

Structures and Mechanics Division

Donald M. Curry

September, 1991

SPACE ASSEMBLED ENTRY SYSTEMS CERTIFICATION

Donald M. Curry

Structures and Mechanics Division

Donald M. Curry

September, 1991

ISSUE:

• HOW DO YOU SAY YOU'RE "GOOD FOR GO" IF YOU SPACE ASSEMBLE AN ENTRY VEHICLE?

SPACE	ASSEMBLED	
ENTR	Y SYSTEMS	

Structures and Mechanics Division

Donald M. Curry

September, 1991

APPROACH:

- SHUTTLE ORBITER THERMAL PROTECTION CERTIFICATION
- SHUTTLE THERMAL PROTECTION SYSTEM FLIGHT EXPERIENCE
- SPACE ASSEMBLED ENTRY SYSTEM CERTIFICATION

Structures and Mechanics Division

Donald M. Curry

September, 1991

ORBITER TPS CERTIFICATION PROCESS

- TESTS
 - THERMAL PERFORMANCE
 - AERODYNAMIC FLOW
 - ACOUSTIC FATIGUE
 - STRENGTH INTEGRITY
 - MATERIAL PROPERTIES
- ANALYSIS
 - NATURAL ENVIRONMENTS
 - INDUCED ENVIRONMENTS
 - MISCELLANEOUS
- SIMILARITY
- COMMIT-TO-FLIGHT

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

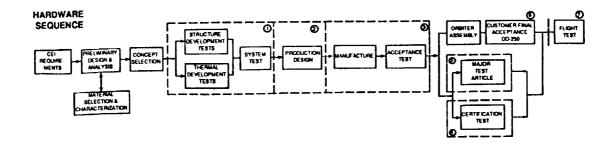
Donald M. Curry

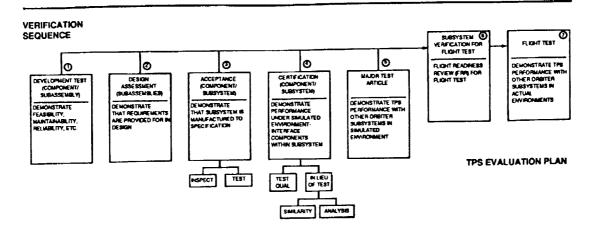
September, 1991

ORBITER TPS ENVIRONMENTS FOR CERTIFICATION

Natural Environments
Temperature - Atmospheric
Thermal - Vacuum
(Solar Radiation - Thermal)
Pressure
Fungus
Meteoroids
Humidity
Lightning

Ozone Rain Salt Spray Sand/Dust


Solar Radiation - Nuclear


Wind

Induced Environments
Temperature
 Ascent Heating
 On-Orbit and Entry Heating
Pressure
Acoustics
Shock
Random Vibration
Structural Loads
Limit and Utilmate

Miscellaneous Environments Life - Full and Limited Fluid Compatibility

Acceleration

SPACE ASSEMBLED	Structures and Mechanics Division	
ENTRY SYSTEMS	Donald M. Curry	September, 1991

- SHUTTLE TPS FLIGHT EXPERIENCE
 - IMPACT DAMAGE
 - GAP FILLER DAMAGE
 - WINDOW CONTAMINATION

SPACE	ASSEMBLED
ENTR	Y SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

ORBITER TPS FLIGHT EXPERIENCE IMPACT DAMAGE

- STATIC AREAS
- DYNAMIC INTERFACES

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

ORBITER TPS FLIGHT EXPERIENCE GAP FILLER DAMAGE/TILE SLUMPING

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION OF SPACE ASSEMBLED ENTRY SYSTEM

- SCOPING OUT THE ENVIRONMENT
 - . TEMPERATURES SURFACE, STRUCTURES
 - VIBROACOUSTIC/AEROSHOCK
 - AIRLOADS
- . HOW THE VEHICLE IS DESIGNED
 - IDENTIFY CRITICAL LOCATIONS
 - TEMPERATURE
 - LOADS
 - MARGINS OF SAFETY
 - . MATERIALS DATA BASE
- HOW THE VEHICLE IS BUILT/ASSEMBLED
 - CRITICAL PROCESSING PARAMETERS
 - . INSPECTION POINTS/RIGOR
 - ACCEPTANCE CRITERIA
 - · REPAIRS/MAINTAINABILITY
- FLIGHT EXPERIENCE
 - LESSONS LEARNED
 - FLIGHT TEST
 - ANOMALY RESOLUTION

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

FACTORS THAT INFLUENCE TPS DESIGN

Maturity

Density

Aerothermal (Temperature)

Strength(Airloads/Vibroacoustic)

Outgassing

Oxidation Resistance

Atomic

Diatomic

Damage Tolerance/Impact Resistance

Repairability

Refurbishment

Long Term Space Exposure

Multi-use

Man-rated

Size Limits - Fabrication

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION - KEY ISSUES

- DESIGN/ASSEMBLY
 - GAP HEATING IN JOINT REGIONS BETWEEN SEGMENTS
 - SEAL PERFORMANCE AT INTERFACES
 - PREVENTION OF HOT GAS/RADIATION LEAKS
 - TPS PENETRATIONS

SUCH DESIGN PROBLEMS ARE NOT REALISTICALLY ASSESSED UNTIL A REQUIREMENT EXISTS TO "FLY THE SYSTEM."

- MATERIALS
 - DAMAGE TOLERANCE/IMPACT RESISTANCE
 - LONG TERM SPACE EXPOSURE

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION - METHODS

- UTILIZATION OF EXISTING DATA BASE
 - Analytical Methods
 - Ground Test Results
 - Flight Tests
- GROUND-BASED TESTING OF SPACE ASSEMBLED ENTRY SYSTEM CONCEPTS
 - Ability to simulate environment
 - Lack of correlation with actual flight environment
- ANALYTICAL CERTIFICATION
 - Verified models using available flight and ground test data
 - Aeroassist Flight Experiment (AFE) data

Structures and Mechanics Division

Donald M. Curry

September, 1991

CERTIFICATION - METHODS (cont.)

- FLIGHT TEST OF A SPACE ASSEMBLED ENTRY SYSTEM
 - Forces disciplined Design and Fabrication
 - Encourages acceptance of new (revolutionary) concepts
 - Addresses complex problem of mutual interactions within system
 - Acquires vital quantitative data not available through ground test

SPACE ASSEMBLED ENTRY SYSTEMS

Structures and Mechanics Division

Donald M. Curry

September, 1991

SUMMARY

- Significant advances have been made in the design, fabrication, certification and flight tests of entry systems (Mercury through Shuttle Orbiter).
- Shuttle experience has identified some key design and operational issues.
 - Space assembled entry system certification/verification
 - Demonstration of advanced technology
 - Attention to vehicle design, fabrication and assembly
 - Flight experience

Structures and Mechanics Division

Donald M. Curry

September, 1991

ORBITER TPS FLIGHT EXPERIENCE WINDOW HAZING/CONTAMINATION

10.3.2 Thermal Protection System of the Space Shuttle Orbiter by F.E. Jones, NASA KSC