N93-22097

ENTRY SYSTEMS PANEL

CO-CHAIRMAN DAN RASKY DON RUMMLER

BAPPORTEURS CHARLIE BERSCH SID DIXON

ENTRY SYSTEMS PANEL

GENERAL FINDINGS:

• LESSONS LEARNED FROM SHUTTLE:

- BRIDGE ESTABLISHED BETWEEN DEVELOPMENT CENTER (JSC), RESEARCH CENTERS (ARC, LARC), AND INDUSTRY (RI, LMSC, CORNING, MANSVILLE, 3M, LTV, UNION CARBIDE, HEXCEL) FOR SHUTTLE TPS
- NOT ALL TEST RESULTS ADEQUATELY ANALYZED OR, IN HINDSIGHT, COMPLETELY ENCOMPASSING ALL FAILURE MODES.
 - TILE SIP SEPARATION
 - SHOCK ON OMS POD EFFECTS ON AFRSI
 - -- OTHER EXAMPLES
- GAP HEATING EFFECTS FROM GROUND FACILITIES NOT TOTALLY INDICATIVE OF FLIGHT EXPERIENCE
- NEED TO DESIGN WITH OPERATIONS IN MIND (NOT JUST TO COST) EX: MOISTURE INTRUSION OF GR/EP, MANY OTHER EXAMPLES
- RSI DEVELOPED AS POINT DESIGN FOR MANEUVERING ENTRY VEHICLE OF HIGH $\ensuremath{\textit{LD}}$
- RSI 15 YEARS FROM INVENTION TO USE ON FLIGHT HARDWARE

ENTRY SYSTEMS PANEL

GENERAL FINDINGS (CONT):

- ENTRY SYSTEMS TECHNOLOGY NOT EASILY DIVORCED FROM SPECIFIC MISSION REQUIREMENTS
 - PEAK HEATING, DURATION OF HEATING
 - GROUND OR ON-ORBIT ASSEMBLY
 - REUSE REQUIREMENT
- NEED FAMILY OF TPS FOR VARYING VEHICLE PERFORMANCE REQUIREMENTS
- SHUTTLE FRSI, AFRSI, LRSI, HRSI, RCC
- AEROBRAKES MAY NEED ABLATORS OR C-C OR CMC OR RSI OR TBD DEPENDING ON MISSION
- FLIGHT TESTS ENABLING FOR MANNED AEROBRAKE VEHICLES
- AEROTHERMODYNAMICS ISSUES
- DEMONSTRATE ON-ORBIT ASSEMBLY/DEPLOYMENT/SERVICING
- DIFFERENCES FOUND IN GROUND TEST RESULTS
 - FLIGHT VS ARC JETS
 - JSC VS AMES ARC JETS

GENERAL FINDINGS (CONT):

- MATERIALS DATA NOT READILY AVAILABLE
 - NEED DATA BASE THAT IS CERTIFIED, MAINTAINED, ACCESSIBLE
 - NO ORGANIZATION WILLING TO FUND
- DESIGN PHILOSOPHY MUST CONSIDER GROUND HANDLING OF VEHICLE
 - ACCESSIBILITY TO EQUIPMENT AND STRUCTURE FOR INSPECTION AND SERVICING
- · U.S. TECHNOLOGY FOREIGN TECHNOLOGY TRANSFERS BOTH WAYS
 - U.S. BUYING FRENCH DEVELOPED MATERIAL TECHNOLOGY
 - METALLIC MULTIWALL TPS
 - -- DEVELOPED IN U.S. 1970's
 - ENHANCED IN GERMANY 1980's
 - -- ENHANCED CONCEPT CURRENT BASELINE ON PORTIONS OF SDIO SSTO
 - RUSSIANS AND FRENCH USING U.S. DEVELOPED TILE AND BLANKET TECHNOLOGY

ş

ENTRY SYSTEMS PANEL

GENERAL FINDINGS (CONT):

- BE WARY OF PRELIMINARY LOADS
- DON'T SKIP SUB-ASSEMBLY TESTING
- DESIGN FOR HANDLING, MAINTENANCE & REPAIR
- DON'T ALLOW DEVELOPMENT HISTORY TO VANISH
 - DOCUMENT DESIGN DRIVERS AND IMPLEMENTATION ISSUES

TPS CRITICAL NEED

- FLIGHT TESTING
 - DEMONSTRATE AERO-ASSIST TECHNOLOGIES
 - DEMONSTRATE ON-ORBIT ASSEMBLY/DEPLOYMENT
 - VALIDATE NEW TPS TECHNOLOGIES

ENTRY SYSTEMS PANEL

ENTRY SYSTEMS QUAD CHARTS

TECHNOLOGY ITEMS

- 1. TOUGHENED CERAMIC TPS
- 2. ADVANCED C-C's
- 3. FLEXIBLE TPS
- 4. METALLIC TPS
- 5. LIGHTWEIGHT ABLATORS
- 6. JOINTS, FASTENERS, SEAMS, etc...
- 7. TPS/STRUCTURAL INTEGRATION
- 8. TPS/SYSTEM RESOURCE INTEGRATION
- 9. INSPECTION, NDE, AND SMART MATERIALS
- 10. SIMPLIFIED CERT/RE-CERT
- 11. ENVIRONMENTAL COMPATIBILITY
- 12. ON-ORBIT ACTIVITIES
- 13. TEST FACILITIES
- 14. NEW MODELING CODES (INTERDISCIPLINARY)

DESCRIPTION: • DEVELOP DURABLE, REUSABLE SURFACE INSULATION WITH HIGHER STRENGTH AND TEMPERATURE CAPABILITY	PAYOFFS: • PROVIDES MORE DURABLE, LIGHTER WEIGHT, MORE REFRACTORY RSI
BACKGROUND & RELATED FACTORS: PRESENT RSI MATERIALS WERE DESIGNED WITH MINIMAL IMPACT RESISTANCE. HIGHER STRENGTH RSI ENHANCES DIRECT BOND CAPABILITY TOUGH NEW COATINGS AND/OR SURFACE TREATMENTS WILL ENHANCE DURABILITY ADVANCED FIBERS PROVIDE MORE REFRACTORY RSI	RECOMMENDED ACTIONS: NITTATE A PROGRAM TO IDENTIFY AND DEVELOP TOUGHENED COATINGS AND ADVANCED FIBERS PERFORM MATERIAL CHARACTERIZATION TESTS ON THE NEW RSI MATERIALS PERFORM THERMAL RESPONSE AND ARC PLASMA TESTS ON PROMISING CONCEPTS PERFORM TPS SYSTEMS TESTS THAT LEAD TO ACCEPTANCE FOR USE ON THE EMERGING STS VEHICLES

DESCRIPTION: • THIN, STRUCTURAL, OXIDATION-RESISTANT CARBON-CARBON (ORCC) COMPOSITES FOR TPS AND STRUCTURAL APPLICATIONS • LOW WEIGHT • DURABLE/REUSABLE • LOW MAINTENANCE AND REPAIR • TAILORED FOR SERVICE ENVIRONMENTS	PAYOFFS: • LIGHTWEIGHT, PASSIVE THERMAL PROTECTION FOR PROJECTED NASA PLANETARY MISSIONS • FABRICATION FACILITIES: • LIMITED COATING CAPABILITY, BUT CAN BE EXPANDED • FACILITY NEEDS DEPENDENT ON PARTICULAR MATERIAL SYSTEM
BACKGROUND & RELATED FACTORS:	RECOMMENDED ACTIONS:
 REINFORCED CARBON-CARBON (RCC) SHUTTLE LEADING EDGE AND NOSE CAP HAVE NO FLIGHT ANOMALIES 	DEVELOP IMPROVED CONCEPT FOR OXIDATION PROTECTION (COATINGS, INHIBITORS, SEALANTS, GLAZES)
 HIGHER SPECIFIC STRENGTH OF ACC DEMONSTRATED (UP TO 5X RCC) 	CONTINUE EFFORTS TO IMPROVE MECHANICAL PROPERTIES
ADVANCED ORCC COMPOSITES BASELINED AS TPS ON NASP X-30	INCREASE EFFORTS TO ADAPT/DEVELOP EFFECTIVE 'ONE-SIDE' NOE TECHNIQUES
DESIGN, FABRICABILITY, AND ASSEMBLY OF BUILT-UP STRUCTURE DEMONSTRATED FOR ADVANCED C-C	DENTIFY CRITICAL, LIFE-LIMITING TESTS FOR ADVANCED ORCC MATERIALS
MAJOR DEFICIENCY IS LONG-LIFE OXIDATION PROTECTION	FULL-SCALE TESTING OF COMPONENTS DOCUMENT PROCESS AND DESIGN ALLOWABLES

DESCRIPTION:	PAYOFFS:
• HIGHER TEMPERATURE FLEXIBLE INSULATIONS	• FLEXBLE INSULATIONS/STRUCTURES ARE USEFUL
(FELTS, QUILTS, WOVEN BLANKETS)	FOR ALL ENTRY SYSTEMS/STRUCTURES
BACKGROUND & RELATED FACTORS: • FLEXIBLE INSULATIONS OFFER EXCELLENT BENEFITS • LOW WEIGHT • MINIMUM CERTIFICATION INVESTMENT REQUIRED • LOWER LIFE CYCLE COSTS • NO ATTACHMENT HARDWARE • CURRENTLY AVAILABLE (USED) FLEXIBLE INSULATIONS ARE TEMPERATURE LIMITED • FRSI 700° F • AFRSI 1500° F • AVAILABLE ADVANCED HIGH TEMPERATURE FIBERS CAN SIGNIFICANTLY INCREASE TEMPERATURE CAPABILITY	RECOMMENDED ACTIONS: DEVELOP AND EVALUATE INORGANIC/ORGANIC YARNS, FABRICS, FELTS AND BLENDS MPROVE LOW COST FABRICATION METHODS DEVELOP FLEXIBLE CERAMIC COATINGS HAVING: HIGH TEMPERATURE RESISTANCE HIGH EMISSIVITY MOISTURE RESISTANCE AERODYNAMIC/VIBROACOUSTIC STABILITY DEVELOP HIGH TEMPERATURE, FLEXIBLE ADHESIVES TO TAKE ADVANTAGE OF WARM (HIGH TEMPERATURE COMPOSITE) STRUCTURES

DESCRIPTION: • METALLIC TPS MATERIAL & INTEGRATION DEVELOPMENT AND VALIDATION	PAYOFF/RESOURCES: • LIGHT WEIGHT, DURABLE TPS FOR EXTENDED WEATHER ENVIRONMENTS
BACKGROUND & RELATED FACTORS:	RECOMMENDED ACTIONS:
METALLICS OFFER POTENTIAL FOR MORE FLEXIBILITY N WEATHER ENVIRONMENTS	DETERMINE HIGH-TEMPERATURE STRENGTH & THERMAL PROPERTIES (STATIC TEST)
CURRENT TPS MATERIALS LIMIT FLIGHT THROUGH WEATHER ENVIRONMENTS METALLICS CAN WITHSTAND LIGHTNING STRIKES METALLICS OFFER HIGH MECHANICAL STRENGTH	TEST IMPACT RESISTANCE IN PARTICLE IMPINGEMENT TEST FACILITY CONFIRM/DETERMINE MINIMUM GAGE TOLERANCE/REQUIREMENT
METALLIC-TPS IS MECHANICALLY ATTACHED WITH BACK-FACE CLIPS	DEVELOPMENT OF LOW CATALYCITY, HIGH EMISSIVITY, COMPATIBLE COATINGS
CERAMIC TILES MUST BE ADHESIVELY BONDED NOT EASILY DETACHED/REPLACED	DETERMINE OXIDATION & CORROSION RESISTANCE
- SUBJECT TO DEBONDING MPAIRS INSPECTION OF STRUCTURE	TEST THERMAL PERFORMANCE AS INTEGRATED TPS PANEL (WITH INSULATION)
MPAIRS INSPECTION OF STRUCTORE METALLIC TPS IS WEIGHT-COMPATIBLE WITH CERAMICS & CMC TPS TECHNOLOGY	ACOUSTIC TOLERANCE EFFECTIVE CONDUCTIVITY HOT GAS FLOW PREVENTION EFFECTIVENESS

DESCRIPTION: • DEVELOP ADVANCED, LOW DENSITY, HIGH TEMPERATURE ABLATIVE TPS FOR ADVANCED EARTH AND PLANETARY ENTRY SPACECRAFT APPLICATIONS	PAYOFFS: • ENABLING TECHNOLOGY FOR RADIATION EQUILIBRIUM TEMPERATURE ABOVE 3000*F
BACKGROUND & RELATED FACTORS:	RECOMMENDED ACTIONS:
ABLATIVE TPS SUCCESSFULLY USED FOR MANNED	• DEVELOP NEW, ADVANCED LOW DENSITY ABLATION
VEHICLES. NO DEVELOPMENT SINCE	MATERIALS
APOLLOVIKING.	• IDENTIFY AND CHARACTERIZE ADVANCED ABLATION
ABLATOR TPS THERMAL PERFORMANCE	MATERIALS
PREDICTABLE	• DESIGN, FABRICATE ABLATIVE TPS
LIGHT WEIGHT TPS REQUIRED TO MAXIMIZE	• CHARACTERIZE THERMAL PERFORMANCE OF
PAYLOAD WEIGHT AND DECREASE COST	SUB-SCALE TPS PANEL IN ARC JET SIMULATION OF
UNEXPECTED THERMAL EXCURSIONS NOT CRITICAL	ENTRY ENVIRONMENT
AEROASSIST AND DIRECT ENTRIES FOR LUNAR AND	• UPDATE AND VERIFY ANALYTICAL MODELS
PLANETARY MISSIONS REQUIRE HIGH	• MODIFY ARC JET FACILITIES TO TEST LARGE
TEMPERATURE TPS	TPS PANEL

DESCRIPTION: • DEVELOPMENT OF SPECIAL TPS COMPONENTS: • JOINTS • FASTENERS • SEAMS • NOSETIP & LEADING EDGES	PAYOFFS: • ENABLING TECHNOLOGY FOR SPACE-ASSEMBLED TPS • REDUCE COST AND SCHEDULE IMPACTS ON FUTURE PROGRAMS
BACKGROUND & RELATED FACTORS: • SPECIAL TPS COMPONENTS HAVE HAD COST AND SCHEDULE IMPACTS ON EXISTING SYSTEMS: • SEAMS, JOINTS, FASTENERS, ATTACHMENTS, MOVING SURFACES AND ADHESINES ARE CRITICAL INTERFACES IN ALL TPS DESIGNS • VERY HIGH HEATING REGIONS SUCH AS NOSE TIPS AND LEADING EDGES REQUIRE SPECIAL DESIGN CONSIDERATIONS INCLUDING POSSIBLE USE OF HEAT PIPES	RECOMMENDED ACTIONS: • DESIGN, FABRICATE, AND TEST ADVANCED SPECIAL TPS COMPONENTS • MODIFY FACILITIES FOR TESTING THESE TPS COMPONENTS

DESCRIPTION: LIGHTWEIGHT, INSULATING CERAMIC MATRIX COMPOSITES (CMC): WARM STRUCTURE (BACKFACE TEMP 600°F) WHICH CONSISTS OF CONTINUOUS FIBER REINFORCED FACESHEETS WITH A REUSABLE SURFACE INSULATION CORE HARD BONDED TO A LOAD BEARING POLYIMIDE/GRAPHITE OR BMI SUBSTRATE HOT STRUCTURE (SANDWICH STRUCTURE), CONSISTS OF CONTINUOUS FIBER REINFORCED CMC FACESHEETS DIRECTLY BONDED TO AN RSI CORE. THIS CMC SANDWICH IS A LIGHTWEIGHT STRUCTURE FOR LOAD BEARING HOT STRUCTURE	PAYOFFS: • LIGHTWEIGHT, PASSIVE THERMAL PROTECTION FOR PROJECTED NASA SPACE FLIGHT MISSIONS • DAMAGE TOLERANT SURFACES • HIGH OXIDATION RESISTANCE
BACKGROUND & RELATED FACTORS:	RECOMMENDED ACTIONS:
 THE BASELINE GLASS COATED RSI MATERIALS ARE FRAGILE, HAVE MINIMAL STRENGTH, AND ARE LIMITED TO 2500° F USE TEMPERATURE 	IDENTIFY AND DEVELOP FUNCTIONALLY GRADIENT CORE MATERIALS THAT ARE COMPATIBLE WITH EXISTING CMC FACESHEETS
THE BASELINE RSI & RCC SYSTEMS REQUIRE LABOR INTENSIVE INSTALLATION PROCEDURES	DEVELOP PROCESSING METHODS TO COMBINE CMC FACE SHEETS WITH LOW DENSITY CORES
	PERFORM OVEN SOAK, THERMAL RESPONSE AND ARC JET SCREENING TESTS TO DETERMINE CONCEPT FEASIBILITY
	PERFORM MATERIAL CHARACTERIZATION TESTS ON THE PROMISING NEW LIGHTWEIGHT CMC STRUCTURES
	PERFORM THERMAL AND STRUCTURAL ANALYSIS OF THE CMC USING THE BASELINE DATA

DESCRIPTION: • WATER BASED COMPOSITE THERMAL PROTECTION SYSTEM AND STRUCTURE	 PAYOFFS: ELIMINATES COSTLY ASSEMBLY AND DEPLOYMENT TECHNIQUES DEMONSTRATION REQUIRED BEFORE SEI ARCHITECTURE FINALIZED TO TAKE ADVANTAGE OF WEIGHT AND COST SAVINGS
BACKGROUND & RELATED FACTORS: • WEIGHT AND COST OF PAYLOAD-TO-ORBIT KEY TO SEI FEASBILITY • SYNERGISTIC USE OF ON-BOARD RESOURCES MINIMIZES WEIGHT TO ORBIT, LE. WATERBASED POLYMER OR ICE MATRIX COMPOSITES UTILIZES RESOURCES NOW CONSIDERED EXPENDABLE • DEPLOYMENT AND RIGIDIZATION MINIMIZES MANPOWER AND ENERGY FOR ON-ORBIT FABRICATION OF AEROBRAKE STRUCTURES • WATER BASED SYSTEMS NONTOXIC	RECOMMENDED ACTIONS: PERFORM STUDIES OF WATER BASED POLYMERVICE MATRIX COMPOSITES: PROPERTIES, PROCESSES, FABRICATION OF COMPOSITE DESIGN FABRICATE AND TEST REPRESENTATIVE CONCEPTS DEMONSTRATE ON SHUTTLE OR SPACE STATION FOR DEPLOYMENT AND RIGIDIZATION ON ORBIT

DESCRIPTION: • NDT/NDE/SMART MATERIALS • DESIGN SHOULD ALLOW FOR SELF-ANALYSIS OF MATERIAL USING NOT/NDE OR SMART INSTRUMENTATION WITHIN (OR ATTACHED TO) THE MATERIAL	PAYOFFS: • LOWER LIFE CYCLE COSTS • INCREASED FUNDING REQUIRED TO INCLUDE ADDITIONAL TESTING AND EQUIPMENT DEVELOPMENT.
BACKGROUND & RELATED FACTORS: UNKNOWN AMOUNT OF OXIDATION/DAMAGE IN RCC SUSPECT RSI BOND CONDITION REQUIRES REMOVAL AND REPLACEMENT CURRENT NDE/BOND VERIFICATION LIMITED BY SCHEDULE/FUNDING NDE/TECHNIQUES REQUIRED TO PREVENT UNNECCESSARY REMOVAL AND REPLACEMENT ON-ORBIT INSPECTION IMPRACTICAL	RECOMMENDED ACTIONS: DEVELOP NOTADE DURING ORIGINAL DESIGNMANUFACTURE (BASELINE NEW INSTALLATION) DESIGN FAILURE INDICATORS INTO MATERIAL PERFORM TESTING TO VERIFY NDE/NOT/INDICATORS PERFORMANCE IN DETECTION.

1.00

DESCRIPTION: • REDUCE COMPLEXITY OF TPS CERTIFICATION/RECERTIFICATION	PAYOFFS: • TPS MODIFICATION AND DESIGN RELATED UPGRADES • TECHNOLOGY APPLICATION TO BOTH PRESENT, AS WELL AS FUTURE SPACECRAFT DESIGNS
BACKGROUND & RELATED FACTORS: PRESENT METHOD OF INCORPORATING DESIGN CHANGES COSTLY AND TIME CONSUMING OEX PROVIDED MEANS TO CERTIFY WITHOUT EXTENSIVE CERTIFICATION CERTIFICATION BY SIMILARITY PRESENT DRAWING CHANGES REQUIRED TREEING INTO TOTAL PACKAGE	RECOMMENDED ACTIONS: USE MODELING FOR ANALYSIS USE OEX DEVELOPED TECHNIQUES FOR CERTIFYING NEW MATERIALS CHANGE DOCUMENTATION BY ALLOWING CHANGES AT SUB-LEVELS USE SIMILARITY IN NON-CRITICAL AREAS STANDARDIZE RECERTIFICATION REQUIREMENTS (LE., MISSION REQUIREMENTS)

DESCRIPTION:	PAYOFFS:
• WEATHERPROOFING TPS AGAINST TERRESTRIAL	• MISSION FLEXIBILITY IN WEATHER ENVIRONMENTS
ENVIRONMENT	• REDUCED LIFE CYCLE COSTS
 BACKGROUND & RELATED FACTORS: RAIN, TAPWATER ABSORPTION INCREASES LAUNCH WEIGHT, CAUSES FREEZE DAMAGE TO TPS HAIL, ICE IMPACTS ERODE TPS - LOSS OF INTEGRITY PROTECTION (EITHER FACILITY AND/OR MATERIAL) PRESERVES INTEGRITY OF TPS DURING UNWANTED ENVIRONMENTS COMPATIBILITY OF OPERATING ENVIRONMENT (E.G., FUELS, VAPORS, ETC.) 	RECOMMENDED ACTIONS: • DEVELOP REUSABLE COATING/SYSTEM IMPERMEABLE TO IMPACT DAMAGE/WATER INTRUSION/REENTRY THERNAL ENVIRONMENT • DEVELOP SEALS, FLOW PATHS TO PRECLUDE ABSORPTION OF MOISTURE IN INTERNAL INSULATION • ASSESS REAL THREAT TO EACH ELEMENT • FACILITY DESIGN TO ACCOMMODATE ENVIRONMENT

DESCRIPTION: • DETERMINE LONG TERM SPACE EXPOSURE EFFECTS ON TPS FOR INTERPLANETARY VEHICLES	PAYOFF9: • ENABLING TECHNOLOGY FOR PLANETARY ENTRY TPS
BACKGROUND & RELATED FACTORS: • ATOMIC OXYGEN (A0) AFFECTS POLYMER MATERIALS AND COATINGS	RECOMMENDED ACTIONS: • DETERMINE LONG TERM EFFECTS OF VACUUM, AO, DEBRIS/DUST IMPACT, RADIATION
LONG TERM ENVIRONMENTAL DURABILITY UNKNOWN	DETERMINE COMPATIBILITY WITH OTHER SPACECRAFT SYSTEM MATERIALS/FUELS
RADIATION MAY DEGRADE MATERIALS, COATINGS, FILMS	DEVELOP PROTECTIVE SYSTEMS AND EVALUATE TPS PERFORMANCE
MATERIALS, COATINGS, FILM PROPERTIES MUST REMAIN PREDICTABLE OVER LONG TERM	
PARTICLE IMPACT CAN DAMAGE TPS	

ENABLING TECHNOLOGY IS REQUIRED FOR VERIFICATION AND CERTIFICATION OF SPACE
ASSEMBLED AND/OR DEPLOYED HARDWARE SYSTEMS.
REQUIRED 3-5 YEARS PRIOR TO SEI MISSIONS (LUNAR MISSION-2002, MARS MISSION -2020)
RECOMMENDED ACTIONS:
DEVELOP FLIGHT TEST PLAN AND ASSOCIATED ENTRY SYSTEM HARDWARE FOR DEMONSTRATION OF ON-ORBIT OPERATIONS OF ENTRY HARDWARE SYSTEMS WHICH MAY INCLUDE: DEPLOYMENT OF ENTRY SYSTEM STRUCTURE ASSEMBLY OF ENTRY SYSTEM STRUCTURAL COMPONENTS

Martin.

1

DESCRIPTION:	 PAYOFFS: PROVIDES RELIABLE THERMAL STRUCTURAL DATA
• DEFINE AND UPGRADE FACILITY CAPABILITIES FOR	BASE FOR NEW THERMAL PROTECTION SYSTEMS REQUIRED 10-15 YEARS PRIOR TO SEI MISSIONS
TPS TESTING	(LUNAR MISSION-2002, MARS MISSION-2020)
BACKGROUND & RELATED FACTORS: NO NEW ARC-JET FACILITIES IN 20 YEARS CURRENT ARC-JET FACILITIES NOT ADEQUATE TO TEST LARGE TPS SUBSYSTEMS ELEMENTS AT REPRESENTATIVE CONDITIONS CURRENT ARC-JET INSTRUMENTATION LIMITED TO INTRUSIVE FLOW MEASUREMENTS	RECOMMENDED ACTIONS: • UPGRADE ARC JET FACILITIES TD: • ACCOMMODATE LARGE SIZE TPS SUBYSTEM ELEMENTS • PROVIDE UNIFORM HIGH OUALITY FLOW • PROVIDE COMBINED RADIATIVE AND CONVECTIVE HEATING • PROVIDE APPROPRIATE PLANETARY GAS COMPOSITIONS (MARS, VENUS, TITAN) • UPGRADE ARC JET FACILITY INSTRUMENTATION TO MEASURE: • TUNNEL FLOW CONDITIONS AND CHEMISTRY USING NON-INTRUSIVE FLOW METHODOLOGY • TEST ARTICLE STRESS/STRAIN AT TEMPERATURE • SURFACE TEMPERATURE DISTRIBUTION • AERO/ACOUSTIC ENVIRONMENT

DESCRIPTION: • DEVELOPMENT OF INTERDISCIPLINARY MODELING CODES FOR ADVANCED THERMAL PROTECTION MATERIALS AND SYSTEMS WITH CAPABILITY TO HANDLE • MICRO-LEVEL MATERIAL EFFECTS • MATERIALS RESPONSE • TPS/STRUCTURAL RESPONSE • LIFE PREDICTIONS • AEROELASTICITY • DESIGN OPTIMIZATION	 PAYOFFS: ADVANCED CODE DEVELOPMENT AND VALIDATION IS AN ENABLING ACTIVITY FOR FUTURE VEHICLE DESIGN AND DEVELOPMENT SUBSTANTIAL INCREASES IN COMPUTATIONAL RESOURCES REQUIRED EARLY IN DEVELOPMENT CYCLE ADVANCED INSTRUMENTATION AND FACILITY UPGRADES REQUIRED TO GENERATE BENCHMARK DATA 5-10 YEAR DEVELOPMENT TIME
BACKGROUND & RELATED FACTORS: • ABLATIVE MODELING CODES ARE 10-20 YEARS OLD • INTERDISCIPLINARY APPROACHES ARE ESSENTIAL FOR VEHICLE MULTH-PARAMETER OPTIMIZATION • COUPLING TO ADVANCED CFD CODES RECURED FOR COMPLETE SYSTEM RESPONSE MODELING	RECOMMENDED ACTIONS: • ESTABLISH WORKING RELATIONSHIP BETWEEN CFD, CSM, AND COMPUTATIONAL MATEIRALS COMMUNITIES • SUPPORT COMPUTATIONAL RESOURCES AND CODES DEVELOPMENT ACTIVITIES • GENERATE NECESSARY BENCHMARK DATA FOR MULTIDISCIPLINARY CODE VALIDATION

ENTRY SYSTEMS PANEL TPS IMPROVEMENTS WILL FULFILL FUTURE PROGRAM NEEDS

IMPROVED PERFORMANCE SAFETY/RELIABILITY

LOWER OPERATING COST

HAZARD RISK REDUCED THROUGH IMPACT RESISTANCE & HIGHER TEMPERATURE CAPABILITY

MARGINS INCREASED THROUGH IMPLEMENTATION OF HIGHER STRENGTH MATERIALS OPERATIONAL COST REDUCED THROUGH IMPROVEMENTS IN TPS THERMAL CAPABILITY & DURABILITY (IMPROVED MAINTAINABILITY)

TURNAROUND TIME DECREASED INCREASED CAPABILITY/ SUPPORTABILITY

VEHICLE CAPABILITY IMPROVED THROUGH USE OF LIGHTER WEIGHT TPS MATERIALS

FLIGHT PERFORMANCE MARGINS INCREASED BY REDUCING SUSCEPTIBILITY OF TPS TO WEATHER DAMAGE