate is not known. The uncertainty

in this parameter is the largest single impediment to accurate
recon,,qnactions of the obliquity history of Mars [11]. Fortu-

nately, theMars Observermissionradioscienceinvestiga-

tionswill significantly improve our knowledge of the pre-
cession rate of Mars within a few months after orbit inser-

tion.

Once the present spin axis direction s is known and

orbital dement histories are given via equations (2) and (3),

an obliquity history can be constructed from equation (4) in

two different ways. The linear perturbation approach [12-I 7]
involves deriving coefficients of a trigonomelric series, simi-

lar to equations (2) and (3), which yields the obliquity and

longitude of perihelion directly as fimctions of time. An al-

ternative is to apply standard numerical algorithms for solv-

ing initial value problems to generate a vector time series s(t)
and then compute the obliquity and longitude of perihelion

directly [11,18,19]. The _trum of obliquity variations, in

the linear perturbation model, is simply obtained from the

inclination spectrum by shiRing each frequency sj by the
iunisolar precession rate (a = 50.38 arcsec/yr for the Earth, or

8-10 arcsec/yr for Mars) and multiplying each amplitude Nj
by the spectral admittance

"ksj= )

There are several important features of this solution:

(1) As a is positive, and sj is negative in all cases, it is
possible for the denominator to vanish; (2) near this

resonance, the obliquity variations are large; and (3) at
smaller or larger forcing fi'equencies, the obliquity variations

are small.

Uncertainty in the obliquity history of Mars derives from

two facts: the value of the precession rate is uncertain by 6%

(compared to <a).04% for the Earth) and the obliquity history
of Mars depends more sensitively on the precession rate than
is the case for Earth because of a near resonance with some of

the inclination forcing frequencies. To investigate the sensi-

tivity of the computed martian obliquity history to assumed

preceksion rate, a series of numerical integrations of the rigid

body precession equations was made [11], covering a 20-m.y.
interval centered on the present, using precession rates in the

interval 8.5-9.5 arcsecb H. The maximum obliquity encoun-

tered cam be anywhere in the range 35"-50", and the
minimum value can be 8"-14". Despite this large uncertainty

in the particulars of the obliquity history, all the computed
time series were characterized by two dominant features:

large oscillation with a characteristic period of-105 yr and a

significant modulation with a characteristic period of 2

106 yr.
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Fourier, Legendre, and Milankovitch: The influence

of orbital and rotational variations on climate is operative

throughperturbationsinthelatitudinaland seasonalpattern

ofinsolation.The diurnalaverageintensityofradiationata

pointisinverselyproportionaltothe squaredsolardistance

and directly proportional to the diurnal average rectified solar
direction cosine

F--(alr) (ffu. n)(7)

where a and r are mean and instantaneous solar distance, and

u and us are unit vectors from the center of the Earth to the
surface point of interest and the subsolar point reslx_tively.

The insolation pattern, as a function of latitude 0 and mean

anomaly M, can be readily computed once values are speci-

fied for the orbital and rotational parameters e, e, and w

[14,15,18,20,21]. This pattern can also be written in terms of

a Fourier-Legendre series [20,22-24]

F([z,M;e,e,m)= _'_Pn(_)_-_exp(ipM')Fn,p(e,e,w) (8)

where I_ = cos(O) and Ps is a Legendre polynomial. The
number of terms in the Fourier summation required to obtain

a good representation of the seasonal pattern is greater in the

polar regions than in the tropics and mid latitudes. The pri-

mary difficulty in the polar regions is reproducing the abrupt

change in slope of the insolation curve at times of transition

to continual darkness or continual light. It is also true that the

polar regions place the greatest demands on the Legendre

mmmmtion, sincethespatialpatternalsohasa discontinuous

firstderivativeatthelatitudewhere thetransitionoccursto

continualdarknessorlight.

PrecessionalDynamics with VariableRite: All but

themost recentreconstructionsoftheradiativeforcinginput

to paleoclimate models have assumed that both the orbital

and rotational dynamics could be readily and accurately

reconstructed from their present configurations via the simple

analyses mentioned in the introduction. These expectations

seem well founded in the case of orbital evolution, though the

possibility of chaotic dynamics in the inner solar system

[7,25] does seem to preclude confident extrapolation beyond
107yr. However, there are i number of processes, working in

different locations and at different rates, that all serve to

compound the difficulty of accurately computing the spin pre-
cessional evolution.

On the longest timescales of interest (107--109 yr) the

limiting uncertainty is variability in the tidal transfer of
angular momentum from the rotation of the Earth to the orbit

ofthe Moon. At present, these tidal torques are increasing the
length of the day by 22.5 104 s/yr and increasing the size of

the lunar orbit by 3.88 cm/yr [26,27]. Berger et al. [28] have

made a useful f'trst step toward including this effect in eli-

matic time series. They computed the change in the major

precession and obliquity frequencies due to lunar tidal evolu-

tion assuming that the present rate of tidal energy dissipation

is representative of the past 500 m.y. However, the present

rates are considerably higher than the long-term average [29],

largely due to a near resonance between sloshing modes of

basins and the diurnal and scrnidiumaltidalperiods

[30],and apparentlycompounded by a contributionfrom

shallowseas[31,32].Sedimentaryrecordsthatconstrainlu-

nar orbitalevolutionshow some promiseof resolvingthis

problem[33--36],butthesituationisdefinitelymore complex

than is suggested by Berger et al. [28].

Another parameter that can vary, on rather shorter time-

scales and in an equally irregular fashion, is the gravitational

oblateness of the Earth (C-A)/C. Thomson [37] has recently

made three important contributions to the understanding of

this source of variability. First, he pointed out that mass re-

distribution associated with major glaciations and compensat-

ing subsidence and crustal deformations [38,39] can cause

fractional changes in oblateness of order 10-3-10 -2. Second,

he showed that high-resolution spectral analyses of several
climatic time series appear to indicate fluctuations of the

hmisolar precession rate of this magnitude, and with a

dominant period near 100 k'yr. Finally, Thomson pointed out

that the best fit to the paleoclimate proxy data was obtained

using a mean lunisolar precession rate 0.6 arcsec/yr less than

the present observed value. He notes that the resulting value

would correspond rather closely with that expected for a hy-

drostatic flattening [40]. If these important results are cor-

roborated, they will demonstrate that important feedback

loops exist in the orbital-rotational-climatic interactions sys-

tem, further "up-stream" in the presumed causal chain than
has been previously recognized.

Differential Precession of the Mantle and Core: The

hydrostatic figure of a planet represents a compromise be-

tween gravitation, which attempts to attain spherical symme-

try, and rotation, which prefers cylindrical symmetry. Due to

its higher mean density, the core of the Earth is more nearly

spherical than the mantle. The direct lunisolar precessional

torques on the core will thus be inadequate to make it precess
at the same rote as the mantle. In fact, the core oblateness is

only about three-fourths that required for coprecession with

the mantle [41]. However, it is clearly the case that the core

and rnantle precess at very nearly the same rate [42]. A va-

riety of different physical mechanisms contributes to the
torques that achieve this coupling, but a purely phe-

nomenological partitioning is useful. The net torque can be

described as a sum of inertial torques, which are parallel to

(Xm × Z=),and dissipative torques, which are parallel to (Xm-
7,). Here, X, and Zm are the rotation vectors of the core and

mantle respectively. The two types of torques have qualita-
tively different results: Inertial torques cause the core and

mantle axes to preeess at fixed angular separations and on the

opposite side of their combined angular momentum vector,
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whereas the effect of dissipative torques is to reduce the

angle between the axes.

On short timescales it is appropriate to consider the core
to be an inviscid fluid constrained to move within the

elllpsoidal region bounded by the rigid mantle [43-45]. The

inertial coupling provided by this mechanism is effective

whenever the ellipticity of the container exceeds the ratio of

the precessional to rotational rates. If the mantle were

actually rigid, or even elastic [46,47], this would be an

extremely effective type of coupling. However, on sufficiently
long tlmescales, the mantle will deform viscously and can

accommodate the motions of the core fluid [48]. The inertial

coupling torque exerted by the core on the mantle will have
theform

Ti = ki[Xm x Zc] (9)

A fundamentally different type of coupling is provided by

electromagnetic or viscous torques [49-51]. The dissipative

coupling torque exerted by the core on the mantle will have
theform

zd= (10)

This type of coupling is likely to be most important on

longer timescales. In each ease, the mantle exerts an equal

and opposite torque on the core. The response of the coupled

core-mantle system to orbital forcing is given by [52-54]

 /dt = ×")- -so)-Vm( m
dsc/dt= %)(%xn)+13¢(sm_s¢)+yc(sm×s¢) (ll)

where ccm issimilartoctabove,exceptthatonlymantlemo-

mentsAm and C m arc included,and

_m = kd/CmU

Tm = k i/Cm 02 (12)

where u is the mean rotation rate.
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One typeofdatabasethat can _be useful in constraining

modds ofthenmrtiansurface-atmospheresystemisthetime-

dependentboundaryof CO 2 frostforthepolarcaps.These


