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INTRODUCTION

In a recent paper on "Observations of candle flames under various atmospheres in microgravity"

by Ross et al. (ref. 1), it was found that for the same atmosphere, the burning rate per unit wick

surface area and the flame temperature were considerably reduced in microgravity as compared

with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further

removed from the wick. It thus appears that the flame becomes "weaker" in microgravity due

to the absence of buoyancy generated flow which serves to transport the oxidizer to the

combustion zone and remove the hot combustion products from it. The buoyant flow, which

may be characterized by the strain rate, assists the diffusion process to execute these essential

functions for the survival of the flame. Thus, the diffusion flame is "weak" at very low strain

rates and as the strain rate increases the flame is initially "strengthened" and eventually it may

be "blown out". The computed flammability boundaries of T'ien (ref. 2) show that such a

reversal in material flammability occurs at strain rates around 5 sec I.

At very low or zero strain rates, flame radiation is expected to considerably affect this "weak"

diffusion flame because: (i) the concentration of combustion products which participate in gas

radiation is high in the flame zone, and (ii) low strain rates provide sufficient residence time for

substantial amounts of soot to form which is usually responsible for a major portion of the

radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame.

Thus, the objective of this project is to perform an experimental and theoretical investigation of

radiation-induced extinction of diffusion flames under microgravity conditions. This is important

for spacecraft fire safety.

PROJECT DESCRIPTION:

For the experimental and theoretical investigation of radiation-induced extinction two simple

geometries are chosen: [Note: this project started in April 1991]

PRECEDING PAGE BLANK NOT FILMED

115



(i) A spherical diffusionflame supported by a low heat capacity porous gas burner: This is

considered suitable for the #g experiments and modeling because all the soot formed is

trapped between the burner and the high temperature reaction zone. Here, flame

radiation will be enhanced by soot oxidation which will occur as soot crosses the high

temperature reaction zone. To examine the radiative extinction limit, the following

parameters will bevaried: (i) Fuel type (chemical structure) and concentration; (ii)

Ambient oxygen concentration; (iii) Fuel injection velocity; (iv) Ambient pressure.

Temperatiare -and radiation measurements made under these conditions will then enable

us to understand the radiative extinction phenomenon. These experiments will soon

begin in the NASA Lewis 2.2 sec #g drop tower. A schematic of the test apparatus for

these experiments is shown in Figure la and lb.

(ii) An a.ris-symmetric low strain rate counterflow diffusion flame: This geometry is adopted

for the ground-based experiments and modeling because it provides a constant strain rate

flow field which is one-dimensional in temperature and species concentrations. The

strain rate is directly related to the imposed flow velocity and the one-dimensionality of

this flame simplifies experimental measurements and an_Ysi s. Also, there aye no solid

boundaries which may quench the flame prior to extinction caused by low or high strain

rates. Experiments on counterflow diffusion flames-are currently being performed to

determine the soot particle formation and oxidation rates. Two types of flames are being

investigated: (a) A low strain rate diffusion flame which lies on the oxidizer side of the

stagnation plane: Here, as shown in Figures 2a and 2t3, all the soot pr0duq_ is

convected away from the flame toward the stagnation plane. (b) A low strain rate

diffusion flame which lies on the fuel side of the stagnation plane. Here, as shown in

Figures 3a and 3b, all the soot produced is convected into the diffusion flame. This
enhances flame radiation as the soot is oxidized. This geometry is especially relevant to

the _tg experiments described above. The results of the ground-based experiments are

being used in a transient model to predict the radiative extinction limit and the conditions

under which it occurs.

PRO(3RESS TO DATE

Although this project started in April 1991, we have made considerable progress on the
following items:

#g experiments: The test apparatus has been designed to produce a spheric_ d_iffu_s!on flame

using a low heat capacity spherical burner constructed from porous alumina. A schematic of

this apparatus is shown in Figure la. It consists of a drop frame that contains the test chamber,

ignition system, batteries, electrical control system, and high-speed motion-picture camera. The

diffusion flame is supported by the burner inside a cylindrical test chamber. This test chamber

can be evacuated and filled with any desired gas mixture from below atmospheric pressure to

5 atm. A 5" clear lexan window enables the camera to photograph the spherical diffusion flame.

The fuel flow system, shown in Figure lb, consists of a fuel supply line from the gas cylinder

that is controlled by a metering valve and turned on and off with a solenoid valve. The porous,

spherical burner and other drop rig apparatus components have been successfully tested in

normal gravity conditions. Microgravity testing will begin early in September and will continue

through December of 1994.
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1-gexperiments:The supportingground-basedexperimentshavealreadystarted. Figures2(a,b)
and 3(a,b) show thetwo typesof flamesbeinginvestigated. Sincetheflame on the fuel sideof
the stagnationplane is directly related to the spherical microgravity flame, it is being

investigated first. Figure 4 shows the measured soot volume fraction and the temperature

distribution inside this flame. The fuel and oxidizer concentrations and the strain rate for this

flame are 22.9%, 32.6% and 8 sec _ respectively. Figure 5 shows the measured concentrations

of stable gases inside this flame. It is extremely interesting to note that only CO and H2 exist
after the luminous flame zone. These are later burned in the blue flame above the luminous

flame. Also, the CO concentration is greater than 2% and is substantially larger than the

corresponding flame on the oxidizer side of the stagnation plane. This may be an important

source of CO in building fires.

Theoretical investigation: To investigate the extinction limits of diffusion flames, the work of

Linan (ref. 3 & 4) was reviewed and the simple case of a one-dimensional, diffusion flame with

flame radiation is being examined. This model corresponds to the ground-based experiments

described above. As a first step we have assumed zero gravity, no convection, constant

properties, one-step irreversible reaction and unity Lewis number. These equations are being

numerically integrated to examine the conditions under which radiation-induced extinction
occurs. The soot tormation and oxidation rates will be obtained from the counterflow diffusion

flame experiments.

FUTURE PLANS

In the near future we plan to focus our attention on the following items:

1. Perform microgravity experiments on spherical diffusion flames for different fuels

and under various atmospheres.

. Continue our work on supporting ground-based experiments at low strain rates to

quantify soot formation and oxidation rates and flame radiation for the same fuels and

atmospheres used in the t_g experiments.

. Complete our theoretical model for zero strain rate (no flow) flames in microgravity

and identify conditions under which radiation-induced extinction occurs.

, To analyze the experimental results and develop an appropriate theoretical model for

spherical diffusion flames with flame radiation.
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