
FAILURE ENVIRONMENT ANALYSIS TOOL

N93 2
APPLICATIONS

Ginger L. Pack -_-_,
NASA Johnson Space Center

Houston, Texas 77058
//

David B. Wadsworth)
Lockheed Engineering and Sciences Company _ /0

Houston, Texas 77058

0

ABSTRACT

Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's
mission propels us to push the limits of technology, and though the risks are considerable, the NASA community
has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our
employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools
used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers
and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by
providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the
occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes
could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system
to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an
understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated
environment in which to conduct "what-if" evaluation. These types of analyses make FEAT a valuable tool for
engineers and operations personnel in the design, analysis, and operation of NASA space systems.

INTRODUCTION

FEAT was developed as part of an effort to find ways to better identify and understand potential failures that threaten
the integrity of NASA systems. Past and current methods of failure assessment consists of developing often
enormous amounts of documentation in the form of Failure Mode Effect Analysis (FMEA) worksheets. Engineers
create these worksheets by attempting to exhaustively enumerate potential system failures and consequences.
Hazards analysis is performed in a similar manner; experts are gathered together and are asked to brainstorm about the
hazardous manifestations of various failures. System knowledge and experience are necessary for ensuring the
comprehensiveness of this approach. However there are troubling drawbacks to this technique. First, there exists
the difficulty of anticipating every scenario. Analysis is also inherently constrained by the limits of actual
experience. Further, such methods lack consistency and do not enforce a standard level of coverage. Although there
is certainly much to be credited to knowledge acquired through experience, it is not sufficient to avoid unanticipated
interactions which may lead unexpectedly to undesirable consequences. As many industries have learned, sometimes
experience comes at too high a cost. Those at NASA have been looking for better ways to anticipate failure and for
tools to assist in "designing out" potential problems. FEAT was developed to address this problem.

TECHNICAL APPROACH

FEAT is a software application that uses directed graphs or, digraphs, to analyze failure paths and failure event
propagation. The behavior of the systems to be analyzed is represented as a digraph. Then, the digraph model of the
system, is used by FEAT to answer questions concerning the cause and effects of events which are captured in the
model. Therefore, the first step in using FEAT is to create the digraph model of the system in which one is
interested. Once FEAT has analyzed the digraph, it has the information it needs to perform cause and effect analysis.

What are di_aphs? Directed graphs are graphs that consists of a set of vertices and a set of edges, where
there is an edge from one vertex a to another vertex b. The vertices are drawn as circles and the edges are drawn as

arrows. The direction of the arrows indicates a causal relationship between the vertices (see figure 1). The vertex

205

from which the edge begins,iscalleditssource;and the vertexatwhich the edge terminates,iscalled itstarget.

Direct graph theory is an accepted and established area of mathematical study. Therefore we will only introduce it in
this paper, to the extent necessary for an understanding of how it is used in FEAT. The interested reader may find
further information by consulting the fiterature.

Figure 1

The structure of the digraph can be represented by a matrix, and consequently can be easily implemented in a
computer. The conversion from digraph to matrix is straightforward and is illustrated below in figure 2. This
mau-ix is called the adjacency matrix (reference 1), and is the basis from which other information about the graph
can be derived. The matrix of the graph is obtained by entering either zero or one, depending on whether or not an
edge connects two vertices. The presence of an edge from a to b in figure 1, indicates an entry of one (1) into the
corresponding matrix entry. However, since there is no edge from a to c, a zero (0) would be entered in the
corresponding matrix entry.

abc
a010
b001
c000

Figure 2

Additional information can be added to the digraph, by applying logical operators to express conditional statements.
FEAT uses AND and OR operators to accomplish its analysis. The AND operator is represented on the graph as a
vertical bar with a horizontally placed arrow at its center. An OR operator is simply two or more edges whose target
is the same vertex. Theses operators [figure 3], and their use in FEAT [figures 4 & 5], are described below.

OR-GATE AND-GATE

Figure 3

206

Event A

Event B

Event C

Event A OR Event B causes Event C

Figure 4

The "AND" gate is shown in Figure 5. The AND gate is used when both event A and Event B must occur in order
for Event C to occur. Conversely, if only Event A occurs or, if only Event B occurs, then Event C does not occur.

Event A

Event B

Event C

EventAAND Event B cause Event C

Figure $

Analytical Capabilities The reachability of an event refers to whether there is a path by which other

events in the digraph can be reached. A given event is said to reach another, if the fast event can cause the second
through some path of the graph. Using the adjacency information derived from the digraph, reachability can be
computed for every event and pair of events in the digraph. Analysis can be conducted upstream _ downstream from
an event node. (References 2, 3 and 4 provide a much more detailed discussion of digraphs and teachability.)

207

Reachability information allows FEAT to answer the following questions about a modeled system:
A. What happens to the system if "Event A (and Event B and Event C and...)" occurs?
B. What are the possible causes of "Event A"?
C. What common cause could account for the simultaneous indication of numerous events?

D. What is the susceptibility of the system to new events given that one or more events has already
occurred, or the system has been reconfigured due, for example, to maintenance?

The following example demonstrates how a digraph might be implemented for a light

and switch. The digraph provides a methodical way in which to express the topology and behavior of a system. It is
worth noting that the digraph itself may have various constructions for the same information contained in it,
depending on who created it. Different modelers may lay out the digraph differently. However, for a properly
constructed digraph, the same information will be captured. In the following example [figures 6 & 7], power source
A provides current to switch A which connects to the bulb. Similarly, power source B can energize the bulb.

Power

SourceA

Power Source

Ground

Switch A

_J Light Ground _'_----_

Switch B

Figure 6
Light bulb and Power Source Schematic

Switch A Fails Open

C_ Switch A

Ou*"ut Fails Light Ground

.dO = _._'_ O Failure

Source GroundjlV Power Source _ I
Failure J A Fails "_ JL A

_ Light Fails

. Power Source J I-]:_'] '_'"

- Old'U; Fails Bulb Failure

Switch B Fails Open

Figure 7
Digraph of Light bulb Schematic

If "Power Source A Fails" or "Switch A Fails Open" then "Switch A Output Fails". This

is an example of OR logic and is shown in the digraph by the arrows leading into "Switch
A Output Fails".

208

If output from both switches A and B fail, then they will cause the "Power at Light to
Fail". This logic appears as an AND gate on the digraph (the vertical line). In this case,
the AND gate reflects redundancy designed into a system.

Directed graphs are useful because they visually depict the logical topology and dependency relationships of

physical and conceptual systems and processes. Because they capture causal effects between events, they can be used
to describe system behavior. Directed graphs are also easily converted into a matrix and, because of this, can be
readily analyzed in a computer. Creating and laying out the digraph of a system, also formalizes the method of
evaluation during the analytical process, and provides a standard representation convention. Finally, digraph analysis
is mathematically sound, since methods for determining connectivity paths of the digraph vertices can be
mathematically proved.

DIRECTED GRAPHS AND FEAT

Digraph construction is facilitated by use of an editor specifically designed for the task. Such an editor is included in

the FEAT package which consists of two programs: Digraph Editor and FEAT.

The Digraph Editor facilitates construction of the digraph model by allowing the user to create event nodes, edges,
and the logic operators, and to connect and arrange them into a digraph. Event nodes and edges are laid out and

connected using the logic operators. The pieces that make up a digraph are supplied in a digraph toolbox from which
items may be selected. These items are placed on the screen and arranged to produce the system digraph.

Other information is needed to complete the digraph and to make it usable by FEAT. Event nodes have an associated
text block, which includes information that will identify the event node to FEAT, describe the event for the user, and
relate the event to a drawing which contains the component to which the event pertains. This information is
extracted from tables that the user creates. Digraph Editor uses the tables to automatically generate a mnemonic
reference that FEAT will use to identify the event.

Digraph Editor also provides a number of tools for validating and verifying the model as it is being developed.
Digraph Editor will check tables for duplicate entries, check nodes for incorrect form, and determine whether a
selected node has a duplicate in the digraph. Digraph Editor also contains an algorithm that allows the user to
analyze small or incomplete digraphs, while still in the editor. Once the digraph is completed and the paths in it are
analyzed, FEAT can return answers to questions regarding the behavior of the modeled system.

Currently, digraph models are created manually by selecting and arranging digraph components; the modeler must
interpret drawings and other sources of information to generate the digraphs. This is a laborious task.
Consequently, efforts are underway to develop methods to automatically translate schematics and drawings into

corresponding digraph models.

Digraph Editor is currently only available for the Macintosh II class of computer.

FEAT

FEAT is the portion of the package that analyzes single or multiple digraphs, and graphically displays causes and
effects of events. Propagation results are shown both on the digraphs and on an another associated graphical
representation, such as a schematic or block diagram. FEAT uses a multi-step algorithm, described in Reference 2,
to compute reachability for each event and pair of events in the digraphs. Events are identified to FEAT through the
mnemonic that is generated by Digraph Editor. Queries about the behavior of the system are made by selecting
events and telling FEAT to return all of the causes of that event (targeting), or by telling FEAT to return all of the
effects of that event (sourcing). FEAT displays all of the single events, and all pairs of events that may cause a
selected event. Multiple events may also be selected and analyzed. FEAT allows some events to be temporarily

removed from the analysis so that answers can be obtained about a reconfigured system.

209

FEAT also contains a feature which allows users to attach to a schematic, formatted database information and

graphics. In this way, component descriptions, parts lists, drawings, etc, may be displayed in conjunction with a
schematic.

One of the major advantages of FEAT, as discussed in Reference 2, is that it allows the analysis of very large
systems. Large systems can be digraphed by creating and connecting a series of smaller digraphs. FEAT understands
when propagation occurs across the digraphs.

Planned enhancements to FEAT include the following: increasing the speed with which reachability is computed by
improving FEATs computational algorithm; provision of a method for computing and displaying probabilities of
events occurring; and computation and display of the time it takes for an event to propagate through the graph.

FEAT is currently available for the Macintosh II class of computer and for UNIX/X-Windows/OSF-Motif systems.
No programming skill is required to use FEAT. However, a course in digraph modeling is quite helpful in learning
how to construct system models.

DIGRAPHS AT NASA

Why NASA chose digraphs

NASA's interest in digraphs began as part of the Shuttle Integrated Risk Assessment Project (SIRA). SIRA was
initiated in the wake of the Challenger accident, in an effort to find better ways of assessing risk and preventing
failure. Digraphs support such analysis by providing end to end cause and effect analysis of modeled systems.
Digraphs also provide a standard and methodical approach for conducting safety analysis and risk assessment.
Digraphs capture information in an easily retrievable format, and facilitate the transfer of design information. FEAT
takes advantage of these characteristics in a way that aids engineers and analysts with design, assists safety engineers
with risk assessment, and promotes understanding of system behavior, thereby making FEAT a good tool for
training inexperienced persons.

What has been done at NASA?

The first system to which digraph analysis was applied was the Space Shuttle Main Engine System (SSME). Since
then, acceptance of digraphs and the use of FEAT has extended in several directions. Most recently, FEAT has been
formally released to the Space Station Freedom Program (SSFP) Technical Management Information System
(TMIS), as Digraph Data System (DDS) Release 1.0. DDS will, through TMIS, be available to SSF Engineering
and Integration, SSF Combined Control Center, and the various Work Packages and their contractors. A Macintosh
Powerbook version of FEAT will be deployed as a Development Test Objective (DTO) on the STS-52 flight
scheduled for October 1992. Reliability and Maintainability personnel at NASA-JSC, are using FEAT to construct
a model of the Simplified Aid for Extra-Vehicular Activity (EVA) Rescue (SAFER). FEAT is also being used to
model the redesigned Servo Power Amplifier (SPA) for the Remote Manipulator System (RMS).

Proponents have used FEAT for a variety of analytical tasks, such as Fault Tolerance Analysis and Redundancy
Management (P-T/RM), Fault Detection, Isolation, and Recovery (FDIR), and "What-If" analysis. Within the Space
Station Freedom Program, FEAT is being used in the performance of Integrated Risk Assessment for the station,
which includes Failure Mode and Effects Analysis (FMEA), Hazards Analysis (HA), and FT/RM. FEAT has also
been established as a baselined tool in the Mission Operations Combined Control Center, where flight controllers
will use FEAT models to assist with real-time monitoring tasks. FEATs role is expanding in both Space Station
and in Space Shuttle.

The Space Station Engineering Integration Contractor (SSEIC), is using FEAT to perform

integrated risk assessment. This tasks consists of performing the analysis to assure the station design is safe,
reliable, and has an acceptable level of risk (reference 5). The space station design consists of modules designed and
built by the United States, and of modules which will be designed and built by NASA's international partners. The
work to be performed by NASA is divided into four Work Packages distributed among different centers.
Additionally, a variety of contractors are working in support of the Work Packages. Consequently, system
integration is a paramount concern of the program. SSEIC is tasked with ensuring the integration of these various

factions and is using digraph-based FEAT, to work the integration problem. Specifically, FEAT supports the

210

followingareasoftheIntegratedRiskAssessmentprocess:
1. ReliabihtyAnalysis
2. SafetyAnalysis
3. Integrated Risk Analysis
4. Integrated Risk Assessment

The models being developed for the station Integrated Risk Assessment will eventually be provided to Mission
Operations personnel for use in FDIR of the on-orbit station.

Space Shuttle FEAT is scheduled to fly on STS-52 as a Detailed Test Objective (DTO). A FEAT

model of the S-band Communications System has been installed on an Apple TM Powerbook TM, which will be flown
aboard the shuttle. Astronauts will use the model to perform on-board fault isolation for the S-band Communication
System. They will be able to configure the model to match the actual S-band system configuration, and then will
use FEAT to identify possible causes of failures of the S-band system.

FUTURE APPLICATIONS OF DIGRAPHS

Digraphs are gaining acceptance, within the NASA community, as a viable method for conducting many kinds of
analysis. Space Station Freedom Program and Operations, has mandated the use of digraph analysis for the Space
Station Level II Integration effort; and many others are beginning to take up the banner. Some of the potential areas
of application include the following:

Fault Isolation/Testability

FEATs ability to model and analyze system failures make it a natural candidate for fault isolation efforts. If a failure
event occurs, FEAT can display all of the possible single and paired causes for that event. However, in a large
system, potential causes can be enormous in number. A method of pruning the list of possible causes is then
necessary. Sensor information associated with the system can be used to remove candidate causes which occur
downstream of a known nominal condition. Incorporation of sensor data, into the analysis, can help to reduce the
number of candidate failures to a manageable sum. Then using traditional techniques, further isolation can be
accomplished. Figure 8 shows an example of such a case.

211

Sensor 1

Event A Event B

Event E Event F

Event C Event D

Sensor 1

Event F may be caused be Events E or F directly or by Events A or B paired with
Events C or D through the AND gate.
Sensor l's state is unknown.

Sensor 1

EwntA Ewnta

EwntE EventF

EventC EventD

IfSensor 1 reports nominal conditions, this implies that neither Event A or Event B occurred.
Since neither Event A or B occurred, then the AND gate condition cannot be met, and
the only way Event F can occur is if Events E or F occur. The number of events necessary
to be checked to evaluate the cause of Event F has been reduced from 6 to 2.

Figure 8

Sensor data may also be combined with FEAT to identify the potential for cascading alarms. For instance, if a fault
occurs downstream from a sensor, the sensors upstream will eventually alarm as a result of the fault. FEAT can
show the effects of a fault on the downstream sensors.

This solution is being implemented by NASA, in an extension of FEAT, called Extended Real-time FEAT (ERF).

ERF automatically prunes the list of possible faults, according to sensor information. ERF is being developed as a
part of the FDIR system for the On-orbit Control Center Complex. Mission Controllers will use ERF to resolve
off-nominal system behavior, by reducing the potential number of failure causes.

212

FEAT developers are pursing the possibility of incorporating, or interfacing with, a testability analysis tool which
will help to evaluate sensor coverage in systems, and make recommendations regarding appropriate sensor locations.
ERF is dependent upon adequate sensor information and proper placement of the sensors. Properly placed sensors
provide information to quickly and accurately locate faults. The combination of FEAT, ERF and testability tools
will make a very powerful fault isolation system.

Temporal Analysis

Not every event immediately affects the next downstream event. There may be appreciable delays within an event
and between events. For example, an inappropriately shut valve, may not for some time, cause the pressure in the
system to rise to an unacceptable level. In such a situation, time delay is an important aspect of calculating the

potential failure space.

This issue will be addressed in FEAT when a modification is made to Digraph Editor to allow modelers to include

time delays within events, and delays between events. FEAT will then compute the maximum and minimum time

delay between selected events. This capability will be suppfied in a future version of FEAT.

Physical systems are not the only candidates for digraph analysis. Software functions and data flow can be modeled
as well. Particularly, the flow and effect of invalid/improper data can be modeled. This can provide insight to the

designer in determining mission critical software functions. Additionally, the effect of invalid data on other system
functions (both software and hardware) may be shown. For instance, a software functional component that generates
invalid data as an event; may then provide that data to other software and hardware as an invalid data input event.
FEAT can be used to model these behaviors too.

Desi_ Evaluation and Redtmdancy Management

Digraph models can be used to determine whether or not a system design provides sufficient redundancy.
Maintenance and configuration effects on the system, can be evaluated by selectively removing (setting) components

from the system. The reconfigured system can then be evaluated for induced single and paired events. This can be
particularly useful in determining new vulnerabilities after a system has encountered failures and/or has portions of

the system secured for maintenance.

FEAT contributes to design evaluation by rapidly displaying all single events caused by the event of interest, and all

pairs of events that will result in that event. Unexpected single point common cause events are also quickly
identified. As the design is modified to provide additional redundancy, the digraph model can be updated to reflect the

changes, and the new set of single events and pairs of events can be evaluated.

Logistics analysis addresses corrective and preventive maintenance tasks, and determines the kinds and numbers of
repair parts needed for a system. This type of analysis is associated with the reliability and availability (reference 6),
of systems. Reliability is defined as the measure of the mean time between failure (MTBF) and, concerns the
probability that a system will operate over a specified period of time. No provision is made for repair when
calculating reliability. Availability varies from reliability, in that it is a measure of the mean time to repair
(MTTR), or, the probability that the system will operate over a period of time considering that something can be
done to restore functionality lost as a result of a failure. How system repairs can be supported, or supportability, is

important to determining availability. If repairs can be made instantaneously, availability is increased. However,
long delays between failure and repairs makes the system proportionally less available.

FEAT models can help to identify critical components and the effect of their failure upon the system. Digraph
models of the system can, along with specific part reliability, help to determine priorities for inventory stocks, and
schedules for maintenance. Spare parts inventories are a major factor in determining supportability. For example,

spares for parts that cause single point common cause events should have higher priority for stocking than parts tha'.

contribute to pairs of events.

213

Maintainability concerns the time it takes to remove and replace a component. Digraph models can identify
components prone to low reliability, and single common cause failure. Designers can then either improve the
reliability of the component or ensure that such items are accessible and easily replaced.

SUMMARY

As NASA continues to search for better and innovative approaches to new and old problems, directed graph analysis
has emerged as an attractive expansion of the methods applied to Risks Assessment. Directed graphs are a well
established area of mathematical study and analysis. Digraphs provide an easily comprehendible visual representation
of cause and effect relationships. Conversion of the digraph to an equivalent matrix is straightforward, and allows

analysis of digraphs to be mathematically calculated and verified. The nature of matrices also makes them ideally
suited for computerized calculations, which in turn provides a vehicle for automating the task of risk assessment and
failure analysis.

FEAT uses directed graph theory to provide engineers and analysts with a powerful and flexible automated analytic
helper. FEAT can provide end to end analysis of cause and effect events. Very large systems can be modeled in
modules, then connected to form the entire system. This feature also allows digraphs to be arranged in mix and
match fashion. FEAT can detect and return information about single point failure vulnerability, failure event pairs,
common cause events, and reduced capability analysis. FEAT shows the results of event propagation on system
schematics and on the associated digraph. Digraph Editor provides a helpful way for the analyst to create digraphs.

The FEAT Project is funded by the NASA Space Station Freedom (SSF) Advanced Programs Development Office
(Code MT) and the SSF Program Office (Cede MS).

°

2.

3.

4.

5.

6.

REFERENCES

L. Levy, Discrete Structures of Computer Science. John Wiley & Sons, 1980.
R. Stevenson, J. Miller and M. Austin. Failure Environment Analysis Tool (FEAT) Development Status.
AIAA Computing in Aerospace VIII, AIAA-91-3803. October 1991.
I. Sacks. Digraph Matrix Analysis. IEEE Transactions on Reliability, Vol. R-34, No. 5. December
1985.

I. Sacks, G. Keller, and R. Rauch. Application of Digraph Matrix Analysis to the Space Station. RDA,
Logicon, R & D Associates, RDS-TR-148400-O01. September 1987.
J. Schier. Integrated Risk Assessment (IRA): Defining the Level II Safety & Reliability Job and
Implementation Plan using Digraphs. Unpublished Grumman presentation. September, 1992.
B. Blanchard. Logistics Engineering and Management. 4th Edition. Prentis-Hall, Inc. Englewood Cliff,
NJ. 1992.

BIBLIOGRAPHY

D. Haasl, N. Roberts, W. Vesely, F. Goldberg. Fault Tree Handbook. GPO Sales Program, U.S. Nuclear
Regulatory Commission, Washington, DC. 1981.

J.Pearl, Probabilistic Reasoning in Intelligent Systems. Morgan and Kauffman, 1988.

214

