
NASA-CR-192108

SEMIANNUAL STATUS REPORT

TO THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

DYNAMICS OF THE SOLID EARTH PROGRAM

- NASA GRANT NAG 5-1921

"Lithospheric Dynamics Near Plate Boundaries"

for the period

15 March - 14 September 1992

Principal Investigator: Sean C. Solomon

Department of Earth, Atmospheric, and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, MA 02139

(NASA-CR-192108) LITHOSPHERIC

DYNAMICS NEAR PLATE BOUNDARIES

Semi_nnuEJl Status Report, 15 Mar.
14 Sep. 1992 (MIT) 172 p

N93-20310

Unclas

_3/46 0143816





TABLE OF CONTENTS

I\
\

Page

SUMMARY

APPENDIX 1: Global Positioning System measurements of deformations associated

with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting

APPENDIX 2: Global Positioning System measurements of strain accumulation

across the Imperial Valley, California: 1986-1989

APPENDIX 3: Present-day crustal deformation in the Salton Trough, southern

California

4

23

36

\

APPENDIX 4:

locations:

Oceanic transform earthquakes with unusual mechanisms or

Relation to fault geometry and state of stress in the lithosphere

81

APPENDIX 5: Crustal strain and the 1992 Mojave Desert earthquakes 171





PRECEDING P/_IGE BLANK NOT RI, MED

SUMMARY

This is a Progress Report on research conducted between 15 March 1992 and the present

under NASA Grant NAG 5-1921, entitled "Lithospheric Dynamics near Plate Boundaries." This

grant has supported the research of one Investigator (S. C. Solomon), one Research Staff (R. E.

Reilinger), and two Ph.D. students (M. Simons, C. J. Wolfe) on behalf of the NASA DOSE

(Dynamics of the Solid Earth) Program.

The focus of the research during the ftrst grant year has been on several problems broadly

related to the nature and dynamics of time-dependent deformation and stress along major seismic

zones, with an emphasis on western North America but with additional work on seismic zones in

oceanic lithosphere as well. The principal findings of our research to date are described in the

accompanying papers and abstract. The fin'st three are reprints of recently published papers

supported by this project. The next two are preprints of two papers submitted for publication.

The last is an abstract of a paper presented at the 1992 Fall AGU Meeting in San Francisco.
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APPENDIX 1

Global Positioning System measurements of deformations associated with the

1987 Superstition Hills earthquake: Evidence for conjugate faulting

by S. Larsen, R. Reilinger, H. Neugebauer, and W. Strange

Published in J. Geophys. Res., 97, 4885-4902, 1992.
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Global Positioning System Measurements of Deformations

Associated With the 1987 Superstition Hills Earthquake:

Evidence for Conjugate Faulting

SHAWN LARSEN 1

Seiamoiogy Laborato_/, C41i.?orni8 Injtiftte o/ TcchnololT, P6aadena

ROBERT P_EILIN GER

Earth Reao_rceJ L6borator#, Maas4ch_aetts Institute o] Technology, Cambridle

HELEN NEUGEBAUER AND WILLIAM STRANGE

National G¢od¢¢ic Snr_ey, NOAA, Rock_ill¢, Maryland

Large station displacements observed from Imperial Valley global positioning system (GPS)
campaigns are attributed to the November 24, 1987, Superstition Hills earthquake sequence.
Thirty sites from a 42-star/on GPS network estab//shed in 1986 have been reoccupied dur/ng

1988 and/or 1990. Displacements at three sites within 3 ]cm of the surface rupture approach 0.5
m. Eight additional stations within 20 km of the seismic tone are displaced at least 10 ca. This
is the first occurrence of a large earthquake (M_ 6.6) within a preexisting GPS network. Best-
fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 4- 8
can right-lateral displacement along the northwest-trending Superstition Hills fault and 30 4- 10
cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The
geodetic moments are 9.4 x 102s dyn cra and 2.3 × 102s dyn cm for the Superstition Hills and
Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also
suggest that postseismic slip along the Superstition _ fault is concentrated at shallow depths.
Distributed slip solutions using singular value decomposltion indicate near uniform displacement
_don8 the Elmore Ranch fault and concentrated sllp to the northwest and southeast along the
Supe_tit;on HDJs fmdt. A si_ficant component of nonseism]c secular displacement is observed
across the Imperial Valley, which is attributed to interseismic plate-boundary deformation.

1. INTRODUCTION

The global positioning system (GPS) is rapidly becom-

ing one of the most important geodetic tools for studying

tectonic deformation [e.g., _rsen, 1991]. By recording sig-
nais from Earth orbiting satellites it is possible to determine

threc-dimensional coordinates of geodetic monuments with

high accuracy [e.g., King et al., 1985; Wells et al., 1987].

The station displacement or deformation between surveys is
measured when observations are repeated. GPS can be used
to monitor secu/at deformation such u that associated w/th

plate motion or to record strain fluctuations from seismic
and volcanic a_-tivity. In its final configuration scheduled

for the mid 1990s, 21 satellites will be deployed in six or-

bital planes (with three additional satellites used as active

spares). When GPS becomes fully operational, it will be

possible to continuously determine three-dimensional posi-

tions anywhere on or near the Earth. The available satellite

constellation during the period of this study was optimized

for North America, making GPS-based geodetic research in

California practical.

On November 24, 1987, two moderate earthquakes sep-

rNow st $¢ioatifi¢ $oRwam Divhdoa, I.,,wrencc Livermom National
l.,abo_lory, Livermom, Callfonda.

Copyright 1992 by the American Geophysical Union.

Paper number 92JB00128.
0148-.0227192/92JB-00128505.00

axated by 12 hours occurred in the northwest section of

the Imperial Valley region of southern California. The first

event wu located on a northeast-trending seismic lineament

and was followed 12 hours by rupture along the northwest-
trending Superstition Hills fault. What makes this earth-

quake sequence significant from a GPS standpo_t is that it

occurred spatially and temporally within a preexisting GPS

network. This network was established in the Imperial Val-
ley in 1986, with paxtial resurveys in 1988 and 1990. Fifteen

stations axe located within 20 km of the rupture zone; three
stations axe within 3 km.

We compute GPS determined displacements in the Im-
perial Valley between 1986 and 1990. Observed station

movements of up to 0.5 m axe attributed to the Supemti-
tion Hills earthquake sequence. The earthquake-induced

displacements axe inverted to estimate seismic slip and the

geodetic moment along the rupture planes. In addition,

there is a large component of deformation which cannot be

explained by the seismic disturbance. We assume this to be,

in part, a manifestation of ongoing relative motion between

the Pacificand North American plates.

2. IMPERIAL VALLEY SEISMICITY AND TECTONICS

The Imperial Valley region of southern Californiais a

complex transition zone between crustal spreading in the

Gulf of California and right-lateraltransform motion along

the San Andreas fault(Figure 1) [Lomnitz et al.,1970; El-

ders et al.,1972]. The valleyis 4-12 million years old and

has been filledby up to 15 krn of late Cenozoic sediments

4885
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Fig. 1. Seismicity and major fault systems of the Imperial Valley. The Brawley Seismic Zone is
the region of anomalously high activity between the northern Imperial and southima San Andreas

faults. The valley represents a transition zone between crustal spreading in the Gulf of California
to the south and right-lateral transform motion along the San Andreas system.

[Larson et aL, 1968; Moore ond Bu.Oington, 1968; Ingle,

1974; Fuis et al., 1982]. The major fault systems and struc-

tural grain of the valley trend to the northwest, roughly

parallel to the direction of plate motion.

The Imperial Valley is one of the most seismically active

priori assumptions [e.g., Prescatg 1981]. Very long baseline

interferometry (VLBI) measurements indicate 3.33 -b 0.12

cm/yr movement between stations on opposite sides of the

Salton Trough [Word, 1990]. In addition, the terrestrial
measurements suggest that deformation is concentrated in a

regions of California (Figure 1). Much of this activity oc- narrow 20-km-wide zone along the Imperial fault [Snail ond

curs alon-g the Imperial fault and within the Brawhy Seismic Drew, 1988], while it is distributed over a region at least 50

Zone [Johnson and Hill, 1982]. Several large earthquakes
have occurred in and near the Imperial Valley since 1940

(Figure 1). The Imperial fault ruptured with a Ms 7.1 event

in 1940 astd a ML 6.6 event in 1979 [U.S. Geological Sur-

vey, 1982]. Segments of the San Jacinto fault system broke

with a ML 6.2 earthquake in 1954 and a Mr, 6.5 event in

1968 (Borrego Mountain). The most GPS relevant episode
of seismic activity occurred in 1987 along the Superstition

Hills segment of the San Jacinto fault system, with a Ms

6.2 earthquake on a northeast-trending seismic lineament

followed 12 hours by a Ms 6.6 event on the Superstition
Hills fault.

Terrestrial geodetic measurements show that a significant

fraction of the Pacific-North American relative plate motion

is accommodated across the Imperial Valley. New global

plate model estimates (NUVEL-1) [DeMets et ol., 1987;

DeMurs et ol., 1990] predict the rate of motion between the

North American and Pacific plates averaged over the last 3

million years is 4.7 cm/yr oriented N39.6 ° W (at Imperial

Valley coordinates: 33.0 ° N, 115.5 ° W). Dislocation mod-

els of triangulation measurements spanning this region sug-

gest 4.3 cm/yr of plate-boundary deformation between 1941
and 1986 [Shay ond Drew, 1988]. Trilateration measure-

ments made by the U.S. Geological Survey (USGS) between

1973 and 1989 show 3.69 -1- 0.11 cm/yr relative movement

between stations on opposite sides of the valley [Lisowski et

al., 1991]. The orientations of the displacements are approx-

imately N40 ° W, although this direction depends upon a

km wide to the north [Prescott et al., 1987b; Lisowski et al.,

1991]. Presumably, deformation is transferred from the Im-

perial fault, which acts as the primary strain release mecha-

nism near th e U.S.-Mexico border, to distributed shear along

the San Andreas, San Jacinto, and Elsinore faults.

3. SUPEB_qTITION HILLS F_AR'HiQUAKE SEQUENCE

On November 24, 1987 (0154 UT), a _irs 6.2 earth-

quake- 0-ccufr_i--/dong-i nox_-he_s_-_rending-seisfiaic_i Hnex- -

ment _ea_t Of the-S-liper_|ii_ Ki_ fault (Figure 2)
[Mag/strode et ol., 1989]. The focal mechanism and after-

shock sequence, which exteaded_for2(ifm_nto-the Bfaw-

ley Seismic Zone, are consistent will.left-lateral strike slip - _

motion on a vertical fault. Seven _c_ks wgre i_ded

in the 22 rain prior to the main event, including two with
Mr. > 4.0. Surface rupture consisted of a complex pattern of

northeast-trending left-lateral offsets ranging in length from
1.5 to 10 kin, and with maximum displacements between 3

and 13 cm [Budding ond Shorp, 1988; Hudnut et al., 1989a].

The maximum cumulative displacement across all surface

breaks was about 20 cm. We refer to this northeast-trending

lineament as the Elmore Ranch fault, although more pre-

cisely this name refers only to the longest of the surface
fractures.

Twelve hours after the Elmore Ranch event (1315 UT),

a Ms 6.6 earthquake occurred along the northwest-trending
Superstition Hills fault. The epicenter was near the inter-

section of the Elmore Ranch and Superstition Hills faults.
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Fig. 2. Seismlclty and surface faulting associated with the Nov_srn-
best 24, 1987, Superstition Hills earthquake sequence. A Ms 6.2
event occm'red alan 8 a northeast-trendLng structure (referred to
here as the Elmore Ranch fault) and was followed by 12 hours with
a Ms 6.6 event along the northwest-trendlng Superstition Hills
fault. The focal mechanisms, aftershock distributlon, and sur-
face offset measurtmnents are consistent with left-lateral strike-slip
motion along the Elmore Ranch fault and right-lateral strike-slip
motion along the Superstition HU]s fault. A significant amount
of postseismic allp was observed along the an'face trace of the
Superstition Hills fault, while activity essentially ceased on the
Elmore ]Ranch fault after the Ms 6.6 event. The shaded strips
along each fault indicate the geometrical extent of the disloca-
tions used to model the geodetic displacements. GPS stations
L589, KANE, and MOUN are shown by triangles.

Strong ground motion and teleseismic data suggest the rup-

ture process for this second event consisted of _multiple

subevents [Bent et al., 1989; Frankel and Wennerberg, 1989;
Htoang et al., 1990; Wald et al., 1990]. Surface rupture ex-
tended 24 km along the previously mapped trace of the fault

[Williams and Magistrale, 1989]; up to 50 cm right-lateral

displacement was measured. The aftershock pattern was

concentrated slightly to the west of the fault and did not

extend the length of the surface rupture. Magistrale et al.

[1989] suggested the aftershock sequence was highly corre-
lated with basement structure. Both the Superstition Hills

and Elmore Ranch events triggered sympathetic surface off-

sets along the Imperial, San Andreas, and Coyote Creek

faults [McGill et al., 1989; Hudnut and Clark, 1989].

Significant afterslip was recorded along the surface rup-
ture of the Superstition Hills fault [ Williams and Magistrale,

1989]. No afterslip was measured along any of the surface

ruptures associated with the Elmore Ranch event. In fact,

seismic activity _nfi_ly stopped along this segment after

the initiation of the second mainshock.
One of the most interesting aspects of this earthquake

sequence is the conjugate geometry of faulting [Johnson and

Hutton, 1988]. That is, two surface ruptures oriented nearly

perpendicular to each other• As discussed below, this type of
fault interaction may be typical of Imperial Valley tectonics

and may dictate the mode Of stress/strain transfer from one

fault system to another..

4. GPS OBSERVATIONS

The signal structure broadcast from each GPS satellite
consists of two carrierphase signals modulated by a navi-

gational message and pseudorandom codes. The two carrier

frequencies,known as the L1 and L2 phases, are broadcast

at 1575.42 MHz (L1) and 1227.60 MHz (L2). This isequiv-

alent to wavelengths of about 19 cm for the L1 and 24 cm

for the L2. The navigational message contains the satellite

coordinates (broadcast ephemeris), dock parameters, satel-

litehealth, and general system status. The pseudorandom

codes are accurate time marks which allow GPS receivers

to determine the transmission time of the signal. When

scaled by the speed of light,the pseudorange, or the time-

biased satellite-receiverdistance is computed. If measure-

ments from at least4 GPS satellitesare available,and ifthe

satellitecoordinates axe known (usually with the broadcast

ephemeris), the three-dimensional receiverposition and the

satellite-receivertime offsetcan be determined. The posi-

tioning accuracy with the pseudorange is -_ 1-100 m, de-

pending on whether the P or C/A code is used, the receiver

type, length of observation, and the staticor kinematic be-

havior of the instrument. The pseudorange is used for civil-

jan and military navigation. For highly accurate geodetic

positioning, however, the c_rrier phase measurements are

used in a postprocessing mode. That is,the data collected

in the fieldare brought back to the officeor laboratory for

analysis,usually with a robust computer software system.

More complete de_ai]sabout the global positioningsystem,

including theoreticalaspects and processing methods, are
found in the works by King et al. [1985], Wells et al. [1987],

Rocken [1988], and Dixon [1991].

GPS Surveys: Data Collection and Processing

The GPS data for this study were collected during four

Imperial Valley field campaigns from 1986 to 1990 (Table 1).
A total of 46 stations in or near the valley have been occu-

pied at least once during this interval; 30 sites have been re-
occupied since 1986 (Figure 3). TL4100 GPS receivers sup-

porting GESAR software were used during 1986 and 1988,
while Triable 4000SST instruments were used during the

1990 survey• A comprehensive discussion regarding the data
collection and processing methods is given by Larsen [1991].

TABLE 1. Imperial ValleyGPS Campaign Summary

Year Month Days Stations Organization

1986 May/June 20 42 NGS
1988 February/March 9 19 UNAVCO
1988 March/April 6 21 NGS
1990 April 1 3 UNAVCO/RCFC

Abbreviations are NGS, National Geodetic Survey; UNAVCO,
University Navstar Consortium; and RCFC, Riverside County
Flood Control.
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Fig. 3. (s) Imperla] Valley and other GPS stations su_eyed in 1986, 1988, and/or 1990. (b)
Central-southern ImperiAl Valley GPS stations surveyed in 1986, 1988, and/or 1990.

The National Geodetic Survey (NGS) occupied 54 sites gap for one satellite during the middle of the measurement
in southern California in May/June 1986; 42 stations were session (PRN 6). Less than 2 hours of data were collected
located in or near the Imperial Valley. Most marks were at several sites. The GPS observz_tions were processed with

observed at least 2 days, although red updant baselines were the GPS22 software at the National Geodetic Survey. Satel-

relatively uncommon (i.e., simultaneous occupation of the lite orbital information was provided by the NSWC (N_vul
same station-station pair for 2 or more days). GPS survey- Surface VVeapons _CJenter)' A tropospheric delay parameter

ing at this time was still _t an "experimental stage s (this w_ solv_ at each station, constrained by surface meteoro- _ :
was one of the first GPS networks established to investigate logical measurements. Ambiguities werefixed to the nearest

crustal motions). The scheduled 4.5 hour daily occupations
were somewhat less than the 6-8 hour sessions typical of

more recent southern California campaigns. There was less

than 2 hours each day when more than three satellites were

simultaneously tracked, and there was a scheduled 1 hour

integer. The data were generally noisy and reductiouwas
Unnsu_y tedious. Each of the 20 days of o_rvation was _ _

processed separately, and the-d_ily solutions were combined
into a single set of station coordinates using DYNAP (DY-
Namic Adjustment Program) [Drew and Snav, 1989]. All co-
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ordinates were computed in the WGS-72 reference frame and

transformed to WGS-84 [Defense Mapping Agency, 1987].

Due to relatively poor data quality and limited observations,
tae 1986 campaign is abottt an order of magnitude less pre-

cise than the more recent surveys. The accuracy of these

measurements is believed to be of the order of I ppm (parts

per million).
In February/March 1988, university field crews (M.I.T.,

Caltech, Lamont) with assistance from the University Nays-

tax Consortium (UNAVCO), observed for 9 days reoccupy-

ing 15 of the Imperial Valley marks, and establishing four

new stations &long the Salton Sea. Most monuments were

occupied for 2 days (one was observed 3 days, one for 4 days,

and two for 1 day). The scheduled nightly observation sce-
nario lasted 7.5 hours, with a total of seven satellites tracked.

In March/April 1988 the NGS reoccupied 21 of the 1986 sta_

tions (seven of these were observed by the univez_ty crews

a month earlier). Most sites were occupied only 1 day. The
daily observation period was 6.0 hours, and seven satellites

were tracked each day.

Data from both 1988 campaigns were processed with the

Bernese GPS analysis software (version 3.0), from the Uai-

versity of Bern in Switzerland. For each survey, all data
were combined into a simultaneous multiday solution. Or-

bitai parameters were estimated using CIGNET observ_

tions (Cooperative International GPS Network) from Mo-

jave (California), Westford (Massachusetts), and Richmond

(Florida) [e.g., Chin, 1988]. The coordinates of these fidu-
cial sites were held fixed to values well determined from

VLBI and satellite laser ranging (M. Murray and R. King,

Massachusetts Institute of Technology intero_ce memoran-

dum, 1988). Multiple 3-day satellite arcs were used [e.g.,
Lichten and Border, 1987; Davis etal., 1989; S. C. Larsen

et al., Strain accumulation in the Santa Baxbaxa channel:

1971-1987, submitted to Journal of Geophysical Research,

1992]. Surface meteorologic data (temperature, pressure,

relative humidity) were used to constrain a Sustxmoinen
atmospheric model [Saastamoinen, 1973]; independent tro-

pospheric zenith delay parameters were estimated at each

station. We experimented with fixing ambiguities but found

mixed results, therefore ambiguities were left unresolved in

the final analysis. The Cartesian coordinates estimated for

both 1988 surveys were combined and adjusted using lea_t

squares to obtain a single set of station positions.

GPS observations were made at station MOUN (Mound)

in 1986. Unfortunately, field investigation during early 1988
revealed that this station was destroyed; the monument

and supporting concrete ba_e had been completely uprooted

from the ground. The site is located about 1 km from the
surface rupture of the Superstition Hills fault and we at-

tribute its destruction to the 1987 earthquake. Unless a

suitable reference marker is available, destroyed monuments

usually cannot be tied to previous surveys because of the

high accuracy required for crustal motion research. If the

33.5
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FI8. 4. Imperial Valley GPS station displacements betweem 1986 and 1988. The displacement at
MOUN is from 1986 to 1990. All movements are relative to statkm OCTI. OCTI is chosen as
the referextce because it is the site most distant from the 1987 earthquake zone that was observed
in 1986 And in both 1988 c.ampmgns. Vertical mov. taunts are excluded in the analysis because
the uncertainty in this direction is much larger (10-50 times) than the suspected tectonic dis-
placements. The observed displacements are attributed to the 1987 Superstition Hills earthquake
sequence, secular plate-boundary deformation across the Imperi_ Valley, and measurement error.
Movements near the 1987 rupture zone approach 0.5 m. Error ellipses are estimated by multi-
plying the formal errors by a variance factor, determined so the average ¢_'ror scales as 1 ppm
(parts per million). The east-trending uncertainty is about 4 times larger than the north-trendlng
uncertainty. The north-tre_ding displacement components are reliable indicators ot"seismic (and
nonseismic) deformation, but this feature is partially obscured by the large longitudinal errors.
The anomalous southwest-trending apparent movements for the southeastern-most stations are
attributed to measurement error. Station MOUN was reset between surveys so it has an unusually
large uncertainty.
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suspected deformation is significantly large, however, useful

information may be recovered if the monument (or a sub-

stitute) is reset in approximately the same location. Site

inspection at MOUN clearly showed the position of the old
monument and in April 1990 a rebar rod acting as & tempo-

rary benchmark was set at approximately the same location.

We estimate the temporary mark was reset within 0.15 m

of the previous monument. The seismic displacement at
MOUN is about 0.5 m, so reoccupation of this site should

retrieve a tectonic signal larger than the estimated uncer-

tainty.
The 1990 survey was conducted to establish the displace-

ment of the reset MOUN relative to its 1986 position. This

_mini-campaign" included stationary GPS receivers at only

three sites (Table 1). Data were collected for only 1 night; a
total of nine satellites were tracked during the scheduled

7.0-hour experiment. The 1990 campaign was processed

with the Trimvec software, available from the receiver manu-

facturer (Trimble Navigation, Sunnyvale, California). High
positioning accuracy was not required because MOUN was

reset between surveys. The orbits were given by the broad-

cast ephemeris, and surface meteorological data were used

to constrain a tropospheric delay model.

Station Displacements 1986-1988

GPS station displacements for the interval 1986 to 1988

are shown in Figure 4 and listed in Table 2. The displace-
ment at MOUN is for the period 1986 to 1990. All move-

ments and uncertainties are made relative to station OCTI.

OCTI is selected as the reference because it is the site most

distant from the 1987 seismic zone that was occupied in

1986 and in both 1988 campaigns. Only the horizontal com-

ponents are shown. The vertical displacement is excluded

in the analysis because the error in this direction is sig-

nificantly larger (10-50 times) than the suspected tectonic
deformation. The method used to formulate uncertainties

is discussed below. The observed displacements can be de-

composed into three components: (1) seismic deformation

due to the Superstition Hills earthquake sequence; (2) _-m-

lax deformation due to the Paclfic-North American relative

plate motion; and (3) measurement error, which we believe

is most apparent in the east-trending direction.

The GPS displacement vectors suggest considerable de-
formation between 1986 and 1988 (or 1990). A significant

fraction of this movement is attributed to the 1987 Supersti-

tion Hills earthquake sequence. Stations nearest the seismic

rupture zone (KANE, L589, and MOUN) show movements

of up to 0.5 m. In fact, the 13-kin KANE-L589 baseline was

shortened by 70 cm. The orientations of the displacements

are consistent with conjugate faulting (i.e., right-lateral rup-

ture along the Superstition Hills fault and left-lateral rup-

ture along the Elmore Ranch fault). Other stations near the
active fault system also appeax to have been affected by the
1987 event.

There is an additional tectonic displacement component
due to the relative motion between the North American and

Pacific plates. Stations east of the Imperial fault tend to

be moving south or southeast relative to sites on the other

side of the valley. Lar#en [1991] estimated the magnitude

of this deformation by decomposing the displacements into

their north and east-trending components and plotting them

separately on cross-sections perpendicular to plate motion

(Figure 5). The displacements were adjusted to remove the

effect of the 1987 earthquake sequence. The north-trending
movements indicate a differential motion of 8.1 4- 1.4 cm

between stations on opposite sides of the valley, which is

equivalent to a right-lateral deformation rate of 5.9 q- 1.0

TABLE 2. StationDisplacements 1986-1988

N, E,
Station cm _N cm
O_TI 0.0 0.0 0.0 0.0

L589 38.1 1.7 -17.2 7.6
KANE -37.2 1.7 -II.7 8.1
MOUN -42.3 16.7 27.3 22.5
OCOT 6.4 I.I 5.6 4.6
COAC -11.7 13 5.1 5.5
ALAM - II.7 1,3 II.2 5.8
GLOC -11.3 1,2 8.5 5.2
BLAC -9.0 1,2 1.0 5.2
ORIE -9.2 1.6 8.9 7.3
FRIN - 15.3 1.7 5.8 7.6
CALE 2.0 1.3 -4.9 5.6
TAMA -8.6 1.3 II.4 5._
O217 --6.0 1.6 --7.3 6.8
COLL -3.0 1.4 2.2 6.0
HAMA -9,3 1.7 9.8 8.2
PINY -6.2 1.0 4.0 4.1
BRAW -0.9 1.9 26.2 8.1
HO LT - 5.4 1 _ S.9 7.5
MELL - 2.8 1.8 --0.5 7.5
IMPE -0.7 1.6 10.1 6.7
IMPI -4.8 1.6 18.9 6.7
ACUT -9.9 1.6 13.2 7.2
ELEC --2.7 1.6 --2.1 6.9
HLTV -9.0 2.1 0.3 8.4
MACK -9.1 1.7 --3.4 7.5
0227 4.4 1.7 09.9 7.4
T122 - 12.6 1.8 -6.3 7.8
JUNC -II.0 1.8 -2.3 7.9
0224 0.6 1.7 3.0 7.9

MOUN displacement is 1986-1990.
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Fig. 5. The north and east-trendlng GPS displacement compo-
nents for the 1986--1988 interval [LHrsen, 1991]. All distances are
computed relative to OCTI on a cross section trending NSO ° E,
perpendicularto the platemotion direction.The displacements
were adjusted to remove the effect of the 1987 earthquake se-

quence. Stations with seismic sdjustmertts greater than 4 cm (in
the component plotted) are shown as open circles, other sites as
solid circles. The average displacement error for each component
(bracket) includes uncertvJnties from the seismic adjustment. The
8.1 :[: 1.4 an north-trending off.set between stations on opposite
sides of the valley is equivalent to 5.9 + 1.0 cm/yr rlght-lateral
motion oriented N40 ° W. The large scatter for the east-trending
component is presumably due to measurement error in the 1986
survey.



11

LA_SN BT AL.: GLOBAL ]POStI3ONINO SYSTEM MEASU_

cm/yr oriented N40 ° W (average over 1.79 years). This rate

is strongly influenced by measurement error and unmod-
eled seismic effects and is probably not significantly differ-

ent than the 3.69 :l: 0.11 cm/yr rate obtained with terrestrial

geodesy [Lisowski et o/., 1991]. The scatter is too large in

the east-trending components to make a similar comparison.

Also evident in Figure 4 are unusual movements with

no obvious tectonic explanation. Most notable are the

southwest-trending vectors (as opposed to southeast) for

those sites east of the Imperial fault near the border. It

appears that the entire network has undergone a system-

atic clockwise rotation. We investigated this possibility by

assuming the network could be rotated (and translated) in

terms of an outer coordinate solution by minimizing the dis-

placement component perpendicular to the structural axis of

the valley (N40 ° W) [e.g., Prescott, 1981]. Stations KANE,

L589, and MOUN were not included in the solution. The

applied adjustment did not remove the anomalous displace-

ments, and in fact, made the apparent deformation less uni-

form. Although these unusual movements cannot be at-

tributed to a simple coordinate rotation, they can be ex-

plained by large east-trending systematic errors in the 1986

data. This is consistent with the longitudinal elongation

of the computed error ellipses (see below) and explains the

large scatter for the east-trending components (Figure 5).

The north-trending displacements are apparently reliable in-
dicators of tectonic deformation (for our data), but they are

partially obscured by the large longitudinal errors.

Station Displacements 1988-1988 (February-April)

Seven GPS sites were occupied during both 1988 earn-

paigus; calculated site displacements for this I month inter-

val are shown in Figure 6 (late February to early April). An

adjustment (simple translation) is applied to all movements
so that the sum of the vector displacements is zero. Error el-

4891

Iipses axe not shown because the figure itself is a represent&-

tion of uncertainty. Measurable tectonic deformation is not

expected during this l-month period; the apparent move-

ments (averaging 1.6 era) axe an indication of the short-term

repeatability with GPS. Short baseline (,,, 50 km) horiion-

tai ptecisions computed from GPS repeatability studies are

generally at the sub-centimeter level [e.g., Dong and Bode,

1989], but these tests usually involve multiple occupations

of the same network over a consecutive 4- to 5-day interval.

The seven stations showu in Figure 6 were not all observed

simultaneously [Laraen, 1991], so the repeatability is some-

what degraded. Nevertheless, at this level of precision the

1 to 5 cm/yr deformation rates across major tectonic struc-
tures in southern California should be resolvable in as short

as 1 year. In addition, the relatively good reliability indi-

cated for the 1988 data suggests that east-trending errors in
the 1986 data account for much of the anomalous nouselsmic

movement observed between 1986 and 1988 (Figure 4).

Note that the 2.9 cm apparent displacement observed at

EANE is to the west-southwest. This might suggest left-

lateral afterslip along the Elmore Ranch fault. However,

while postseismic offsets were significant along the Super-

stition Hills fault, almost all glmore Ranch activity ceased

after the initiation of the Superstition Hills event [Williams

and Mogistrah, 1989; Magistrale et of., 1989; Hudnut et al.,

1989a]. As mentioned above, the observed displacements

in Figure 6 probably indicate measurement error, although

postseismic deformation cannot be ruled out.

GPS Errors

Formal estimates of GPS uncertainty almost always un-

derestimate variances derived from repeatability studies.
We estimate more realistic and illustrative errors by mul-

tiplying the formal covaxiance matrix calculated with each

GPS solution by a variance factor, which scales as the aver-

Horizontal
, Displacen_nt

February-April 1988

33.5 __ -+

_ o I_ 2O

-I 16.5 -I 16 - 115.5 =I 15

Fig. 6, Imperial Valley GPS station displacements between Febru_-T/March 1988 and

March/Aprll 1988. Error ellipses are not shown because the figure itself is a representation of

uncertainty, Measurable tectonic motion is not expected over this 1-month period; the app_'ent

movements likely indicate the repeatability (precision) of the 1988 data. The displacement at

KANE could represent postseismlc deformation from the 1987 earthquake sequence.
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age baseline length. We select & variaxace factor for the 1986

data so that the average baseline error is 1 ppm. Residuals

from the DYNAP adjustment are consistent with this level of

uncertainty. The 1988 errors are assumed negligible by com-

parison, since these data were processed robustly using orbit

improvement techniques (not possible with the 1986 cam-

paign). In general, the measurements reported here axe not
sufficiently redundant to develop reliable statistics. How-

ever, based on those cases where repeat measurements have

been made, the errors given in this study appear to repre-

sent conservative 1 sigma estimates. Although this method

is somewhat ad hoc, it allows for self consistent errors and

maintains the relationship between north and east-trending

uncertainties. Notably, the east-trending errors are about 4

times larger than the north-trending errors. This is due to

the north-south ground track of the satdlite orbits.

A potential error source is from the different processing

schemes used for data reduction; the 1986 campaign was aa-

aiyzed with the GPS22 software, while the Bemuse software

was used for the 1988 surveys. Comparison tests have shown

that different software systems agree at levels comparable to

short-term repeatability (,,, 1 cm) [e.g., Larsen, 1991].

Station MOUN was reset between the 1986 and 1990 sur-

veys, so the uncertainty in setting the new mark at the previ-

ous location is the primary source of error. Field inspection
indicated this uncertainty to be about 15 cm (in all direc-

tions), which adds to the GPS measurement error.

5. MODEUNG

Theory

Simple dislocation theory is often used to model seismi-

cally induced geodetic deformation. The Earth is considered

a homogeneous isotropic elastic half-space with no stress ap-

plied to the f_ee surface. The displacement field uk for a

dislocation E in the medium is given by

where Vni is the discontinuity, toitj are the displacement

Green's functions due to a set of strain nuclei, and vj are

the direction cosines of the normal to the surface element

dE [Steketee, 1958; Chinnerlt, 1961]. Analytical solutions to

this integral are rather complex but have been simplified for

special cases of dislocation or fault geometry [e.g., Chinnerlt,

1961; Savage and Hastie, 1966; Mansinha and Smylie, 1967].

General expressions of the displacement field for rectangular

strike and dip-slip faults of arbitrary inclination have been

computed by Mansinha and Smtdie [1971] and Okada [1985].

Arbitrary slip directions can be designed by the superposi-

tion of strike and dip-slip dislocations.

The strain/stress within a medium is computed by differ-

entiating the displacement field. For the displacement nh,

where u is a function of the geometrical coordinates zi, the

strain tensor components are given by

_" = _ \a,j + a,, l" (2)

In an isotropic medium the stress tensor ¢ is given by

a,j = XO&_ + 2l--o (3)

where 0 is the dilatation (0 = 3_i=1 ¢,i). We assume the

medium is a Poisson solid with A = # = 2.8 x 1011 dyn cm -2.

A rectangular dislocation within an elastic half-space will

create a spatially dependent stress tensor ¢ throughout the
volume. The force acting at a point along an arbitrarily

oriented p_ane in the mediuL, is computed by multiplying

by the outward normal vector to the plane (N,). That is,

the traction vector T is given by

T = cN.. (4)

If we assume the plane is coinddent with a fault, then the

forces generated on this secondary structure due to an ini-
tial dislocation are determ2ned by calculating the traction

vectors at selected points along the fault. The normal (a.),

strlke-slip (o',), and dip-slip (¢_) stresses on the fault plane

are computed by

a. = T •N.

a, = T.N, (5)

_a = T-N_

where Nn, N., and N4 are the normal vectors perpendicu-

lax, along strike, and along dip to the fault plane. Analytic
solutions for the strum and strain fields due to a disloca-

tion within a medium are given by Chinnerlt [1963], Aiewine

[1974],and Iwasa_ and Sato [1979].

Inverse Methods

Inversion of seismically generated geodetic displacements

can yield fault-rupture parameters, such as the slip dis-

tribution along a fault plane [e.g., Ward and Barrientos,

1986; Harris and Sex3all, 1987; Segall and Harris, 1987;

Snag 1989]. We employ a method similar to that outlined

by Segall and Harris [1987]. Singular value decomposition

(SVD) [e.g., Lanczos, 1961; Jackson, 1972; Menke, 1984]

and elastic dislocation theory are used to invert the Ira-

pedal Valley GPS measurements for seismic slip along the

Superstition HilLs and Elmore Ranch faults.

The relationship between surface deformation and slip

along a rectangular dislocation is defined by equation (1).

The rupture plane is modeled as a set of nonoverlapping

rectangular dislocations. That is, the lault plane is par-

titioned into multiple subelements or subfaults. The slip

distribution along the seismically active fault is given as the

discrete approximation of slip along each subelement. The
normal equations which govern surface displacement result-

ing from such sllp are given by

Ag,n I = d g (6)

where the superscripts g and f refer to geodetic observa-

tion and fault slip, respectively. Each row of A g is de-

termined from (1), and is a function of subfault geometry
and station location. The slip distribution my is defined

by m y = [ml,m2,-.. ,rn,] 2", where mi is the slip along the

ith subfault. The data vector d g contains the geodetic ob-

servables. In theory, each GPS station displacement adds

three rows to A g and three dements to d g, corresponding to

the vertical and two horizontal components. For this study,

however, the less accurate vertical observations are ignored,

since the uncertainty in this direction is many times larger

than the expected deformation. The horizontal displace-

ment components dominate in strike-slip environments.

Surface rupture is easily included into (6) by considering

measurements of surface displacement as geodetic observa-

tion. The offsets are modeled as a priori slip information on
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the surface intersecting subfaults. Equation (6) becomes

[-] [,']Amt= A" ml---- d" =d (7)

where d_ are the discrete approximations of surface sllp

along the fault trace, and A_j ---- 1 if subfanlt dement j

corresponds to surface slip offset i, otherwise A_j = 0.
The GPS displacements shown in Figure 4 and listed in

Table 2 axe not connected to an external reference but axe

defined relative to the displacement at OCTI. OCTI was
selected as a reference because it is the most distant station

from the 1987 eaxthquake sequence, that was occupied in

1986 and in both 1988 GPS campaigns. However, any use

of the GPS displacements as a criteria for evaluating the

effect of the earthquakes will be affected by measurement

error and tectonic deformation at OCTI. This ambiguity is

circumvented if displacement-offset terms axe estimated in

addition to fault slip paxameters. Equation (7) is rewritten

Am=A mo =d (8)

where my is the ith displacement component (i.e., north and

east component) uniformly added to all station movements.

These (two) displacement-offset terms account for any seis-

mic, nonseismic, or error-induced motion at OCTI, which
we have assumed to be zero.

The singular value decomposition of A is given by

A = (9)

where U is a matrix of eigenvectors spanning the data space,

V is a matrix of eigenvectors spanning the parameter space,

and A is a diagonal matrix of singular values. Without loss

of generality, this is written

A = (10)

where p refers to the nonzero singular values. If the nomal

equations of (8) axe normalized to have unit variance [e.g.,
Segall and Harris, 1987], the generalized inverse of (8) and

(10) is given by

A-' = (11)

[Lanczos, 1961; Menke, 1984]. In practice it is often neces-
saxy to restrict the volume of the paxameter space by con-

sidering only the k largest singulax values, setting all others
to 0.

The generalized solution to (8) for the k largest singular

values is given by

m = A_-ld + Voo0 02)

where Vo are eigenvectors spanning the null space of the
model and o0 is a vector of arbitrary coefficients. The vol-

ume of the model space not constrained by observation is

defined by Voo0. This term is not influenced by the geodetic

data and is thus axbitraxy. Often it is the minimum-length

solution m = A_'ld which is of interest (the coefficients of

or0 are 0). However, some other solution criteria can be

satisfied by carefully designating the coefficients of 00.

For high-resolution fault models where the rupture pla_ne
is partitioned into numerous subfaults, it is necessary to ap-

ply some type of smoothing constraint over the dislocation

surface to prevent the slip distribution from taking on an

oscillatory pattern. SegaU and Harris [1987] showed that

the "roughness" of fault slip could be minimized by consid-

ering smoothness as an a priori constraint utilized from the
model null space through the coefficients of o0 (equation

(12)). They used a smoothing mxtrix T, with coefficients
determined from the discrete approximation of the Lapla,-

cian operator V 2 = 02/0z 2 + 02/0p 2, where z and y are

the fault distances along strike and dip, respectively. The

boundaxy conditions around the lower and lateral edges of

the dislocation axe assumed to be null slip, so that the ap-

plied smoothing operator causes the calculated fault offset

to tend toward zero along these boundaries. Because the

Superstition Hills and Elmore Ranch faults ruptured the

surface, the upper boundary is considered an unconstrained

dislocation. The estimated fault slip is given by

m ----[I--V0(VTTTTV0)-'vTTTT]A_'Id (13)

[Segall and Harris, 1987, equation (13)]. A similarformula-

tion for utilizingfaultsmoothness over the model nullspace

is given by Harris and Segall [1987]; an alternatemethod

considering faultsmoothness as quasi-data is provided by

Snau [1989].

For overconstrained solutions (more independent data

than paxameters), if k = p then SVD is equivalent to simple
least squares. This is advantageous since the solution pro-

vided by (12) can be utilized for either uniform dislocations

or for detailed parameter]rations where the fault plane is
partitioned into multiple subelements.

Simple dislocation theory has the advantage that the dis-

placement and stress/strain fields for .simple fault ruptures

can be computed almost instantaneously. The inverse prob-
lem of using geodetic data to calculate the slip distribution

along a fault plane is also straightforward. However, we

have assumed the Earth can be modeled as a homogeneous

half-space. Crustal layering or inhomogeneltles in the Eaxth
can introduce nonexistent structure into half-space models

[Savage, 1987]. The Imperial Valley may be especially sus-

ceptible since it is a sediment-layered basin overlying base-

ment. While low-resolution schemes such as the average slip

over the fault plane will not be seriously affected, attempts

to resolve detailed properties may be badly contaminated
by artifacts of Earth structure.

Uniform Seismic Slip

We model rapture along the Superstition Hills and Elmore

Ranch faults as strike-slip dislocations along vertical planes

extending from the surface to 10 km depth. Each dislocation

approximately coincides with the mapped surface rupture

and/or dtershock distribution. The geometrical paxameters

for the modeled faults axe listed in Table 8. In this section
the Superstition Hills and Elmore Ranch faults are modeled

as uniform dislocations, with no slip variation allowed on
the rupture planes.

To best utilize the GPS computed movements shown in

Figure 4, it is necessary to remove the secular deformation

from the displacement field. The best example of secular

motion isprovided by USGS trilaterationmeasurements be-

tween 1973 and 1989 [e.g.,Prescott et al.,1987a; Prescott

et al.,1987b; Lisowski et al.,1991]. The observed plate-

boundaxy deformation acrossthe Salton Trough is3.694-0.11

cm/yr at an orientationroughly paxallelto the directionof

plate motion (N400 W). The deformation northwest of the

Imperial Valleyisconcentrated in a zone at least50 km wide
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TABLE 3. Parameters for Modeled Dislocations TABLE 4.InwrseModels ofSeismicSlip

Superstition Hills Elmore Ranch

Length, kin" 25 25

Width, km I0 10
Strike N50 ° W N40 ° E

Dip 90 9O

Depth, km 0 0
Latitude, • N 32.9569 33.1078

Longitude, • E -115.7431 -115.7505

Latitude and longitude are coordinates at top c_nter of dislo-
cation. Depth is depth to top of fault.

[Prescott et al., 1987b], indicating distributed shear across
the San Andreas and San Jaclnto faults. Unfortunately,

the strain distribution in the Imperial Valley is not as well
constrained because of relatively sparse electronic distance
measurement (EDM) coverage. However, observa'tions from
a dense triangulation network indicate 4'3 cm/yr differen-
tial velocity across the valley from 1941 to 1986 [Snail and

Drew, 1088]. While the slightly l_rger rate (compared to

EDM) may be insignificant considering the increased uncer-
tainties with triangulation data, the measurements indicate
that deformation is concentrated in a narrow 20-km-wide

zone about the Imperial fault. Therefore the following em-
pirical approach is used to model and remove the secular
deformation from the GPS obse/vitions. The differential ve-

locity across the Salton "iYough is assumed to be 3.69 cm/yr.
Running along the axis of the trough (coincident with the
Imperial fault) is a transition zone, where the Strain gradi-
ent is defined by simple shear with displacements oriented
N400 W. The transition zone north of the Imperial fault is
50 km wide; to the south it is 20 km wide.

A uniform slip model computed by inverting the GPS
displacements (minus the secular deformation), indicates

Subfaulta Slip, Moment,

Modal Fault Strike Dip cm xl02s darncm
Model 1 SH 1 I 130.4- 8. 9.4

Model 1 EFt 1 1 -30.4- 10. 2.3

Model 2a SH 10 5 9.9

Model 2a EFt 10 5 5.9

Model 2b SH 10 5 8.4
Model 2b EFt 10 5 7.0
Abbreviations are SH, Superstition Hills fault and ER, Elmore

Ranch fault.

130-1-8 cm right-lateral slip along the Superstition Hills fault
and 30 + 10 cm left-lateral slip along the Elmore Ranch
fault (Model 1, Table 4). Two slip parameters and two
displa£ement-offset terms (equation (8)) were solved (the en-
tire model space was searched): The corresponding moments
are 9.4 x 10_s dyn cm (Superstition Hills) and 2.3 x 102s
dyn cm (Elmore Ranch). The displacement residuals are
shown in Figure 7 (observed minus Calculated). The largest
residuals trend in the longitudinal direction and are espe-

dally noticeable for the southeastern-most sites. This re-
confirms our speculation for large east-trending errors. How-
ever, the residual vectors at the three stations nearest the
seismogenic zone are unusually large. The large residual
at MOUN is easily explained since this station was reset be-
tween surveys. Station KANE is located within the complex

fracture zone of the Elmore Ranch fault (_- 100 m from a
mapped trace), and is therefore especially sensitive to shal-
low slip. Solutions without KANE axe not significantly dif-
ferent, however. The residual at L589 is significantly larger
than the average residual computed at the other stations.
Field inspection here (and at KANE) revealed no evidence
that the monument had been disturbed. The large residual

suggests additional slip not modeledby the uniform dislo-
cations assumed for Model 1.

33.5

33

I I _. I

%

I

Horizontal
Residuals

Model 1

ZOcm

16.5 =116 -I15.5 =115

o Km 20

Fig. 7. The residuals (observed minus calculated) for the best fit solution to Model 1. Errors eL

lipses not shown are presented in Figure 4. The large east-trending residuals for the southeastern

stations are suggestive of measurement error. The residual at MOUN is attributed to the bench-
mark being reset between surveys. The unusually large discrepancy at L589 (and KANE) suggest

additional seismic deformation not modeled by the uniform slip dislocations used for Model 1.
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Seismic Slip Distribution ......

To estimate the seismic slip distribution, it is necessary

to partition the rupture planes into multiple regions or sub-

faults (Model 2). The divisions must be suf_ciently dense

as to provide reasonable slip resolution. We choose 10 sub-
fault elements in the horizontal and 5 in the vertical, so

that each fault is partitioned into 50 subreglons. Each dis-
location element is 2.0 km wide (vertical) _nd about 2.5

km long (2.4 km for Superstition Hills and 2.6 km for the

Elmore Ranch fault). The slip distribution along both rup-

ture planes is constrained to be sufficiently smooth (equa-

tion (13)). The GPS displacements (minus the secular de-

formation) are adjusted by the displacement-offset terms es-
timated with Model 1.

A priori surface slip information is added to Model 2. Sur-

face slip along the Superstition Hills fault exteng!s (nearly)

the entire length of the modeled fault plane .(Figure 8)
[ Williams and Magistrale, 1989]. The mapped offset is bro-

ken into two fairly continuous strands, one spanning the
northwestern half and the other the southeastern half of the

fault. These strands overlap near the faults midsecti9n; sur-

face slip initiates on the s.outheastern strand where it dies

out on the northwestern strand. We refer to this break in

the rupture pattern as a slip ambiguity. The cumulative

SW NE

i_'_40 (left-lateral)._ Elmore Ranch Fault

o
. I . . , ...... I I ......... I

-- Constrained Slip
.... Observed Slip

100 sw sz
Superstition Hills Fault

(rlght-lateral) "

T

50 "- '" :r12

o ,[
- ! ......... I ......... ! !

0 10 20 30

Distance Along Strike (km)

Fig. 8. Observed surface sllp along the Superstition _ and
Elmore Ranch faults (dashed lines), as of January 26, 1988 (1
month prior to the GPS observations) [Williaram a,d Magistrale,
1989]. A discrete approximation to the surface slip was used to
constrain the uppermost subfault elements in Models 2a and 2b
(solid lines). The Elmore Ranch measurements are the cumuIa.
tive slip from multiple surface breaks across a 10-kin-wide zone.

Superstition Hills slip is broken into two strands, overlapping near
the faults midsection (the discrete approximation corresponds to
the cumulative slip on both strands).

surface offset for both strands is averaged over 2.4 km seg-

ments (the horizontal dimension of each subfault), which are

used as a priori slip estimates for the surface fault elements

corresponC!ng to each segm_-t. Surface rupture along the

Elmore Ranch fault is confined to the southwest (Figure 8).

Recall that the mapped surface breaks occurred along sev-

eral nearly parallel strands (Figure 2) [Hudnut et ol., 1989a].

We take the cumulative surface offset for all strands aver-

aged over 2.6 km segments and use this as a priori slip for
the surface subfault elements. Where no rupture is mapped

.(to the northeast), the surface-intersecting fault partitions
axe assigned 0 slip. The a priori uncertainty for each surface

slip estimate is assumed to be 10 cm.

The number of independent parameters estimated

through singular value decomposition depends on the num-

ber of singular values k utilized in equation (12). A trade-off

exists between solution variance and resolution [e.g., Menke,

1984]. Large k produce highly resolved models at the ex-
pense of increasing solution uncertainty. Correspondingly,

small k yield low variance solutions but do not provide de-
tailed resolution. A total of 100 subfault elements are used

for Model 2 (50 for each fault). If k = 100, then slip along

each subfault will be determined uniquely. Because of lim-

ited geodetic coverage, however, it is practical to consider

only the first few eigenvectors of the parameter space de-

fined by the geodetic observations. Therefore each solved
parameter is a function of some combined slip over multiple

subfault elements. This property is fundamental of singular

value decomposition when used to solv.e under-determined

or poorly determined problems [e.g., Jac_on, 1972]. It is

necessary to determine the k which maximizes the resolu-

tion without allowing the solution to become too oscillatory
or unstable.

The geodetic moment, solution instability, and model
residual calculated for different values of k are shown in

Figure 9. The moment is a function of the average slip

along the fault planes, while solution instability is deter-

mined from the standard deviation of slip for each subfanlt

element. An instability of 0 (stable) indicates uniform slip

along the fault planes, while high value: "ndicat¢ an oscil-

latory or unstable solution. The rms defines the agreement
between model and .,bservation and is calculated by rms =

_(oi -c_)2/_? where oi is the observed, el is the calculated,

and G,_ is the uncertainty assigned-to the ith observation.

The first 20 singular values corrbspond to the a priori slip

estimates for the surface-intersecting subfaults (Figure 9).

The solution becomes increasingly oscillatory after k = 30
as is indicated by the instability. The rms is significantly re-

duced beyond k = 20, but only improves marginally with in-

creasing k. The solution fit for k > 20 is slightly better than

that for Model 1. Also evident is the relatively large moment
estimates for the Elmore Ranch fault. This is because the

far-field displacements are nearly identical for two perpen-

dicular faults with opposite slip orientations. "Since we are

using only the first few eigenvectors of themodel space, the

slip between the two faults is strongly correlated. The larger

slip along the Superstition Hills fault is being mapped onto

the Elmore Ranch fault plane producing higher moments.

The estimated seismic slip distribution along the Super-

stition Hills and Elmore Ranch faults for k = 23 and k = 27

are shown in Figure 10. We refer to these solutions as Mod-

els 2a and 2b, respectively (Table 4). Although both faults

are partitioned into 50 elements, the fault rupture is not
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Fig. 9. The geodetic moment, standard deviation of subfault
slip (instability), and solution rms calculated for different singu-
lar values (k). Shown are solutions constrained by surface slip

measurements (20 < k < 30).

as resolved as the contours suggest since all but the first
few (nonsurface) model space eigenvectors are ignored. The
solution suggests fairly uniform rupture along both halt
planes for k = 23. The dislocation may be slightly con-
centrated to the southwest along the Elmore Ranch fault.
The apparent %ullseye" pattern is due to the smoothness
constraint, which requires zero slip along the lateral edges
and lower boundaries (the upper boundaries are constrained
by the surface slip). There is little difference in the slip
distribution for k = 21 through k = 26. However, there
is a noticeable change in the dislocation pattern starting
with k = 27. While slip along the Elmore Ranch fault re-
mains fairly uniform, displacement along the Superstition
Hills fault becomes concentrated to the northwest and to the

southeast. This change is significant and is caused by the
GPS displacement at one station. Recall the large residual
for L589 in Model 1 (Figure 7). This discrepancy is nearly
eliminated beginning with k = 27. Therefore the observed
displacement at L589 can be satisfied by concentrated rup-
ture at each end of the Superstition Hills fault. It is assumed
that the observed GPS displacement at L589 is seismically
generated and not conta_ninated by an unusually large mea-
surement error. The slip defidt near the center of the fault

roughly corresponds to the slip ambiguity observed at the
surface (Figure 8).

The model resolution for k < 27 is very limited. In fact,
the similar solutions obtained for 20 < k < 27 suggests that
the most significant feature is the combined moment on both
fault planes (or average slip). When k = 27, it is possible to
distinguish slip along the Superstition Hills fault, primarily
from the measured displacement of L589. Due to the limited
data, it is doubtful any additional features can be resolved
without making the solution unstable (high variance). There
is little resolution with depth since surface (geodetic) data
are poorly equipped to distinguish slip in this direction.

Independent solutions made without constraining the up-

SW Elmore Ranch {k=23) NE NwSuperstition Hills (k=23} SE
0 ] .... ::::.::.::;_:.:.:,_,.'.'.: ,;.:i" "-

  iii iiii:ii:i il:ii .......... '

10
Left-lateral Slip (era)

0 0

SW Elmore Ranch (k=27) NE

p-

t_ ':@:÷;................ _:i :'::::::::: ]
10

0 10 20

R_ht-lateral b'_/lp (era)

o o

NWSuperslition Hills (k=27) SE

0 I0 20

LENGTH (km) LENGTH (km)

Fig. 10. Sllp distribution along the Superstition Hills and Elmore Ranch faults computed using

singular value decomposition. Each fault is partitioned into the 50 sub-elements indicated by the
grid spacing. Shown are solutions for k -- 23 and k = 27 constrained by measurements of surface
offset.
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per subfault elements by surface offset measurements axe

presented by Larsen [1991] and axe not duplicated here. In

general, the constrained and unconstrained slip distributions

axe similar. Notably, the unconstrained solutions also reveal

concentrated slip on the northwestern and southeastern seg-

ments of the Superstition Hills fault. This emphasizes that

the calculated slip discrepancy near the faults midsection

is not simply an axtifact of incorporating measurements of
surface offset into the model.

6. GEOPHYSICAL IMPLICATIONS

Conjugate Faulting

The most prominent feature of the Superstition Hills

earthquake sequence is the conjugate relationship exhibited

by near-simultaneons ruptures along right-laterai northwest

and left-lateral northeast-trending faults. In the context of
the Imperial Valley, the northeast-trending strtictures axe

termed =cross faults" [e.g., Hudnut etal., 1989a]. Conju-

gate and cross-fault seismicity seems to be a fairly typi-

ca] phenomenon for this region (Figure II) and may dic-

tate the strain transfer mechanism between faults. The

1981 Westmorland earthquake (Mr. 4.1) is a prime exam-
ple of cross-fanlt tectonics. The mninshock and aftershock

sequence are clearly mapped onto a northeast-trendlng fin.
eament. Other examples axe associated with the Imperial

fault. The largest aftershock (ML 5.8) following the 1979

Imperiai Valley earthquake (ML 6.6) was located near the

town of Brawley [Yollnson and Hutton, 1982]. The focal

mechanism and following seismicity suggested left-lateral
slip along a vertical northeast-trending fault. Reilinger and

Larsen [1986] found that rupture along an identical con-

jugate structure successfully modeled geodetic observations

within the Brawley Seismic Zone. A large (Mr. 5.5) after-

shock was also recorded near Br&wley following the 1940

earthquake [Neumonn, 1942]. Due to the spaxse seismic

data, neither the mechanism nor location were precisely de-

termined, althoug h we speculate this event occurred along

the same northeast-trending feature as the large 1979 after-

shock. Of historical interest are Imperial Valley earthquake

pairs during 1915 (Mr. 6.3, ML 6.3) and 1927 (ML 5.8, Mr

5.5) [Beal, 1915; Toppozada et 0d., 1978]. In each case the
second shock followed the first by about 1 hour, contrast-

ing with the 12-hour interval between the 1987 events. It is

not known which fault(s) ruptured during these earthquake

sequences, but conjugate fault interaction is possible.

Rupture on the Superstition Hills fault was almost cer-

talnly triggered by the Elmore Ranch event (occurring 12

hours earlier) suggesting some mechanism of stress transfer

between the two faults. Figure 12 shows the normal (_,) and

strike-sheax (_rs) stress components instantaneously applied

to the Superstition Hills fault due to a 30 cm left-laterai

Elmore R_nch dislocation (Model 1). Tension and right-

lateral shear are considered positive, both tending to induce
failure on the rupture plane. Also shown is a Coulomb fail-

ure stress (o'c), here given by Jc = or, + pooh, where p is the

coefficient of internal friction. We assume # = 0.75 [e.g.,

Hudnut et al., 1989b]; different values do not significantly

alter our results. Positive _¢ indicate stress-loading leading

to shear failure. Failure will occur if the preexisting stress

on the fault plane plus ere is greater than some critical value

(the inherent shear strength).
The Coulomb failure relation assumes that the Earth be-

haves as a linearly elastic material. Near the limiting state of

failure, however, the stress distribution will not be governed

by elastic stress/straln laws. Nevertheless, the qualitative

form of the function will still be valid. That is, increased

right-laterai shear and/or tension moves the Superstition
Hi]Is fault closer to failure.

We assume that the Superstition Hills rupture plane was
at or near failure at the time of the Elmore .Ranch event.

The initial shock generated ant increase in the Coulomb fail-

..... _" " I .... I " '

;:.. • .__ ,

m C,mtro • OlS

32.5 - _ "k_r_ru _X\
• I . . . %. I , , , , I ,

-116.5 -116 -ll5.fi -115

Fig. 11. Known and/or potential conjugate/cross-ftmlt seismic episodes in the Imperial Valley
since 1900. Seismic release on (left-lateral) northeast-trending structures was observed in 1979,
1981, and 1987. Earthquake pairs or rnalnshock/aftershock sequences suggestive of conjugate
faulting were observed in 1915, 1927, and 1940. This suggests conjugate/_oss_fault interaction is
typical for the Imperial Valley.
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iSuPer_ltfon Hills Surfece Rupture 1

Elmore Ranch Fault
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Fig. 12. Strike-shear (rlght-lateral pc, sitive) and normal stress
change (dilatation positive) induced on the Superstition Hills
fault due to a 30-cm left-lateral Elmore Ranch dislocation

(Model I). Also shown is the Coulomb failure stress change, EL)
where positivevaluesindicatean increasedpotentialforrupture
(earthquake inducing stress). The northwest third of the 1987
Superstition HRIs rupture plsme underwent a stress change tend-
hag it toward failure with the maximum change calculated in the
epicentral region near the intersection with the Elmore Ranch c_tw__ --
fault. There was no rupture to the northwest where the Coulomb
failurestresswas negative (reduced earthquake potential).The mm
magnitude of the stress change (in bars) is comparable to typical
earthquake stress drops. _/__"

ure potential along the Superstition Hills fault (Figure 12),

possibly advancing it past its failure threshold. This is seen

mostly as a combination of increased tension (earthquake in-

ducing) countered by left-lateral shear (earthquake inhibit-

ing). The increase is maximized along the northwest bound-

SaT of the rupture plane, near the nucleation point of the

second event. Presumably, rupture began where the applied

stress was greatest and then propagated to the southeast.

Northwestward rupture is prohibited because the increase
in compressive forces tends to inhibit shear failure along

this segment of the plane. The magnitude of the Coulomb

stress increase near the Superstition Hills epicentral zone is

comparable to typical earthquake stress drops (-,, 10 bars if

p = 0.7_).

In Coulomb analysis the angle _ between two conjugate

ruptures is given by @ = tan-; (#),or @ = 53° ifp ---0.75.

In addition,slipon conjugate faultsshould be equal for the

co_xialityof stress and strain. However, the Superstition

Hillsand Elmore Ranch faults are nearly orthogonal, with

considerably greater slipon the Superstition Hills.The f_l-

ure pattern in the Imperial Valley may be strongly governed

by preexistingzones of weakness, so rupture geometry may

not follow a strict Coulomb behavior. Also, it has been

theoreticallyshown and experimentally demonstrated that

the principal axes of stress and strain axe not coaxial dur-

ing faulting of a frictional material [Mandl end Fernandez.

Luque, 1970; Drescher, 1976].
The one to several hour delay recorded between events

during observed and suspected conjugate episodes in the Im-

perial Valley is significant from an earthquake failure per-
spective. Shown in Figure 13 axe potential scenarios for

earthquake ruptures involving conjugate-mainshock interac-

tion, such as that observed for the Superstition Hills events.

We assume faults fail by an undefined mechanism when they

are at or above some critical stress level. The regional strain

acting over several years brings a fault near this critical fail-

ure point. A stress increase is induced along part of the

fault plane due to rupture on a conjugate structure (e.g.,

Figure 12), which may or may not be sufficient to push the

stress state past its critical threshold. In the case of Earth-

quake 1 (Figure 13a), the stress change caused by the con-

jugate event is not enough to induce failure. Some form of
time dependent stress transfer onto the fault is activated and

eventually the critical level is reached. A mechanism involv-

ing postseismic viscous creep along the Elmore Ranch fault

has been suggested for the 1987 Superstition Hills sequence

[Given and Stuart, 1988]. If this scenario is valid, we would

also expect failure modes such as that indicated by Earth-

quake 2. Here the instantaneous stress applied to the fault

from the conjugate event pushes the stress state past the

critical level and rupture is immediate. In this case, failure

O)
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_'e_ _rour_
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Fig. 13. Schematic of potential earthquake failure processes in the
Imperial Valley. (_) Earthquake failure occurs after some critical
stress is reached. (b) E,arthquake failure occurs following a time
dependent delay after critical stress is exceeded.
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along the two perpendiculax fault planes will.occur simul-

taneously. However, this behavior is not observed in the

Imperlal Valley. Conjugate episodes characteristically have

been separated by one to several hours. This suggests that
the critical stress level can be exceeded without immediate

failure. Therefore some time dependent mechanism must be
active on the fault plane. We loosely refer to this as *stress

corrosion _ (Figure 13b) [e.g., Das and Scho/z, 1981]. This
does not exclude the occurrence of stress transfer due to

nonseismlc deformation. In fact, work haxdening along the

fault plane during this load transfer may allow the stresses
to increase during the time interval between events. In the

case of Earthquakes 3 and 4, it is suggested that the critical

stress level must be exceeded for a period of one to several

hours before failure occurs. Hudnut et al. [1989b] proposed

fluid diffusion as an alternate mechanism, whereby the effec-

tive normal stress was reduced (made more positive) due to

pore-fluid infiltration into the rupture plane th_/s increasing
the Coulomb failure stress. This process involves action on

the fault plane and cannot be explained by stress transfer

alone. Regardless of cause, the temporal and geometric re-

lationship exhibited by conjugate fault interaction is seem-

ingly typical of Imperial Valley tectonics and is likely an

important factor for the potential prediction of large eaxth-

quakes and aftershocks.

Moment and Slip Distribution

The geodetic (GPS) source parameters for the Supersti-

tion Mils and Elmore Ranch earthquakes axe listed in Ta_

ble 4 and the slip distribution is shown in Figure 10. The
seismic moment is best defined by Model 1, while the slip

distribution is best expressed by Mode] 2b. The GPS mea-

sured coseismie displacements axe directly proportional to

the combined effect of the Elmore Re, nch and Superstition

Hilts events, although we have attempted to resolve sllp be-
tween each fault. The calculated slip is a function of the

coseismic offset, as well r.s 3-4 months of postseismic slip

(plus 1.5 years of preseismic movement, if any). The average

left-lateral Elmore Ranch dislocation is about 30 cm, with

a fairly uniform distribution along the fault plane. In the

case of the Superstition Hills fault, the average right-lateral

dislocation is about 130 cm, with concentrated slip along
the northwest and southeast sections of the fault. Because

the GPS sampling frequency is so low (years), the calculated
source parameters contain the total coseismic moment, in-

cluding several months of postseismic slip.

The GPS moments are compared with estimates made

through seismic and other geodetic studies (Table 5).
Forward and inverse models using teleseismic and strong-

4899

motion recordings are used to constrain source paxameters,

as well as investigate complexities of the Superstition Hi_

rupture process [Dzietoonski et a/., 1989; Bent et al., 1989;

Sipkin, 1989; Frankel and Wennerberg, 1989; Wald et al.,

1990; Hwang et al., 1990]. The te]eseismic moments are

similar to the GPS estimates, while the strong ground mo-

tion data suggest significantly lower moments. The high-

frequency strong-motion measurements are dominated by

energy axound 1 s and conceivably miss a sizable portion

of the long-period energy release; these neax-field seismic

solutions may underestimate the total moment release.

Geodetic measurements from Pinyon Flat observatory axe
used to constrain planer and curved dislocation models for

the Superstition Hills end Elmore Ranch faults [Agnew and

Wyatt, 1989]. The data axe obtained from long-base strain

and tiltmeters, as well as a borehole di]atometer. The best

fit planer models to all observations axe significantly lower
than those calculated with the GPS and teleseismic dat_

(Table 5), although a 70% moment increase for the Super-
stition Hills fault is obtained when the strain meter data

are excluded. The low moment estimate may be due to a

number of factors [Agnew and Wyatt, 1989]: (1) measure-

ment quality, particular with the strain meter, (2) theologic

differences between Superstition Hills and Pinyon Flat, and
(3) strain meter-dilatometer sensitivity to the nodal defor-

mation plane roughly on azimuth with the observatory.

Geodolite observations from the Sultan "]_rough EDM net-

work were made in eaxly December (1987), several days after

the Superstition Hills sequence [Lisowski and Savage, 1988];
the last previous occupation was in January 1987. Simple

dislocation models with 40 cm left-lateral slip along the El-

more Ranch fault and 120 cm right-lateral slip along the
Superstition Hills fault best fit the observations. The esti-

mated moment for the Superstition Hills event is comparable

to that obtained with the GPS displacements (Table 5).

The discrepancies in Table 5 are largely attributed to the

alternate methodologies, observations, and parameters used

to constrain each model. However, for those calculations

which include moment estimates for both the Superstition
Hills and Elmore Ranch events, the ratio between the two

ruptures is fairly constant. This illustrates internal consis-

tency with each method. More importantly, it suggests that

postseismic sllp along the Superstition Hills fault is proba-

bly confined to the shallow segment of the rupture plane.

Since seismic activity on the Elmore Ranch fault essentially

ceased after the Superstition Hills event, if poetselsmic slip
occurred in mass along & laxge fraction of the Superstition

Hills rupture plane, the GPS moment ratio would be con-

siderably larger.

TABLE 5. Moment Comparison

Moment, × 102s dyn cm
Method 5H ER "lbtal Ratio

GPS (Model 2) 9.4 2.3 11.7
Telesei_e 7.2 1.4 8.6
Teleseismie I0.0 2.3 12.0
Teleseismic 10.8 2.7 13.5
Teleseismic 8.0

Strong motion 5.2
Strong motion 1.8
Pinyon Flat (Planar-A) 3.7 0.8 4.3
EDM 9.3

P_'el'_nce

4.1 tMs study
5.1 DziewonJki et al. [1989]
4.3 Sip kin [1989]
4.0 Bent et al. [1989]

Hwang et *1. [1990]
Wal_ et at. [199o]
Fr_nkell and Wennerberg [1989]

4.6 Agnen_ and Wyatt [1989]
Lisoweki and Savage [1988]

Abbreviations are SH, Superstition Hills fault and ER, Elmore Ranch fault.
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While the epicenter and aftershock sequence for the Su-

perstition Hills event were concentrated along the north-

western portion of the fault, seismic and surface sllp data

suggest significant moment release on the southeastern por-
tion of the Superstition Hills fault [Wold et al., 1990; Bent

et al., 1989; Hwang et a/., 1990; Williams and MogiBtrale,

1989]. An exception is the strong ground motion study of

Frankei and Wennerberg [1989], where slip is confined to

the northwest. However, if their analysis is strongly depen-

dent on high-frequency data, this suggests rupture along

the southeastern segment was dominated primaxily by low-

frequency energy release. The GPS data also indicate sllp

along the southeastern segment of the fault, and further sug-
gest a displacement null near the fault's midsection. This

slip deficiency may be related to the ambiguity observed in

the surface offset along the center of the fault (Figure 8).

Deformation Across the Imperial Valley

The 1986-1988 GPS station displacements indicate sig-

nificant nonseismic movement across the Imperial Valley,

which is attributed to the ongoing motion between the Par

cific and North American plates. Larsen [1991] showed that

this movement could be modeled by a differential velocity
of 5.9 4- 1.0 cm/yr across the valley. This rate is heavily

influenced by measurement error and unmodeled seismic ef-

fects, however, and is probably not significantly different
than the 3.69 4- 0.11 cm/yr rate obtained with EDM ob-

servations from 1973-1989 [Lisowski et al., 1991]. In fact,
in the present study the EDM rate is used to remove the

secular displacement component from the 1988-1988 data.

Alternatively, accelerated deformation is not without prece-
dence and cannot be ruled out. GPS observations between

1988 and 1989 indicate 5.2 4- 0.9 cm/yr displacement across

the Imperial Valley [Larsen and Reilinger, 1992]; triangula-

tion observations suggest a rate of 6.2 cm/yr between 1941

and 1954 [Snail and Drew, 1988], although this is attributed

to postseismic deformation following the 1940 Imperial Val-
ley earthquake. Increased deformation following the 1979

earthquake is not observed in the EDM observations [Sam

age et al., 1986]. In any case, additional GPS measurements
will better constrain the current deformation.

7. CONCLUSIONS

Station movements computed from four Imperial Valley

GPS campaigns indicate large crusts] displacements during
the periods 1986--1988 and 1986-1990. Much of the defor-

mation is attributed to the 1987 Superstition Hills earth-
quake sequence, Eleven sites _tear the seismic rupture gone

are displaced at least I0 cm. The Superstition Hills and El-

more Ranch faults are modeled as rectangular dislocations

of uniform slip in an elastic half-space. The best fit mode]

to the GPS observations requires 130 cm right-lateral offset
along the northwest-trending Superstition Hills fault and 30

cm left-lateral offset along the conjugate northeast-trending

Elmore Ranch fault. The estimated geodetic moments are

9.4 x 1025 dyn cm and 2.3 x 1025 dyn cm for the Super-

stition Hills and Elmore Ranch faults, respectively. These
moments are consistent with those obtained from teleseis-

mic data, suggesting that postseismic slip along the Super-
stition Hills fault was concentrated near the surface. The

slip distribution along each fault is investigated by parti-

tioning the rupture planes into 50 subelements and utilizing

singular value decomposition to estimate the slip along each
subfault. Measurements of surface offset are used to con-

strain slip on the shallow elements of the fault plane. The

estimated sllp distribution along the Elmore Ranch fault

is fairly uniform. Slip along the Superstition Hills fault ap-

pears to be concentrated to the northwest and the southeast,

with a displacement drop near the fault's midsection.

In addition, the 1986-1988 GPS observations suggest a

nonseismic differential vdocity across the Imperial Valley of
5.94-1.0 cm/yr due to the relative motion between the North

American and Pacific plates. The observed rate is heavily

influenced by unmodeled seismic effects and measurement

error and is not significantly different than the 3.69 4- 0.11

cm/yr rate obtained from EDM measurements. Regardless,
the observed seismic and secular deformations dearly em-

phasize the importance of future GPS study in the Imperial

Vailey.
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Global Positioning System Measurements of Strain Accumulation

Across the Imperial Valley, California: 1986-1989

SHAWN LARSEN 1

Seismological Laboratory, California ln#titute o] Technology, Pasadena

ROBERT REILINGER

Earth Resources Laboratory, Massachffiseits Institute of Technology, Cambridge

Global Positioning System (GPS) data collected in southern California from 1986 to 1989
indicate considerable strain accumulation across the Imperial Valley. Displacements are computed
at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The
earlier measurements indicate 5.9 4- 1.0 cm/yr right-lateral differential velocity across the valley,
although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. The
1988-.1989 GPS displacements are b_t modeled by 5.2 4-0.9 cm/yr of valley crossing deformation,
but rates calculated from 15 years of terrestrial geodetic measurements (3.7 4- 0.1 crn/yr) fit the
data nearly as well. The relatively high GPS rates are suspect because some measurements,
especially the east-trending displacements, have large errors. There is evidence from GPS and
very long baseline interferometry observations that the present strain rate along the southern
San Andrew fault is smaller than the long-term geologic estimate, suggesting a lower earthquake
potential than is currently assumed. Correspondingly, a higher earthquake potential is suggested
for the San Jacinto fault.

INTRODUCTION

The Global Positioning System (GPS) is rapidly becom-

ing one of the most important tools to study tectonic de-

formation. Signals from Earth-orbiting Navigation Satd-

IRe Time And Ranging (NAVSTAR) satellites are inverted
to obtain three-dimensional coordinates of geodetic monu-

ments with high precision. For crustal deformation studies,

the relative position (or baseline) between stations is often

measured. Under optimal conditions, the typical accuracy

for a 50-kin baseline is about 1 cm in the horizontal and 3

cm in the vertical [e.g., Davis et al., 1989]. The accuracy

is significantly degraded under poor observing conditions.
GPS measurements can be used to monitor the secular de-

formation associated with plate motion, or to record the

rapid strain fluctuations due to seismic and volcazfic activ-

ity. GPS technology is ideally suited for crustal motion re-

search since, unlike conventional geodesy, intersite visibility

is not required, stations can be separated by long distances

(> 100 km), and it is possible to measure three-dimensional
deformation.

A prime location for GPS studies is the Imperial Valley

of southernmost California (Figure 1). The valley is one

of the most tectonically active regions in the state and has

been the site of several large earthquakes. GPS monitoring

was initiated in the Imperial Valley in 1986 with resurveys

in 1988 and 1989. GPS station displacements from 1986

to 1988 have been discussed by Larsen et al. [1992]. These
measurements illustrate the effect of the 1987 Superstition

Hills earthquake sequence. In the present study we incor-

1Now at Scientific Software Division, Lawrence Livermore
National Laboratory, Livermore, California.
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porate the 1989 GPS observations. Significant station dis-

placements are observed across the Imperial Valley between

1986 and 1989. These movements are attributed in part to
the relative motion between the North American and Pacific

plates.

SEISMI6aTY AND T_c'rorncs

The Imperial Valley (Figure 1) is a complex transition

zone between crustal spreading in the Gulf of California and

right-lateral transform motion along the San Andreas fault

[Lomnitz et al., 1970; Eiders et al., 1972]. The valley is 4-12
million years old and is filled by up to 15 km of late Cenozoic

sediments [Larson et al., 1968; Moore and Bn_ington, 1968;

Ingle, 1974; Fuis et al., 1982]. The structural axis of the
valley and its major fault systems trend to the northwest,

roughly parallel to the Pacific-North American plate motion.

A significant fraction of the relative plate displacement may

be accommodated across the valley."

The Imperial Valley is one of the most seismically active

regions of California with much of the activity occurring

along the Imperial fault and in the Brawley Seismic Zone
[Johnson and Hill, 1982]. Several large earthquakes have

occurred in and near the Imperial Valley since 1940. The

Imperial fault ruptured with a Ms 7.1 event in 1940 and a

M_ 6.6 event in 1979 [U.S. Geological Survey, 1982]. Seg-
ments of the San Jacinto fault system broke with a ML

6.2 earthquake in 1954 and a ML 6.5 event in 1968 (Bor-

reg J Mountain). The most GPS relevant episode of seismic

activity occurred recently along the Superstition Hills seg-

ment of the San Jacinto fault system [e.g., Maglstrale et

al., 1989]. On November 24, 1987, a moderate (Ms 6.2)

earthquake occurred along a northeast-trending seismic lin-
eament; 12 hours later a larger event (Ms 6.6) occurred

along the northwest-trending Superstition Hills fault. What

makes this earthquake sequence so significant from a GPS
standpoint, is that it occurred within a preexisting GPS net-
work.

8865
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Fig. 1. Major faults and sei_clty from 1932 to 1990 (Caltech Catalog) in the Imperial Valley.
Large earthquakes areshown as stars.The Brawley SeismicZone isthe regionofanomalously high
activity between the Imperial and San Andreas faults. Major earthquakes include the 1940 and
1979 events along the Imperial fault, the 1954 and 1968 events along the San Jacinto fault, and
the 1987 Superstition Hills earthquake sequence along the Superstition Hills and Elmore Ranch
faults.

Conventional geodetic measurements indicate significant

displacement across the Imperial Valley, which is inferred
to represent interplate deformation• Triangulation data av-

eraged between 1941 and 1986 suggest 4.3 cm/yr right-

lateral movement oriented N40°W across the valley [Shay

and Drew, 1988]. The observed deformation is time depen-

dent, with rates of 6.1, 2.1, and 4.5 cm/yr for the intervals

1941-1954, 1954-1967, and 1967-1979, respectively. The

high velocity for the earliest period supports the hypothesis
of northwestw_trd strain migration following the 1940 earth-

quake [Thatcher, 1979; Re•linger, 1984]. Furthermore, the

computed station displacements indicate that north of the

Imperial fault, interplate deformation is distributed over a

zone at least 50 km wide, whereas to the south, interplate
deformation is concentrated within a 20-kin-wide band cen-

tered along the Imperial fault. Trilateration measurements

made by the U.S. Geological Survey from 1973 to 1989 in-

dicate 3.7 -I- 0.1 cm/yr rlght-lateral displacement between
stations on opposite sides of the Imperial Valley [Lisowski

et al., 1991]. These differential movements are oriented ap-

proximately N40°W. No significant change in deformation

is observed following the 1979 Imperial Valley earthqvake

[Savage et al., 1986].

New global plate models (NUVEL-1) predict the Pacific-

North American relative velocity averaged over the last sev-

eral millionTears to be 4.7 cm/yr oriented N39.6°W at Im-

perial Valley coordinates (115.5°W, 33.0°N) [DeMcts et al.,

1987, 1990]. Very long baseline interferometry (VLBI) ob-

servations during the 1980's suggest a similar present-day

:ate [e.g., Clark et aL, 1987; Kroger et of., 1987]. The con-
vent•anal geodetic data in the Imperial Valley indicate a

significant fraction of this motion may be distributed along

fau]ts in this region.

GPS OBSERVATIONS

The data presented here were obtained in a series of GPS
field campaigns in 1986, 1988, and 1989 (Table 1). In all,

a total of 32 Imperial Valley stations have been occupied
more than once between 1986 and 1989. Here we discuss

data collection and processing methods used for each survey.

The 1986 and 1988 campaigns are described in more detail

by Larsen [1991].

The National Geodetic Survey (NGS) began GPS obser-
vations in southern California with a 54 station network

in 1986; 42 stations were located in or near the Imperial

Valley (Figure 2). TI-4100 GPS receivers were used for dl

data collection. Each of the 20 days of observation were

processed independently utilizing the GPS22 software devel-

oped at the NGS, with satellite orbit parameters provided by

the Naval Surface Weapons Center (NSWC). Station coordi-

nates were obtained from the daily intersite GPS vectors by

utilizing the geodetic Dynamic Adjustment Program (DY-
NAP) [Drew and Shay, 1989]. This was one of the first GPS

networks established to investigate crustal motion• GPS sur-

veying at this time was still at an %xperimental stage. _ The

data collection methods used during 1986 were not suitable
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TABLE I. Reoccupied Stations (1986-1989)

Station Name Abbrev- Occupation
iation 1986 1988"

Acute 1934 ACUT • •
Alamo ALAM • •
Black Butte NCMN 1982 BLAC * •
Brawley 2 rm 5 BRAW •
Calexico 1954 CALE • *

Calipatria 2 CALI •
Coach COAC • •
College 1967 COLL • *
El Centro 2 1959 ELEC •
Frlnk 1934 FRIN • *
GLO Comer 1934 GLOC • •
Hamar 2 1967 HAMA • *
Holt 1924 HOLT •

Holtville (A.It) 1934 HLTV s
Imp 1934 IMPI s
Imperial 1934 IMPE •
Junction JUNC •
Kane 1939 KANE s •
L 589 1967 L589 • *
Mack 2 1987 bm reset MACK •
MelIo 3 1967 MELL •
Monument Peak NCMN 1983 MONU •
Oeotil]o NCMN 1982 OCOT s s
Ocotino 1935 OCTI * s
Offset 217 O217 • •
Offset 224 0224 •
Offset 227 0227 s
Orient 1939 OFtIE • •

Pinyon Flat PINY *
Sandy Beach SAN1 s
T 1226 T122 s
Tamarisk 3 1967 TAMA • •

"Universities.
tNGS.

for obtaining the highest accuracy solutions. In addition,

due to a variety of equipment and logistical problems, a

significant arnount of data was lost. Because of these unfor-
tunate circumstances, the quality of the 1986 data is fairly

poor. The positional uncertainties for the 1986 survey are

suggested to be approximately 1 ppm (parts per million).

This is equivalent to a 5 cm error for a 50-km baseline.

During late February and early March 1988, university
GPS crews with assistance from the University Navstar Con-

sortium (UNAVCO) occupied 19 sites in the Imperial Val-
ley, including 15 marks observed in 1986 (Figure 2). The

NGS returned to the Imperial Valley the following month

and reoccupied 21 of the previously established monuments.
TI-4100 receivers were used for all measurements. Data

from both surveys were processed independently with the

Beruese GPS software package from the University of Bern

in Switzerland. For each campaign, the data were combined

into one multiday solution. The Cartesian coordinate dif-_
f6relices from the university and NGS surveys were adjusted

by least squares to obtain station positions for 1988. Satel-

lite orbit parameters were improved with the aid of fidu-

cial observations from Mojave (California), Westford (Mas-

sachusetts), and Richmond (Florida), made as part of the
Cooperative International GPS Network (CIGNET) [Chin,

1988]. The horizontal precision for intersite vectors when or-

bit improvement techniques axe used is about 0.03 ppm [e.g.,

Davis etal., 1989; Dong and Bock, 1989]. This is equivalent

to subcentimeter level uncertainty for line lengths less than
a few hundred kilometers.

During March 1989, university groups occupied 28 geode-

tic marks in the vicinity of the Imperial Valley, 19 of which

were previously surveyed in 1986 or 1988 (Figure 3). Several

l_t 1989

S •
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@

@
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new marks were established north of the Salton Sea in the

Coachella Valley. While most data were collected with T[-

4100 GPS instruments, this campaign differed from previ-
ous surveys in that Trimble-4000SD receivers were used at

some sites. The field experiment was conducted at a time

of anomalously high solar flare activity which created large
ionospheric disturbances [lac_on et a]., 1989]. The iono-

sphere creates a frequency dependent delay for the GPS

mu]tisignal structure, composed of two carrier phase trans-

missions at 1575.42 MHs (L1) and 1227.60 MHz (L2) [e.g.,

King etal., 1985]. For dual-frequency observations (L1 and

L2), the ionospheric contribution (error) is removed by an

appropriate combination of the two phase observables. How-

ever, if only single-frequency measurements axe available (ei-
ther intentionally or due to poor observing conditions), the
positioning accuracy of all but the shortest baselines will

be seriously degraded. The 1989 phase observations con-

tained a disproportionate number of cycle slip• and data

gaps, presumably due to the poor ionospheric conditions.

The TI-4100 instruments generally collected both the L1

and L2 phase signals, so the ionospheric effect could be

eliminated. The Trimble 4000SD receivers, however, expe-

rienced significant difficulty maintaining phase-lock on the

L2 frequency (it is found that newer "13cimble models, specif-
icaily the 4000SST, are not as susceptible to solar activ-

ity). In fact, between 30% and 60% of the L2 data (Trim-
hie 4000SD) were lost. It is unlikely that the centimeter

level accuracy required for this study could be achieved

solely with the L1 frequency. Therefore, data collected

with Trimble 4000SD instruments were not used, although
we are currently working on schemes to utilize these mea-

surements through-ionospherlc modeling constrained by the
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Fis;. 2. GPS stations surveyed in 1986 and 1988 (see Table 1). The 1986 campaign was conducted

by the N_.tiona] Geodetic Survey and _nc.]u_e_ 42 stations in and near the Imperial Valley. The

1988 observations consisted of two campaigns, the first by university groups in February/March

and the second by the National GeodetJc Survey in March/April. A total of 32 stations were

occupied in 1988, of which 29 were repeat _e_ts firom 1986. Stations mentioned in text

are indicated.

dual-frequency TI'4100 d_ta. Continental fiduclal phase because it is the site most distant from the 1987 Superstition

observations from the CIGNET tracking sites were either Hills earthquake sequence occupied in all GPS campaigns.

nonexistent or of extremely poor quality, presumably due Formal estimates of GPS uncertninty almost always un-

to the poor ionospheric conditions. Therefore, we were un- derestimate variances derived from repeatability studies.

able to apply orbit improvement techniques. A multiday We define more realistic errors by multiplying the formal

solution was obtained with the Bernese software utilizing covariance matrix calculated with the GPS solution by an es-

the broadcast orbits. Positioning errors with the broadcast timated vasiance factor, which scales as the average baseline

ephemerldes are believed to be 0.I-I.0 ppm. length. In general, the measurements reported here _e not
sufficiently redundant to develop reliable statistics. How-

GP_ DISPLACEMENTS AND ]_tOR ESTIMATES ever, based on those cases where repeat measurements have
been made, the errors given in this study appear to rep-

GPS displacement vectors for the intervals 1986-1988 and resent conservative 1-sigma estimates. For the 1986-1988

1988-1989 sre shown in Figures 4 and 5 and listed in Tables displacements, we assume a variance factor so that the av-

2 and 3f respectively. All measurements are made relative erage baseline error is 5 cm, or 1 ppm for & 50-kin line.

to station OCTI. Station OCTI is selected as the reference This relatively large uncertainty is due to the 1986 survey.
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Fig. 3. Imperial Valley GPS stations surveyed in 1989 (see Table 1). TL4100 GPS receivers

(triangles) were used st most sites. Trimhle 4000SD receivers (open circles) were also used.

Thirty sites were occupied, 10 for the first time. Due to very poor ionospheric conditions, data
collected with the "Primble 4000SD recelvm's are not discussed here.

For the 1988-1989 displacements, the average baseline er-
ror is assumed 2 cm, or 0.4 ppm for a 50-km line. The
largest component of uncertainty is attributed to the broad-
cast orbits used for the 1989 solution. In a similar sized

network spanning the Santa Barbara channel, S. C. Larsen
et al. (Strain accumulation in the Santa Barbara channel:
1970-1988, submitted to Journal o/ Geophysical Research,
1992) found 1-3 cm discrepancies between line-lengths ob-
tained with the broadcast ephemeris and those obtained by
utilizing orbit improvement techniques. Our approach for
handling uncertainties, albeit somewhat ad hoc, allows for
self-consistent relative errors and illustrates the much largez
uncertainties in the east-trending direction (_ 4 times larger
than the north-trending errors). This effect is due to the pre-
dominantly north-south ground track of the satellite orbits,
which significantly improves positional accuracy along this
orientation.

Displacements for the 1986-1988 interval (Figure 4) are
complicated by the 1987 Superstition Hilis earthquake se-
quence, as well as by large measurement uncertainties. The
seismic effects are clearly demonstrated in the GPS vectors;
displacements at KANE and L589 approach 0.5 m. Esti-
mates of fault rupture indicate 10 stations near the seismic
rupture zone moved at least 5 cm [Larsen et al., 1992]. The
displacements axe consistent with 130-cm right-lateral sllp
along the Superstition Hills fault and 30-cm left-lateral slip
along the Elmore Ranch fault. Still, there is a considerable
component of southeast-trending movement which cannot
be explained as seismic deformation or measurement uncer-
tainty. This is evident when the displacements are decom-

posed into their north- and east-trending components (Fig-

ure 6). Decomposing vector displacements into geographic
components tends to separate the uncertainties, which are
magnified in the longitudinal direction. Each component is
plotted as the distance from OCTI on a cross-section trend-
ing NS0°E, perpendicular to the North American-Pacific rel-
ative plate motion (N40°W). Simple dislocation theory [e.g.,
Manainha and Smylie, 1971] is used to subtract the effect of
the 1987 Superstition Hills eaxthquake sequence from the ob-
served displacement fidd, following'fault models suggested
by Larsen [1991]. Therefore, Figure 6 represents our best
estimate of the nonseismic deformation across the Imperial
Valley.

The north-trending 1986-1988 movements clearly exhibit

right-lateral displacement; stations to the northeast are off-
set to the south relative to sites on the other side of the

valley. Stations displaying the largest scatter axe, for the
most part, those sites where the applied seismic correction
is greater than 4 cm (Figure 6, open circles). This suggests
fanlt-rupture comphxities not represented by the uniform
dislocation model used to remove the effects of the 1987

earthquake [Larsen, 1991]. The east-trending movements
exhibit large scatter with no discernible trend across the val-
ley. This is invariant of the size of the seismic displacement,
so the scatter cannot be explained simply as unmod_ed seis-
mic effects. Presumably, the large deviations are due to the
fairly significant east-trending errors in the 1986 data. This
may explain the anomalous vector displacements observed
in Figure 4, especially noticeable for those sites near the
border east of the Imperial fault.
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Fig. 4. GPS station displacements for the interval 1986--1988 (1.8 years). D_placements are
listed in Table 2. All measurements are made relative to station OCTI, Errors are determined by

mtdtiplyh1_ the formal uncerta_ties from the GPS solution by a variance factor so that the average

baseline error scales as 1 ppm. The east-treeing uncertainties are about 4 times larger than

the north-trencUng uncertainties. SelsmJcaUy induced _sp]acements from the 1987 Superstition
Hills earthquake sequence are most apparent at stations KANE and L589. The large nonseim_nLic

displacements are assumed to represent relative motion between the Pacific and North American
plates, which is concentrated a_ross the valley.

The nonseismic north-trendlng GPS displacements indi-
cate an 8.14-1.3 cm offset across the Imperial Valley (Figure
6). This differential movement is calculated by linearly fit-
ting those data furthest to the southwest and northeast. The
data errors are increased by 0.33 times the estimated sels-
mic displacements, giving less weight to those stations most
aHected by the 1987 earthquakes. The east-trending compo-
nents are not used due to the large data scatter. The 8.1 cm

offset is assumed to represent plate-boundary deformation.
If we assume a uniform velocity field parallel to the direc-
tion of plate motion (N40°W), the observed north-trending
offset is equivalent to 5.9 4-1.0 cm/yr right-lateral movement
across the GPS network.

The 1988-1989 station displacements clearly demonstrate
rlght-lateral southeast-trending movement across the Impe-
rial Valley (Figure 5), in spite of the short period between
surveys (1 year). Stations furthest to the northeast are dis-
placed approximately 5 cm to the southeast relative to sites
on the other side of the valley. The observed motion at some

sites (e.g., BLAC) may be attributed to the larger east-
trending uncertainties. The 1988-1989 displacements are
also decomposed into their north- and east-trending compo-

nents (Figure 7). Right-lateral differential movement across
the GPS network is indicated in both components.

The north-trending offset observed between 1988 and

1989 (Figure 7) is smaller than that from 1986 to 1988 (Fig-
ure 6) because of the shorter observation period (1.0 year).
However, the more recent measur.einents are not influenced
by seismic activity and contain smaller experimental error.

Since the 1988-1989 GPS station coverage is more uniformiy
distributed across the valley, it is difficult to constrain an
absolute differential offset. Instead, the measurements are
modeled assuming a semi-infinite rlght-lateral shear plane at
depth representing the Pacific-North American plate margin
(Figure 8). The plane is oriented N40°W about coordinates
32.796°N, 115.454°W, almost congruent with the Imperial
fault and the axis of the Salton Trough. The upper depth
is constrained at 10 km and uniform slip is assumed over
the entire shear boundary. Snag and Drew [1988] incorpo-
rate a similar model to explain triangulation observations
between 1941 and 1986, but allow additional slip &long the
Imperial fault necessitated by their detailed station coverage
in this region. More complex models assuming distributed
offset along the Imperial, San Andreas, San Jacinto, and
E]sinore faults, and within the Brawley Seismic Zone, have
been used to model other geodetic measurements in the val-

ley [e.g., Savage et ai., 1979]. The measurements presented
here are not of sufficient resolution or accuracy (due to the
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GPS station displacements for the interval 1988--1989 (1.0 year). Displacements are

listed in Table 3. All measurenlents are made relative to station OCTI. Errors are determined

by multiplying the formal uncertainties from the GPS solution by a variance factor so that the

average baseline error scales as 0.5 ppm. Stations to the northeast moved about 5 cm southwest

relative to stations on the other _cIe of the valley.

0 Km 20

1 _ I

TABLE 2. Station Displacements 1986-1988

• . )

Station N, GN E, _rE

czn (:In

OCTI 0.0 0.0 0.0 0.0
L589 38.1 1.7 --17.2 7.6
KANE -37.2 1.7 -11.7 8.1
OCOT 6.4 1.1 5.6 4.6
COAC -11.7 1.3 5.1 5.5
ALAM -11.7 1.3 11.2 5,8
GLOC -11.3 1.2 8.5 5.2
BLAC -9.0 1.2 1.0 5.2
ORIE -9.2 1.6 8.9 7.3
FRIN -15.3 1.7 5.8 7.6
CALE 2.0 1.3 -4.9 5.6
TAMA -8.6 1.3 11.4 5.5
O217 -6.0 1.6 --7.3 6.8
COLL -3.0 1.4 2.2 6.0
HAMA -9.3 1.7 9.8 8.2
PINY -6.2 1.0 4.0 4.1
BRAW --0.9 1.9 26.2 8.1
HOLT - 5.4 1.8 5.9 7.5
MELL - 2.8 1.8 -0.5 7.5
IMPE -0.7 1.6 I0.I 6.7
IMPI -4.8 1.6 18.9 6.7
ACUT -9.9 1.6 13.2 7.2
ELEC -2.7 1.6 -2.1 6.9
HLTV -9.0 2.1 0.3 8.4
MACK -9.1 1.7 -3.4 7.5
0227 4.4 1.7 -0.9 7.4
T122 - 12.6 1.8 -6.3 7.8
JUNC - 11.0 1.8 -2.3 7.9
0224 0.6 1.7 3.0 7.9

TABLE 3. Station Displacements 1988-1989

Station N, _N F,, CE

cnl (:In

OCTI 0.0 0.0 0.0 0.0
OCOT -0.6 0.5 0.9 2.1
SA_N1 - 1.6 0.6 3.0 2.8
L589 0.6 0.9 1.7 3.7
BLAC -3.5 0.6 8.7 2.6
ALAM --4.4 0.6 5.4 2.8
ORIE --2.9 0.8 3.6 3.4
FRIN --2.7 0.8 5.8 3.6
KANE - 1.8 0.9 4.0 3.9
COLL -2.0 0.8 0.8 3.3
JUNC - 1.3 0.9 - 1.4 3.7

short time coverage) to waxrant such detail. The 1988-1989

GPS displacement vectors axe best constrained by 5.2 4- 0.9
cm/yr plate-boundaxy deformxtion. The best fit solution to

the observed GPS movements is shown in Figure 7. Addi-

tional solutions obtained by vaxying the depth to the upper
boundaxy of the sheax plane between 5 &rid 15 km suggest

displacement rates from 4.4 (5 kin) to 6.0 cm/yr (15 km);
the minimum residual solution is obtained at 10-km depth

(5.2 cm/yr).
DISCUSSION

Deformation Across Valley

The 1986-1988 measurements are concentrated along the

Imperial fault (Figure 4). The nonseismic displacements
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Fig. 8. Shear plane (10-km depth) used to model the 1988-1989 displacements (shaded band);
cross section used in Figures 6 and 7; and stations surveyed at least twice between 1986 and 1989.
Considerable strain is observed across the GPS network, which is •ttributed to plate-boundary
deformation between the North American and Pacific pl•tes.

TABLE 4. Displacement Rates

Method Region Interval Rate, Reference

cm/yr
GPS Imperial Valley 1986-1988 5.9 -1- 1.0 This study

1988-1989 5.2 4- 0.9

Triangulation Imperial Valley 1941-1986 4.3 Shay and Drew [1988]
1941-1954 6.1
1954-1987' 2.1
1967-1986 4.5

Trilateration Imperial Valley 1973-1989 3.7 4- 0.1 Lisowski et aL [1991]
VLBI Salton Trough 1980-1989 3.3 4- 0.I Ward [1990]

CalH'ornia 1980-1986 4.0 - 4.8 Kroger el ,,L [1987"]
Continental 1982-1987 5.1 4- 0.2 C/art et aL [1987]

Plate Model Plate boundary ,_ 3 m._,. 4.7 4- 0.I DeMetm et ai. [1990]

reveai a sharp 15--20 km wide boundaxy between deform&-
tion on either side of the Imperial Valley (Figure 6). This

suggests that strain is accommodated exclusively along the

Imperial fault in the southern half of the valley. The 1988-

1989 measurements axe distributed more uniformly through-

out the region (Figure 5), and indicate a broader strain-

transition zone (Figure 7). This implies that deformation
may be occurring along several structures to the north, in-

cluding the San Andreas, San Jacinto, and Elsinore faults.

The same pattern is observed in the conventional geodetic

coast of California and within the stable North America_

continent. Because the 1988--1989 GPS displacements axe
not affected by seismic deformation, we speculate that this

interval yields a more reliable estimate of strain across the

Imperial Valley than the 1988-1988 measurements. The

1988-1989 GPS deformation rate is compaxable to the plate

velocity, suggesting that all plate motion is concentrated

across the valley with little or no deformation west of the
Elsinore fault. However, this rate is influenced by relatively

large measurement error. Significantly smaller rates are in-

measurements, which indicate concentrated strain in a nax- dicated by the terrestrial measurements, which require ad-

row 20-km-wide zone about the Imperial fault, and diffuse

deformation of at least 50 km wide to the north [Shay and

Drew, 1988; Lisowaki etal., 1991].
The GPS obtained rates of deformation across the Im-

perial Valley, as well as those derived through conventional

geodetic techniques, are listed in Table 4. These axe com-
pared with the estimated velocity between the Pacific and

North American plates (NUVEL-1), and rates derived from

VLBI measurements between stations along the western

ditional slip on faults not spanned by the networks to satisfy

the plate velocity.

GPS and trilateration (EDM) provide comparable accu-
racies, and both are considerably more precise than trian-

gulation. However, the EDM observations span a 15-year

period, while only 3 years of GPS coverage axe available.

Therefore, the trilateration rate should more accurately re-
flect the deformation in this region, which suggests the GPS

measurements overestimate the true displacement. In fact,
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Baseline

BLAC-PINY

BLAC-MONU

V,Clark ¢f aL [1987].
tMa d at [1989].
tSauber [1989].
§ Ward [1990].

TABLE 5. Displace0ment Rates Across San Andreas Fault

Method Interval North, East,

cm/yr cm/yr
GPS 1986-1988 1.1 4. 0.6
VLBI* 1982-1987 1.8 -1.1
VLBIt 1979--1988 1.5 -1.0
VLBIt 1982-1988 1.2 -0.9
VLBI§ 1980-1989 1.4 -1.1
GPS 1986-1989 2.5 4- 0.5
VLBI* 1982-1987 2.3 -2.7

VLBIt 1979--1988 2.5 -2.5
VLBI_ 1982-1988 2.4 -1.8
VLBI§ 1980-1989 2.2 -2.5

Fault Paralld,
crn/yr

1.4 -I- 0.8
2.1
1.8
1.5
1,8
3.2 -I- 0.6
3.5
3.5
3.0
3.3

34
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Fig. 9. VLBI (solid arrows) and GPS (dashed arrows) velocities at stations PINY and MONU
relative to station BLAC (Table 5). The 3-sigma VLBI tmcerta_xty is from Ward [1990]. The GPS
vectors contain large east-trending uncer_nties. The fault-paralld geodetic velocities an'ass the
San Andreas fault are less than geologic estimates.

a 3.7 cm/yr deformation rate fits the 1988-1989 GPS ob-

servations nearly as well (Figure 7). An alternate explana_
tion is _ccelerated deformation between 1986 and 1989. The

triangulation data indicate time-dependent displacements.

Between 1941 and 1954 the calculated rate is significantly

greater than the average between 1941 and 1986, although

this is attributed to postseismic effects (ollowlng the 1940

Imperial Valley earthquake. No increased rate is observed

following the 1979 earthquake [Savage et ol., 1986]. There is

marginal evidence for a regional strain fluctuation (increase)

during 1978 and 1979 throughout southern California, but

the nature of this apparent deformation is uncertain [Say-

age et Ol., 1981, 1986]. Given the large uncertainties for the

GPS estimates (_ 1 cm), it is not possible with the available

data to 4istingnish if there has been increased deformation

over the last several years.

Earthquake Potential: Imperial and Southern San Andreas
Faults

The earthquake recurrence interval along the Imperial

fault is estimated using the geodetically determined strain

rates. The 1940 Imperial Valley earthquake ruptured the
entire length of the Imperial fault. Approximately 3.0- and
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4.5-m slip (coseismic plus postseismic) are estimated for the

northern and southern segments of the fault, respectively

[Reilinger, 1984]. Surface offsets were as great as 6 m south
of the border with displacements tapering off rapidly to the

north [TriJunac and Brune, 1970; Sharp, 1982]. Surface rup-
ture was confined to the fault north of the border during

the 1979 earthquake. Geodetic and strong ground motion

modeling suggests an average slip of about 1 m along the
1979 rupture plane, with patches of higher displacement (as-

perities) [e.g., Hartzell and Heaton, 1983; Archuleta, 1984;

Reilinger and Larsen, 1986].

At an observed strain rate of 4-5 cm/yr and per-event

ruptures between 1 and 3 m, a 20-75 year earthquake recur-

rence interval is calculated for the northern Imperial fault.

This assumes all strain is released during major seismic

episodes. This recurrence rate is comparable to the 32-year

earthquake repeat time suggested by Sllkes and Nishe,ko

[1984] and the ,_ 50-year interval predicted by Anderson

and Bodin [1987].

The rdative velocities of three Imperial Valley GPS sites

are wall constrained from VLBI observations since 1979

[Clark et a/., 1987; Sauber et al., 1989; Ma et al., 1989; Ward,

1990]. The GPS and VLBI computed deformation rates be-
tween BLAC and PINY and between BLAC and MONU are

listed in Table 5 and illustrated in Figure 9. Some explana.

tion is needed of the procedure used to determine fault paral-

ld GPS velocities given in Table 5. Only the north-trending

GPS displacement components are used because of the large

east-trending errors inherent in the 1986 survey. The fault

parallel vdocities are then caiculated assuming right-lateral

displacement oriented N40°W (i.e., the measured northward

displacement is presumed to be one component of the ac-

tual displacement which is oriented parallel to the fault).

The VLBI measurements indicate 1.5 to 2.1 cm/yr fault-
parallel (fight-lateral) displacement across the San Andreas

fault (BLAC-PINY) and 3.0 to 3.5 cm/yr across the Im-

perial Valhy (BLAC-MONU). The GPS measurements in-
dicate 1.4 4-0.8 cm/yr displacement across the fault and

3.2 4- 0.6 cm/yr across the vaUey (the rate in Table 4 differs,

since it represents an average over the entire network). The

BLAC-MONU vdocities agree with the conventional geode-

tic measurements of displacement across the valley (3.74-0.1

cm/yr). The fault-crossing displacements (BLAC-PINY),

however, are somewhat surprising, since they are less than

expected based on geologic evidence. The long-term geo-

morphological slip rate along the southern San Andreas fault
over the last 10,000-30,000 years is estimated between 2.3

and 3.5 cm/yr [Keller et al., 1982; Weldon and Sieh, 1985],

with 2.5 cm/yr a commouly accepted average [e.g., Sieh and

Williams, 1990]. The geologic slip rate and radiocarbon dat-

ing of Holocene offsets along the fault suggest a recurrence
interval of about 300 years with the last major event in 1680

[Sieh, 1986]. This logic leads to the conclusion that the po-

tential for a major earthquake along the southern San An-

dreas fault is high. However, the geodetic evidence reported

here indicates a comparatively small strain rate during the

last decade. This suggests a decreased earthquake potential

for the southern San Andreas fault, assuming the geodetic
measurements are indicative of at least the last few hundred

years. This decreased seismic potential will be observed ei-

ther as a longer recurrence interval or less slip per event. The

geodetic data are supported by geologic trenching studies,

which suggest a decreasing slip rate along the southern San

Andreas fault during the past 1000 years [Sieh, 1986]. If this

is true, the San Jacinto fault should play a more active role

in regional tectonics. In fact, the shear strain along the fault
determined from EDM observations between 1973 and 1984

is nearly the same as that for networks which lie on the San

Andreas fault [Savage et al., 1986]. The two fault systems

may alternately assume dominant roles in absorbing plate
motions, as is suggested by variable Quaternary sllp rates

along the San Jacinto fault [Sharp, 1981].

CONCLUSIONS

GPS measurements from southern California indicate

5.9 4-1.0 and 5.2 + 0.9 cm/yr right-lateral southeast-trending

displacement across the Imperial Valley for the intervals

1986-1988 and 1988-1989, respectively. These rates are

significantly larger than those obtained from conventional

geodetic surveys (3.7 4. 0.1 cm/yr), suggesting the GPS ob-
servations may overestimate the true deformation. The ear-

lier measurements contain relativdy large errors, and are in-

fluenced by the 1987 Superstition Hills earthquake sequence.
Regardless, secular deformation is dearly observed for both

intervals, and this is attributed to the rdative movement

between the Pacific and North American plates. There is
evidence from VLBI and GPS measurements that the strain

accumulation along the southernmost San Andreas fault is

smaller than the long-term geologic estimate. This indicates
a lower earthquake potential for this segment of the fault

than is presently assumed, and suggests that the San Jac-

into system plays a more dominant role for rdieving strain

accumulation in this region.
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ABSTRACT

Since the late1970's, NASA's CDP program has supported studiesof repeat

geodetic measurements of crustaldeformation throughout the Salton Trough and

surrounding regions. Initialinvestigationsconcentrated on existingterrestrial

observationsto enhance the interpretationof more widely spaced VLBI coverage.

More recently,a regionalGlobal PositioningSystem (GPS) network has bccn

establishedby a number of universitygroups in cooperationwith stateand federal

agencies. Major conclusions drawn from these studiesinclude: I) Geodetically

determined deformation for the 1940 (M S 7.1)and the 1979 (M L 6.6)Imperial

Valley earthquakes, and the 1987 SuperstitionHills earthquake sequence (M S 6.2,

6.6) illustratethe importance of faultslip"asperities",postscismic after-slip,and

conjugate faultingwithin the Salton Trough. We consider the implicationsof these

observations for earthquake hazard assessment.

2) Present-day surface and basement topography reflect,in part,recenttectonic

processes and can provide insightsinto the su'ucmralevolutionof thisarea.

Specifically,the relationshipbetween geodeticallymeasured seismic and

intcrscismicverticalmotions and basement/surface topography isinterpretedin

tcrms of the propagation of the Gulf of Californiariftsystem intothe North American



continent. 3) Repeat GPS and VLBI observations provide evidence for the

distribution of strain across the various faults comprising the plate boundary in

southern California (Imperial, San Andreas, San/acinto, Elsinore). These

preliminary results are interpreted to imply a lower earthquake potential (i.e.,

smaller earthquakes and/or longer repeat times) for the southern San Andreas fault

than estimated from long-term geologic studies, and correspondingly a higher

potential for the San Jacinto and/or Elsinore faults.

INTRODUCTION

The Salton Trough of southern California and northern Mexico is one of the most

seismically active regions along the Pacific-North American plate boundary and has

been the focus of intense seismic studies by the USGS/Caltech seismic network

since 1932. Early geodetic observations were initiated in this area by the National

Geodetic Survey (NGS; formerly USC&GS) around the turn of the century. Surveys

specifically designed to monitor tectonic deformation were intensified following the

1940 (M S 7.1) Imperial Valley earthquake and have continued to the present. The

U. S. Geological Survey has been monitoring horizontal deformation in this area

since the early 1970's. In 1986 NGS initiated Global Positioning System (GPS)

measurements in southern California with a high concentration of sites in the

Imperial Valley. Subsequently, university, state, and federal groups have

collaborated to repeat these GPS measurements and extend coverage both along

and across the plate boundary. The combination of intense seismic and geodetic

coverage make the Salton Trough an ideal location to study the earthquake

deformation cycle, and the mechanics and dynamics of the continental lithosphere in

a transition zone from crustal extension to transform faulting. This report reviews

our progress in understanding the nature of present-day geodetically observed

deformations in the Salton Trough and their relationship to plate boundary

processes. The report concentrates primarily on geodetic studies and specifically on

research carried out by the authors, and is not meant to be a thorough review of the

geology/geophysics of this complex region.
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SEISMICITY AND TECTONICS

The Salton Trough is a complex transition zone between crustal spreading in the

Gulf of California and fight-lateral transform motion along the San Andreas fault

(Figure 1). The trough is characterized by predominantly fight-stepping, right-

lateral en echelon faults, presumably linked by zones of crustal extension [Lomnitz

et al., 1970; Elders et al., 1972]. The trough is 4 - 12 million years old and is filled

by up to 15 km of late Cenozoic sediments [Larson et al., 1968; Moore and

Burlington, 1968; Ingle, 1974; Fuis et al., 1982]. The structural axis of the Salton

Trough and its major fault systems trend to the northwest, roughly parallel to the

Pacific-North American plate motion. A large fraction of the relative plate

displacement is accommodated across this region.

The Imperial Valley is that section of the Salton Trough south of the Salton Sea.

The valley is one of the most seismically active regions in California with much of

the activity occurring along the Imperial fault and in the Brawley Seismic Zone

(Figure 2). Several large earthquakes have occurred in and near the Imperial Valley

since 1940. The Imperial fault ruptured with a M S 7.1 event in 1940 and a M L 6.6

event in 1979 [U. S. G. S., 1982]. Segments of the San Jacinto fault system broke

with a M L 6.2 earthquake in 1954 and a M L 6.5 event in 1968 (Borrego Mountain).

The most recent episode of seismic activity occurred along the Superstition Hills

segment of the San Jacinto fault system [e.g., Magistrale et al., 1989]. On

November 24, 1987, a moderate (M S 6.2) earthquake occurred along a northeast-

trending seismic lineament; 12 hours later a larger event (M S 6.6) occurred along

the northwest-trending Superstition Hills fault. What makes this earthquake

sequence particularly interesting is that it occurred within a preexisting GPS

network.

Conventional geodetic measurements indicate significant displacement across the

Imperial Valley, which is inferred to represtnt interplate deformation. Triangulation

data averaged between 1941 and 1986 suggest 4.3 cm/yr fight-lateral movement

oriented N40°W across the valley [Snay and Drew, 1988]. The observed

deformation is time dependent, with rates of 6.1, 2.1, and 4.5 cm/yr for the intervals

1941-1954, 1954-1967, and 1967-1979, respectively. The high velocity for the
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earliest period supports the hypothesis of northwestward strain migration following

the 1940 earthquake [Thatcher, 1979; Reilinger, 1984]. Furthermore, the computed

station displacements indicate that north of the Imperial fault interplate deformation

is distributed over a zone at least 50 km wide, whereas to the south interplate

deformation is concentrated within a 20 km wide band centered along the Imperial

fault. Trilateration measurements made by the U.S. Geological Survey from 1973 to

1989 indicate 3.7 + 0.1 cm/yr right-lateral displacement between stations on

opposite sides of the Imperial Valley [Lisowski et al., 1991]. These differential

movements are oriented approximately N40°W.

New global plate models (NUVEL-1) predict the Pacific-North American relative

velocity averaged over the last several million years to be 4.7 cm/yr oriented

N39.6°W at Imperial Valley coordinates (115.5°W, 33.0°N) [DeMets et al., 1987;

DeMets et al., 1990]. VLBI observations during the 1980's suggest a similar

present-day rate [e.g., Clark et al., 1987; Kroger et al. 1987; Argus and Gordon,

1990], as do GPS measurements further south across the Gulf of California [Dixon

et al., 1991]. The conventional geodetic data in the Imperial Valley indicate a

significant fraction of this motion may be distributed along faults in this region.

COSEISMIC AND POSTSEISMIC DEFORMATION

Considerable information has been obtained from analysis of geodetic observations

bracketing major earthquakes along the Imperial Valley segment of the Salton

Trough. Horizontal deformations associated with the M S 7.1, 1940 earthquake have

been analyzed by Thatcher (1979) and Shay et al. (1982) and vertical deformations

were discussed by Reilinger (1984). The 1979, M L 6.6 Imperial Valley earthquake

was one of the most closely monitored events to have occurred anywhere in the

world [U.S.G.S., 1982]. A number of investigators analyzed coseismic and

postseismic horizontal strains from triangulation, trilateration, and near fault

distance measurements [e.g., Shay et al., 1982; Slade et al., 1984; Crook et al.,

1982; Langbein et al., 1983; Cohn et al., 1982]. Reilinger and Larsen (1986)

reported vertical deformation from repeated NGS leveling surveys. The 1987

Superstition Hills earthquake sequence is unique in that it occurred within both an

existing terrestrial network (USGS EDM) and a GPS network. The terrestrial
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observations have been reported by Lisowski and Savage (1988), and the GPS

measurements by Larsen et al. (1992).

In this section, we review and illustrate the principal geophysical conclusions drawn

from analysis of geodetic measurements of earthquake deformation in the Imperial

Valley. These include: 1) Substantial variations in the magnitude of coseismic fault

slip indicate the presence of fault "asperities" on the Imperial, Brawley, and

Superstition Hills faults. While the Superstition Hills main event apparently

initiated near a high-slip area of the fault plane, the 1940 and 1979 earthquakes

appear to have initiated near relatively low-slip regions. 2) Significant slip along

buried faults within the Brawley Seismic Zone occurred in association with both the

1940 and 1979 events, and during the interseismic period between events. The fault

kinematics in the Brawley Seismic Zone imply that much of the strain released by

earthquakes on the Imperial fault is transferred to the southern San Andreas fault.

3) Conjugate, secondary faults (northeast-southwest strike) are prevalent in the

Salton Trough and appear to be active either before events (1987 earthquake) or

during the aftershock sequence (1940, 1979 events). These conjugate faults may

play an important role in the strain transfer mechanism between faults (e.g., Hudnut

et al., 1989b).

Many of the conclusions listed above are well illustrated by the 1979 event

[U.S.G.S., 1982]. In addition to geodetic measurements of this earthquake, Hartzell

and Heaton (1983) and Archuleta (1984) used strong ground motion observations

to estimate the coseismic slip associated with the 1979 event. Sharp-et al. (1982)

and Sharp and Lienkaemper (1982) discussed horizontal and vertical offsets

accompanying and following the earthquake from field observations and short (less

than 250 m) fault crossing leveling lines. Louie et al. (1985) report fault creep

measurements along the Imperial and Brawley faults as well as other faults in

southern California for the period preceding and following the 1979 event (1967-

1983).

Figure 3 shows the location of leveling routes used by Reilinger and Larsen (1986)

to investigate vertical deformation associated with the 1979 earthquake. A fault

model based on strong ground motion measurements (Figure 4) fits many of the
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first order features of the observed vertical deformation. However, significant

discrepancies occurred along the southernmost segment of the Imperial fault and in

the Brawley Seismic Zone. The most conspicuous departures between observed

and predicted elevation changes occur along the Calexico to Niland profile well north

of the Imperial fault (between 20 and 30 km on Figure 5a) and west of the Imperial

fault along the east-west profile through Calexico (between 4 and 12 kin on Figure

5b). Specifically, large subsidence observed within the Brawley Seismic Zone about

15 km north of the Imperial fault is completely absent in the theoretical deformation.

This subsidence feature is spatially coherent, extends over a distance of at least 8

kin, and has an amplitude comparable to the movements near the Imperial fault

crossing. Subsidence occurs entirely within the Brawley Seismic Zone and is

associated spatially with the area of most intense aftershock activity for the 1979

earthquake [Reilinger and Larsen, 1986]. Similarly, observed subsidence west of

the Imperial fault indicated by the east-west prof'fle through Calexico (Figure 5b), is

poorly matched by the theoretical model. As with subsidence in the Brawley

Seismic Zone, this subsidence is well defined and extends over a distance of at

least 8 kin west of the fault. Furthermore, the predicted uplift east of the Imperial

fault along this profile appears to be offset approximately 5 km to the east relative

to the observed movements. These discrepancies suggest some modifications to

the fault model derived from strong ground motion measurements.

Subsidence within the Brawley Seismic Zone suggests significant fault activity well

north of the observed 1979 surface faulting. The preferred model based on geodetic

and seismic observations involves right-lateral slip on a northwest trending

structure and left-lateral slip on a conjugate northeast striking fault [Reilinger and

Larsen 1986]. Figure 6a shows the resulting fit to the observed vertical motions by

combining the proposed fault slip in the Brawley Seismic Zone with the simpler fault

model given in Figure 4; the inset shows a map view of the proposed faults. Slip on

the left-lateral fault may have been associated with a M L 5.8 aftershock [Johnson

and Hutton, 1982]. However, no large aftershocks occurred on the hypothesized

right-lateral fault, indicating that most of this slip was aseismic. Aseismic slip on a

very similar northwest striking fault in the Brawley Seismic Zone was hypothesized

to account for postseismic deformations for the 1940 Imperial Valley earthquake

[Reilinger, 1984].

6
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Figure 6b shows a comparison between observed and theoretical deformation for

the leveling line crossing the Imperial fault east of Calexico. The fault parameters

for the simple model shown arc given in the figure caption. We emphasize that this

model is meant to approximate behavior along the southern end of the Imperial fault

(i.e., east of Calexico) and does not represent behavior along the central and

northern sections of the fault. The primary differences between this model and our

initial model are: 1) The Imperial fault has a dip of 90 ° as opposed to 80*; 2) Slip

terminates 5 km north of the epicenter (i.e., no slip on the southern 5 km of the

initial fault model); and 3) Larger slip occurs on the upper 7 km of the fault. While

these changes represent significant differences from the model proposed by

Archuleta (1984), we note that they are not inconsistent with other interpretations

of the strong ground motion dam [Hartzell and Heaton, 1983] and that reduced slip

on the southernmost segment of the fault is supported by the absence of a surface

break along this segment (Figure 3).

This example illustrates the importance of geodetic data for constraining fault

models. In addition, the refinements suggested by these data have implications for

the mechanics of faulting along the Imperial fault and in the Brawley Seismic Zone.

For example, low slip along the southern end of the Imperial fault indicates that the

1979 earthquake initiated on a section of the fault that likely experienced

interseismic creep rather than on a high-slip segment (i.e., asperity) [Johnson and

Hutton, 1982]. Deformation in the Brawley Seismic Zone illustrates the importance

of conjugate fault structures for accommodating interplate deformation. Such fault

pairs may represent block-bounding faults; the kinematics of these blocks could

provide constraints on the dynamics of plate boundary deformation [e.g., Jackson

and Molnar, 1990]. Activity on these northeast-striking conjugate faults may help

forecast large earthquakes on the primary northwest:s_ng faults [Hudnut et al.,

1989b]. Furthermore, the nature of faulting in the Brawley Seismic Zone has

implications for the mechanism of strai'n tr_sfer from the Imperial fault to the San

Andreas and San Jacinto faults to the north. The substantial right-lateral slip on the

proposed northwest-striking fault buried in the Brawley Seismic Zone associated

with both the 1979 and 1940 earthquakes suggests that much of the shear strain

7
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released during and following these events was transferredto the southern San

Andrcas fault.

GEODETIC DEFORMATION AND GEOLOGIC STRUCTURE

In addition to the often large coseismic motions associatedwith earthquakes, the

long historyof geodetic observationsin the Salton Trough provide information on the

more subtledeformations which occur between major events. The particular

example discussed here involves subsidence of the Mesquite Basin [].,men and

Reilinger,1991]. The principalobservations we attempt to explain include geodetic

estimates of coseismic and intcrscismicbasin subsidence,coseisrnicverticaloffsets

on basin bounding faults,topographic basin relief,and faultoffsetsin the basement

inferredfrom refractionsurveys. We interpretthese observations to suggest a very

young age for the northern Imperial faultand northwestward migration of the

Brawley Seismic Zone. We furthersuggest thatthismigration may bca

manifestationof the propagation of the Gulf of Californiariftsystem intothe North

American continent.

The Mesquite Basin is a subacrialtopographic low bounded on the west by the

Imperial faultand on the cartby the Brawley fault(Figure 3). Maximum basin

reliefisabout 10 m relativeto itsperiphery. Figure 7 shows topography and

elevationchange profilesderived from NGS levelingsurveys across the basin. The

1931-1941 and 1941-1974 elevationchanges have been modeled as coseisrnicand

postseismicdeformation from the 1940 Imperial Valley earthquake [Rcilingcr,

1984]. Dispiaccments from 1978-1980 have bccn ascribed to the 1979 earthquake

[Reilingerand Larsen, 1986]. Independent of the particularinterpretation,the most

strikingfcatureof the levelingdata isthe similarpatternof subsidence across the

Mesquite Basin observed on allthree profiles,suggesting thatthe basin was

formed by many episodes of seismic activitysimilarto the 1940 and 1979 events.

As indicatedin Figure 7, the totalsubsidence of the basin for the period 1931-1980

is about 40 cm.

Verticalfaultoffsetson the Imperial and Brawley faultsfor the 1940 _md 1979

carthquakcs ranged from 0 - 30 cm and wcrc concentrated along the sectionof the
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Imperial fault bounding the basin [Sharp, 1982, Sharp et al., 1982]. Additional

surface offsets occurred, possibly in association with a 1975 earthquake swarm on

the Brawley fault [Sharp, 1976]. In each case, slip was down to the east on the

Imperial fault and down to the west on the Brawley fault (i.e., causing basin

subsidence).

Perhaps the most puzzling and intriguing aspect of deformation in the Mesquite

Basin is the offset pattern in the crystalline basement along the Imperial fault as

indicated by refraction measurements [Fuis et al., 1984]. Refraction lines crossing

the fault at the three locations shown in Figure 3 indicate decreasing offset from

south to north (1000 m, 500 m, 0 In); in all cases down to the east. What makes

the basement structure unusual is its opposite arrangement to the 1940 and 1979

seismic surface offsets which increase to the northwest.

Assuming the Mesquite Basin developed from episodes of seismic activity similar

to the 1940 and 1979 earthquakes, we use the geodetically observed subsidence,

topographic relief, and fault offsets in the basement to place constraints on the age

of the basin and, correspondingly, the northern Imperial-Brawley fault system

[Larsen and Reilinger, 1991]. About 5 m of seismic and postseismic slip is required

to form the 40 cm of subsidence observed between 1931-1980 [Reilinger, 1984;

Reilinger and Larsen, 1986]. At a slip rate of 40 rnm/yr across the Imperial fault

[e.g., Larsen and Reilinger, 1992], 5 m of potential slip will accumulate in 125 years.

The basin subsidence rate averaged over this period is therefore 3 ram/yr. At this

rate, the 10 m of basin relief will develop in only 3000 years. This suggests that the

basin and northern Imperial-Brawley fault system is extremely young compared to

the age of the Imperial Valley. However, this young age is a minimum since it does

not account for sediment influx into the basin. An upper bound on the age of the

northern Imperial fault can be estimated by considcring fault offsets in the

basement. Although geodetic, gcologic, and strong-motion data indicate significant

vertical displacements along the northern section of the Imperial fault, apparently

insufficient time has elapsed to allow formation of sufficient basement offset to be

detected by refraction surveys. Assuming refraction measurements can resolve a

basement offset of 300 m at 5 km depth [Fuis et al., 1984], at a subsidence rate of 3

mm/yr, the maximum age of the northern Imperial fault is about 100,000 yrs; again
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much younger than the 4-12 millionyear age of the Imperial Valley. A very young

age for the present faultconfigurationin the valleyissupported by analysisof heat

flow [Lachenbruch et al.,1985], and geothermal systems [Kasameyer et al.,1984].

These age constraintssuggest thatthe present faultconfiguration represents the

most recentepoch of activityin a rapidlychanging faultgeometry.

We suggest a scenario for the recenthistoryof the Imperial=Brawley faultsystem

which can account for the anti-con'clarionbetween seismic verticalfaultoffsets

observed at the surface and offsetsrecorded in the basement (i.e.,surfaceoffsets

increase to the north, basement offsetsincrease to the south). Although the

seismicrupture of the Imperial faultispredominantly strike-slip,the large

component of verticalmotion along the northern segment of the faultispresumably

in response to the cn echelon gcomcu'y of the Imperial and San Andrcas faults.

These faultsmay act as transforms associated with a spreading center beneath the

Brawley Seismic Zone FEldcrsct al.,1972; Johnson, 1979]. Ifthe northern extentof

the Imperial faultand the Brawley Seismic Zone, wcrc previously furthersouth,dip

slipmotion would bc expected along thissectionof the fault.EvenmaUy, a

detectableoffsetwould develop in the crystallinebasement. As the spreading

centermigrdtcd to the northwest, so would the verticalmovements during seismic

events. Although rupture on the faultbecomes increasinglystrike-slipwith age

(i.e.,to the south),the basement offsetequals the integratedoffsetthrough time,

and thereforeincreases with age (i.e.,to the south). Figure 8 shows a schematic

illustrationof thismodel of faultevolution. The Rico fault,which was activated

during the 1979 earthquake [Sharp ct al.,1982],may bca relicbasin bounding fault

leftbehind as the spreading centermigrated to the northwest. Similarly,the Sand

Hillsscismicitylineament may be a remnant of an older segment of the San

Andreas faultleftdormant with the northwest passage of the Brawley Seismic

Zone.

Ifthe Brawlcy Seismic Zone rcprcscntsthe crustalmanifestation of a subcrustal

spreadingcenter,and ifthe localtransientphenomenon in the Imperial Valley is

representativeof more regional processes,we speculate that itsnorthwesterly

migrationisdirectlyassociatedwith the propagationof the Gulf of Californiarift

system into the North American continent. Understanding the kinematics of the
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rapidly changing fault configuration in the valley will help place constraints on the

dynamic processes which control the transition from ocean spreading in the Gulf of

California to transform motion along the San Andreas fault.

GPS MEASUREMENTS IN THE SALTON TROUGH

The Global Positioning System (GPS) is rapidly becoming one of the most important

tools to study tectonic deformation. Signals from earth-orbiting NAVSTAR

satellites (NAVigation Satellite Time And Ranging) are inverted to obtain three-

dimensional coordinates of geodetic monuments with high precision. For crustal

deformation studies, the relative position (or baseline) between stations is often

measured. Under optimal conditions the typical accuracy for a 50 km baseline is

about 1 em in the horizontal and 3 cm in the vertical [e.g., Davis et al., 1989]. The

accuracy is significantly degraded under poor observing conditions. GPS

measurements can be used to monitor the secular deformation associated with plate

motion, or to record the rapid strain fluctuations due to seismic and volcanic activity.

GPS technology is ideally suited for crustal motion research since, unlike

conventional geodesy, intersite visibility is not required, stations can be separated

by long distances (> 100 km), and it is possible to measure 3-D deformation.

The Salton Trough is a prime location for GPS studies because of the rapid

deformation and intense seismic activity. GPS monitoring was initiated in southern

California by the NGS in 1986 with the establishment of a 54 station network; 42

stations were located near the Sahon Trough. Since that time, a group of

universities together with state and federal agencies (see Table 1 for a list of

cooperating institutions) have collaborated to repeat and extend these original

measurements with resurveys in 1988, 1989, 1990, and 1991 [Reilinger et al., 1990;

de la Fuente et al., 1990; Gilbert et al., 1991]. Figure 9 shows stations established

as part of this coordinated effort. The Sahon Trough GPS network extends from the

Pacific coast, across the Elsinore, San Jacinto, and southern San Andreas faults,

east to the California-Arizona border. The network covers roughly 475 km of the

plate boundary from the Gulf of California in northern Mexico to just south of the

"Big Bend" segment of the San Andreas fault. Snay and Drew (1988) used the

1986 GPS measurements in combination with earlier terrestrial geodetic data to

ll
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investigate temporal and spatial variations in regional strain in the Imperial Valley.

GPS station displacements from 1986 to 1988 have been discussed by Larsen et al.

(1992). These measurements illustrate the effect of the 1987 Superstition Hills

earthquake sequence. Larsen and Reilinger (1992) investigated GPS measured

deformation for the period 1986-1989 and interpreted the observed station

displacements in terms of the relative motion between the North American and

Pacific plates. Here, we review some of the more significant results obtained from

analysis of these data and present new results derived from preliminary reduction of

part of the 1990 GPS campaign.

Analysis of 1986, 1988, and 1990 GPS observations has provided information on the

nature of faulting associated with the 1987 Superstition Hills earthquake sequence

and regional strain accumulation [Larsen et al., 1992; Larsen and Reilinger, 1992].

The 1987 earthquake sequence occurred spatially and temporally within the Salton

Trough GPS network, with 14 stations located within 20 km of the Superstition

Hills-Elmore Ranch fault system (Figure 10). This is the f'wst occurrence of a large

earthquake within a preexisting GPS network. The 1986 data were processed with

the NGS and the 1988/1990 data with the Bernese software packages. Derived

station displacements for the period 1986-1988 are shown in Figure 10 (note that

the movement of station MOUN was derived from a separate experiment in 1990;

See Larsen and Reilinger, 1992 for details). Displacements at three sites within 3

km of the surface rupture approach 0.5 m. Eight additional stations within 20 km of

the seismic zone are displaced at least 10 cm. Best-fitting uniform slip models of

rectangular dislocations in an elastic half-space indicate 130 em of right-lateral

displacement along the northwest trending Superstition Hills fault and 30 ¢m left-

lateral offset along the conjugate northeast trending Elmore Ranch fault (see Larsen

et al., 1992 for details). The geodetic moments are 9.4 x 1025 dyne-era and 2.3 x

1025 dyne-em for the Superstition Hills and Elmore Ranch faults respectively, in

good agreement with seismic moment estimates. This agreement suggests that

after-slip observed along the Superstition Hills fault trace [Bilham, 1989] was

confined to the near-surface (i.e., afterslip on a large part of the fault plane would

result in a larger geodetic than seismic moment). Distributed slip solutions using

Singular Value Decomposition suggest near uniform displacement along the Elmore
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Ranch fault and concentrated slip to the northwest and southeast along the

Superstition Hills fault [Larsen et al., 1992].

The most prominent feature of the Superstition Hills earthquake sequence is the

conjugate relationship exhibited by near-simultaneous ruptures along right-lateral

northwest and left-lateral northeast-trending faults. In the context of the Imperial

Valley, the northeast-trending structures are termed "cross-faults" [e.g., Hudnut et

al., 1989a]. Conjugate and cross-fault seismicity seems to be a fairly typical

phenomenon for this region (Figure 2), and may dictate the strain transfer

mechanism between faults. The 1981 Westmoreland earthquake (ML4.1) is a

prime example of cross-fault tectonics [Ho-Liu, 1988]. The mainshock and

aftershock sequence are clearly mapped onto a northeast-trending lineament. Other

examples are associated with the Imperial fault. The largest aftershock (ML5.8)

following the 1979 Imperial Valley earthquake (ML6.6) was located near the town

of Brawiey [Johnson and Hutton, 1982]. The focal mechanism and following

seismicity suggested left-lateral slip along a vertical northeast-trending fault. As

discussed earlier, Reilinger and Larsen (1986) found that rupture along an identical

conjugate structure successfully modeled geodetic observations within the Brawley

Seismic Zone. A large (MLS.5) aftershock was also recorded near Brawley

following the 1940 earthquake [Neumann, 1942]. Due to the sparse seismic dam,

neither the mechanism nor location were precisely determined, although we

speculate this event occurred along the same northeast-trending feature as the large

1979 aftershock. Of historical interest are Imperial Valley earthquake pairs during

1915 0VIL6.3, MLt.3) and 1927 (ML5.8, MLS.5 ) [Beal, 1915; Toppozada et al.,

1978]. In each case, the second shock followed the fast by about 1 hour, contrasting

with the 12 hour interval between the 1987 events. It is not known which fault(s)

ruptured during these earthquake sequences, but conjugate fault interaction is

possible.

Rupture on the Superstition Hills fault was almost certainly triggered by the Eh_ore

Ranch event (occurring 12 hours earlier) suggesting some mechanism of stress

transfer between the two faults. Larsen et al. (1992) show that the initial shock

generated an increase in the Coulomb failure potential along the Superstition Hills

fault, possibly advancing it past its failure threshold. This is seen mostly as a

13



combinationof increasedtension(earthquakeinducing) countered by left-lateral

shear (earthquake inhibiting). The increase is maximized along the northwest

boundary of the rupture plane, near the nucleation point of the second event.

Presumably rupture began where the applied stress was greatest and then

propagated to the southeast. Northwestward rupture is prohibited because the

increase in compressive forces tends to inhibit shear failure along this segment of

the plane. The magnitude of the Coulomb stress increase near the Superstition

Hills epicentral zone is comparable to typical earthquake stress drops (~ 10 bars;

Larsen et al., 1992).

The one to several hour delay recorded between events during known and

suspected conjugate episodes in the Imperial Valley is significant from an

earthquake failure perspective. Figure 11 shows potential scenarios for earthquake

ruptures involving conjugate-mainshock interaction, such as that observed for the

Superstition Hills events. We assume faults fail by an undefined mechanism when

they are at or above some critical stress level. The regional strain acting over

several years brings a fault near this critical failure point. A stress increase is

induced along part of the fault plane due to rupture on a conjugate structure, which

may or may not be sufficient to push the stress state past its critical threshold. In

the case of Earthquake 1 (Figure 1 la), the stress change caused by the conjugate

event is not enough to induce failure. Some form of time-dependent stress transfer

onto the fault is activated and eventually the critical level is reached. A mechanism

involving postseismic viscous creep along the Elmore Ranch fault has been

suggested for the 1987 Superstition Hills sequence [Given and Smart, 1988]. If this

scenario is valid, we would also expect failure modes such as that indicated by

Earthquake 2. Here, the instantaneous stress applied to the fault from the

conjugate event pushes the stress state past the critical level and rupture is

immediate. In this case, failure along the two perpendicular fault planes will occur

simultaneously. However, this behavior is not observed in the Imperial Valley.

Conjugate episodes characteristically bave been separated by one to several hours.

This suggests that the critical stress level can be exceeded without immediate

failure.Therefore, some time-dependent mechanism must be activeon the fault

plane. We loosciy referto thisas "stresscorrosion" (FiguRe 11b) [e.g.,Das and

Scholz, 1981]. This does not exclude the occurrence of strcsstransferdue to non-
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seismic deformation. In fact, work hardening along the fault plane during this load

transfermay allow the stressesto increaseduringthe time intervalbetween

events. In the case of Earthquakes 3 and 4, it is suggested that the critical stress

level must be exceeded for a period of one to several hours before failure occurs.

Hudnut et al. (1989b) proposed fluid diffusion as an alternate mechanism, whereby

the effective normal stress was reduced (made more positive) due to pore-fluid

infiltration into the rupture plane, thus increasing the Coulomb failure stress. This

process involves action on the fault plane, and cannot be explained by stress

transfer alone. Regardless of cause, the temporal and geometric relationship

exhibited by conjugate fault interaction is seemingly typical of Imperial Valley

tectonics, and is likely an important factor for the prediction of large earthquakes and

aftershocks.

In addition to the large displacements attributed to the 1987 earthquakes, repeated

GPS observations between 1986 and 1990 indicate considerable strain accumulation

across the Salton Trough [Larsen and Reilinger, 1992]. Displacements were

computed at 29 stations in and near the trough from 1986-1988, at 11 sites from

1988-1989, and at 22 sites from 1988-1990 (Figures 10, 12, and 13, respectively).

The earlier measurements indicate 5.9 4- 1.0 cm/yr fight-lateral differential velocity

across the trough, although the data are heavily influenced by the 1987 earthquake

sequence (this estimate was made after attempting to remove the effects of the

earthquakes). The 1988-1989 GPS displacements are best modeled by 5.2 + 0.9

cm/yr of plate-boundary deformation, but rates calculated from conventional geodetic

measurements (3.7 cm/yr, Lisowski et aI., I99I) fit the data nearly as well (due to

the short time interval between GPS s_eys). Figure 13 shows horizontal

displacements from 1988 to 1990 based on our preliminary and partial 1990

reduction. These measurements give a preliminary deformation rate across the

Imperial Valley of 4.5 + 0.4 cm/yr. This rate is in bette r agreement with

conventional estimates than our earlier results. Furfller analysis is required to

determine whether the apparent change in strain rate with time is real or an artifact

of measurement errors. While our prejudice is towards the latter explanation, we

note that large variations in strain rates in the Imperial Valley were reported

following the 1940 earthquake [Snay and Drew, 1988]. Substantial improvement in

estimates of the distribution of strain across the San Andreas, San Jacinto, and
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Elsinore faults will result from inclusion of the remaining 1990 GPS data and from

observations made in 1991.

The earthquake recurrence interval along the Imperial fault can be estimated using

the geodetically determined strain rates. The 1940 Imperial Valley earthquake

ruptured the entire length of the Imperial fault. Approximately 3.0 and 4.5 m slip

(coseismic plus postseismic) are estimated for the northern and southern segments

of the fault, respectively [Reilinger, 1984]. Geodetic and strong ground motion

models suggest an average slip of about 1 m along the 1979 rupuae plane, with

patches of higher displacement (asperities) [e.g., HanzeU and Heaton, 1983;

Archuleta, 1984; Reilinger and Larsen, 1986]. At an observed strain rate of 4 - 5

cm/yr and per-event-ruptures between 1 and 3 m, a 20 - 75 year earthquake

recurrence interval is calculated for the northern Imperial fault. This assumes all

strain is released during major seismic episodes. This recurrence rate is

comparable to the 32 year earthquake repeat time suggested by Sykes and

Nishenko (1984) and the ~ 50 year interval predicted by Anderson and Bodin

(1987).

The relative velocities of three Imperial Valley GPS sites (BLAC, PINY, MONU)

traversing the plate boundary are well zonstrained from VLBI observations since

1979 [Clark et _., 1987; Sauber et al., 1989; Ma et al., 1989; Ward, 1990]. The GPS

and VLBI computed deformation rates between BLAC and PINY and between

BLAC and MONU are listed in Table 2 (see Figure 9 for station locations relative

to faults). Only the north-trending GPS displacement components are- used to

estimate GPS fault parallel velocities because of the large east-trending errors

inherent in the 1986 data. These fault parallel Velocities are calculated assuming

fight-lateral displacement oriented N40°W (i.e., the measured northward

displacement is presumed to be one component of the actual displacement which is

oriented p_ei to the fault). _e VLBI measurements indicate 1.5 to 2.1 cm/yr

fault-parallel (fight-lateral) displacement across the San Andreas fault (BLAC-

PINY) and 3.0 to 3.5 cm/yr across the Imperial Valley (BLAC-MONU). The GPS

measurements indicate 1.4 :t:0.8 cm/yr displacement across the fault and 3.2 4- 0.6

cm/yr across the valley. The BLAC'MONU velocities agree with the conventional

geodetic measurements of displacement across the valley (3.7 4- 0.1 cm/yr). The
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fault-crossing displacements (BLAC-PINY), however, are somewhat surprising

since they are less than expected based on geologic evidence. The long-term

geomorphic slip rate along the southern San Andreas fault over the last I0,000 -

30,000years isestimated between 2.3 and 3.5 cm/yr [Kelleret al.,1982; Weldon

and Sieh, 1985],with 2.5 cm/yr a commonly accepted average [e.g.,Sieh and

Williams, 1990]. The geologic sliprateand radiocarbondatingof Holocene offsets

along the faultsuggest a recurrence intervalof about 300 years with the lastmajor

event in 1680 [Sieh,1986]. These estimateslead to the conclusion thatthe

potentialfor a major earthquake along the southern San Andreas faultishigh.

However, the geodetic evidence reported here indicatea comparatively small strain

rateduring the lastdecade. This suggests a decreased earthquake potentialfor the

southern San Andreas fault,assuming the geodetic measurements are indicativeof

at leastthe lastfew hundred years. A decreased seismicpotentialwould be

observed eitheras a longer recurrence intervalor lessslipper event. This

interpretationis supported by geologic trenchingstudies,which suggest a

decreasing slipratealong the southern San Andreas faultduring the past 1000

years [Sieh,1986]. Ifthisistrue,the San Jacintoand Elsinore faultsshould play a

more activerolein regionaltectonics.In fact,the shear strainalong the San Jacinto

faultdetermined from EDM observationsbetween 1973 and 1984 isnearly the same

as thatfor networks which lieon the San Andreas fault[Savage et at.,1986]. The

two faultsystems may alternatelyassume dominant roles in absorbing plate

motions, as is suggested by variableQuaternary slipratesalong the San Jacinto

fault[Sharp, 1981].

CONCLUSIONS

Analysis of geodetic,geophysical,and geologicalobservationsprovides information

on contemporary tectonicprocesses and the recenttectonicevolution of the Salton

Trough sectionof the Pacific-NorthAmerican plateboundary. Studies based on

these data have implicationsfor earthquake hazards as well as the mechanics and

dynamics of continentaldeformation. Geodeticallydetermined deformation for the

1940 (Ms7.1) and the 1979 (ML6.6) Imperial Valley earthquakes,and the 1987

SuperstitionHillsearthquake sequence (Ms6.2, 6.6)illustratethe importance of

faultslip"aspcritics",postscismic after-slip,and conjugate faultingwithin the
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Salton Trough. Earthquake pairs on conjugate faults appear to be an integral part of

Salton Trough tectonics and may provide a means for short-term prediction of major

earthquakes and large aftershocks. The relationship between geodetically

measured seismic and interseismic vertical motions and geologic structure suggests

that the northern Imperial-Brawley fault system is very young compared to the age

of the Imperial Valley, and that the Brawley Seismic Zone may be migrating to the

northwest. This migration may be related to the propagation of the Gulf of California

oceanic rift system into the North American continent. GPS and VLBI observations

crossing the southern San Andreas and San Jacinto faults suggest a lower

earthquake potential (i.e., smaller earthquakes and/or longer repeat times) for the

southern San Andreas fault than derived from longer-term geologic studies, and

correspondingly a higher potential for the San Jacinto fault. Continued monitoring of

the extensive GPS network in the Salton Trough should provide improved

constraints on the distribution of strain accumulation, and the mechanics of

continental deformation in this zone of transition from ocean spreading in the Gulf of

California to continental transform motion along the San Andreas fault.
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Figure I. The Sahon Trough (hatch pattern) is a transition zone between crustal

spreading in the Gulf of California and right-lateral transform motion along the San

Andrcas fault. This region is divided into the Mexicali Valley south of the U.S. -

Mexico border, and the lmperial-CoacheUa valleys to the north. Map modified from

Lachvnhruch et al. (1985).

Figure 2. Major faults and scismicity from 1932 to 1990 in the Imperial Valley.

Large earthquakes arc shown as stars. The Brawley Seismic Zone is the region of

anomalously high activity between the Imperial and San Andrcasfaults. Major

earthquakes include the 1940 and 1979 events along the Imperial fault, the 1954 and

1968 events along the San Jacinto fault, and the 1987 Superstition Hills earthquake

sequence along the Superstition Hills and Elmore Ranch faults.

Figure 3. Map of the Imperial Valley showing major faults (dashed where inferred)

and leveling routes (dotted lines) along which elevation changes have be_n

determined. Heavy lines show primary surface faulting associated with the 1979

earthquake. The epicenter for the 1979 event (star) is also shown. Hatched lines

show outline of valley in the United States. Small arrows along Imperial fault

indicate locations of fault crossing refraction lines. Abbreviations arc: BSZ,

Brawley Seismic Zone; MI3, Mesquite Basin; IF, Imperial fault; BF, Brawley fault;

SAF, San Andre, as fault; AF, Algodones fault; SHF, Superstition Hills fault; S_IF,

Superstition Mountains fault; SJFZ, San Jacinto fault zone; EF, Elsinor¢ fault (base

map modified from Crowell and Sylvester, 1979).

Figure 4. Side views of Imperial and Brawley faults showing static slip (m) as

reported by Archuleta (1984) (left) and the approximation to this slip used by

Reilinger and Larscn (1986). Dot shows hypocenter for 1979 event. (Scc Rcilinger

and Larsen [1986] for details.)

Figure 5. Comparison between observed (points) and modeled (line) vertical

movements for model shown in Figure 4. Locations of the Imperial fault (IF), and

Superstition Hills fault (SI-IF) crossings are shown. A) Calexico via E1 Centro to

south of Niland. B) East-west line through Calexico.
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Figure 6. A) Comparisonbetween observed (points) and theoretical (line) vertical

movements for leveling line crossing the Brawley Seismic Zone. Map view of

orthogonal faults used in model is shown in inset. Fault parameters: Left-lateral

fault: length - 8.6 kin, width - 8 krn, depth = 2 kin, dip = 90 °, slip = lm left

lateral; Right-lateral fault: length = 14 kin; width = 5 kng depth = 2 kin, dip = 70 °

down to west, slip = 1 m right lateral. B) Comparison between observed (points)

and theoretical (line) vertical movements for east-west line through Calexico. Map

view of modeled fault relative to benchmarks along leveling route is shown in lower

right comer of plot. Fault parameters: length = 23 kin, width = 13 kin, depth to top

of fault = 0 kin, dip = 90 °, slip = 1 m right-lateral.

Figure 7. Releveling profiles showing vertical movements between E1 Centro (0

km) and the Salton Sea from 1931 to 1941, 1941 to 1974, and 1978 to 1980 (see

Figure 3 for location of leveling route). At the top is the elevation (dashed line). A

long wavelength down to the north linear trend is observed in the elevation. The

adjusted topography (solid line) is the elevation minus this regional tilt, determined

by fitting a straight line to elevation. The Mesquite Basin is clearly defined by the

topography. Note the strong correlation between the movement profiles and the

surface expression of the Mesquite Basin.

Figure 8. Schematic diagram of past and present fault configurations in the Imperial

Valley showing the hypothesized northwesterly migration of the Brawley Seismic

Zone.

Figure 9. GPS sitesestablishedin and around the Salton Trough between 1986 and

1991 as partof the cooperative Salton Trough-R/vcrside County project(seeTable I

forparticipatingagencies). Triangles show mobile VLBI stationsoccupied with

GPS.

Figure 10. GPS station displacements for the interval 1986-1988 (1.8 years). All

measurements are made relative to station OCTI. Errors arc determined by

multiplying the formal uncertainties from the GPS solution by a variance factor so

that the average baseline error scales as 1 ppm. The east-trending uncertainties

are about 4 times larger then the north-trending uncertainties. Seismically induced
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displacements from the 1987 Superstition Hills earthquake sequence arc most

apparent at stations KANE, L589, and MOUN. The large nonseismic

displacements arc assumed to represent relative motion between the Pacific and

North American plates, which is concentrated across the valley. MOUN was

resurveyed in a separate campaign in 1990. Station MOUN was disturbed by the

em'thquake and had to bc reset; hence the large uncertainties on its displacement.

Figure 11. Schematic of potential earthquake failure processes in the Imperial

Valley. a) Earthquake failureoccurs aftersome criticalstressis reached, b)

Earthquake failureoccurs following a time dependent delay aftercriticalstressis

exceeded.

Figure 12. GPS station displacements for the interval 1988-1989 (1.0 years). All

measurements are made relative to station OCTI. Errors are determined by

multiplying the formal uncertainties from the GPS solution by a variance factor so

that the average baseline error scales as 0.5 ppm. Stations to the northeast moved

about 5 em southwest relative to stations on the other side of the valley.

Figure 13. Preliminary GPS horizontal station displacements from 1988-1990. Only

part of the 1990 data have been included. These preliminary results suggest about a

4.5 cm/yr deformation rate across the Valley.
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Table I.

SALTON TROUGH GPS PRINCIPAL COOPERATING INSTITUTIONS

UNIVERSITIES/RESEARCH INSTITUTIONS:

CalliforniaInstituteof Technology

Ccntro de InvestigacionCientificay Educacion Superior de Ensenada

(Mexico)

Jet Propulsion Laboratory (Pasadena)

Lamont-Doherty Geological Observatory

Massachusscts Instituteof Technology

University of California,San Diego (Pinyon Hat, La JoUa)

University of Mexico, Mexico City (Mexico)

University of Texas, Dallas (Mexico)

CALIFORNIA COUNTY AGENCIES:

Riverside County Flood Control and Water Conservation District

San Bernardino County Survey

FEDERAL AGENCIES:

National Geodetic Survey

U. S. Geological Survey (Mexico)
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Table 2. Displacement Rates Across San Andreas Fault

Baseline Method Interval North East

(cm/yr) (cm/yr)
BLAC-PINY GPS i986-1988 1.1 + 0.6

VLBI t 1982-1987 1.8 -1.1

VLBI 2 1979-1988 1.5 -1.0
VLBI 3 1982-1988 1.2 -0.9
VI.,BI4 t980.-1989 1.4 -1.1

BLAC-MONU GPS 1986-1989 2.5:1:0.5
VLBI _ 1982-1987 2.3 -2.7

VLBI 2 1979-1988 2.5 -2.5
VLBI 3 1982-1988 2.4 -1.8

VLBI 4 I980-1989 2.2 -2.5

Fault Parallel

_cm/yr)
1.4 _+O.S
2.1

1.8
1.5
1.8
3.2 "1"0.6
3.5
3.5

3.0
3.3

I Clark et at. [1987]
_-Ma [19881

:' Sauber [1989]
" Ward [1990]
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APPENDIX 4

Oceanic transform earthquakes with unusual mechanisms or locations:

Relation to fault geometry and state of stress in the adjacent lithosphere

by C. J. Wolfe, E. A. Bergman, and S. C. Solomon

Submitted to J. Geophys. Res., 1992.
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ABSTRACT

On oceanictransforms,most earthquakesarccxpectcd tooccur on the principaltransform

displacementzone (PTDZ) and tohave strike-slipmechanisms consistentwith transform-paraUcl

motion. Wc conducted a searchfortransformcarthquakcsdepartingfrom thispatternon thebasis

of sourcemechanisms and locationstakcn from theHarvard centroidmoment tensorcatalogueand

the Bulletinof theInternationalSeismologicalCentre,respectively.Events with unusual

mechanisms occur on severaltransforms.Wc have determined the sourcemechanisms and

ccntroiddepths of 10 such earthquakeson thc St.Paul's,Marathon, Owcn, Hcezcn, Tharp,

Mcnard, and Rivcra transformsfrom inversionsof long-periodbody wavcforms. Relative

locationsof earthquakesalong thesetransformshave bccn dctcrrnincdwith a multiple-event

rclocationtechnique. Much of the anomalous earthquakeactivityon oceanictransformsis

associatedwith complexitiesin thegeometry of thePTDZ or thepresence oflargestructural

fcaturesthatmay influenceslipon thefault,Reverse-faultingearthquakesoccur ata cornpressional

bcnd in theOwcn transforminthe areaof Mount Error and atthe St,Paul'stransformnear St.

Peter'sand St.Paul'sRocks. A normal-faultingearthquakeon the Hcczcn transformislocatexlat

thecdgc of a pull-apartbasin marking an extensionaloffsetof thefault,Normal-faulting

earthquakesalong the Tharp, Mcnard, and Rivcratransformsmay alsobc relatedtocxtcnsional

offsets.Some events with unusual mechanisms occur outsideof the transformfaultzone,

however, and do not appear tobc rclatcdtofaultzone gcomctry. For instance,earthquakeswith

mechanisms indicatingrcvcrsc-faultingon ridgc-paraUclfaultplanesarclocatedncarthcridge-

transformintersectionsof theSt.Paul'sand the Marathon transforms.Possibleadditional

contributorstotheoccurrence of anomalous earthquakesincluderecentchanges inplatemotion,

differentiallithosphcriccooling,and thedcvclopmcnt of a zone of wcakncss along the faultzone,

but we do not findstrongcvidcncc toconfirm theinfluenceof theseprocesses.



INTRODUCTION
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Since Sykes's [1967] study of earthquakes on mid-ocean ridges confLrmed the transform fault

hypothesis [Wilson, 1965], the mechanisms of most earthquakes along oceanic transforms have

been generally wen-explained by a simple model. Such earthquakes are expected to have strike-

slip mechanisms consistent with transform motion, to have vertical fault planes, and to occur on

the principal transform displacement zone (PTDZ). A corollary of this standard model, from the

classical theory of faulting, is that the direction of the most compressive principal stress, al, is

horizontal and makes an angle of 30 ° to 45 ° to the strike of the fault [Anderson, 1951]. Two

current lines of research, however, suggest that this model bears closer scrutiny. First, studies of

earthquake characteristics and fault mechanics along oceanic [Prothero andReid, 1982; Tr_hu and

Solomon, 1983; Bergman and Solomon, 1988] and continental transforms [e.g., Segall and

Pollard, 1980; Sibson, 1985; 1986; McNaUy et al., 1989; Saucier et al., 1991] have shown that

bends or offsets in the fault can strongly affect the state of stress and pattern of earthquake faulting

near such features. Second, there is increasing evidence that at least some oceanic and continental

transforms act as weak zones relative to the adjacent lithosphere and that the stress state near the

fault departs from classical theory [Zoback et al., 1987; Mount and Suppe, 1987; Wilcock et al.,

1990].

Recent studies of individual oceanic transforms with high-resolution bathymetrie mapping, side-

scan sonar imaging, and observations from submersibles have revealed complex fault geometries

and structures within the transform domain [Fox and Gallo, 1984, 1986]. Extensional or

compressional jogs (bends or offsets) in the PTDZ have been documented along several transforms

[e.g., Macdonald et al., 1979, 1986; Lonsdale, 1986; Gallo et al., 1986]. Microearthquake

experiments conducted with ocean bottom seisrnometers have indicated patterns of seismicity and

fault plane solutions consistent with the presence of extensional relay zones along the Rivera

[Prothero and Reid, 1982] and Orozco [Tr_hu and Solomon, 1983] transforms. Large earthquakes

occurring near compressional fault jogs on the Kane and Vema transforms in the Atlantic have been
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_hownto consist of primary strike-slip events and s_amndary events with reverse faulting

mechanisms [Bergman and Solomon, 1988].

Studies of continental strike-slip faults have illustrated the importance of fault geometry on the

pattern of faulting. Jogs in stike-slip faults are known to produce uplift or subsidence along the

fault, depending of whether the sense of the jog is eompressional or extensional [Sylvester, 1988;

Bilham and King, 1989; Anderson, 1990]. Numerical models of strike-slip faults that are offset or

contain bends show that such geometry can considerably alter the state of stress [Segall and

Pollard, 1980; Saucier et al., 1991]. For instance, the thrust faulting component to the mechanism

of the Loma Prieta earthquake has been attributed to the event's location at a local bend in the San

Andreas fault in the Santa Cruz Mountains [McNally eta/., 1989]. Earthquakerupture can be

stopped by both compressional and extensional fault jogs [Segall and Pollard, 1980; Sibson, 1985,

1986].

The orientation of stresses in central California, as inferred from borehole breakout data, off-

fault focal mechanisms, and the trends of active reverse faults and thrust-related anticlines along the

fault system, indicate that ¢_1 is nearly perpendicular to the San Andreas fault within only a few

kilometers of the fault zone [Zoback et al., 1987; Mount and Suppe, 1987; Jones, 1988]. Such an

orientation differs from that of the stress field farther (~100 kin) from the fault. The lack of a heat

flow anomaly across the San Andreas fault requires that shear stresses acting on the fault plane be

low, less than about 20 MPa [Brune et al., 1969; Lachenbruch and Sass, 1980]. These results,

and a small predicted component of convergence between the Pacific and North-American plates,

have led to the suggestion that plate motion along the San Andreas is decoupled by a weak fault

zone into a low-stress, strike-slip component along the fault and a high-stress, compressional

component off the fault [Zoback eta/., 1987; Mount and Suppe, 1987].

The orthogonality of ridge-transform plate boundaries suggests that oceanic transforms are also

comparatively weak. A perpendicular ridge-transform-ridge configuration minimizes the energy

dissipated along the plate boundary if the transform is a zone of weakness, i.e., if stresses resisting

plate separation along the ridge axis are larger than the shear stresses along the transform
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[Lachenbruch ard Thompson, 1972; Froidevaux, 1973]. Curvature of the ridge-axis neovolcanic

zone toward the transform fault as the ridge-transform intersection is approached is also consistent

with ridge-axis stresses being several times larger than shear stresses on the transform [Phipps

Morgan andParmentier, 1984]. Fractme zone bathymetry and magnetic anomalies indicate that

oceanic transforms are zones of weakness that adjust to changes in plate motion and can be

deformed by compression or extension [Menard and Atwater, 1968]. In a microearthquake

experiment along the active transform portion of the Kane Fracture Zone, Wilcock et al. [1990]

observed that while the PTDZ was inactive during the experiment seismic activity near the base of

the southern transform valley wall was characterized by normal faulting, with the axis of least

compressive stress, _3, oriented perpendicular to the transform. Such a stress-state is consistent

with the hypothesis that the transform acts as a zone of weakness.

To investigate further the nature of shear stress and deformation in the vicinity of oceanic

transform faults, we have conducted a global search of large (rob > 4.5) earthquakes on and near

oceanic transforms for those events with unusual source mechanisms and locations. From an

initial examination of the Harvard catalogue of centroid moment tensor (CMT) solutions

[Dziewonski et al., 1981], we identified transform earthquakes with mechanisms differing from

the expected model of strike-slip motion on a vertical fault. We limit the present study to seven

transforms on which we found anomalous earthquakes suitable for further study using an

inversion of long-period body waveforms [Nabelek, 1984]. To provide better constraints on the

pattern of seismicity and its relation to fault geometry, we relocated earthquakes along these

transforms with a multiple-event relocation technique [Jordan and Sverdrup, 1981]. We consider

the implications of these results for the standard fault model for transform slip, for the importance

of geometrical irregularities in the fault trace, and for the state of stress near and along transforms.

86

A SEARCH FOR EVENTS WITH ANOMALOUS MECHANISMS

The search of the Harvard CMT catalogue fGr 1977-1989 for oceanic transform events with
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mechanisms differingsignificantlyfrom thepredictionof thestandardmodel was conducted as

follows. Earthquake epicentersfrom thecatalogueof the InternationalSeismologicalCentre (ISC)

for 1964-1989 servodtodefinethe geometry of theridge-transformsystem. Transforms arc

identifiedby the trendof ISC epicentersand strike-slipmechanisms with the expected sense of

motion. For large-offsettransforms,on which them isa significantamount of earthquake activity,

thismeans of identificationisadequate. Figure 1 shows a sample map of earthquake cpicentei's

and CMT mechanisms along theactiveportionof theEltaninFractureZone, made up of tinge

transformsalong the Pacific-Antarcticplateboundary; severalanomalous normal-faulting

mechanisms arcevidentinthisregion.Wc excluded from thisstudy areaswhere theridge

approaches a trenchor a continent(e.g.,theGulf of Californiaand theGulf of Aden). There is

possiblebiasinthe searchprocedureinthatearthquakesthatdisplayednormal faultingrncchanisrns

and occurred near theridge-transformintersectionwith one or both nodal planesorientedparallelto

theridgcaxiswcrc assumed tobc rclatcdto thespreadingprocess.

Wc idcntified15 large-offsetoceanictransformfaultswhere earthquakeswith anomalous

mechanisms occurred during the 13-yearstudyinterval(we includctheUdintsev transforminthis

list,where an anomalous strike-slipearthquakeoccurred in 1990). The mechanisms vary from

reverse,tonormal, to strikc-shpwith the wrong sense of slipfor transformmotion. Only I0 of

these earthquakes (occm'ring on seven transforms) are well-enough recorded to permit body-

wavefonn inversion. Table 1 lists the source parameters derived for these earthquakes. The CMT

source parameters of other anomalous transform earthquakes are listed in Table 2.- Figure 2 shows

the location of the seven transforms that we have investigated in detail.

WAVEFORM INVERSION

In centroid-moment tensor analysis [Dziewonski et al., 1981; Dziewonski and Woodhouse,

1983] long-period digital data are inverted for the six independent components of the moment

tensor, as well as centroid origin time and location. The inversion includes all seismic phases that
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arriveat a station prior to the arrival of Rayleigh or Love waves (for earthquakes having moments

greater than about lxl025 dyne cm long-period mantle waves are included). Data are filtered to

exclude periods less than 45 s and do not constrain shallow centroid depths. In addition, for

shallow earthquakes the components of the moment tensor corresponding to a vertical dip-slip or

horizontal thrust mechanism are the least well resolved.

We have refined the mechanisms and centroid depths of the anomalous transform earthquakes

using an inversion of long-period teleseismic P and SH waveforms [Nabelek, 1984] from stations

of the World-Wide Standardized Seismograph Network (WWSSN). Because long-period

WWSSN instruments have peak responses at 15-s period, this inversion earl usually constrain the

centroid depth and the vertical dip slip or horizontal strike-slip component of shallow earthquakes

[Nabelek, 1984]. (However, CMT solutions are more sensitive to data at longer periods and better

B

describe the seismic moment.) For 13 earthquakes, there is a good azimuthal distribution of

stations with clear P and S arrivals on WWSSN analogue records. WWSSN records were

digitized and corrected for differences in magnification and epicentral distance as described by

Bergman et al. [1984]. Global Digital Seismic Network (GDSN) S-wave data were included when

necessary to improve SH coverage. In a few cases, additional P-wave coverage was gained by

using broad-band seismograms constructed by combining long-period and short-period GDSN

data in the frequency domain [harvey and Choy, 1982]. For such a construction we used a

procedure similar to that of Ekstr_m [1989]; short-period data were resampled at 0.2 s and broad-

band data were filtered with a 3-pole band-pass Butterworth filter with comer freqtleneies at 0.015

Hz and 1.0 Hz.

The source parameters in the inversion are centroid depth, double couple mechanism, seismic

moment, and the source time function (STF). The number of elements in the STF, taken as a

series of overlapping triangles, is assigned prior to inversion and represents an additional

parameter to be tested. In some cases the event is parameterized as two point sources or as a

unilateral, horizontally propagating rupture along the strike of one of the nodal planes. For the

latter situation a rupture velocity of 3.5 km/s is assumed. Values for the attenuation parameter t*

tSt5
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[Futterman, 1962] are taken to be 1.0 s for long-period P-waves and 4.0 s for long-period S-

waves.

The assumed som'ee velocity structure has an effect on the inversion results, in that takeoff

angles of the rays and delay times of depth phases depend on the source strucnn'e. For slow-

slipping transforms, we adopted the velocity structure used by Bergman and Solomon [1988],

which was based on the refraction studies of Bowen and White [1986] and Louden et al. [1986] of

the Vema transform (Table 3). For fast-slipping transforms, data on the velocity structure are

limited: a study at the Orozeo transform [Tr_hu and Purdy, 1984] found anomalous velocity

structure associated with relict ridge features and normal oceanic crust to the south of the

transform. A model for normal oceanic crust (Table 3) was used for the source region along fast-

slipping transforms.

Body-wave modelling has proven useful in determining the centroid depths of earthquakes in a

number of tectonic settings, but the uncertainty in depths determined with this method is often

difficult to establish. Discussions of the errors in determining centroid depths can be found in

Nabelek [1984], Huang et al. [1986], Stein and Wiens [1986], Goff et al. [1987], and Bergman

and Solomon [1988]. Factors such as signal-to-noise (S/N) ratio, station distribution, mechanism,

and depth of faulting can all influence the magnitude of uncertainties.

For all events, we conducted a series of inversions with the depth fixed at values sp_nning a

wide range; at each depth we solved for the remaining source parameters. The alignment between

observed and synthetic seismograms and the length of the STF are both critical elements in this

process. Seismograms are checked for proper alignment during each inversion, and STF lengths

are chosen so that the final element tends toward zero amplitude. Our estimates of centroid depths

are based on the interval over which the residual variance, given by the weighted mean squared

difference between the observed and synthetic waveforms divided by the dam variance (weighted

mean squared observed waveforms), is minirmzed [Huang eta/., 1986]. While Huang et al.

[ 1986] developed formal estimates of depth resolution using a statistical approach, Bergman and

Solomon [1988] suggest that the range in centroid depth over which the residual variance varies by
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nomorethan a small pe_entage of the data variance also allows a simple yet conservative estimate

of the uncertainty in centroid depth. The presence of distinguishable depth phases provides

mother important constraint on centroid depths. However, apparent depth phases can be generated

by ¢kher surface reflections from a simple source at a greater depth or a source at shallower depth

with a complex STF. WiThin a range of minimum residual variance, we prefer solutions for which

the STF is single-peaked and matches depth phases.

The results of the waveform inversions are given in Table 1. The inversions for individual

events are discussed in Appendix A.

9O

EARTHQUAKE RELOCATIONS

We applied a multiple-event relocation technique [Jordan and Sverdrup, 1981] to study the

pattern of seismieity in the vicinity of unusual transform events. The advantage of a multiple-event

relocation is its ability to reduce the effect of path-correlated noise on the relative locations of

earthquakes within a small region. In the hypocentroidal decomposition method of Jordan and

Sverdrup [ 1981], an inversion for the relative locations between events (the cluster vectors) is

performed fast, and then the global position of the average location of events within a cluster (the

hypocentroid)isdetermined. This techniquehas advantages over othermethods formultiple-event

locationinthatitdoes not requirefixinga masterevent and itmakes fulluse of allavailabledata.

This method iswellsuitedforstudyingtherelativelocationsofoceaniceventswith tclescismic

data [Jordan and Sverdrup, 1981; Bergman and Solomon, 1990; Wiens and Petroy, 1990]. As

with the single earthquake location problem, the epicentroid can be biased by errors in the

theoretical travel times and uneven station distribution. Bergman and Solomon [1990] found by

comparison with epicenters from a local ocean bottom seismograph network that the teleseismie

epicentroid of a cluster of events on the northern Mid-Atlantic Ridge may be biased systemafcally

to the north by as much as 15 km because of the concentration of stations in North America and

Europe. The relative pattern of multiple-event locations tends to be less affected by such
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systematicerror,although station distribution for individual events still affects the axis orientation

and aspect ratio of confidence ellipses, and errors may be significant for earthquakes with few

arrivals in a single quadrant.

The ISC catalogue for January 1964-March 1989 was searched for earthquakes near each of the

transforms of interest. We excluded events that could not be reliably located, for example events

with fewer than 7 arrival times or events with data in less than three azimuth quadrants. Details of

the data selection and inversion procedures, including the travel time calculation, eHipticity

correction, and weighting of the data, were generally as described in Bergman and Solomon

[1990]. The stations in the inversion were constrained to be within epicentral distances of 20 ° to

98 °. Focal depths were fixed at 10 km below sea level. The relocation procedure drops data with

residuals greater than 10 s in the first iteration and then uses 3 s as a maximum residual. The

relocation procedure is repeated so that data with large relative errors can be flagged and omitted in

the next inversion for relative location, although all such data are included in the final

hypocentroidal inversion.

The absolute positions of relocated earthquakes are plotted in Figures 3-9. The relative

positions of relocated earthquakes, including 95% confidence ellipses, are shown in Appendix B.

TRANSFORM FAULTS WITH UNUSUAL EARTHQUAKE MECHANISMS AND

LOCATIONS

The anomalous transform mechanisms analyzed in this study occurred on seven oceanic

transform faults along both slow- and fast-spreading ridges (Figure 2). In this section we present

a synthesis of earthquake mechanisms and relocated epicenters on these oceanic transforms and of

the relation of the earthquake characteristics to the geometry and structure of the transform fault

zone.
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Owen Transform

The Owen transform offsets the Carlsberg Ridge and the Sheba Ridge by 3130 kin. The present

plate configuration was established at 10 My B.P., when magnetic anomalies indicate that

spreading in the Gulf of Aden commenced [Laughton et al., 1970; Cochran, 1981]. The boundary

of a magnetic quiet zone, marking the limit of recent spreading on the Sheba Ridge, is presently

located about 150 km from the ridge [Cochran, 1981], only halfway along the transform. Stein

and Cochran [1985] argue on the basis of basement depths and heat flow measurements that the

Error Ridge complex and the Sharbithat Ridge complex, which border the magnetic quiet zone,

were formed by rifting of old oceanic lithosphere during the early stages of opening of the Gulf of

Aden. Changes in the trend of the inactive limbs of the fracture zone are also observed near its

intersection with Error Ridge [Matthews, 1966; Cochran, 1981] and Sharbithat Ridge [Whitmarsh,

1979].

Three earthquakes with unusual mechanisms have oceurred on the southwestern portion of the

transform fault zone in the vicinity of Error Ridge (Figure 3): the thrust-faulting event of July 7,

1986, the vertical dip-slip (or low-angle strike-slip) event of July 29, 1983, and the September 29,

1986, event having a strike-slip mechanism with an unusual fault orientation. In relocating

earthquakes using the multiple-event technique, the assumption that P waves have traveiccl similar

paths begins to break down at inter-event distances larger than perhaps 200-300 kin. We therefore

divided the large area around the southwestern ridge-transform intersection into three regions, and

we relocated subsets of earthquakes on the ridge, at the ridge-transform intersection, and on the

central portion of the transform (Appendix B, Figures B1-B3). The earthquakes of July 29, 1983,

July 7, 1986, and September 29, 1986, are given as events 6, 8, and 13, respectively, in Figure

B2. The September 29, 1986, earthquake is one of a series of aftershocks (events 12-15 in Figure

B2) northwest of the large (Moffi2xl025 dyn cm) strike-slip main event of September 17, 1986

(event 11 in Figure B2). Three earthquakes occurred after the July 7, 1986, earthquake (events 9

and 10 in Figure B2, and event 14 in Figure B1), two on the transform, one on the ridge. Body
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waveform inversions for the July 29, 1983, and July 7, 19.86, earthquakes are given in Appendix

A (FiguresAI and A2).

In thevicinityof theridge-transformintersection, theearthquakeepicentersand the bathymetry

indicatean apparentcompressional jog (Figure3),althoughthe transformin thisareamay be made

up of severalfaultsaccommodating slip.To thenortheastof thejog,the slipvectorsof the strike-

slipmechanisms and the epicentersfollow alineartrenddefiningthetransformfaultzone. The

July 29, 1983, and September 17, 1986, earthquakes,locatednearthe intersectionof thetransform

with thejog,both have one nodal plane on which horizontalslipwould be inthe expected direction

of transformmotion. The mechanism of the September 29, 1986, aftcrshock,however, is

incompatiblewith expected transformmotion. The orientationof both nodal planesof theJuly7,

1986,reverse-faultingearthquake arerotatedclockwise fl'omthe transform-paralleldirection,a

sense thatisconsistentwith slipoccurringata compressionaljog. The orientationof the maximum

horizontalcompressive stressindicatedby the anomalous mechanism of theearthquakeof July29,

1983, issimilartothatformost strike-slipeventsalong thetransform. The orientationof <_Ifor

the September 29, 1986,earthquake indicatestransform-perpendicularcompression.

St. Paul's Transform

The three large equatorial transforms, the St. Paul's, the Romanche, and the Chain, offset the

Mid-Atlantic Ridge by about 630, 940, and 300 km, respectively. In the central and eastern

portion of the St. Paul's transform are at least three volcanically-active extensional relay zones

[Schilling et al., 1987]. A notable feature of this transform is the presence of St. Peter's and St.

Paul's Rocks (hereafter referred to as just St. Paul's Rocks), a small group of nonvoleanic islets.

While previous studies place the islets along a transverse ridge on the northern boundary of the

transform, a revised bathymetrie map indicates that the transform divides this feature (Figure 4).

Studies have shown that St. Paul's Rocks consist mostly of mylonitized peridotite and

homblendite and are likely an upper-mantle-derived intrusion [e.g., Melson etal., 1972]. Recent
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volcanism ispostulatedto have ocetm'_ northof St.Paul'sRocks, where an alkalibasalt

associatedwith Quaternary sedimentsand carryingmylonitizedultramaficxenolithswas dredged

[Sinton, 1979].

Several earthquakes with unusual mechanisms and locations are found in the area around St.

Paul's Rocks (Figure 4). Because the study area is large, we have relocated events in three smaller

subsets, with one group containing the area of the ridge north of the transform intersection and two

groups covering thewestern partof thetransform. As can be seen directlyin theelongationof the

confidence ellipses(FiguresB4-B6), the distributionof stationsfortheseeventsgivespoorest

epiccntralresolutioninthe northwesttosoutheastdirection.Events with anomalous locations(on

October II, 1973,November 14, 1982, and October 12, 1985) or CMT mechanisms (on

September 20, 1986, April 20, 1988, and December 23, 1988) were selectedforfurtherstudy

using wavcform inversion.Data arenot yetavailablefortheearthquakeof December 30, 1989,

but thisevent had a small moment (7xi023 dyn cm) and likelycannotbe analyzed by body-

wavcform inversionwith WWSSN data.

The orientation of the greatest horizontal compressive stress indicated by the mechanisms of the

two reverse-faulting earthquakes of September 20, 1986, and December 23, 1988, are similar,

although rotated to more nearly pcrl)e'adieular to the transform than the directions given by the

strike-slip events. We postulate that these earthquakes may be associated with a small

compressional jog in the vicinity of St. Paul's Rocks and that the presence of anomalous structure

has an influence on fault motion. Further information is needed on the fadt geometry and

transform structure near St. Paul's Rocks before this conjecture can be evaluated. The April 20,

1988, reverse-faulting earthquake shows a fault plane striking parallel to the ridge, and the

direction of maximum horizontal compressive stress is transform-parallel (or2 is perpendicular to

the transform); this event was followed by a series of aftershocks (events 32, 33, 34, and 35 in

Figure B5). The mechanism of the unusual strike-slip event of December 30, 1989, is consistent

with a maximum horizontal compressional stress that is transform-parallel in this region (and _3

perpendicular to the transform).

94
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Seismic activity outside of the transform fault zone (Figure 4) between longitudes 29 ° and

30 ° W could be the result of the anomalous stresses in the vicinity of St. Paul's Rocks. The

anomalous locations of the larger events, however, are more likely the result of travel time errors.

For instance, the off-transform location of the October 11, 1973, earthquake (event 16 in Figure

B5) is strongly influenced by data from only two stations in the southern hemisphere; the event has

a complicated source time function, which introduces large picking errors. The October 12, 1985,

earthquake (event 27 in Figure B5) has a long source time function; picking errors could again be

large. The November 14, 1982, earthquake (event 24 in Figure B5), with a simple STF, provides

stronger evidence for deformation occurring outside the transform fault zone, slJghdy to the north

of St. Paul's Rocks.

Marathon Transform

Between the Fifteen Twenty Fracture Zone and the Vema Fracture Zone, the Mid-Atlantic Ridge

is offset by two smaller transforms, the Mercurius, which offsets the ridge by 45 km at 12 ° 10' N,

and the Marathon, which offsets the ridge by 80 km at 12 ° 40' N [Collette etal., 1979, 1980,

1984]. An anomalous reverse-faulting earthquake occurred on September 22, 1985, near the

Marathon transform (Figure 5).

The ridge segments to the immediate north and south of the transform do not display recent

seismic activity. Activity on the transform is limited to the ridge-transform intersections, an area

along the central portion of the transform, and a sequence of events to the southeast of the

transform valley (Figure 5). The anomalous thrust earthquake of September 22, 1985, was the

first in a series of five events (9-13 in Figure B7) that occurred over a 4-day period on the southern

transverse ridge. The period of the water reverberations in the P waveforms is consistent with a

shallow water depth of 2-3 kin.
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Heezen and Tharp Transforms

The Heezen and Tharp transforms are two large-offset transforms on the fast-spreading Pacific-

Antarctic plate boundary, which is called the East Pacific Rise to the north and the Pacific-Antarctic

Ridge to the south of these fa'aeum_ zones. The Heezen and Tharp transforms are closely spaced

(100 kin), offset the ridge by 350 and 650 kin, respectively, and collectively constitute most of the

transform portions of the Eltanin Fracture Zone (Figure 1). The seismic history of the Eltanin

system has been investigated by Stewart and Okal [1983], who suggested that seismic slip from

1920-1981 was about one tenth that predicted by plate motion models. They atu'ibuted the deficit

to a lack of larger earthquakes, since there have been few earthquakes with MS greater than 6 and

none with MS greater than 7.

Earthquakes with extensional mechanisms occur along both the Heezen and the Tharp

transforms. Figure 6 shows relocated events along a central portion of the Heezen transform. A

normal-faulting earthquake occurred on the transform on February 17, 1978 (event 11 in Figure

B8), and another occurred in a trough north of the transform on August 16, 1984 (event 17 in

Figure BS). Figure 7 shows relocated events along a central portion of the Tharp transform. A

normal-faulting earthquake occurred on the transform on October 10, 1982 (event 21 in Figure

B9). The May 27, 1989, normal-faulting earthquake is considered an intraplate event.

The earthquakes of February 17, 1978, and May 27, 1989, were suitable for body waveform

inversion (Figures A11 and A12). The August 16, 1984, earthquake on the Heezeta transform and

the October 10, 1982, earthquake on the Tharp display dilatational first motions on many short-

period seismograms, consistent with the normal-faulting mechanisms indicated by CMT analysis.

A multibeam survey of a portion of the Heezen transform [Lonsdale, 1986] helps to identify the

tectonic framework of the extensional events. Between 125 ° W and 126 ° W, there are three

extensional offsets of the fault trace, with two of the offsets forming deep pull-apart basins

[LonsdaIe, 1986] (Figure 8). The February 17, 1978, earthquake was located near the easternmost

offset. The August 16, 1984, event occurred off the Heezen transform; a recent multibeam and
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side-scansonar imaging surveyof thisareashows a transform-paralleltrough thatextends from

theridge (F.Lonsdale,personalcommunication, 1991).

The area of the Tharp transform near the epicenter of the October 10, 1982, normal-faulting

earthquake has not been mapped with multibeam bathymetry. Because the pattern of earthquake

seismicity is similar to that along the Heezen, however, we suggest that an extensional offset may

be present along the Tharp transform in the vicinity of the epicenter.

Menard Transform

The Menard transform, north of the Eltanin system, is a large-offset transform on the fast-

spreading Pacific-Antarctic plate boundary. Bathymctric and geophysical data for this transform

are given by Molnar et al. [1975]. A normal-faulting earthquake occurred along this transform on

May 15, 1987 (Figure 9).

A seismicity gap about 50 km long occurs to the west of the anomalous event (event 28 in

Figure B10). Waveform inversion for the May 15, 1987, earthquake is given in Figure A13. The

direction of maximum horizontal compressive stress of the normal-faulting earthquake is similar to

that of the strike-slip earthquakes.

Multibeam data from a recent survey indicate that a small extensional offset may be present at

116 ° W, where two parallel troughs, offset of by 1-2 kilometers, overlap (P. Lonsdale, personal

communication, 1991). The bathymetry within the Menard transform does not indicate the

presence of a large extensional offset similar to that along the Heezen transform.

Rivera Transform

The current plate configuration at the Rivera transform was established around 3.5 My. B.P.,

when spreading was abandoned on the Mathematician Ridge and transferred to the Pacific-Cocos

Rise [Klitgord and Mammerickx, 1982]. An abrupt change in orientation and tectonic character
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occurs mid-way along the transform near longitude 107.5 ° W. West of this area, seismicity is

morn diffuse,bathymetry exhibitsgreaterrelief,and severalsubparaUelvalleysare suggested,

althoughitisnot known how slipisbeing accommodated [Ness and Lyle,1991]. TelescismicaUy

recorded eanhqualms arcgenerallysmallerand more frequentinthewestern area,and thereisa

greatertendency for swarms tooccur [Protheroand Reid, 1982]. DeMets and Stein[1990] find

thatthe azimuths of the transformstrikeand earthquakeslipvectorswest of 108.3o W arc

systcmaticaUyrotatedby severaldcgrccs clockwiserelativetotheazimuths predictedby the

Pacific-RivcraEuler vector.An extensionaloffsetof thetransformhas bccn identifiedat108°W

on thebasisof bathymctry and an cn echelon patternof microcarthquakes[Protheroand Reid,

1982]. Prothero andReid [1982]found a second en echelonoffsetof microcarthquakcs west of

109°W, possiblyindicatinganotherextensionalrelay.

Figurc I0 shows relocatedearthquakes(rob_>4.5)and mechanisms along a portionof the

wcstcm Rivcra transform.As sccn inFigureB 1I,cpiccntralconfidenceellipsesarcelongatedin

the northeast-southwestdirectiondue tothelackof arrivalstothe southwest,and the location

uncertaintyinthisdirectionislarge.While most eaxthquakcepicentersand mechanisms are

consistentwith theexpected transformmotion, tothewest of 109°W some earthquakeepicenters

appearto licnorthof thetransform.This patternoccursneartheareawhere Prothero and Reid

[1982]reportan en echelon patternof microeamhquake epicenters.

Severalearthquakeswithanomalous mechanisms am locatedwest of 109 °W. The normal-

faultingearthquakeof September 21, 1977, occun-_ inthe seismicallyactiveinnercornerof the

rise-transformintersection.Inaddition,threeearthquakeswith predominantly strike-slip

rncchanisms but withthe strikedirectionsof theprobable faultplanesrotatedclockwise from the

expected transformdirectionoccurred on May 8, 1983. These earthquakesare a partof a sequence

of about 15 events thatspan a 3-day period. The May 9, 1983, earthquakehaving a strike-slip

mechanism with an anomalous faultdip isthe largestevent inthisscquencc (Mo=4.2x1025 dyn

cm). The earthquakeof February 17, 1984, islocatedtotheeastof a shortoffsetof the riseaxis,a

regionwhcrc deformation may bc more complex thansimple strike-slipmotion [Lonsdale,1991].

98
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The mechanisn, of this earthquake also shows a strike direction of the probable fault plane that is

rotated clockwise from the expected direction of transform slip. Current bathymetric information

does not permit a clear association of the unusual pattern of epicenters and mechanisms with

morphologic features and physical processes.

CENTROID DEPTHS

Centroid depths of strike-slip earthquakes along the St. Paul's transform and the two reverse-

faulting earthquakes near St. Paul's Rocks may be compared with results for other large

earthquakes [Engeln et al., 1986; Bergman and Solomon, 1988] and for microearthquakes [Francis

et al., 1978; Wilco& et al., 1990] on slow-slipping transforms. In contrast, centmid depths are

not well-resolved on the Heezen and Menard transforms because of the poor P-wave signal-to-

noise ratios and the sparse sampling of waveforms. The age offset of the Owen transform is not

fully developed, because oceanic crust generated by spreading on the Sheba ridge to the north

extends only halfway along the transform, so the depth of seismic faulting cannot be simply related

to thermal models.

From body waveform modelling Engeln et al. [ 1986] reported centroid depths along Atlantic

transforms from 2-7 Inn below the seafloor and suggested that earthquake faulting is limited by the

600 ° C isotherm. Bergman and Solomon [1988] disputed this result and found that centroid

depths on such transforms are generally 7-10 km, consistent with a nominal limiting isotherm of

900 ° + 100 ° C. The centroid depths of 10-14 km that we determine for earthquakes along the St.

Paul's transform are in agreement with the conclusions of Bergman and Solomon [1988]. To

estimate the value of the isotherm limiting earthquake faulting we follow the method of Bergman

and Solomon [1988]: we average the isotherms in adjoining lithospheric plates, in which

temperatures are calculated from a standard plate-cooling model [Parsons and Sclater, 1977]. The

depth extent of faulting is assumed to be twice the centroid depth. The presence of volcanically

active relay zones within the transform and the lack of magnetic anomaly information on age offset,
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however, complicate specification of a thermal model. For a constant half-spreading rate of 16

mmlyr [DeMets eta/., 1990] and a fault offset of 630 kin, the hypothesis that the depth of faulting

is limited by the 900 ° C isotherm is sustained (Figure lla). If the fault offset is shortened to 300

km by postulating that volcanically active relay zones have thermal structures similar to fully

developed ridge segments, the limiting isotherm may be as high as 1000 ° C (Figure 1lb).

The depths of mi_quakes are typically somewhat shallower than the inferred maximum

depths of faulting of large earthquakes. Francis et al. [1978], from a microearthquake experiment

at the eastern intersection of the St. Paul's transform and the Mid-Adantic Ridge, found that

earthquakes occurred in two depth intervals: shallow shocks at 0-1 km depth rnosdy occurred as

small swarms on the ridge axis, while events clustered near 7 km depth occurred on the active

transform. Wilcock et al. [1990] reported microearthquake focal depths along the Kane transform

of 3-6 km near the ridge-transform intersection and 5-9 km in the transform fault zone distant from

the intersection.

DISCUSSION

ioo

The mechanisms of transform earthquakes provide important information about mechanical

processes occurring along the transform. In this section we evaluate the possible processes

contributing to the occurrence of such events by comparing the characteristics of anomalous

earthquakes to be expected from each process against our observations.

Importance of Fault Geometry and Structure

Bends or offsets in strike-slip faults are capable of generating anomalous stresses in the

adjoining blocks, producing uplift or subsidence, and influencing the pattern of faulting [e.g.,

Segall and Pollard, 1980; Sibson, 1985, 1986; Bilham and King, 1989; McNaUy et aL, 1989;

Anderson, 1990; Saucier et al., 1991]. Previous studies [Prothero and Reid, 1982; Trdlm and
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Solomon, 1983; Bergman and Solomon, 1988] have shown that anomalous patterns of seismicity

can also occur at bends or offsets in oceanic transforms. The observations of this study provide

additional evidence that the presence of complex fault geometry and structure can influence the

pattern of earthquake locations and mechanisms along oceanic transforms. Such irregularities in

fault geometry can be expected to arise from a variety of processes influencing the temporal

evolution of the PTDZ (e.g., changes in plate motion, diapiric rise of altered blocks of lower

crustal or upper mantle material, volcanic construction, fault-normal compression or extension,

variability in ridge axes accretion, small deviations of transform strike from the ideal small circle).

At the western ridge-transform intersection of the Owen transform, as noted above, bathymetry,

earthquake epicenters, and the presence earthquakes with anomalous mechanisms indicate the

existence of a compressional fault jog (Figure 3). The interaction of the active transform with

Error Ridge, anomalous structure inherited from the opening of the Gulf of Aden, may account for

the complex fault geometry.

At the St. Paul's transform, the reverse-faulting earthquakes occurring near St. Paul's Rocks

(Figure 4) may be associated with a compressive fault jog, similar to the case at the Owen

transform. Elemental and isotopic chemistry, mineralogy, and geothermometry of islet samples

suggest that St. Paul's Rocks may be a relict of sub-continental mantle, left behind in the opening

of the Atlantic and subsequently emplaced as surface blocks [Bonatti, 1990]. While complexities

in fault geometry may be responsible for the present deformation near St. Paul's Rocks, it is less

likely that fault geometry was the principal cause for the original emplacement of this feature.

Rapid ascent from depths > 30 km and emplacement in the solid state are suggested by the

presence of mantle-equilibrated primary assemblages in the form of augen within a variably

recrystallized mylonite matrix [Melson et al., 1972]. Uplifted blocks have been found on the wails

of many transforms; petrologic investigations suggest that these blocks are made up of gabbm or

peridotite that originated in the lower crust or upper mantle [e.g., Bonatti, 1978; Bonatti and

Hamlyn, 1978].

Along the Pacific-Antarctic plate boundary, the normal-faulting earthquakes occurring on the
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Heezen, Tharp, and Menard transforms appear to be associated with extensional jogs in the trace of

the PTDZ. At the Heezen uansform, a normal-faulting earthquake occtmr, d on the border of an

extensional offset (Figure 6), possibly reflecting a normal fault at the edge of a pull-apart basin.

Normal-faulting earthquakes on the Tharp (Figure 7) and the Menard (Figure 9) transforms may

also be associated with extensional offsets.

At the western ridge-transform intersection of the Rivcra transform, a normal-faulting

earthquake and several strike-slip events with anomalously striking fault planes have occun'ed

(Figure 10). Earthquake epicenters appear offset to the northeast of the expected transform

location, although the constraint on locations in the direction perpendicular to the transform is

weak. An extensional offset of the Rivcra transform may occur west of 109 ° W. Alternatively, the

earthquakes with anomalous mechanisms may reflect internal deformation of the Rivera plate.

Fox and Gallo [ 1984] argue that higher strain rates and the juxtaposition of thinner lithosphere

will allow relay zones to develop more easily along transforms at fast-spreading ridges. In accord

with this hypothesis, extensional relay zones have been mapped along a number of other

transforms along the East Pacific Rise, including the Tamayo [Macdonald eta/., 1979], the Orozco

[Trdhu and Solomon, 1983; Madaen et al., 1986], the Clipperton [Gallo et al., 1986], and the

Siqueiros [Fornari et al., 1989] transforms, and the Quebrada, Discovery, Gofar, Wilkes, and

Garrett transforms on the Pacific-Nazca spreading center [Lonsda/e, 1989]. (A recent compilation

of transforms known to have extensional relay zones can be found in Fornari et al. [1989].) The

CMT catalogue does not include events with normal-faulting mechanisms along these transforms.

An anomalous strike-slip earthquake, having a sense of slip opposite that expected for transform

motion, occurred along the right-stepping Gofar transform (Table 2), but this earthquake is

probably associated with one of two small left-stepping offsets south of the Gofar [Lonsdale,

1989].

The lack of teleseismically observable normal-faulting earthquakes along most of the fastest-

slipping transforms may be because many of these extensional relay zones occur as intra-transform

spreading centers. At fast-spreading rates, such relays would not be expected to display significant
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seismicity at tcleseismic distances. Crustal thinning and magmafic activity (either intrusive or

extrusive)withintheextendingregionof thetransformcould yieldanomalouslyhightemperatures,

atmost a thinseismogcniclayer,and thusa paucityof observableactivity.The prescnccof

amphibolite-faciesmetamorphic rockscollectedinthevicinityofthepull-apartat125.7°W on the

Hcezcn transformprovideindirectevidenceforlimitedmagrnaficintrusionassociatedwithcrustal

thinning[Lonsdale,1986].

Extensionaloffsetsmay alsohave an influenceon therateofreleaseof seismicmoment along

fast-slippingtransforms.The maximum moment of transformearthquakesappearstodccreaseand

themoment-ratedeficitincreasewithincreasingspreadingratc[Burrand Solomon, 1978;

Kawasaki etal.,1985]. The presenceoffaultoffsetscouldinhibitruptureof longfaultsegments

and limitthemaximum moments of earthquakes,althoughitisnotclearhow faultoffsetswould

affectthetotalmoment rclcasc.The thermaland compositionalcffcctsofoffsetscouldalsobc

important.

Influence of Changes in Spreading Direction

Changes inplatemotion may leadtotheoccurrenceofearthquakeswith anomalous mechanisms

by alteringfaultgeometry and by introducinga component ofcompressionorextensionalongthe

fault.For instance,along thePacific-Nazcaplateboundary,a recentsmallclockwiserotationis

inferredtohave createdinlra-transformspreadingcenterswithinlarge-offset,right:stepping

transforms[Lonsdale,1989]. Othershave suggcstcdthatrecentplatemotion changes have

occurredalong theRivcra,Eltanin,and St.Paul'stransforms[Lonsdale,1986; Schilling,1987;

DeMets and Stein,1990].Wc cxaminc whcthcrthesechanges appeartohave been a significant

influenceintheoccurrenceof carthquakcswithanomalous mechanisms and locations.

The Pacific-Rivcramagnetic lincationsshow thattherisecresthas progrcssivclyrotated5-15°in

aclockwisedirectioninthelast5 My [DeMets and Stein,1990],puttingtheIcft-stcppingRivcra

transformincomprcssion. Thischangc inspreadingdirectioniscompatiblewiththeapparent



104

23

rotation of stresses toward transform-perpendicular compression inferred from the anomalous

strike-slip earthquakes near the ridge-transform intersection. Such a change would tend to destroy

extensional relay zones along the left-stepping transform, although at least one such relay zone has

been suggested on the basis of scismicity and bathymctry.

Recent plate motion changes at the Eltanin may explain the occurrence of several earthquakes

with normal-faulting mechanisms. Magnetic anomalies north of the Hcczcn transform show a l0 °

clockwise rotation of spreading in the past 4 My, which would put the right-stepping transform in

extension in the more recent past and would favor the development of extensional offsets

[Lonsdale, 1986], similar to the situation along the Pacific-Nazca plate boundary.

The normal-faulting mechanisms along the Eltanin fault system and at the Mcnard transform

may also reflect regional stresses caused by plate motion changes. Minor internal plate

deformation in the past 20 My near this region of the Pacific-Antarctic plate boundary has been

suggested to explain the possible mismatch of fracture zones from plate reconstructions [Stock et

al., 1991]. Analysis of bathymetric and magnetic data [Molnar et al., 1975; Lonsdale, 1986] and

of gcoid data [Mayes et al., 1990] demonstrates the evolution of spreading direction in the past:

the spacing between the Hcczen and Tharp fracture zones decreased by 100 km due to changes in

the spreading direction along the Pacific-Antarctic sp:cading center about 20-35 My ago. The

destruction of small, left-offsetting fxacmrc zones and the creation of many small, right-offsetting

fracture zones occurred during this counterclockwise change in plate motion [Molnar et al., 1975],

consistent with the view that transforms, particularly along fast-spreading rises, arc zones of

weakness that can adjust readily during plate motion changes [Menard and Arwater, 1968].

Regional deformation may explain the occurrence of normal-faulting earthquakes with similar

orientation both along the transforms and in intraplate settings, such as south of the Tharp

transform.

A survey of the Mid-Atlantic Ridge north of the St. Paul's transform [Schilling, 1987; Schilling

et al., 1987] revealed that the morphologic grain changed orientation from about N340-350°E to 0 °

over the past 0.2 My and that the ridge has propagated northward from the transform, perhaps in
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response to a clockwise change in spreading direction and rotation of the fracture zone, as

proposed by Bonata and Crane [1982] for the Vema transform. The change in ridge orientation

may explain the ridge-perpendicular compressive stresses indicated by earthquakes with unusual

mechanisms near the western ridge-transform intersection. Schilling [1987] has suggested that this

clockwise change in orientation may have led to the development of extensional relay zones in the

mansform.

In summary, there is some indication that changes in plate motion are responsible for the

occurrence of anomalous earthquake activity along some oceanic transforms, but further evidence

is re,quired to support this hypothesis.

Thermal Stresses

Thermal stresses generated by the differential cooling of oceanic lithosphere have been

suggested as a primary cause of oceanic imraplate earthquakes, on the basis of the pattern of

earthquake source characteristics with depth and seafloor age [Brag et al., 1985; Parrnentier and

Haxby, 1986]. Two-dimensional models of thermal stresses predict large, ridge-parallel

extensional stresses near the ridge-transform intersection [Sandwell, 1986; Haxby and Parmentier,

1988]. It has also been proposed that fracture zones form in response to such ridge-parallel

extension [Collette, 1974; Turcotte, 1974]. The presence of earthquakes with mechanisms

indicating that the least compressive horizontal stress is ridge-parallel in the vicini_ of the ridge-

transform intersections of the St. Paul's and Marathon transforms are thus consistent with a

controlling influence by thermal stresses. A quantitative analysis comparing a larger set of

earthquake data with appropriate three-dimensional models of thermal stress near oceanic

transforms is necessary to provide a rigorous test of this typothesis.
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As noted earlier,some oceanic and continentaltransformsappeartoact as zone,s ofweakness,

with low shear stresses on the fault and a horizontal principal stress oriented in a nearly fault-

normal direction in the lithosphere adjacent to the fault [Zoback eta/.; 1987; Mount and Suppe,

1987; Wilcock et al., 1990]. In this section, we consider whether transform earthquakes with

anomalous mechanisms provide additional evidence for the presence of a weak fault zone.

On the St. Paul's and Marathon transforms, shallow reverse-faulting events with ridge-parallel

fault strikes occur near the ridge-transform intersections. A strike-slip event with an unusual

orientation occurred near the site of the reverse-faulting event at the St. Paul's transform. The

mechanisms of these earthquakes indicate transform-perpendicular extension near the ridge-

transform intersection. Near St. Paul's Rocks, on the other hand, the reverse-faulting focal

mechanisms imply that the horizontal stresses are rotated toward transform-perpendicular

compression. Differences in fault geometry and structure may account for this difference in the

ordering of principal stresses. In the area of the compressive fault jog at the Owen transform, an

anomalous strike-slip earthquake indicating transform-perpendicular compression occurred as an

aftershock to an earthquake with mechanism compatible with transform-parallel motion. At the

Eltanin transform, several normal-faulting earthquakes show an orientation of stresses similar to

that of a normal-faulting intraplate earthquake that occurred 100 km south of the Tharp transform

(Figure 1) and thus are more likely a response to a regional stress field. Earthquakes with

anomalous strike-slip mechanisms near the Rivera transform indicate a stress field tending toward

transform-perpendicular compression.

We see no strong evidence in these data to support the view that oceanic transforms are

generally weaker than the surrounding lithosphere on the basis of a systematic perturbation to the

regional stress field. Neither do the observations invalidate this hypothesis, however. The

mechanisms of the large anomalous earthquakes in this study appear to be dominated by factors

other than a systematically reduced strength on the transform. We note that no anomalous large
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earthquakes were found on the Kane transform, where the microearthquake experiment of Wilcock

et al. [1990] found several events within the transform valley indicative of extension perpendicular

to the transform.

CONCLUSIONS

A number of large earthquakes with mechanisms or locations inconsistent with simple models

have occurred near large-offset oceanic transform faults. Much of the earthquake activity can be

associated with complex fault geometry or large structural features that apparently influence slip on

the fault. Compressional fault jogs associated with anomalous structures are likely responsible for

earthquakes with unusual mechanisms on the Owen and St. Paul's transforms. A normal-faulting

earthquake on the Heezen transform occurs at the edge of an extensional offset, and other normal-

faulting earthquakes on transforms along the East-Pacific Rise may likewise be associated with

extensional offsets.

Several other factors may contribute to the occurrence of such earthquakes, but we do not trmd

strong evidence to support their influence. Recent changes in plate motion, suggested to have

occurred at the Eltanin, Rivera, and St. Paul's transforms, could contribute to the presence of

anomalous earthquakes by influencing fault geometry or the state of stress along the fault. Thermal

stresses near ridge-transform intersections may lead to earthquakes having reverse-faulting

mechanisms characterized by a ridge-parallel least compressive stress; events withsuch

mechanisms are seen near the ridge-transform intersections of the St. Paul's and Marathon

transforms. While some earthquakes show evidence for a nearly transform-perpendicular

orientation of one of the principal horizontal stresses, consistent with a weak fault zone, our results

do not resolve whether oceanic transforms are generally weaker than surrounding lithosphere.
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In this appendix we present the details of long-period P and SH wavefonn inversion for the 13

transform earthquakes listed in Table 1. The orientation (strike/dip/slip) of each double couple

mechanism is presented according to the convention of Aki and Richards [1980]. Centroid depths

arc given relative to the seafloor.

July 29, 1983, Owen transform (Figure AI )

Waveform inversion for this event indicates a mechanism of 214/89/298, similar to the CMT

solution of 37/'/1/44 [Dziewonski et al., 1984], and consistent with either predominantly dip-slip

motion ona nearly vertical fault oriented approximately parallel to the transform or primarily fight-

lateral strike-slip motion on a northeasterly-dipping low-angle fault. Vertical short-period records

at KEV and CHG were examined to confirm the polarity of the first pulses. The SH-wave data for

this event provide strong constraints on the unusual mechanism. The minimum residual occurs for

centroid depths between 6 and 16 kin.

July 7, 1986, Owen transform (Figure A2)

The earthquake of July 7, 1986, on the Owen transform is the largest event (Mo=3.Tx1025 dyn

cm) in the catalogue of anomalous transform events. There is good coverage of the focal sphere,

and the waveforms are best fit by a reverse-faulting solution (238/36/1395) at a centroid depth of 4

km. This source mechanism is similar to the CMT solution of 242/42/098 [Dziewonski et al.,

1987b]. Solutions constrained to be shallower or deeper than 4 km have jagged source time

functions and higher rms residual variances. P wave reverberations indicate a water depth of 4

km.
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October I I, 1973, St. Paul's transform (Figure A3 )

On October 11, 1973, the ISC reported two events separated by approximately 10 s. The

earlier, smaller event falls on the map trend of transform activity while the latex, larger event

occun_ off-trend (Figure 4 and events 15 and 16 in Figure B5). The unusual character of these

locations made body-waveform analysis of these events desirable. For the smaller event, we could

not resolve a mechanism, and we fixed the parameters to those of a conventional strike-sUp event.

For the larger event, we parameterized the STF as a horizontal rupture along the nodal plane

striking at 264 °. Minimization of the rms residual indicates a centroid depth in the range 9-15 km,

consistent with apparent depth phases in P waves at ESK, IST, and JER.

November 14, 1982, St. Paul's transform (Figure A4)

Our analysis shows that this earthquake involved almost purely strike-slip faulting, although the

probable fault plane appears to depart from the vertical. This event is well-fit by a simple STF at 9-

13 km centroid depth. Our solution of 86/66/172 is in good agreement with the CMT solution of

85/90/180 [Dziewonski et al., 1983a].

October 12, 1985, St. Paul's transform (Figure AS)

For this earthquake we pararneterized the STF as a horizontal rupture along the nodal plane

striking at 76 °. Analysis of waveform data indicates a predominantly strike-slip mechanism. The

minimum residual occurs at 7-13 km centroid depth. The STF length of 17 s is unusually long for

an event of moment 4x1025 dyn cm (Figure 9), and the relatively high level of low-frequency

excitation indicated by free oscillation amplitudes indicates that this is a slow earthquake (T.H.

Jordan, personal communication, 1991). Our mechanism solution of 76/72/174 is in good

agreement with the CMT solution of 83/75/179 [Dziewonski et al. 1986b].
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September 20, 1986, St. Paul's transform (Figure A6)

Although this earthquake is located along the trend of principal seismic activity, a thrust

mechanism (246/601090) is reported in the Harvard CMT catalogue [Dziewonski et al., 1987b].

Despite the small moment of this event, we were able to obtain good P and SH coverage of the

focal sphere. The mechanism (227153150) obtained from body waveform inversion contains a

small strike-slip component; this strike-slip motion is in the expected direction for transform slip ff

the southward-dipping nodal plane is the fault plane. The overall fit as described by the rms

residual displays a distinct minimum over the centroid depth range 12-16 kin.
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April 20, 1988, St. Paul's transform (Figures A7 and A8)

Our reverse-faulting solution of 189152/107 differs somewhat from the CMT solution of

196/78/108 [Dziewonski et al, 1989b], which has a steeper dip. The discrepancy may be attributed

to the poor signal-to-noise ratio for this small event. The identification of the first pulse is

ambiguous in the long-period P-wave data (Figure A7), but eompressional first motions,

consistent with a thrust mechanism, are eonfirmed in the verdeal short-period waveforms (Figure

A8). For the short-period P-wave synthetics, a value of 0.6 s is taken for t*, and the mechanism is

that from long-period waveform inversion. A centroid depth of 8 km is required by long-period

data and also provides a good fit to the short-period data. Water reverberations indicate a seafloor

depth of about 2.5 kin.

December 23, 1988, St. Paul's transform (Figure A9)

The Harvard CMT catalogue lists a reverse-faulting mechanism of 245/57/094 for this

earthquake [Dziewonski et al., 1989c]. Inversion of body waveforms from WWSSN records

indicates a mechanism of 228/56/072, a similarly reverse-faulting solution but with different strike

and slip angles from the CMT solution. Our preferred centroid depth is in the range of 7-11 km,
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on the basis of both the residual variance and theobserved fit to the waveforms. The small first

SH arrivals at WES and BLA provide constraints on the strike of the source mechanism.

September 9, 1985, Marathon transform (Figure AI O)

Our mechanism solution for this event is 140/54/051, corresponding to primarily reverse

faulting on a fault oblique or orthogonal to the transform. The CMT reverse-faulting solution is

196/31/111 [Dziewonski et al, 1986a]. The polarity was found to be reversed on ZOBO (SH).

This is a wcU-fit shallow event, with a centroid depth of 3-5 krn, as required by a minimization of

the rms residual.

February 17, 1978, Heezen transform (Figure All)

Although coverage is sparse and the signal-to-noise ratio is low, the combination of both P and

S waveforrns suggests a mechanism of 241/16/301, which has a smaller dip and a larger strike-slip

component than the CMT mechanism of 256/34/287 [Dziewonski et aL, 1987c]. The best-fitting

centroid depth ranges from 8-14 kin, but P wave coverage is poor. The predicted polarity of P-

wave first motions is in agreement with short-period records.

May 27, 1989, Tharp transform (Figure A I 2 )

Our normal-faulting solution of 275/59/287 is similar to the CMT mechanism of 258/57/277

[Dziewonski et al., 1990b]. Examination of short-period records shows that this event has a

precursor that is not evident in the long-period records, although high noise levels exist on long-

period records prior to the onset of the P wave of the main event. Our best-fitting centroid depth is

approximately 10 kin, but the P-wave signal-to-noise ratio is poor.
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May 15, 1987, Menard transform (Figure AI3)

We find a normal-faulting mechanism of 50/37/247, in agreement with the CMT solution of

53/37/260 [Dziewonski et al., 1988/7]. The dilatational first motions are confirmed by examination

of short-period vertical records. Centroid depth is within the range 7-11 kin, but the P-wave

signal-to-noise ratio is low.

September 21, 1977, Rivera transform (Figure A14 )

We find a normal-faulting mechanism of 353/35/291. The CMT mechanism is 346/72/254

[Dziewonski eta/., 1987a]. The preferred centroid depth is 4 kin, but the P-wave signal-to-noise

ratio is low.

APPENDIX B: EARTHQUAKE RELOCATIONS

In this appendix we show in Figures B 1-B 11 the relative locations of events along and near the

oceanic transforms discussed in this study. Relative locations are found using the method of

Jordan and Sverdrup [1981] in the manner described in the text.
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FIGURE CAPTIONS

Figure 1. Earthquake epicenters (ISC) and CMT mechanisms for earthquakes along the Eltanin

fault system on the Pacific-Antarctic plate boundary. Epicenters are depicted by dots;

mechanisms are equal-area projections of the lower focal hemisphere, with compressional

quadrants shaded. The Eltanin system is made up of the Heezen and Tharp transforms and a

transform identified as Fracture Zone VI by Molnar et al. [1976].

Figure 2. Location of the seven transforms considered in this study. Ix)cations of the earthquakes

along these transforms with anomalous mechanisms and for which we have performed body

waveform inversion are shown as ftlled circles. Also shown are plate boundaries and

continents, in Mercator projection.

Figure 3. Earthquake locations and mechanisms along the southwestern portion of the Owen

transform. Bathymetry is adapted from Cochran [1988]; 1-krn contour interval. Mount Error is

at about 10.3 ° N, 56.2 ° E and reaches depths less than 1 km. The southeastern portion of Error

Ridge includes both Mount Error and the elongate high at about 11° N, 56.2 ° E. Suggested plate

boundary geometry is shown as a stippled line. The northeastern transform boundary is taken

as a small circle about the African-Indian Euler vector, and arrows denote relative plate motion

directions [DeMets et al., 1990]. Epicenters are of relocated events from January 1964-March

1989. The mechanisms of the earthquakes of July 29, 1983, and July 7, 1986,-are from this

study. All other mechanisms are from the Harvard CMT catalogue. Tic marks denote the

azimuth of the maximum compressive horizontal stress, under the assumption that the P-axis

and T-axis correspond to the axes of maximum and minimum principal stress, respectively.

This assumption may not always be valid [McKenzie, 1969].

Figure 4. Earthquake locations and mechanisms along the western portion of the St. Paul's

transform. Bathymetric contours are from the General Bathymetric Chart of the Oceans

(GEBCO) Digital Atlas, as supplied by the British Oceanographic Data Centre, Bidston, U.K.,
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March 1992; 1-kin contour interval, Mercator projection. The location of the December 30,

1989, event is from the ISC. Mechanisms of earthquakes on October 11, 1972, November 14,

1982, October 12, 1985, September 20, 1986, April 20, 1988, and December 23, 1988, arc

from this study. Mechanisms of the events on September 14, 1971 and April 11, 1972 are from

Engeln et al. [1986"]. Mechanisms of other events are taken from the Harvard CMT catalogue.

Crosses show the location of the Mid-Atlantic Ridge and its intersection with the St. Paul's

transform, as given by Schilling [1987]. The transform boundary is taken as a small circle

about the South American-African Euler vector [DeMets et al., 1990]. See Figure 3 for further

details.

Figure 5. Earthquake locations and mechanisms along the Marathon transform. Bathymetry is

from Collette et al. [1984]; 1-kin contour interval, Mercator projection. The mechanism of the

September 22, 1985, earthquake is from this study. The June 9, 1987, mechanism is from the

Harvard CMT catalogue. The transform boundary is taken as a small circle about the South

American-African Euler vector [DeMets et al., 1990]. See Figure 3 for further details.

Figure 6. Earthquake locations and mechanisms along the central portion of the Heezen transform.

Bathymetry is adapted from Lonsdale [1986]; 1-kin contour interval. The mechanism of the

earthquake of February 17, 1978, is f:om this study. All other mechanisms are from the

Harvard CMT catalogue. See Figure 3 for further details.

Figure 7. Earthquake locations and mechanisms along a portion of the Tharp transform.

Bathymetry is adapted from Lonsdale [1986]; 1-kin contour interval. The mechanism of the

May 27, 1989, earthquake is from this study. Other earthquake mechanisms are from the

Harvard CMT catalogue. The epicenter of the May 27, 1989, earthquake is taken from the ISC

catalogue. See Figure 3 for further details.

Figure 8. Geologic sketch map of the Heezen transform from Lonsdale [1986], oblique

projection.

Figure 9. Earthquake locations and mechanisms along the Menard transform. Bathymetry is

adapted from Mammerickx et al. [1975]; contours are in thousands of fathoms, with a 100-
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fathom contourintervaland the1500-fathomcontourdashed. The mechanism oftheMay 15,

1987,earthquakeisfrom thisstudy.Other earthquakemechanisms arefrom theHarvard CMT

catalogue. The transform boundary is taken as a small circle about the Pacific-Antarctic Euler

vector [DeMets et al., 1990]. See Figure 3 for further details.

Figure 10. Earthquake locations and mechanisms along the western Rivera transform.

Bathymetry is adapted from Dauphin and Ness [1991]; 1-km contour interval. Plate boundary is

taken from bless andLyle [I991], who identify possible fault lineations on the basis of

bathymetry and scismicity. Arrows dehote relative plate motion directions [DeMets and Stein,

1991]. See Figure 3 for further details.

Figure 11. Centroid depths of earthquakes along the St. Paul's transform. (a) Thermal model

derived for an offset of 630 km and an age difference of 39 Ma. (b) Thermal model derived for

an offset of 300 km and an age difference of 19 Ma. See text for further details.

Figure A1. Observed (solid lines) long-period P and SH waveforms from the earthquake of July

29, 1983, compared with synthetic waveforms (dashed lines) generated from the best-fitting

point source model found from body waveform inversion. Waveforms from GDSN stations

(MAJO, NWAO, and BCAO) are plotted at the scale shown in the lower right. P and SH

radiation patterns are shown on the lower focal hemisphere (equal-area projection). For SH

waves, compression corresponds to positive motion as defined by Ak/andRichards [1980]. All

amplitudes are normalized to an epicentral distance of 40 ° and a WWSSN instrument

magnification of 1500; the amplitude scales correspond to the waveforms that would be

observed on an original seismogram from such an instrument. The two vertical lines show the

portion of each time series used in the inversion. Open circles denote dilatational first motions,

filled circles denote compressional fast motions, and crosses denote emergent arrivals.

Figure A2. Observed P and SH waveforms from the earthquake of July 7, 1986, compared with

synthetic waveforms generated from the best-fining point source model found from body

waveform inversion. See Figure A1 for further details.

Figure A3. Observed P and SH waves from the earthquake of October 1I, 1973, compared with
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synthetic waveforms generated for a source model with two point sources. The parameters of

the fast, smaller, event were fixed in the inversion; the source parameters of the second event

arc found from body waveform inversion. The radiation pattern of the larger subcvent is

shown. See Figure A1 for further details.

Figure A4. Observed P and SH waveforms from the earthquake of November 14, 1982,

compared with synthetic waveforms generated from the best-fitting point source model found

from body waveform inversion. See Figure A1 for further details.

Figure A5. Observed P and SH waveforms from the earthquake of October 12, 1985, compared

with synthetic waveforms generated from the best-fitting point source model found from body

waveform inversion. See Figure A1 for further details.

Figure A6. Observed P and SH waveforms from the earthquake of September 20, 1986,

compared with synthetic waveforms generated from the best-fitting point source model found

from body waveform inversion. ANTO is a GDSN station. See Figure A 1 for further details.

Figure A7. Observed P and SH waveforms from the earthquake of April 20, 1988, compared with

synthetic waveforms generated from the best-fitting point source model found from body

waveform inversion. GRFO is a GDSN station. See Figure A1 for further details.

Figure A8. Observed short-period P waveforms from the earthquake of April 20, 1988, compared

with synthetic waveforms generated from the mechanism found from long-period body

wavcform inversion. All data are from GDSN stations. See Figure A1 for further details.

Figure A9. Observed P and SH waveforms from the earthquake of December 23,.1988, compared

with synthetic waveforms generated from the best-fitting point source model found from body

waveform inversion. See Figure A1 for further details.

Figure AI0. Observed P and SH waveforms from the earthquake of September 22, 1985,

compared with synthetic waveforms generated from the best-fitting point source model found

from body waveform inversion. ZOBO is a GDSN station. See Figure A1 for further details.

Figure A11. Observed P and SH waveforms from the earthquake of February 17, 1978,

compared with synthetic waveforms generated from the best-fitting point source model found
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from body waveform inversion. SNZO is a GDSN station. See Hgure A1 for further details.

Figure A12. Observed P and SH waveforms from the earthquake of May 27, 1989, compared

with synthetic waveforms generated from the best-fitting point source model found from body

waveform inversion. AFI is a GDSN station. See Figure A 1 for further details.

Figure A13. Observed P and SH waveforms from the earthquake of May 15, 1987, compared

with synthetic waveforms generated from the best-fitting point source model found from body

waveform inversion. CTAO and ANMO are GDSN stations. See Figure A1 for further details.

Figure A14. Observed P and SH wavefoims from the earthquake of September 21, 1977,

compared with synthetic waveforms generated from-the best-fining point source model found

from body waveform inversion. See Figure A1 for further details.

Figure B1. Relative locations of earthquakes (1964-March 1989) on the Carlsberg Ridge south of

the Owen transform. For each earthquake the relative location is indicated by the event number,

the 95% confidence ellipse for the cluster vector is shown, and the change in relative position

from the starting (ISC) location is indicated by a line. The position of the average location of

events within a cluster (the hypocentroid) is indicated by a cross. The distance scales are in

kilometers north and east of the hypocentroid. Events are numbered in chronological order.

Figure B2. Relative locations of earthquakes near the southwestern intersections of the Owen

transform and the Carlsberg Ridge. See Figure B 1 for further details.

Figure B3. Relative locations of earthquakes on the central portion of the Owen transform. See

Figure B 1 for further details.

Figure B4. Relative locations of earthquakes on the Mid-Atlantic Ridge near its intersection with

the western portion of the St. Paul's transform.

Figure B5. Relative locations of earthquakes on the western portion of the St. Paul's transform

(ISC locations west of 29 ° W). See Figure B 1 for further details.

Figure B6. Relative locations of earthquakes on the western portion of the St. Paul's transform

CISC locations between 28 ° W and 29 ° W). See Figure B 1 for further details.

Figure B7. Relative locations of earthquakes at the Marathon transform and the adjacent segments
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of the Mid-Atlantic Ridge. See Figure B I for further details.

Figure B8. Relative locations of earthquakes on a central portion of the Heezen transform. See

Figure B 1 for further details.

Figure B9. Relative locations of earthquakes on a central portion of the Tharp transform+ See

Figure B 1 for further details.

Figure B 10. Relative locations of earthquakes on the Menard transform. See Figure B 1 for

further details.

Figure B 11. Relative locations of earthquakes (mb > 4.5) on the a portion of the Rivera transform.

See Figure B1 for further details.
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TABLE 3. Seismic Velocity Models Assumed for Source Regions

Layer Thickness, km Vp, km/s Vs, km/s p, g/cm3

Fast-slipping transforms

I variable 1.5 0.0

2 6.0 6.4 3.7

3 half-space 8.1 4.6

1.0

2.8

3.4

Slow-slipping transforms

1 v_le 1.5 0.0 1.0

2 2.2 4.3 2.5 2.5

3 2.6 5.9 3.4 2.6

4 halfispace 8.1 4.6 3.4



........ ..I . • .

134

I

Fracture Zone VI

$

I

-135

I

Tharp

$

Heezen

$

/

\

I
-130 - 120

Figure 1



135

ME:NARD

EEZEN

Figur_ 2



12

Ii

I0

956

41 8183

4/20180

5/30/78

7/29/83

Mount

Error )/17/86

3
4

7/ 7/86

57

9

/_

18/89

1__

Figure 3

58



137

I I

Figure 4



138

I _ _ "_ I I

13.0 / _

r
12.5

-45.0 -44.5 -44.0

Figure 5



139

Fi_u_ 6



140

-54
3

'3

6/10/79

_J4

9/11/85

IOI_O182

C
81 6186

-65

-66

5/27/89

I

-133

9/11/85

I
-132

I

-131

10/27/77

I
-i30

7/16/84

I
-129

Figure 7



141

_oR'rH- F'ACJNG PACIFIC RISE

F Z. SCARP NORTH WALL OF TRANSFORM VALLEY, , , , T __F _' , ,AE"------ ?" ----

T SOUTH-FACING F Z SCARP

~lO k =
! I Ioo_= I

123°W 122_W
I I

sOUTH.ALL
, , , | i I ....

126°W 1250 W 124 ° W

Figure 8



142

I
I

I

I I

11/ 2/77

11/29/83
ii18183

I iiii I
I

J
J

/
/

/
I

/

I

,r, /

! I
-117 -116

5/15/87

0

1126183

I
-115

I/. I
I

I

I
- II I

,/ ,
I

I/ I
I

!
I

I
I

I
I

I
I

I
I
I

I
I

I I
I

I
I

I I
I I

I I
I I

I

!
I
!
I
I
!
I
I

I
I I/ 7/81

1/14/87

-113

Fi_'¢ 9



143

21

o_

/

0

5/ 9/83

1/1o/88

0 _,/ 11 7

9/21/77

. 0

/

I 7/ 14/87

_/25/85

- 109 Fi_, 1o



144

_I0

E

.c:"20
C_

O

.30

4O

IO0 2OO

Distance, km
300 400 600

400°C
600°C

800°C

1000°C

Figure I la



145

20-
O.

a

30f
4O

100
I

-...4..

Distonce,

I

km

200 30O
I

___i 400"C

600=C

800=C

m

1O00=C

L J L .L J.

Figure 1 lb



146

F_ t_ure A 1



147



148

Fi_u-e A3



149



150

Figure A5



151

Figure A6



152

Figure A7



153

o

0_

d
Illl



154

Figure A9



155



156

0 0

k_

i,l.ll.IJ

Fim.u-e AI I



157



158

Figure A13



159

I":'.: .... A1A



160

60

4O

2O

.20

.40

-60

I I I I I I I........."1...... I I I I I I I I I

__t__t I I_L..__! _ I_ /
-80 -60 -40 -20 0 20 40

I
60

I
80

Figure B 1



161

60

40

2O

0

I I I I I I I I

I I I I I I

0 20 4O

Figure B2



162

6O

4O

2O

0

1 I I I I I I I I

1 I I ! I I I I I
-40 -20 0 2O 4O

Figur_ B3



163

I I I I I i I

18

4

8

! I I
-20 0 20 40

Fi_n-¢ B4



164

50-

0

I i I I I I i I I I I I I I '1 I I

100
-100 -50 0 50

Figure B5



165

40

20

0

-2O

-40

-60

-80

-100

_I I I I I I t i I I I I 1 I

14

I I I ! ! 1
O0 -80 -60 -40

!
-20

19

I
0

I
2O

9

I
40

I

m

60

Figure B6



166

50 I I I I I I I I i I I i I I I I I

¢0

20

6

20

40

60 I I I I I ! I I ! I I I I I I I I
-80 -60 -40 -20 0 20 40 60 80

Figure B7



167

I I I I I I I I I I I I I I I I I I I I I I I I I I I f I I100

5O

0
6

-50

"100 l I i i i l I i i i i ! 1 i i i I I I i [, I I I I ! I I I I -J

- 150 - 1O0 -50 0 50 1O0 150

Figure B8



168

100

50

0

-5O

.I00

I I i I l I I I I I I I I I l I I I I I i I I I I I I I i l I I_

- 150 - I O0 -50 0 50 I O0

Figure B9



169

100

5O

0

-5O

I I I I I I I I i I ! I I I I I I I I I I I I I I

m

J

m

w

m

m

-100 I I I I I I I
-100

I I

-50

IIII I I

0

I I
50

I I I I I I

IO0

m

m

m

Figure BIO



170

100

5O

0

-5O

-100

I

I
O0

I I i I I I I I I i I i I I I I I I

I I I
-50

I I !

0

I I
5O

I I I I
100

Figure B 11





171

APPENDIX 5

Crustal strain and the 1992 Mojave Desert earthquakes

By J. Sauber, S. C. Solomon, and W. Thatcher

Abstract submitted to 1992 Fall Meeting, Eos Trans. Amer. Geophys. Un., 1992.
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Crustal Strain and the 1992 Mojave Desert Earthquakes

Jeanne Saubcr (Geodynamics Branch, NASA/GSFC, Greenbelt,
MD 20771; 301-286-8586; sauberOredoubt.gsfc.nasa.gov)

Sean C. Solomon (Carnegie InstR. of Washington, Washington,
DC 20015)

Wayne Thatcher (U.S.G.S., Menlo Park, CA 94025)

The occurence of the June 1992 Landers(M = 7.4)and Big-
Bear(M = 6.5) earthquakes and the earlier Joshua Tree earth-
quake(M = 6.1), east of the blg-bend section of the San Andreas
fault, has highlighted the importance of understanding deforma-
tion within the Mojave block and its relation to deformation in
the surrounding region. With these objectives, we have reexam-
ined the implications of geodetic measurements from the region
of the Landers earthquake rupture zone, as well as results from
VLBI measurements that span and are distributed within the
Pacific - North American plate boundary zone. On the basis of

triangulation/trilateration measurements (1934-1982), the rate
of strain across the central Moja_e faults has been estimated to
be -_ = 0.16 + 0.03 pstrain/yr, with the maximum right-lateral
shear strain occurring on a plane oriented N41°W. The leading
hypothesis that accounted for this rate of strain between the He-
lendale and Camp Rock faults was that elastic strain had been
accumulating that would eventually be released as a large earth-
quake. The occurrence of a major strain releasing event which
resulted in up to 6.7 m of slip confirms this hypothesis and sug-
gests that the central Mojave faults are still favorably oriented to
accommodate strain. If the short-term strain rate estimated from

the.geodetic data is similiar to the average strain rate between
major events, such large earthquakes would occur infrequently
(approximately every 700 years for the repeat of a similar type
event). The VLBI results show that the big-bend region repre-
sents a transition from the dominantly transform boundary in
southernmost California to transcurrent motion on the San An-
dreas fault in central and northern California and extension in

the Basin and Range province. The average velocities of the
VLBI stations east of the big-bend (MOJA and DEAD), as well
as OVRO (north of the Garlock fault), relative to stable North
America, are approximately 8-12 "mm/yr at N30-60°W. These
geodetic results, along with geologic evidence, suggest that slip
on the northwest-striking faults of the central Mojave are kine-
matically related to strike-slip motion on the right-lateral faults
that bound the region of extensional tectonics in the southern
Basin and Range province. Further support for this interpreta-
tion comes from the observation that aftershocks from the Lan-

ders and Joshua Tree earthquakes extended from the San An-
dreas fault south of San Gorgonio Pass to the central Mojave
and northward to the Panamint Valley fault zone.




