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Over the past 5 years, COMSAT has performed numerous destructive

physical analyses (DPAs) on NASA-Goddard-supplied nickel-cadmium

(Ni/Cd) cells. The samples included activated but uncycled cells, wet

stored cells, cycled cells, and anomalous cells. The DPAs provided visual,

morphological, and chemical analyses of the cell components. The DPA

data for the analyzed cells are presented herein. For the cells investigated,

the leading cause of poor performance, as determined by DPA, has been

poor negative electrode utilization, which resulted in negative-electrode-

limiting operation.
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INTRODUCTION

Traditionally, NASA/Goddard has

requested destructive physical analyses
(DPAs) on Ni/Cd cells with anomalous

performance. This technique has been
used to understand poor performance and
failure mechanisms in the cells. COMSAT

recommends DPAs of cell components and

cells at the beginning of life to establish
a database, which can then be used in

determining causes of cell anomalies and

for predicting cell life.

Over the past 5 years, COMSAT has
performed approximately 20 DPAs (Table
1) on NASA-Goddard-supplied NASA
Standard Ni/Cd cells. The majority of
these ceils have been of the NASA
Standard 50-Ah design built since the mid

1980s. These samples have included wet
stored cells, activated cycled and
uncycled cells, and anomalous cells. The
characteristics of anomalous cells have

included accelerated separator
degradation, cell shorting, and loss of
overcharge protection. Although
various reasons exist for poor ceil
performance, one characteristic that has
become evident from DPA data is a

negative-electrode-limited condition,
where cell capacity is limited by the
negative electrode on discharge. D PA
provided evidence of this condition,
which is caused by poor utilization in the

negative plate.

RESULTS AND DISCUSSION

Electrical Cycling Performance

When cells are received for DPA,

various electrical tests are performed to
evaluate and characterize the cell. One

area of poor performance in some of the
NASA celts has been a continual drop in

capacity with successive measurements
(Table 2). This behavior indicates a
negative-limited cell. The effect is also
observed in the charge profile, where
voltage rollover occurs at an earlier time
with each successive cycle for a
negative-limited cell (Figures 1 4).

Voltage rollover is associated with the

point where the cell goes into
overcharge. Earlier voltage rollover
indicates that charge input, and

therefore capacity, is reduced in
successive cycles. The negative-limited
condition of the cell on discharge

inhibits the positive electrode from
being completely discharged.
Consequently, the positive electrode,
which is already in a partially charged
state, will reach overcharge at an earlier

point during the next charge period. In
a positive-limited cell, the capacity of the

rollover point remains fairly constant
for a given charge rate.

At a C/10 charge rate at 10°C,
rollover occurs where charge input

approximately equals cell capacity. One

positive-limited cell (UARS Lot 2 S/N 7),
exhibited voltage rollover occurring

much later than the point where charge
input equaled cell capacity (Figure 5).
This late rollover is atypical for a

positive-limited cell.

The second evidence for a

negative-limited cell can be found in the
resistive discharge profile generated

after a power discharge (Figure 6). The
resistive discharge profile for a positive-
limited cell exhibits a gradual drop in
voltage to a plateau around 0.6 V. A

sudden drop in voltage and a voltage
plateau around 0.2 V indicate a negative-
limited cell.

The third evidence from electrical

testing for the negative-limited condition
can be found in the voltage recovery
stand, where the cell is discharged,

shorted, and then open-circuited while
the voltage is monitored (Figure 7).

Negative-limited cells exhibit higher
voltages throughout the 24-hr open
circuit period. This higher voltage is
likely a result of the higher state of

charge of the positive electrode due to
the negative-limited condition. Negative
limited cells also exhibit fast voltage rise

during the first hour of the voltage
recovery stand. Positive-limited cells
typically show more gradual initial
voltage rise.
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DPA Work

On completion of the electrical
characterization, the cell is opened and
visually examined. Comments are made

on the physical condition of the cell
components, electrolyte distribution, and
overall cleanliness.

Chemical, electrical, and

microscopic analyses are then performed
on the cell components. The electrolyte
is analyzed for potassium hydroxide

(KOH) and potassium carbonate (K2CO3)
concentrations. The separator is
analyzed for cadmium content and tested
for tensile strength. Positive and
negative plates are chemically analyzed
and electrically cycled in a flooded
condition. Microscopic analysis is

conducted on sample plates. Precharge
and overcharge protection are then
calculated for the cell.

The following text presents the
results from DPA which confirm the

negative limited condition. The source of
this condition was determined to be poor
performance of the negative electrode.
The test results for the cell components

(i. e., electrolyte, separator, and positive
electrode) suggest that variations in
results within these components have
been due to natural degradation
processes or are the result of the
negative-limited condition of the cell.

Electrolyte

The K2CO3 and KOH concentrations
were determined for the electrolyte

(Table 3). As expected, carbonate
concentrations increased with increased

cycling due to separator degradation. In
response to these changes, KOH
concentrations also change. However,
differences in hydroxide concentration

could not be explained by the formation
of carbonate alone. Some ceils were
found to contain excess water in the

electrolyte. This excess was evidenced in
lower KOH concentrations and increased

electrolyte volume relative to quantities

added during cell activation. As water is

consumed at the positive electrode during
discharge, excess water in the electrolyte
can be explained by the fact that the
positive electrode is not fully discharged.
This condition is consistent with cells

that are negative-limited in discharge.

The calculated electrolyte quantity
per Ampere-hour of theoretical positive
capacity was obtained by converting the
total potassium weight to 30-weight
percent KOH and dividing this by the

theoretical cell capacity, which is based
on positive plate active material loading.
This value has typically been around 2

cm3/Ah for the NASA 50-Ah Standard
Cells. Differences in these values have

been caused by variations in positive

plate loading. The exceptions within the
data reported here-in have been the IUE
cells that were manufactured with more

electrolyte.

Separators

The separators were characterized
for their cadmium content (Table 4).
Pelion 2505 was used in the cells

analyzed. Cadmium migration into the
separators was measured both by the
amount per cell and the amount in the
heaviest migrated area. As expected,
increased cycling leads to increased
migration. However, negative-limited
cells have shown lower-than-expected
cadmium migration levels, due to inactive
cadmium in the negative electrode.

Positive Electrode

The positive plates were
chemically and electrochemically
analyzed. Positive electrode weight
differences between cells have been due

to loading differences between cell lots.
Active nickel loading has typically been

greater than 1.9 g/cm 3 of void volume
(Table 5). Cobalt levels have been

consistent among lots and account for
approximately 5 weight percent of the
total active material. The total cadmium

in the plate comes from two sources: the
cadmium added during manufacturing as
an "antipolar mass," and that which has
migrated from the negative to the
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positive electrode. Analysis of the
cadmium in the positive plates has shown
not only decreased cadmium migration in
the negative-limited cells relative to the

positive-limited ceils, but also migration
patterns within a plate where positive-
limited ceils contain more cadmium in

tile bottom of the positive plates iFigure

Theoretical plate capacity was
calculated assuming a one-electron
transfer of the active Ni(OH)2 during

discharge. Cell utilization based on the

theoretical positive cell capacity is
typically around 85 to 90 percent for the
positive electrode in a new cell. Because
of the negative-limited condition and
capacity fading in negative-limited cells,
cell utilization has been as low as 70

percent. When in a flooded state, all
positive plate performed well, with
utilization of 85 percent or greater.

Negative Electrode

Chemically, there are only slight
variations in active material loading
between cell lots (Table 6). Loading also
changes with cycle life due to cadmium
migration. The major differences in
negative plate characteristics between
tile subject cells are in tile
electrochemical performance of the
negative plate. Negative electrodes from
negative-limited ceils have shown

approximately 60 percent negative plate
utilization, whereas negative electrodes

from positive-limited cells have achieved
75 percent negative plate utilization.

Electron microscopic examination
has been performed on the cross section
of the plate (Figures 9 and 10) to
qualitatively judge the pore and active
material distributions in the negative

plates. Backscattered electrons were
used to generate the images shown, and
X-ray maps were made to distinguish
particle composition on plate cross
sections. In the cross-sectional images,
the brighter areas were determined to be

cadmium rich, while the gray areas are
sinter. Due to a lack of gray level

contrast, charged and discharged

cadmium could not be separated. Voids m
tile plate appear black. Plates from
negative-limited cells were found to have
cadmium agglomerating in tile center or
the plates. This condttion would cause
charged cadmium in the center of an
agglomeration to become isolated and
thus electrochemically unusable. This is
believed to be responsible for the
measured low utilization in these

electrodes.

Surface cadmium crystals were

also examined by scanning electron
microscopy (Figures 11 and 12). The
crystal sizes on the negative plates from
positive- and negative-limited cells were
different. Tile majority of crystals in a
positive-limited cell were 1 _.m in size,

and occasionally a crystal as large as 20
_m was found. Conversely, negative-
limited cells contain many larger

crystals.

Precharge and
Protection

Overcharge

From the data on both the
chemical and electrochemical analyses,

precharge and overcharge protection
(OCP) values were calculated for each cell
(Table 7). The values for these

parameters have varied from cell to cell
and lot to lot. Generally, with increased
cycling, there has been increased

precharge capacity and loss of OCP due to
separator degradation and loss in
negative electrode utilization. Ceils that
were diagnosed as being negative-limited
have shown a slight increase in

precharge levels.

CONCLUSION

The electrical characterization and

subsequent DPA data on NASA Standard
Aerospace Ni/Cd cells have been
collected. For the cells investigated, the
leading cause of poor performance was
poor negative plate utilization, which
resulted in a negative-limited condition.
This condition has been found in several
cells manufactured since the mid 1980s.
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TABLE 4: CADMIUM MIGRATION INTO THE SEPARATORS

TOTAL IN ALL SEPARATORS

CELL HISTORY (g/cell) (mg/sep. area)

TDRSS 15-78 ATP 0.40 0.16

EUVE 16-53 ATP 0.51 0.11

EUVE 4-05 ATP NL 0.40 0.09
backup

EUVE 04-068 Battery ATP NL 0.61 0.13
backup

GOES 05-110 I and T 0.10 0.05

TDRSS 8-69 60 cycles L 0.76 0.31

GRO 17-073 576 cycles S 0.49 0.11

EUVE 16-30 2480 cycles S NL 0.51 0.11

EUVE 16-79" 3900 cycles L t.82 0.40

UARS 2-073 5010 cycles L NL 1.28 0.28

EUVE 16-014 5360 cycles S NL 0.68 0.15

UARS 2-007 5500 cycles S 12.10 2.65

UARS 2-021 5700 cycles S NL 1.37 0.30

COBE 15-5 6000 cycles S t.00 022

EUVE 16-003" 10600 cycles L 2.86 0.63

GRO 17-063 * 11800 cycles L NL 1.14 0.25

* = separator sticking may effect results for Cd in all separators.

NL = capacity limited by the negative electrode

S = stress cycling, 40 % DOD

L = life cycling, 15 % DQD

HEAVIEST AREA

OF MIGRATION

(mg/cm^2)
0.7

2.6

0.3

1.6

0.4

0.6

0.9

07

9.6

5.9

1.1

7.6

1.5

8.3

9.9

11.7

• COMSAT
Laboratories
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TABLE 7: PRECHARGE AND OVERCHARGE PROTECTION

Identification History

IUE 3-10 ATP

Chemical Negative

Negative Cell Flooded Precharge Overcharge Unavailable

Capacity Capacity Capacity Total Protection Discharged Cd

(Ah) {Ah) {Ah) (Ah) {Ah) IAh)

34.8 13.96 22.42 4.27 10.05 6,52

40.1% 64 4% 12.3% 28 .90/0 18.7%

EUVE 16-053 ATP 129.11 62.81 !00.81 21.10 26.95 18.28

48.6% 78.1% 16.3% 20.9% 14.2%

EUVE 4-005 ATP

backup

EUVE 4-068 Battery

backuo ATP

TDRSS 15-78 ATP

138.84 57.78 86.7 32.68 23.36 24.82

41.6% 62.4% NL 23.5% 16.8% 17.9%

133.39 57.21 78.12 39.85 20.99 14.56

42,9% 58.6% NL 29.9% 15.7% 10.9%

106.98 47.86 61.81 11.16 13.29 34.67

44.7% 57.8% 10.4% 12.4% 32.4%

GOES 5-110 I and T 27.09 12,63 19.16 8.27 3.36 5.93

46.6% 70.7% 30.5% 12.4% 21.9%

TDRSS 8-69 60 Life 103.08 55.46 72.75 11.85 8.34 27.43

53.8% 70.6% 11.5% 8.1% 26.6%

GRO 17-073 576 Stress 134.35 59.8 81.43 32.06 21.5 20.99

44.5% 60.6% 23.9% 16.0% 15.6%

GRO 16-030 2480 Stress 130.79 50.42 68,1 45.55 5.29 29.53

38.6% 52.1% NL 34.8% 4.0% 22,6%

GRO 16-079 3900 Life 125.81 65.13 96.28 15.91 22.25 22.52

51,8% 76.5% t2.6% 17,7% 17.9%

UARS2-073 5010 Life 123.82 51,39 76.17 39.64 17.03 15.76

41.5% 61.5% NL 32.0% 13.8% 12.7%

GRO 16-014 5360 Life 126.18 47.07 68.88 43.7 7.71 25.41

37.3% 54.6% NL 34.6% 6.1% 20.1%

UARS 2-007 5500 Stress 118.60 61.09 87.55 34.85 3.16 19.50

51.5% 73.8% 29.4% 2.7% 16.4%

UARS 2-021 5700 Stress 124.57 55.35 77.35 53.69 9.97 5,56

44.4% 62.1% NL 43.1% 8.0% 4.5%

COBE 15-05 6000 Stress 129.46 59.56 70.91 37.90 1.78 30.22

46.0% 54.8% 29.3% 1.4% 23.3%

GRO 16-003 10600 Life 128.34 62.93 82.28 42.36 12.93 10.12

49.0% 64.1% 33.0% 10.1% 7.9%

GRO 17-063 11800 Life 135.67 48.67

35.9%

Percentages based on overall negative capacity

NL = negative limited on discharge

72.07 38.38 12.58 33.17

53.1% NL 28.3% 9.3% 24.4%

1992 NASA Aerospace Battery Workshop -149- General Topic Session





Nickel-Hydrogen Storage / Capacity Fade Session

Organizer: Joe Stockel

Office of Research & Development

1992 NASA Aerospace Battery Workshop -151-

PRECeDiNG PAGE BLANK NOT FILMED




