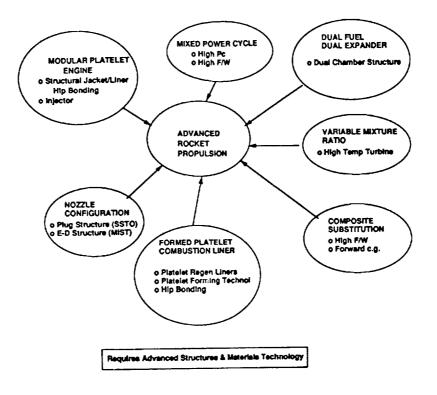
# N93-22091

#### 5.2 Advanced Rocket Propulsion – Chuck J. O'Brien, Aerojet

Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes.


High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

## **Advanced Rocket Propulsion Agenda**

C.J. O'Brien Aerojet Propulsion Division

o Summary of Approaches

- o Modular Platelet Engine
- o Dual Fuel Dual Expander Engine
- o Variable Mixture Ratio Engine
- o Materials & Structures Issues



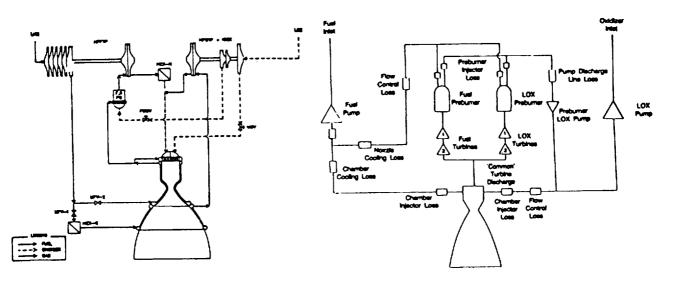
## Advanced Rocket Propulsion Approaches

## Advanced Propulsion Operating Parameters

| Engine        | MPE     | HPE       | DUAL MR      | DFDE       | DFDE       |
|---------------|---------|-----------|--------------|------------|------------|
| Propellants   | 02/H2   | 02/H2     | 02/H2        | 02/C3H8/H2 | 02/C3H8/H2 |
| Cycle         | AUG EXP | SC/EXP    | SC           | GG/SC      | GG/SC      |
| Pc, psia      | 2640    | 4887      | 4157/2736    | 6000/3000  | 14000/7000 |
| EV, KIDT      | 135.8   | 500       | 525/376      | 284/89     | 278/86     |
| Area Ratio    | 217     | 73/169    | 60/120       | 89/145     | 171/276    |
| MR 0/F        | 6       | 6         | 14/7         | 3.3/7      | 3.3/7      |
| IsV, sec      | 464     | 466       | 346/465      | 384/461    | 400/471    |
| H2 Pd, psia   | 6826    | 17762     | 9904/7046    | 7632       | 15894      |
| O2 Pd. psia   | 6734 6  | 536/15662 | 5080/3756    | 6685       | 14763      |
| HC Pd, psia   | NA      | NA        | NA           | 7166       | 15371      |
| 02 Tti. R     | 995 OR  | 484 FR    | 3130/1868 FR | 1660 OR    | 1660 OR    |
| H2 Tt1, R     | 896 FR  | 2500 FR   | 3130/1838 FR | 1880 FR    | 1880 FR    |
| FV/Wt         | 96      | 97        | 174          | 99/142     | 190        |
| Technol Level | 1992    | ADVANCED  | VERY ADV     | 1970/1990  | VERY ADV   |
| Source        | APD     | RKD       | P&W          | APD        | APD        |
|               | SSTO    | AL-TR-90  | AL-TR-90     | F04611-86  | AIAA 91    |
|               |         | -051      | -036         | -C-0113    | -2049      |

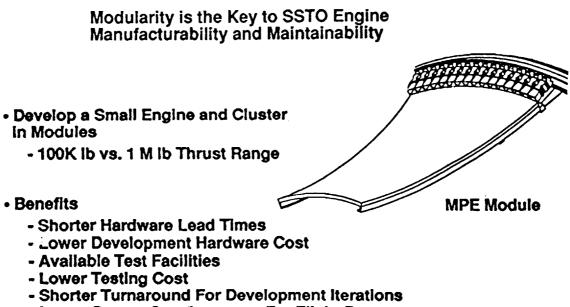
-

.

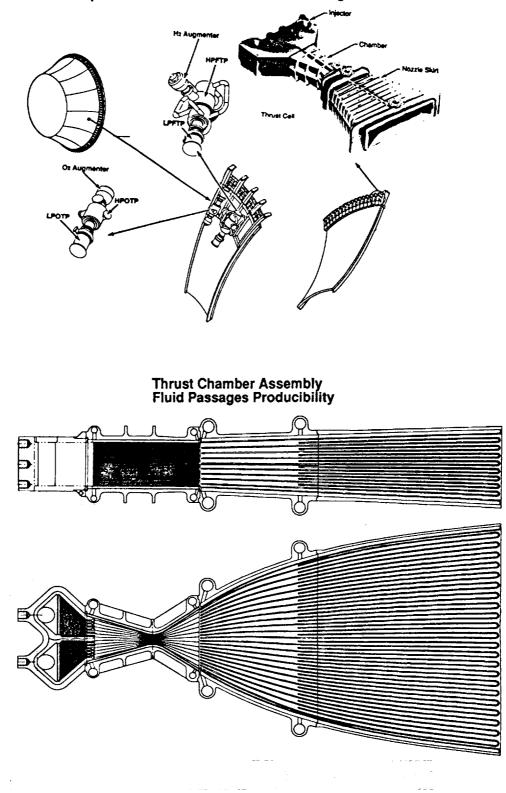

.

.

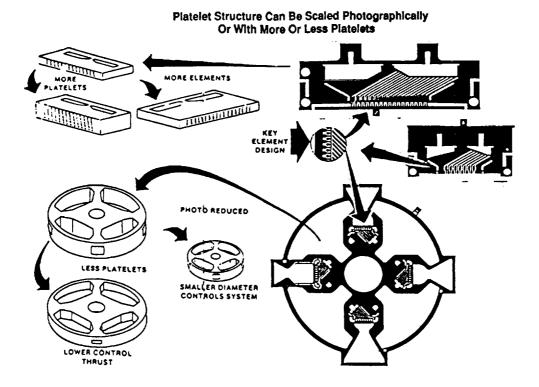
ł


#### Advanced High Pressure Cycles

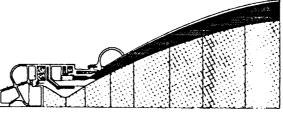
LO2/LH2 Engines with Extendible Nozzles




HPE (RKD) Fuel-Rich Hybrid Cycle With Regenerator

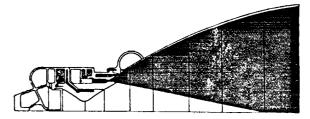

Dual MR (P&W) Cycle




- Lower Spares Cost/Inventory For Flight Program
- Easler Handling, Lower Cost For Maintenance and Servicing

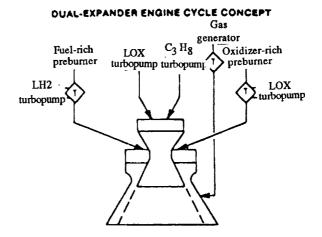


Composite Materials Needed For SSTO Weight Reduction




Dual Expander Operating Modes Match SSTO Trajectory Requirements




High Thrust at Sea Level

Low Thrust at Altitude **Dual Expander Chamber Mode 1 Operation** 



**Dual Expander Chamber Mode 2 Operation** 

- Minimizes Use of LH2
- Mixed Gas Generator/Staged Combustion Cycle
  - Allows HI Pc at Low Pump Discharge Pressure
  - Performance Penalty Small at Low Altitude
- + LH<sub>2</sub> Cooled Chambers
  - Transpiration Cooled Inner Throat Section
- O2/H2 Stoichiometric Preburner/ Gas Generator
  - No Unburned Propellant
  - Afterburning at Turbine
  - Low Temperature Turbine
     Possible
- Platelet Chamber Fabrication Maintains Throat Alignment

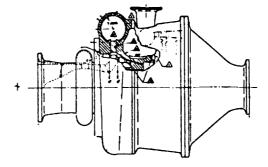


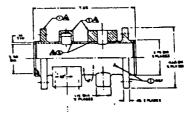
## Formed Platelet Combustion Chamber Benefits

- Very Thin Hot Gas Walls
  - Higher Coolant Temperatures (Expander Cycle)
  - Increased Cycle Life Lower Liner ∆T
  - Cooler Wall Temperatures Higher Q to Coolant
- High Aspect Ratio Coolant Channels
  - Chamber Pressure Drop Savings
  - Large Number of Coolant Channels More Uniform
     Temperature Distribution Through Liner
- Platelets Offer Design Flexibility
  - Complex Cooling Channel Designs
  - Ribbed Coolant Channels
  - Gas Side Wall Ribs Easily Incorporated
  - Lower Cost Fabrication

#### **Composite Material Application to Liquid Rocket Engines**

 Component Weight Savings up to 80% with Composite Material


• Engine Weight Savings up to 30% with 1980 Composite Technology


Future Savings to 45%
 Composite Material
 Substitution Technology
 Needs Development

 Reinforced Plastic Composites Selected for Cost, Fabricability, and Specific Strength

Metal Matrix Composites
to be Considered for High
Temperature Application

Contracts NAS 8-34623
 & NAS 8-33452





### Advanced Rocket Propulsion Structures and Materials Technology Issues Summary

| Engine           | Technology                                                                                                                                                                                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • MPE<br>APD     | <ul> <li>Jacket Box Bond</li> <li>Composite Material Substitution</li> <li>Plug Nozzle Material</li> <li>Lightweight Engine Vehicle Structure</li> <li>Advanced Regenerator Material</li> <li>O<sub>2</sub>-Rich /Augmenter</li> </ul>        |
| • Dual MR<br>P&W | <ul> <li>Oxidation Resistant Main Chamber Coating</li> <li>Active Turbine Cooling With H2</li> <li>Active Strain Management Chamber Structural Design</li> <li>Altitude Compensating Nozzle</li> <li>Dual Element Main Injector</li> </ul>    |
| • HPE<br>RI/RKD  | <ul> <li>Advanced High Temperature Wall Material</li> <li>Composite Structural Shell &amp; Nozzle</li> <li>Protected/Coated Carbon-Carbon Nozzle</li> <li>Cast Advanced Materials Injector</li> <li>Composite Cold &amp; Hot Ducts</li> </ul> |
| • DFDE<br>APD    | <ul> <li>Dual Chamber Assembly/Structure</li> <li>Oxidizer-Rich (Stoichlometric) Preburner</li> <li>Composite Material Substitution</li> </ul>                                                                                                |