N93-22109

10.3.4 Thermal Protection Systems for All-Weather Reusable Launch Vehicles by Marc J. Giegerich, McDonnell Douglas Space Systems Company

that is a straight and a set of the set of t •

_

۰.

THERMAL PROTECTION SYSTEMS FOR ALL-WEATHER, REUSABLE LAUNCH VEHICLES

BY MARC J. GIEGERICH McDONNELL DOUGLAS SPACE SYSTEMS COMPANY

PRECEDING PAGE BLANK NOT FILMED

365

Thermal Protection System Technology Needs

Support Current and Future Launch, Reentry and Planetary Vehicles

- Lightweight, High-performance, Low-maintenance
- * Weather resistant (humidity, rain, hail, lightning, etc.)
- * High resistance to oxidizing environments (ETO/OTE)
- * Ease of Attachment/Removal
 - Minimum number of attachment points
 - Minimum tooling required
 - Minimum down-time impact
 - Minimum disturbance to flowfield
- * Rugged Construction Method
 - Accidental ground-handling damage
 - In-flight damage tolerance
- * Well-characterized Inspection Methods
 - Visual (quick turnaround)
 - Non-visual (regular maintenance)
 - Non-visual (vehicle overhaul)

Launch and Entry System Technology Gaps

Long-term, reusable thermal protection materials

- * Recently developed materials (CMC's, metallics, ceramics, etc.) require ground and flight testing - Requires sharing of risks between Industry, Vendors and Government
- * Basic Material Properties which need verification/quantification
 - Long-term degradation of thermal, optical and structural properties
 - Catalytic reaction rates in high-temperature, low pressure dissociated flow
 - Lightning strike damage tolerance
 - Acoustic fatigue
 - Flutter (including coating behavior)
 - Impact resistance (rain, hail, meteorite, etc.)
- * Load-Carrying Hot Structures and Control Surfaces
 - Fabrication and bonding/attachment of large scale panels
- * Lightweight fabrication techniques of ceramic matrix composites
 - Rigid construction methods that rival metallics
 - Sandwich, fluted core, bi-directional stiffeners, etc.

Suggested Discussion Topics

On-Orbit Repair Modes/Options

- Vacuum bonding/bandages
- Durability
- Inspection

Attachment Techniques and Issues

- Internal vs. external attachments
- Long-term degradation of attachment hardware
- Composite attachment hardware
- Detachment/reattachment
- Heat-short paths

Ground Handling

- Inspection Requirements and Methods
 - Visual/Non-visual
 - TPS life assessment
- Repairs/Replacements

10.3.5 Thermal Protection Systems for Aerobrakes by Stephen S. Tompkins, NASA LaRC

4 -

· · · · · · · · · · · ·