Migration of Co in Nickel Oxide/Hydroxide of a Nickel Electrode in a Ni/H2 Cell Nickel

Hong S. Lim and Robert E. Doty Hughes Aircraft Company

PRECEDING PARA LARVE NOT FILMED

OBJECTIVE OF STUDY

Z BEEN REDISTRIBUTION Z Ш HAS REDISTRI ВШ ACTIVE MATERIAL В **0** COBALT FADING THIS REPORTED. THIS WAS SUSPECTED CAPACITY **BACKGROUND:** NICKEL

- 1990 Zimmerman and Seaver in
 - Lim and Verzwyvelt in 1990

RELATIONSHI REDISTRIBUTION TO ESTABLISH EN COBALT REE APACITY FADING. OBJECTIVE: TO BETWEEN Ö AND

TECHNIQUES USED

DISTRIBUTION IN AL STUDIED USING COBALT DI E MATERIAL CHNIQUES: ACTIVE Ш MICROSCOPIC EDX NICKEL THREE

LINE SCAN

POINT-BY-POINT ANALYSIS

· DOT MAPS

storage lest r	HISTO	Y of N	ickel El	ectrode	es in a Ni/H	2 Cell.	
Electrode ID T	rickle	lorage hist Ni-prech	ory, days Vac. H	12-prech.	Initial Cell Cap.*, Ah	Final (Ah	Cell Cap. % of init
Co-10 Co-7 Co-4 W/AI	New New New New	containing containing containing containing	10% Co 7% Co 4% Co 10% Co				
BP1(10Co;26%;H2)	0	0	0	565	5.08	4.78	94.1
BP3 (7Co;26%;H2)	0	0	0	565	5.47	4.91	89.8
BP5 (4Co;26%;H2)	0	0	0	565	5.80	5.29	91.2
BP2 (10Co;26%;Ni)	0	146	142	277	4.95	5.74	116.0
BP4 (7Co;26%;Ni)	0	146	142	277	5.48	5.59	102.0
BP6 (4Co;26%;Ni)	0	146	142	277	5.89	5.35	90.8
BP8 (D/AI;31%;H2)	0	0	0	*229	4.85	264	54.4
BP9 (D/AI;31%;0)	229	0	*134	0	4.93	3.82	77 5
BP3b(W/AI;26%;H2)	0	0	0	*268	3.41	1.76	516
BP4b (D/AI;26%;0)	0	0	*268	0	4.96	3.77	76.0
BP4c(D/AI;26%;H2)	0	0	0	*268	4.90	1.98	40.4
* Second measurement	t capacit	y by C/10 r	ate charge	for 18 h folk	owed by discharge	at C/2 rate 1	to 1.0 V.

1 / (1 ... 1 (7 Storade Test History of Nickel Flect .

-180- Nickel-Hydrogen Storage / Capacity Fade Session

Fig. 1 SEM picture and EDX cobalt line scan result of metallographic sample of a new nickel electrode containing nominal 10% cobalt. Light colored islands in the picture are nickel metal particles and remaining grey area represent active material.

Fig. 2 SEM picture and EDX cobalt line scan result of metallographic sample of a new nickel electrode containing nominal 7% cobalt. Light colored islands in the picture are nickel metal particles and remaining grey area represent active material.

Fig. 3 SEM picture and EDX cobalt line scan result of metallographic sample of a new nickel electrode containing nominal 4% cobalt. Light colored islands in the picture are nickel metal particles and remaining grey area represent active material.

Fig. 4 SEM picture and EDX cobalt line scan result of metallographic sample of a nickel electrode from BP 8. Light colored islands in the picture are nickel metal particles and remaining grey area represent active material.

Fig. 5 SEM picture and EDX cobalt line scan result of metallographic sample of a nickel electrode from BP2. Light colored islands in the picture are nickel metal particles and remaining grey area represent active material.

Fig. 5 Point-by-point analysis results of cobalt and nickel in the same sample and in the similar region as the EDX line scan in Fig. 1.

1992 NASA Aerospace Battery Workshop

-186- Nickel-Hydrogen Storage / Capacity Fade Session

$$C-3$$

Fig. 4.8 Point-by-point analysis results of cobalt and nickel in the same sample and in the similar region as the EDX line scan in Fig. 3.

Fig. 9 Point-by-point analysis results of cobalt and nickel in the same sample and in the similar region as the EDX line scan in Fig. 4.

Fig. 10 Point-by-point analysis results of cobalt and nickel in the same sample and in the similar region as the EDX line scan in Fig. 5.

Fig. 11 EDX maps of Ni, Co and O in the same sample and in the similar region as in Fig. 1. Brightness of area represent the concentration of the corresponding elements.

Fig. 12 EDX maps of Ni, Co and O in the same sample and in the similar region as in Fig. 4.2. Brightness of area represent the concentration of the corresponding elements.

Fig. 13 EDX maps of Ni, Co and O in the same sample and in the similar region as in Fig. 4.3. Brightness of area represent the concentration of the corresponding elements.

Fig. 14 EDX maps of Ni, Co and O in the same sample and in the similar region as in Fig. 4.4. Brightness of area represent the concentration of the corresponding elements.

Fig. 15 EDX maps of Ni, Co and O in the same sample and in the similar region as in Fig. 4.5. Brightness of area represent the concentration of the corresponding elements. **SEM and EDX Observation Summary**

Electrode	Peak %Co	dot results	Line Scan	Dot mapping
ID		Distribution	Results	Results
Co-10 Co-7 Co-4 W/AI	11~14 7~11 5~8 10~14	Flat Flat Flat Flat	Flat Flat Flat Flat	Match SEM Match SEM Match SEM Match SEM Match SEM
BP1(10Co;26%;H2)	14~16	Flat	Flat	$\begin{array}{l} Co \leq Ni \sim O \\ Co \leq Ni \sim O \\ Co \leq Ni \sim O \end{array}$
BP3 (7Co;26%;H2)	14~17	SI. parabolic	Flat	
BP5 (4Co;26%;H2)	8~14	Flat	Flat	
BP2 (10Co;26%;Ni)	23~26	Parabolic	Parabolic	Co < Ni ~ O
BP4 (7Co;26%;Ni)	14~20	SI. parabolic	SI. parabolic	Co < Ni ~ O
BP6 (4Co;26%;Ni)	6~13	SI. parabolic	SI. parabolic	Co < Ni ~ O
BP8 (D/AI;31%;H2)	22~24	Parabolic	Parabolic	Co < Ni ~ O
BP9 (D/AI;31%;0)	14~19	Flat	Flat	Co < Ni ~ O
BP3b(W/AI;26%;H2)	22~26	SI. parabolic	SI. parabolic	Co < Ni ~ O
BP4b (D/AI;26%;H2)	14~15	Flat	Flat	Co < Ni ~ O
BP4c(D/AI;26%;H2)	20~21	Parabolic	Parabolic	Co < Ni ~ O

1992 NASA Aerospace Battery Workshop

-196- Nickel-Hydrogen Storage / Capacity Fade Session

Electrode I D	Capacity Fade % of init.	Peak Co, %	Severity of Co redistribution, 0~10*
RD1(10Co.26%:H2)	94.1	14~16	2
БГ ((7Co:26%:H2)	89.8	14~17	0
BP5 (4Co;26%;H2)	91.2	8~14	7
8D2 (10Co.26%:Ni)	116.0	23~26	10
BDA (7Cn-26%:Ni)	102.0	14~20	თ
BP6 (4Co;26%;Ni)	90.8	6~13	8
BD8 (D/AI:31%:H2)	54.4	22~24	9
RD9 (D/AI:31%:0)	77.5	14~19	4
BP3h(W/AI:26%:H2)	51.6	22~26	4
BP4h (D/A1:26%:0)	76.0	14~15	0
BP4c(D/AI;26%;H2)	40.4	20~21	4

Comparison of Co Redistributions and Cell Storage History

- THERE WAS NO DIRECT CORRELATION BETWEEN CAPACITY FADING AND REDISTRIBUTION OF COBALT.
- 50 IT MIGHT BE A LITTLE EASIER CAPACITY RECOVERY THAN AL DISTRIBUTION OF Co. ORIGINAL PRACTICAL IMPLICATION: DEVELOP A METHOD FOR RECOVERING THE ORIGIN/