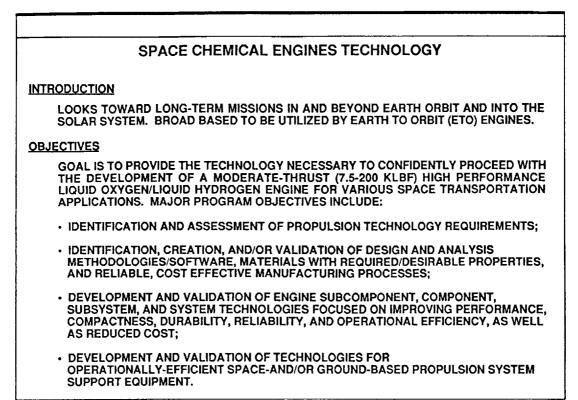
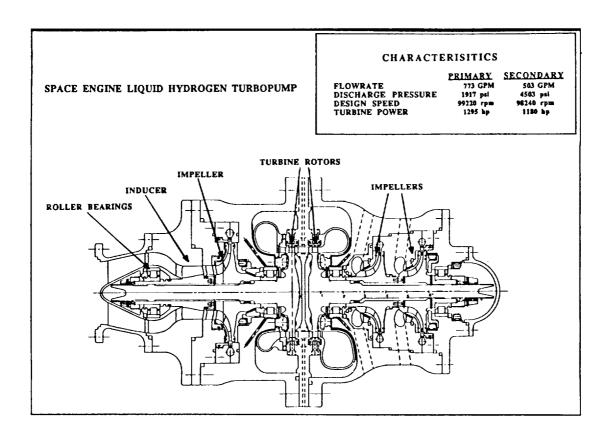
N93-22092

5.3 Space Propulsion – John Kazaroff, Lewis Research Center

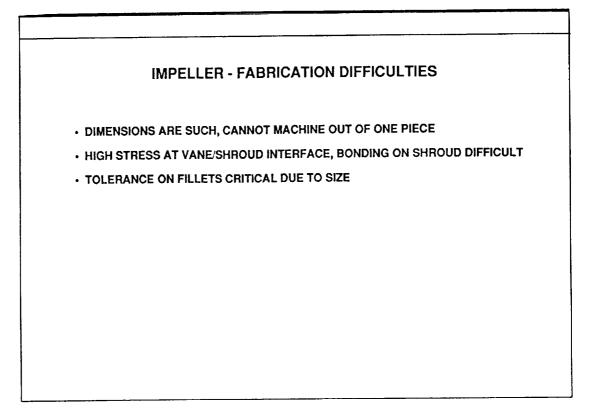
Lewis Research Center is developing broadbased new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO_2/LH_2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment.

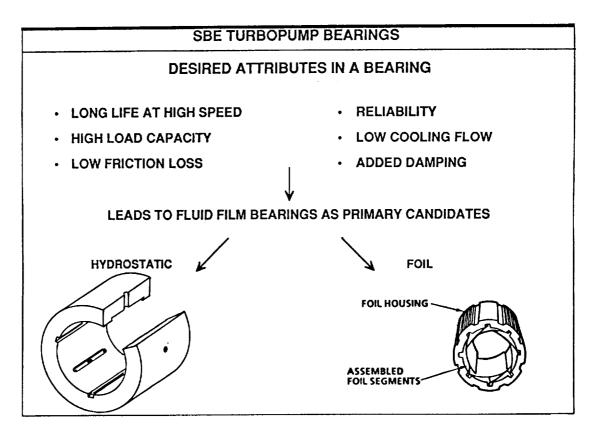
High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest.


Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO₂/LH₂ environment.


Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

SPACE PROPULSION


JOHN M. KAZAROFF AEROSPACE TECHNOLOGY DIRECTORATE NASA LEWIS RESEARCH CENTER


SPACE PROPULSION TECHNOLOGY DIVISION

SPACE PROPULSION TECHNOLOGY DIVISION

MOST IMPORTANT ISSUE IS ACCOMMODATING TRANSIENTS -THE <u>TURBOROTOR'S STARTS AND STOPS</u> WHERE NO PRESSURIZED

FLUID IS AVAILABLE AND WEAR IS MOST SEVERE

DIRECT SLIDING STARTS & STOPS OFFER SEVERAL ADVANTAGES

- NO NEED FOR SEPARATE BEARING PRESSURIZATION SYSTEM
- LESS ENGINE WEIGHT
- SIMPLER, FEWER PARTS

<u>NEED</u>

DURABLE MATERIALS/COATINGS THAT PROVIDE LOW WEAR/LUBRICITY IN LH₂ AND LOX ENVIRONMENTS

MATERIAL CONCERNS FOR SEALS IN SPACE BASED ENGINES		
OBJECTIVE: LOI CANDIDATE SEALS	NG LIFE, LOW LEAKAGE, LOW PO PROBLEMS	WER LOSS SEALS <u>APPROACH</u>
LOX SPIRAL-GROOVE FACE SEAL	 Oxygen Compatibility Floating Ring Must Have Low Inertia Wear During Start/Stop 	 Inconel 718 Runner with Silver Plate on Lands P5N Carbon Floating Ring
SOFT WEAR- RING SEAL	 Oxygen Compatibility Rubbing Contact Creates Ignition Source Uneven Wear Opens Clearance Large Debris 	 Frictional Ignition Tested VESPEL SP21 and KEL-F against MONEL K-500 Rotor in 300 PSI LOX at 17,000 RPM VESPEL SP21 Ignited KEL-F Did not Ignite KEL-F Generates Stringy Debris
BRUSH SEAL	 Hydrogen Compatibility Wear of Bristles Wear of Rotor/Coatings Frictional Heating Bonding Coatings to Rotor for Either LH₂ Use or 1500^oF GH₂ Use 	 Bristles made of Haynes 25 Will Test Bare Inconel 718 Rotor & Coatings of AL₂O₃, Silver, and Chrome Carbide in LH₂

SPACE PROPULSION TECHNOLOGY DIVISION

LONG LIFE RELIABLE CHAMBERS

- HIGH HEAT FLUX ENGINES NEED LONG LIFE MATERIAL FOR CHAMBERS
- LOW COST CONSTRUCTION
- PRESENT METHODS AND MATERIALS; CHANNEL AND ADVANCED COPPER ALLOYS
- OTHER METHODS AND MATERIALS BEING INVESTIGATED