N93-22100

ORBITER LESSONS LEARNED A GUIDE TO FUTURE VEHICLE DEVELOPMENT

presented at Space Transportation Materials and Structures Technology Workshop

at Newport News, Virginia, September 24, 1991

by Rockwell International - H. Stan Greenberg

Need - Wind persistence loads methodology

BACKGROUND

© SPACE SHUTTLE WAS DESIGNED TO A SYNTHETIC WIND ENVIRONMENT FOR HIGH Q PORTION OF FLIGHT

0 LAST WIND MEASUREMENT TAKEN 2 HOURS BEFORE LAUNCH

• INITIAL ESTIMATES GROSSLY UNDERESTIMATED WIND PERSISTENCE (VARIABILITY)

ACCOMPLISHMENTS

0 THOROUGH ASSESSMENTS OF WIND PAIRS INDICATE THE METHOD OF ANALYSIS IS CRITICAL TO MAGNITUDE OF WIND PERSISTENCE

0 WIND PAIRS CAN BE EVALUATED AT CONSTANT MACH NUMBER, AT PEAK LOAD, OR AT MINIMUM MARGIN

FUTURE NEED

• ASSURE THAT WIND PERSISTENCE IS PROPERLY DEVELOPED FOR VEHICLE DESIGN

0 USE MINIMUM MARGIN APPROACH IN STATISTICAL DETERMINATION OF PERSISTENCE LOAD INCREMENT AT LAUNCH ASSESSMENT

Need - Emphasize Supportability in Design of Reusable Vehicles

BACKGROUND

0 1970'S ORBITER DESIGN - SUPPORTABILITY AT KSC REPRESENTS SIGNIFICANT FACILITY (OPF) AND MANPOWER COSTS - TURNAROUND TIME IS APPROXIMATELY 2 MONTHS

© ALL FUTURE REUSABLE VEHICLES REQUIRED REDUCED SUPPORTABILITY COST AND SOME REQUIRE MORE RAPID TURNAROUND TIME

FUTURE NEEDS

0 EMPHASIZE SUPPORTABILITY ENGINEERING IN INTEGRATED SYSTEMS DESIGN PROCESS - IN PARTICULAR EASE OF SUBSYSTEMS REMOVAL/REPLACEMENT

O DESIGN FOR EASE OF ACCESS AND INSPECTION - CREATIVELY USE GSE

© EMPHASIZE DURABILITY AND MAINTAINABILITY IN STRUCTURES MATERIALS, CONSTRUCTION, AND CONFIGURATION DESIGN

O DEVELOP NEW AND AUTOMATED INSPECTION TECHNIQUES

ļ

Need - Design for Robustness

BACKGROUND

O DESIGN MARGINS ARE SMALL FOR HIGH Q BOOST PHASE

• PRE-FLIGHT PREDICTIONS OF THE PROBABILITY OF HAVING ACCEPTABLE WINDS FOR SAFE LAUNCH WERE LOW ENOUGH TO BE A SIGNIFICANT PROGRAM CONCERN

• EVOLVING MISSIONS WITH NEW PAYLOADS AND TRAJECTORIES ARE IDENTIFYING VENT PRESSURES OUTSIDE CERTIFIED PRESSURE ENVELOPES

ACCOMPLISHMENTS

 \circ DEVELOPED THE CAPABILITY TO MODIFY THE FLIGHT TRAJECTORY AND TO PERFORM REAL TIME ANALYSIS OF THE BALLOON DATA

 ${\rm o}$ PERFORMED DETAILED ANALYSIS FOR EACH MISSION TO ASSESS STRUCTURAL SUITABILITY TO VENT PRESSURE

FUTURE NEED

o A SYSTEMS ENGINEERING APPROACH CONSIDERING ALL ASPECTS OF LAUNCH PROCEDURES, WIND PERSISTENCE, ENTRY AND LANDING AND FUTURE MISSION PARAMETERS TO EFFECT A MORE ROBUST DESIGN - PERFORMANCE VS OPERATIONAL FLEXIBILITY

Need - Improved aerodynamic environment prediction methods for complex vehicles

BACKGROUND

• EARLY FLIGHTS INDICATED UNEXPECTED WING BENDING - ATTRIBUTED TO AERODYNAMIC COMPLEXITY OF MATED VEHICLE AND THRUST PLUME EFFECTS

• WING STRAIN GAGE FLIGHT DATA INDICATED DISCREPANCIES WITH AERODYNAMIC ANALYSIS PREDICTIONS - ATTRIBUTED TO PLUME EFFECTS

0 ANALYSIS AND WIND TUNNEL DATA IDENTIFIED NON-UNIFORM PRESSURE DISTRIBUTION AROUND FUSELAGE DUE TO RAPIDLY MOVING SHOCK WAVES

ACCOMPLISHMENTS

0 DEVELOPMENT OF ANALYSIS OF MATED VEHICLE WITH PLUME EFFECTS - WIND TUNNEL TESTING WITH PLUMES - UPDATE OF AERODYNAMIC DATA

 INCREASED INTERACTION BETWEEN AERODYNAMICS AND STRUCTURES THROUGH FEM ANALYSIS

FUTURE NEEDS

o DEVELOP RAPID/ACCURATE AERODYNAMIC PREDICTION TOOLS

• IMPROVED TECHNIQUES FOR SCALING OF WIND TUNNEL DATA AND LOW COST FLIGHT INSTRUMENTATION FOR ANALYSIS VERIFICATION

Need- Automated integration of aerothermal, manufacturing, and structures analysis

BACKGROUND

0 TPS TILE GAPS AND STEPS INFLUENCE TRANSITION FROM LAMINAR TO TURBULENT FLOW - INCREASED HEATING

0 FLIGHT TEMPERATURE MEASUREMENTS INDICATED GRADIENTS IN EXCESS OF PREDICTIONS - CONSERVATIVE MAXIMUM TEMPERATURE PREDICTIONS CAN MASK HIGH GRADIENT CONDITIONS

ACCOMPLISHMENTS

0 REFINED THERMAL ANALYSIS CHARACTERIZATION OF TPS GAPS, STEPS AND STRUCTURE MODEL - FLIGHT MEASUREMENT DATA USED

• DEVELOPMENT OF COMPREHENSIVE ANALYSIS METHODOLOGY - MISSION HEATING PARAMETERS TO MARGIN OF SAFETY - PARTIALLY AUTOMATED

FUTURE NEED

O DEVELOP RAPID AND ACCURATE AUTOMATED ANALYSIS FROM MISSION HEATING PARAMETERS AND AERODYNAMIC PRESSURES TO MARGIN OF SAFETY - INCLUDE MANUFACTURING/STRUCTURAL IMPOSED GAPS AND STEPS

Need - Continued development of durable TPS

BACKGROUND

© ORBITER TPS SYSTEMS ACCOMPLISH MISSION PERFORMANCE GOALS WITH LIGHTWEIGHT, STATE OF THE ART BOND-ON FRSI, AFRSI, COATED CERAMIC TILES AND CARBON-CARBON LEADING EDGES

© ORBITER SUPPORTABILITY EXPERIENCE IN REGARD TO DEBRIS IMPACT, WIND RAIN/ EROSION, AND ACTIVITY AT HIGH SYSTEMS MAINTENANCE REGIONS INDICATE THE DESIRABILITY OF MORE DURABLE TPS

ACCOMPLISHMENTS

O DEVELOPED PBI, HTP CERAMIC TILE COATED WITH TUFI AND ACC - SIGNIFICANT INCREASE IN DURABILITY WITH COMPARABLE WEIGHT

FUTURE NEEDS

© SOME VEHICLE SYSTEMS REQUIRE OPERATION IN MUCH MORE SEVERE WIND/RAIN ENVIRONMENTS

© EASE OF REPLACEMENT IS DESIRABLE AND FACILITATES STRUCTURE INSPECTION

© CONTINUE ONGOING DEVELOPMENTS OF MORE DURABLE TILE , METALLICS, BLANKETS AND ACC FOR MINIMUM SUPPORTABILITY

Need - Continued Electronic Documentation of Structural Design and Analysis

BACKGROUND

0 1970'S ORBITER STRUCTURES DOCUMENTATION COMPRISED OF HAND PREPARED DRAWINGS, ANALYSIS REPORTS, TYPED SPECIFICATIONS -CONSIDERABLE VOLUME OF DOCUMENTS

• CONTINUING DEVELOPMENT OF INTEGRATED COMPUTER DESIGN TECHNIQUES SUCH AS IDEAS, CATIA, NASTRAN FEM, ANALYSIS SUBROUTINES REDUCE ENGINEERING HOURS BUT ARE IN ELECTRONIC FORM

0 THE MAGNITUDE OF ELECTRONIC DATA FOR A PROGRAM SUCH AS SHUTTLE WILL BE ENORMOUS

FUTURE NEED

• DEVELOP APPROACHES TO ELECTRONIC DOCUMENTATION THAT ARE FEASIBLE, EFFICIENT AND SATISFACTORY TO BOTH CONTRACTOR AND GOVERNMENT AGENCIES

Need - Landing gear rollout load simulations

BACKGROUND

 ${\rm o}$ ORBITER AND OTHER AIRCRAFT GEAR SYSTEMS ARE DESIGNED BY MILITARY SPECIFICATIONS AND FAR 25

0 ORBITER EXPERIENCE INDICATES FLIGHT CONTROL AND GEAR SYSTEM COUPLING DURING ROLLOUT CAN IMPOSE GEAR LOADS IN EXCESS OF SPECIFICATION REQUIREMENTS

ACCOMPLISHMENTS

• ACCURATE FLIGHT CONTROL SYSTEM INCORPORATED INTO LANDING GEAR LOADS SIMULATION

0 MONTE CARLO ASSESSMENT IS PERFORMED TO DETERMINE REALISTIC 3-SIGMA LIMIT LOADS

FUTURE NEED

0 INCLUDE MINIMUM CONTROL SURFACE OSCILLATIONS IN PRELIMINARY LANDING GEAR ROLLOUT LOAD SIMULATIONS TO BOUND CONTROL AND GEAR SYSTEM INTERACTIONS

20 years of Technology development could result in Orbiter Structure of

o ALUMINUM LITHIUM CREW COMPARTMENT

o GRAPHITE /BMI FUSELAGE, WING, TAIL, AND CARGO BAY DOORS (450°F INNER MOLD LINE TEMPERATURE)

o ACC ON LEADING EDGE, NOSE CAP, AND CONTROL SURFACES

O DIRECT BONDED HTP ON LOWER SURFACE (WITHOUT SIP)

© ONTO REMAINING FUSELAGE SURFACES - NEXTEL BLANKET INSULATION OR PBI OR FRSI ACCORDING TO TEMPERATURE LIMITS

o CARBON FIBER OVERWRAPPED PRESSURE VESSELS

1. 100-1010

A DAMA NO.