
"7.t

A FAULT-TOLERANT INTELLIGENT ROBOTIC CONTROL SYSTEM

Neville I. Marzwell

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

Kam Sing Tso

SoHaR Incorporated

Beverly Hills, CA 90211

;... 1o

ABSTRACT

This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control

system being developed for space and commercial applications that require high dependability.

The comprehensive strategy integrates system level hardware/software fault tolerance with task

level handling of uncertainties and unexpected events for robotic control. The underlying archi-

tecture for system level fault tolerance is the distributed recovery block which protects against

application software, system software, hardware, and network failures. Task level fault tolerance

provisions are implemented in a knowledge-based system which utilizes advanced automation

techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from

unexpected events. The two level design provides tolerance of two or more faults occurring se-

rially at any level of command, control, sensing, or actuation. The potential benefits of such a

fault tolerant robotic control system include: 1) a minimized potential for damage to humans, the

work site, and the robot itself, 2) continuous operation with a minimum of uncommanded motion

in the presence of failures, 3) more reliable autonomous operation providing increased efficiency

in the execution of robotic tasks and decreased demand on human operators for controlling and

monitoring the robotic servicing routines.

INTRODUCTION

The reliability issue must be addressed before robotic systems can be dependably used in critical appli-

cations such as servicing the Space Station Freedom and patient monitoring and tending tasks in medical

facilities. This paper describes a comprehensive approach which integrates the handling of hardware, soft-
ware, communication, and operational errors in robotic systems. Although some work has been done on

the handling of uncertainties and unexpected events during task execution [1, 2, 3, 4], there has been little
research on the handling of system level hardware and software failures in robotics. The research addresses

this void by means of a comprehensive strategy for integrating system level hardware/software fault tolerance

with task level handling of uncertainties and unexpected events.

Table 1 shows our integrated approach to robotics fault tolerance. Errors are handled on two levels: the

system level which includes the computers and other hardware, control software, and communications, and

the task level which includes anomalies and uncertainties associated with the physical environment during

task execution. Examples of faults, errors and recovery, together with the general fault tolerance strategy

and our specific approach to handling them are shown for each of these levels.

In our terminology a failure is a difference between the actual behavior of a system and the expected

behavior. An error is an undesired system state and a fault can be considered as a low-level failure of some

subsystem. In other words, a fault causes the system to get into an error state and the failure behavior is a

manifestation of the error state. For example, a faulty motor caused a servo gripper stuck at an erroneous

open position which led to the failure to grasp an object.

There are four main classes of errors that can be identified in a robotic control system. These are hardware

errors, software errors, communications errors, and operational errors [5].

,, Hardware errors occur in all kinds of mechanical and electrical mechanisms, in control systems, in
sensory devices, and in electronic and computer systems. They are caused either by component failure

101

Level

System

Table 1: Integrated Approach to Robotics Fault Tolerance

Class

hardware

software

comm-

unication

General

Strategy

redundancy

design

diversity

coding

Example
Fault

processor
stop

unanticipated

singularity
not handled

line noise

Example
Error'

missed

output

erroneous

setpoint

output
data

scrambled

Example

Recovery

replaced

by backup

processor
assertion check

_z alternate

algorithm

data encoding
check &

retransmission

Specific

Approach

extended

distributed

recovery
block

architecture

Task operation intelligence weak object replan & knowledge-

grip force slipped regrasp based system

or by design faults. A common technique for tolerating hardware failures and faults is the introduction

of some form of redundancy. Key components of the system are replicated and work in parallel. If one

of the replicated components fails, the remaining components continue to operate. The user does not

notice the error, and the system continues to function correctly. The EDRB architecture described in

this paper incorporates hardware fault tolerance in the form of a node pair and the associated fault
detection and recovery software.

• Software errors occur through design faults in programs. With the increase in sophistication of robotic

systems, software has become more significant and complex. The conventional technique for software

reliability is extensive verification and validation. It is well known that software testing can only reveal

the presence of faults, but not their absence. As a result, software fault tolerance techniques have been

used to achieve high reliability for critical applications which may endanger human life or entail great

financial loss. Tolerance to design faults relies on the application of design diversity, which creates

diverse software components from a common requirement. Their diversity is introduced by the use

of independent programmers, algorithms, programming languages, and tools. The goal is to increase
the probability that software errors will be tolerated by diverse software components. The EDRB

architecture incorporates software fault tolerance by using two diverse versions of the software coupled

with an on-line acceptance test which can detect failures in either version prior to transmitting their
output to the actuators.

• Communzcatwn errors occur in command and status information communicated between control com-

puters, robotic controllers, and sensory devices. They are caused by transmission error due to noise,
loss of synchronization due to timing errors, or loss of data due to hardware failures. The first two fail-

ures can be detected by the use of coding and recovered by retransmission. Hardware failures can only
be tolerated by redundant communication links. The EDRB architecture addresses communication

errors through encoding and redundant communication links.

• Operational errors are the physical errors that occur in the robot task environment. These are not

software or hardware errors but refer to a range of faults due to uncertainties and unexpected events

that happen during task execution. For example, an autonomous robot vehicle might unexpectedly

find an obstacle in its path. Alternately, a robot might find that it has failed to grasp an object

either because the object is not present or because the object slipped from its grip. Some failures due

to defective components are also classified as operational errors because the conventional redundancy

technique to tolerate their failures is not viable for them. For example, a "standby robot," even if

economically possible, could not access all the operating space of a failed robot and therefore cannot

be used to replace the failed robot. Operational errors are the types of error conditions that an

intelligent robot must be designed to detect and recover from.

102

The next sections describe the system level fault tolerance provisions which tolerate hardware, software

and communications faults; and the task level fault tolerance provisions which tolerate operational faults.

SYSTEM LEVEL FAULT TOLERANCE

A real-time fault-tolerant distributed architecture called the Extended Distributed Recovery Block (EDRB)

[6] will be used to handle system level faults. The underlying fault tolerance algorithms and mechanisms

are based on extensions to the distributed recovery block [7] which is in turn based on the classical recovery

block [8] with real time extensions.
Figure 1 is a top level diagram of a robotic control system which incorporates the EDRB. This config-

uration is a typical teleoperated-autonomous dual-arm robotic system with supervised autonomy for space

telerobotics [9]. Fault tolerance for hardware, software, and communications failures is provided for the Task

Execution System because it is remotely located and must respond rapidly to these failures. Although other

system elements are not shown as requiring fault tolerance in this example, nothing precludes the application

of the EDRB for the Task Planning System, the interface, or other elements if such were required.

I Task Planning]System

Fault Tolerant
Operational
Node Pair

I Supervisor & lInterface

Figure 1: Fault-Tolerant Robotic Control System Based on the EDRB Architecture

In the general terminology of the EDRB, the replicated Task Execution System computers are collectively

referred to as an operational node pair. One member of the node pair, called the active node, provides active

control and processing for the robot and sensors. The other node, referred to as the shadow, operates as a
standby. The active and shadow nodes exchange frequent periodic status messages, called heartbeats, over
redundant communication lines as an indication of their states of health. If the shadow node senses the

absence of its companion active node's heartbeat, it will promote itself to the active status after verifying

concurrence with a supervisor. This concurrence is required in order to prevent a spurious takeover due to

faulty communications in the shadow node or a false alarm due to a transient anomaly. After taking over,

the newly promoted active node will induce a hardware reset and software reload of th_ failed node in the

hope of restoring it to backup status. The supervisor itself need not be replicated because it is needed only

103

to assist in recovery; the EDRB can function in steady state without the supervisor.
Figure 2 shows how distributed recovery blocks are implemented in the EDRB. Within both the active

and shadow nodes are two versions of the task execution software, referred to as the primary and alternate
routines. Under normal circumstances, the primary routine is run on the active node while the alternate

routine is concurrently run on the shadow. The primary routine is coded to provide the greatest functionality,

accuracy, and performance. The alternate routine provides less functionality and performance, but is coded

to optimize reliability. For example, in a sensor processing application, the primary routine might use

Kalman filtering whereas the alternate routine might use a moving average. After each processing iteration,

an online acceptance test checks the validity of the output of both the primary and alternate routines. If

the acceptance test shows that an error has occurred in the primary routine, the output will be taken from
the alternate routine and control is passed to the shadow node.

Active Node

Primary .
Routine

NodeExecutive
Heartbeat

eset Consent/

Supervisor &
nterface

Shadow Node

Primary
Routine

Node Executive

* = Executing

Figure 2: EDRB Software Structure

The EDRB tolerates a broad range of hardware, system software, and application failures including:

• Robotic task execution software not outputting a correct setpoint by the required deadline (by means

of acceptance tests, timers, and alternate routines).

• Hardware or system software failures (by means of information encoding, timers, and redundancy)

• Communications link failures (by means of encoding, rqtransmission, and redundant communication
links)

• Spurious recovery actions (by means of the supervisor and consideration of failure histories in the node
executive).

One of the most important characteristics of the EDRB for robotic control applications is its fast response

and recovery times. The algorithms used in the EDRB fault detection and recovery modules are fast because

they do not require any kind of rollback. This characteristic is achieved by executing the primary and
alternate routines in parallel.

The EDRB provides the general framework of the primary routine, alternate routine, and acceptance

test which work together to tolerate software faults. However, it is necessary to define application specific

algorithms for the primary and alternate routines, as well as to define acceptance tests which dependably
distinguish between correct and incorrect output.

The diversity to be achieved in the primary and alternate routines is highly dependent upon the ap-
plication. The free motion of a 7-DOF redundant arm is used to illustrate how software diversity can be

104

achieved. Two possible independent approaches to configuration control of redundant manipulators [10]: (1)

the Jacobian pseudoinverse [11] which has good tracking but cannot handle singularity, (2) the damped least

square [12] which is singularity robust but has bad tracking near singularity. The primary routine will use
Jacobian pseudoinverse to ensure good tracking whereas the alternate routine will be based on the damped

least square when the primary fails to handle singularity. Because many of the software failures in these

routines are likely to be in the mathematical operations, the alternate routine will rely on lookup tables

instead of math library functions provided by the compiler. On the other hand much of the "framework"

coding (i.e., preparation of input, buffering of output, etc.) will be common to both modules because of the
lower likelihood of failures. Should experience demonstrate that this is not the case, then these and other

software components can also be made diverse.

The acceptance test is the single most critical element of the EDRB. If it fails to reject an incorrect

result, or fails to accept a correct result, it comprises a single point of failure. As such, the acceptance test

must be both simple and general. While this is a rigorous requirement, it is not impossible to meet in the

context of robotic applications. In the free motion example, the acceptance test will determine 1) that the
next setpoint is closer to the destination than the previous, 2) the difference between the observed joint

angles and the command joint angles are small, 3) the command joint angles are not close to joint limits,

and 4) the observed force/torque values are close to the gravitational force of the grasped object.

TASK LEVEL FAULT TOLERANCE

The task level fault tolerance in the proposed design is a knowledge-based system which uses rule-based

and model-based reasoning to monitor, diagnose, and recover from unexpected events that occur during the
execution of robot tasks.

Most of the present robotic systems handle unexpected events by preprogramming error detection and

recovery procedures for every probable error that can be perceived [13]. This approach is inefficient, and it
is difficult to completely handle all failures. On the other hand, most of the artificial intelligence research

efforts have focused on detection and recovery from failures in simulated robots. They made unrealistic

assumptions about the real world and ignored performance and integration issues [3]. Other attempts at

automatic error recovery without human intervention have not been used in real applications, because they

could not handle the vast range of potential error conditions [2].

The approach outlined in this research addresses these problems as follows:

1. Emphasis on the support of the robotic task execution system:

Most AI research on robotics has emphasized the task planning level. Experience from the NASA/JPL

Space Telerobotics Program has shown that monitoring and recovery at the task execution level is

both necessary and effective because of its quick response. Our design partitions the fault tolerance

strategies into two levels: the local level which resides in the task execution system, and the global level

which resides in the task planning system. The local level provides quick and simple monitoring and

recovery actions, while the global level provides extensive and complete monitoring and recovery. The

two levels complement each other in their efforts to monitor, diagnose, and recover from failures.

2. Emphasis on the role of the operator in failure recovery:

It is doubtful that any strategy developed for automatic error recovery in a robotic control system can

cover all potential failures. Even if such a strategy were developed, it would take some time before

confidence in the automatic recovery capabilities would be gained. Therefore, it is necessary to develop

a system in which the operator is integrated into the failure recovery process. The operator will always

have the capability to approve, query, and intervene a recovery plan. Pertinent information is relayed

to the operator with an emphasis on the human/computer interface design.

3. Emphasis on the performance and integration of the knowledge.based system:

Most AI research has been done with familiar AI languages such as Lisp and Prolog in simulated appli-

cation environments. Problems such as slow response time, communication difficulties, and interface

incompatibilities were not addressed. In this research we use C and the CLIPS expert system shell

105

(implemented in C) to enhance performance and minimize integration problems with the underlying

UNIX operating system and the X Window based graphical user interface.

The following subsections describe the local and global task level fault tolerance strategies.

Local Fault Tolerance Strategies

Experience from the NASA/JPL Space Telerobotics Program has shown that local monitoring and re-

covery actions in the task execution system are both necessary and effective [9]. They are necessary because

quick response time is always needed in emergency situations. At the task execution level, monitoring and
recovery can be achieved in real time, e.g. at every sample at a rate of 200 Hz. Recovery actions can be

initiated at the time of failure occurrence. This is especially crucial in ground/remote telerobot systems

where the task planner is located at the ground station and the time delay is significant. Local monitoring

and recovery are effective because most failures manifest themselves in excessive force, jerks, or undesired

motion. Failures can be detected by monitoring the force/torque thresholds, joint velocities and limits with-
out considering the robotic task context. The recovery action implemented in the JPL Telerobot System

was to simply stop the arm, thereby preventing it from damaging the work site and itself. It was found to

be an effective initial step for further recovery actions by the operators.

TASK PLANNING SYSTEM

TASK EXECUTION SYSTEM

Shared

Memory

Ex_u_e 1

,_ Dispa_'her

Motion Function

• u.,oo .,oo.oo

Figure 3: Task Execution System Architecture Supporting Local Fault Tolerance

Local monitoring and recovery are implemented in a task execution system such as the modular archi-

tecture [14] as shown in Figure 3. The Executive Process communicates with the Task Planning System to

accept new commands and to return new statuses. The Execution Process consists of various modules that

provide task execution, monitoring, and reflex capabilities. The Dispatcher starts and stops the execution

of the various functions. The Motion Function sets up the kinematic relationships for interpolated motion.

The Fusion Function combines the motion perturbations from each sensor with the nominal interpolated
motion. These motion perturbations are calculated by the Sensor Functions.

106

This architecture is extended to support local task level fault tolerance as follows:

• Moniloring is done in the Monitor Function, which tests for various sensor values and conditions

in every sampling period. Some examples are force/torque values, joint limits, joint singularities, and

elapsed time. The Dispatcher is signaled when an anomaly is detected. The monitor rules implemented

in the Monitor Function have the following general form:

if <situation> ensure <condition>

For example, for continuous collision testing, the monitoring rule is:

if true ensure f/t < safety-threshold

Another example in monitoring grasping is:

if contact-sensor = CONTACT ensure finger-separation _ object-size

The monitor rules not only allow us to test thresholds, they provide a means to monitor a sensor

execution profile and test events that occur only in specific situations.

• Recovery is activated by the Dispatcher once an anomaly has been signaled by the Monitor Function.

The objective of recovery at this level is to provide a fast reflex action to protect the arm and the

work site. It is only the initial step of the whole recovery process. Although in most cases stopping

the arm is appropriate to safeguard the hardware, there are situations where other recovery actions

are needed. For example, if unstable conditions occurred during insertion, stopping the arm may still

inflict damaging force to both the arm and the object. Other reflex actions such as relax and return

to original position will be implemented.

• Diagnosis at this level is used to help the global recovery function to test, re-synchronize, and re-

initialize sensors. Specific testing procedures will be devised for each sensor to help the Global Recoverer

to determine if it has failed. For example, a force/torque sensor can be tested by comparing ten

consecutive readings to ensure that the values are not fixed and that they are reasonable. Many

sensor failures are due to communications being out of synchronization or in erroneous internal states.

Functions that are able to re-synchronize and re-initialize the sensors will be implemented to assist the

global error recovery strategy.

Global Fault Tolerance Strategies

Without the world model and required knowledge and the power to reason, local fault tolerance is limited

to detecting errors and using simple reflex actions to protect itself and its work site. Global fault tolerance

complements local fault tolerance provisions in that it makes extensive use of spatial reasoning, rule-based

reasoning, and model-based reasoning to monitor, diagnose, and recover from failures. Figure 4 shows the

architecture of the Task Planning System which supports global fault tolerance.

• Monitor: The global monitoring uses both rule-based and model-based reasoning to detect errors that

cannot be detected at the local level. The rule-based reasoning is similar to that of the local level

but is more sophisticated. For example, if the screwdriver does not seat correctly on the screw in

bolt turning, it can be detected by comparing the execution force/torque profile with the force/torque
signature stored in the knowledge base. The global monitoring also uses model-based reasoning. For

example, a task which inspects the surface of a rectangular frame can detect arm motion errors based

on the geometric model of the frame stored in the world model.

• Diagnosis: The global diagnosis decides what really occurred based on the raw data indicating an error.

For example, a failed grasp may be caused by misorientation of a part/tool, a missing part, slippage of

a part, a gripper that cannot close, incorrect compliance, collision, etc. Rules have been developed to

perform the diagnosis. These rules use raw sensor data, the semantics and context of the failed task,

and the physical behavior of the objects in the work site.

107

OpomlDr

TASK PLANNING SYSTEM

Status

Diagnosis

Error

Monitor

State

User Interface

Command

very

F
i ActJon

Manual

Recovery

TASK EXECUTION SYSTEM

Figure 4: Task Planning System Architecture Supporting Global Fault Tolerance

• Recovery: After a fault has been identified, the global recoverer generates pertinent recovery actions
according to the fault and the task context. Recovery actions can range from simple to complicated:

- Retry: Faulty readings may be transient and a simple retry of the unfinished plan may be adequate.

- New Parameters: Default parameter values in the task plan may not be appropriate for the

situation; new parameter values are used to retry the failed action. An example is unstable
compliant motion that becomes stable after the gain is reduced.

- Corrective Actions: Extra actions are needed to correct the erroneous state. For example, a

regrasp action is needed after an object slips during grasping.

- World Model Update: An update to the world model is needed because it is found inconsistent

with reality. For example, a missing object found during grasping should delete that object from
the world model.

- Replan: The original task plan has to be replanned. For example, a new path is used to avoid a
collision.

- Reconfiguration: Configuration of the available resources needs to be updated after the hardware

has been found to have failed. For example, if a robot arm has failed, the planner should use the
other arm to perform it.s tasks, if possible.

• Planner: The planner stores task plans for nominal tasks and contingency plans for failed actions.

Although it is not the scope of this research, it would be useful if the planner could generate collision-
free paths based on tile world model.

One important feature that has been added to the planner is the capability to check commands that

are initiated by the operator. Routine and tedious tasks often cause human fatigue and boredom.

108

This can lead to human error and a resultant hazardous situation. The user interface ensures that

no erroneous or unsafe commands are given by the operator. And the planner will check whether the

preconditions of the actions are satisfied, and the postconditions are acceptable.

• User Interface: The user interface plays an important role in the handling of failures in the system. As

the system becomes more intelligent, it is expected that the demand from the operator will be reduced.

Nonetheless, the user interface will always allow the operator to approve, query, and intervene a

recovery plan. However, it is not enough for the operator merely to take control. The operator needs

information such as the robot's status, position, and previous activities. At the time an operator must

take control, he may not know such information. The system condenses this information and relay the

important data to the operator control station.

• World Model: Information representing the work environment is integrated and assimilated in the
world model. It is used by all components in the Task Planning System. The model is updated every

time new information about the environment is received as a result of robot actions, sensory data,

physical processes, and fault diagnosis.

• Knowledge Base: The knowledge base is the repository of all the rules and actions for planning,

monitoring, diagnosis and recovery. One of the critical problems in knowledge base construction is the

acquisition of expert knowledge. A fault tree analysis of the target robotic system will be performed

and the resulting fault trees will be used as the basis for creating IF-THEN rules. For example, the

subtree in Figure 5a can be translated into the rule in Figure 5b. The fault tree is helpful because it

provides a visual representation of the way in which failures are propagated in the system.

object
slipped 1

I "e"k I
I slipperysurface 1

IF weak grip force AND

slippery surface THEN
object slipped

(a) (b)

Figure 5: A Fault Tree and its Translated Rule

CONCLUSIONS

A comprehensive strategy is described which integrates system level hardware/software fault tolerance

with task level handling of uncertainties and unexpected events in robotic control. A prototype of the

EDRB has been implemented using PC�AT-386 computers, ARCnet, and the QNX real-time operating
system. Extensive evaluation has concluded that the resulting system tolerates a broad range of hardware,

system software, and application faults, with a 200 millisecond guaranteed response time. The system is

currently being rehosted to a VME-based multiprocessor system using 68040 single board computers and

the VxWorks real-time operating system. It is expected that the faster hardware and system software will

achieve the 5 milliseconds response time requried by the Manipulator Control System of the JPL Remote

Surface Inspection System [15] to control a 7-DOF redundant manipulator arm.

The fault tolerant techniques developed in this research for building dependable robotic control systems

can be used in applications which require a high degree of reliability and safety, such as servicing and

inspection tasks in Space Station Freedom, maintenance and waste cleanup tasks in nuclear facilities, and

patient monitoring and tending tasks in medical facilities.

109

ACKNOWLEDGEMENTS

The research described in this paper was partially carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration. This

work was funded by NASA Small Business Innovation Research (SBIR) Contract NAS7-1172.

REFERENCES

[1] M. H. Lee, D. P. Barnes, and N. W. Hardy, "Knowledge based error recovery in industrial robots," in

Proceedings of the International Joint Conference on Artificial Intelligence, (Philadelphia, PA), pp. 824-
826, 1983.

[2] M. Gini and R. Smith, "Monitoring robot actions for error detection and recovery," in Proceedings of
the NASA Conference on Space Telerobotics, vol. III, (Pasadena, CA), pp. 67-78, Jan. 1987.

[3] D. E. Wilkins, "Recovering from execution errors in SPIE," in Proceedings of the NASA Conference on
Space Telerobotics, vol. III, (Pasadena, CA), pp. 79-90, Jan. 1987.

[4] E. LSpez-Mellado and R. Alami, "A failure recovery scheme for assembly workcells," in Proceedings of

1988 IEEE International Conference on Robotics and Automation, (Cincinnati, OH), pp. 702-707, May
1990.

[5] M. H. Lee, Intelligent Robotics. Open University Press, 1989.

[6] M. Hecht, J. Agron, H. Hecht, and K. H. Kim, "A distributed fault tolerant architecture for nuclear

reactor and other critical process control applications," in Digest of 21st International Symposium on

Fault-Tolerant Computing, (Montreal, Canada), pp. 3-9, June 1991.

[7] K. H. Kim and H. O. Welch, "Distributed execution of recovery blocks: An approach for uniform
treatment of hardware and software faults in real-time applications," IEEE Trans. Computers, vol. 38,

pp. 626-636, May 1989.

[8] B. Randell, "System structure for software fault tolerance," IEEE Trans. Software Engineering, vol. SE-

1, pp. 220-232, June 1975.

[9] S. Hayati, T. S. Lee, K. S. Tso, P. G. Backes, and 3. Lloyd, "A unified teleoperated-autonomous dual-arm

robotic system," IEEE Control Systems, vol. 11, pp. 3-8, Feb. 1991.

[10] H. Seraji, "Configuration control of redundant manipulators: theory and implementation," IEEE Trans.
on Robotics and Automation, vol. 5, pp. 472-490, Aug. 1989.

[11] C. A. Klein and C. H. Huang, "Review of pseudoinverse control for use with kinematically redundant

manipulators," IEEE Trans. on Systems, Man and Cybernetics, vol. SMC-13, no. 3, pp. 245-250, 1983.

[12] H. Seraji and R. Colbaugh, "Improved configuration control for redundant robots," Journal of Robotic
Systems, vol. 7, no. 6, pp. 897-928, 1990.

[13] I. J. Cox and N. H. Gehani, "Exception handing in robotics," IEEE Computer, pp. 43-49, Mar. 1989.

[14] P. G. Backes, K. S. Tso, S. Hayati, and T. S. Lee, "A modular telerobotic task execution system," in

Proceedings of 1990 IEEE International Conference on Systems Engineering, (Pittsburgh, PA), pp. 511-

514, Aug. 1990.

[15] S. Hayati, J. Balaram, H. Seraji, W. S. Kim, and K. Tso, "Remote surface inspection system," in
Proceedings of SOAR'92: The 6th Annual Space Operations, Applications, and Research Symposium,

(Houston, TX), Aug. 1992.

110

