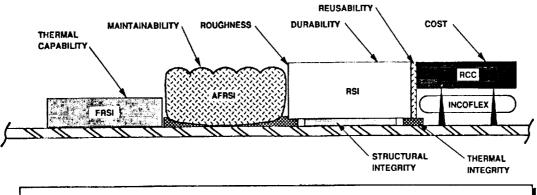
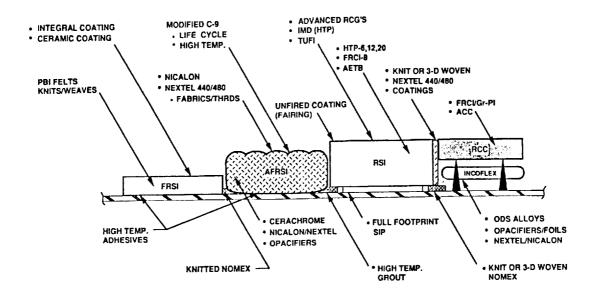
V93-22108

-REENTRY SYSTEMS-MATERIAL TECHNOLOGY NEEDS


Rockwell International Space Systems Division R. M. (MIKE) EHRET M&P ENGINEERING & LABS SPACE SYSTEMS DIVISION 9/24/91

BACKGROUND IN ENTRY SYSTEMS

- MIKE EHRET MATERIALS ENGINEER
- 23 YEARS ROCKWELL SPACE DIVISION
 - SATURN S-II
 - SPACE SHUTTLE ORBITER
- MANAGER: MATERIALS & PROCESSES
 - ENGINEERING & LABORATORIES
- ENTRY SYSTEMS BACKGROUND
 - STRAIN ISOLATION
 - TILE DENSIFICATION
 - FRCI TILE CERTIFICATION
 - AFRSI DEVELOPMENT
 - WATER PROOFING
- PERSONAL PERSPECTIVES:
 - DESIGN (PERFORMANCE)
 - BUILD
 - OPERATIONS
 - MAINTAINABILITY


POTENTIAL IMPROVEMENTS EXIST WITHIN CURRENT ORBITER TPS SYSTEM

700 F	1,500 F	2,300 F	3,200 F
\$650/FT2	\$2,000/FT2	\$10,000/FT ²	\$30,000/FT ²
0.15 - 0.25 LB/FT ²	0.62 - 1.25 LB/FT 2	0.90 - 3.5 LB/FT 2	7.4 LB/FT2
3.000 FT 2	3,000 FT 2	5,000 FT 2	400 FT 2

EXISTING SYSTEM IS FUNCTIONAL BUT MAY NOT BE MOST COST-EFFECTIVE

ADVANCED TPS OPPORTUNITIES

TPS MATERIAL ENHANCEMENTS ARE FEASIBLE

MATERIAL/CONCEPT	BENEFITS	TECHNOLOGY GAPS	TRENDS
RIGID TPS: (I.e., AETB, HTP, ACC- HARDSHELL, METALLIC STANDOFF, TUFI COATING, TITANIUM MULTIWALL, IMD, SOL-GEL RCG)	HIGHER STRENGTH HIGHER TEMPERATURE IMPACT RESISTANT LIGHTER WEIGHT ADJUSTABLE DENSITY	PRODUCTION SCALE-UP AVAILABILITY MAINTAINABILITY COATINGS COATINGS APPLICATION INDUSTRY DATA BASE MECHANICAL PROPERTIES INSTALLATION PROCEDURES	LIGHTER WEIGHT DURABLE COATINGS MATERIAL CONSISTENCY HIGHER TEMPERATURE TAILORED DENSITIES STRONGER
FLEXIBLE TPS: (I.e., TABI, PBI)	INCREASED TEMPERATURE TAILORABLE PROPERTIES PRODUCT FORMS LOWER COST THAN RIGID REDUCED VULNERABILITY	PRODUCTION SCALE-UP COATINGS IN-SERVICE USE INDUSTRY DATA BASE	CONSTRUCTION METHODS FIBER TREATMENT OPTIMIZATION MIXING FIBER BLENDS USED IN LIEU OF RIGID HIGHER TEMPERATURE
FOAMS/ABLATORS: (I.e., SOFI, NCFI, SLA 561, POLYIMIDE, POLYMETHACYLIMIDE)	LOWER COST vs TILE FORMABLE HIGH DIMENSIONAL STABILITY UNDER HEAT FIRE RESISTANCE EXCELLENT RADIATION TRANSMISSION	IMPROVED MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE LIGHTWEIGHT SANDWICH CONSTRUCTION PRODUCTION SCALE-UP AVAILABILITY INDUSTRY DATA BASE	NON-CFC BLOWN LIGHTER WEIGHT IMPROVED HEAT TRANSFER PROPERTIES IMPROVED FABRICATION
REFRACTORY COMPOSITES: (I.e., ACC, C-C, SiC, SIC-SIC	HIGH TEMPERATURE LOAD CARRYING AT HIGH TEMPERATURE WEIGHT SAVINGS DIMENSIONALLY STABLE	INSPECTION COATING REPAIR HIGH TEMP COATINGS LOW COST JOINING COMPLEX STRUCTURES IN-SERVICE	OXIDATION RESISTANCE THERMALLY STABLE FIBERS IMPROVED MATRIX AUTOMATED PROCESSING

361

سى - ى

NEEDS

- LIGHTWEIGHT AND DURABLE RIGID INSULATION AND HIGHER
 TEMPERATURE FLEXIBLE MATERIALS
- INSPECTION, REPAIR, PRODUCIBILITY, AND MAINTAINABILITY OF REFRACTORY COMPOSITES

DIRECTION OF EFFORTS

- FUNDING BASE IS RELATIVELY SMALL FOR FUTURE YEARS
- TO MAXIMIZE RETURNS, COLLABORATIVE PROGRAMS APPEAR TO BE PRACTICAL
 - SSD'S APPROACH IS TO IMPLEMENT NASA DEVELOPED TECHNOLOGY

SPACE TRANSPORTATION STRUCTURES AND MATERIALS WORKSHOP

ENTRY SYSTEMS PANEL

í.

- DON'T DESIGN A SPACECRAFT AS THOUGH IT WILL BE TREATED LIKE A SPACECRAFT
- DON'T BELIEVE PRELIMINARY LOADS
- DON'T ALLOW MATERIALS R&T HISTORY TO VANISH
- DON'T CERTIFY WITHOUT SYSTEM LEVEL TESTS
- DON'T BELIEVE THAT THE DESTROYER OF "GOOD" IS "BETTER"
- DON'T BUILD ANYTHING NEW WITH SOA MATERIALS TECHNOLOGY