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ABSTRACT

This paper discusses the relationship between the sequential hard c-means (SHCM}, learning

vector quantization [LVQ), and fuzzy c-means {FCM) clustering algorithms. LVQ and SHCM

suffer from several major problems. For example, they depend heavily on initialization. If the

initial values of the cluster centers are outside the convex hull of the input data, such

algorithms, even if they terminate, may not produce meaningful results in terms of prototypes

for cluster representation. This is due in part to the fact that they update only the winning

prototype for every input vector. We also discuss the impact and interaction of these two

families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering

method, but which often lends ideas to clustering algorithms. Then we present two

generalizations of LVQ that are explicitly designed as clustering algorithms; we refer to these

algorithms as generalized LVQ --- GLVQ; and fuzzy LVQ -- FLVQ. Learning rules are derived to

optimize an objective function whose goal is to produce "good clusters". GLVQ/FLVQ (may}

update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends

upon a choice for the update neighborhood or learning rate distribution - these are taken care

of automatically. Segmentation of a gray tone image is used as a typical application of these

algorithms to illustrate the performance of GLVQ/FLVQ.
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L INTRODUCTION : LABEL VECTORS AND _RING

Clustering algorithms attempt to organize unlabeled feature vectors into clusters or "natural

groups" such that points within a cluster are more similar to each other than to vectors

belonging to different clusters. Treatments of many classical approaches to this problem

include the texts by Kohonen I , Bezdek 2, Duda and Hart 3, Tou and Gonzalez 4, Hartigan s, and

Dubes and Jain 8. Kohonen's work has become timely in recent years because of the widespread

resurgence of interest in the theory and applications of neural network structures 7

Label Vector.. To characterize solution spaces for clustering and classifier design, let c denote

the number of clusters. 1 < c < n. and set •

Nfcu={y_ 9_lYk_[0,1] Vk} =(unconstrained]fuzzy/abe/s : {la)

Nfc =_ Nfc u I Y-yk= l} = {constrained)fuzzy/abe/s : (lb)

Nc = _ _ Nfc I Yk a {0, 1} V k} = hard/abets for c classes [ lc)

N c is the canonical basis of Euclidean c-space; Nfc is its convex hull; and Nfc u is the unit

hypercube in 9_c . Figure 1 depicts these sets for c=3. For example, the vector Y = (. 1..6..3) T is a

typical constrained fuzzy label vector: its entries lie between 0 and 1. and sum to 1. And because

its entries sum to I, y may also be interpreted as a probab///stlc label. The cube Nfc u = [0, I] 3 is

called unconstrained fuzzy label vector space; vectors such as z = (.7, .2, .7) T have each entry

between 0 and l, but are otherwise unrestricted.

Cluster Analysis, Given unlabeled data X= {xI, x 2 ..... Xn} in _Rp , clustering in X is assignment

of (hard or fuzzy) label vectors to the objects generating X. If the labels are hard, we hope that

they identify c "natural subgroups" in X. Clustering is also called unsupervised learning, the

word learning referring here to leaming the correct labels (and possibly vector prototypes or

quantizers) for "good" subgroups in the data. c-part/irons of X are characterized as sets of (cn)

values {Uik} satisfying some or all of the following conditions :

0 < Uik _<I V i,k - (2a)

0 < XUlk < n V i • (2b)

Z Uik = I V k {2c)
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Fig. 1. Hard. fuzzy and probabUisUc label vectors (for c = 3 classes).

C 3 = 3

171z= .2
.7

• l

Nj3,, = [0,1l 3

Using equations (2} with the values {Uik} arrayed as a (cxn} matrix U = [Uik], we define:

Mfcnu = {U • _" I uri c satisfies {2a) and (2b) V i, k} ;

Mfc n = {U c Mfcnu I Uik satisfies (2c) V i and k}. "

Men ={U• Mfc n I uri c=Oorl V iandk}

(3a)

(3b)

(3c)

Equations (3a), (3b) and {3c) define, respectively, the sets of unconstrained fuzzy, constrained

fuzzy (or probabflistic), and crisp c-partitions of X. We represent clustering algorithms as

mappings ,A. : X---_ Mfcnu. Each column of U in Mfcnu (Mfc n, Mcn} is a label vector from Nfc u

(Nfc , Nc). The reason these matrices are called partitions follows from the interpretation of

Uik as the membership of x k in the i-th partitioning subset (cluster) of X. Mfcnu and Mfc n can

be more realistic physical models than Mcn, for it is common experience that the boundaries

between many classes of real objects {e.g., tissue types in magnetic resonance images} are in

fact very badly delineated (i.e., really fuzzy} , so Mfcnu provides a much richer means for
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representing and manipulating data that have such structures. We give an example to illustrate

hard and fuzzy c-partitions of X. Let X = {x 1. x 2, x3} = {peach, plum. nectarine}, and let c=2.

Typical 2-partitions of these three objects are shown in Table 1:

Table 1.2-partitlons of X = {x I, x2, x3_ = {peach, plum, nectarine}

Fuzzy U 2 e Mf23 Fuzzy U 3 e Mf23u

Object xl x2 x3 Xl x2 _3 xl x2 I"3

oo] [o.o ] [ ,510.4 -0.9 0.5 0.
Plums 1 0.I 0.8 0.6 0.6 0.8 0.

The nectarine, x 3, is shown as the last column of each partition, and in the hard case, it must

be (erroneously) given full membership in one of the two crisp subsets partitioning this data; in

U 1 x 3 is labeled "plum". Fuzzy partitions enable algorithms to (sometimes!) avoid such

mistakes. The final column of the first fuzzy partition in Table 1 allocates most (0.6) of the

membership of x 3 to the plums class; but also assigns a lesser membership of 0.4 to x 3 as a

peach. The last partition in Table 1 illustrates an unconstrained set of membership

assignments for the objects in each class. Columns like the one for the nectarine in the two

fuzzy partitions serve a useful purpose - lack of strong membership in a single class is a signal

to "take a second look". Hard partitions of data cannot suggest this. In the present case, the

nectarine is an hybrid of peaches and plums, and the memberships shown for it in the last

column of either fuzzy partition seem more plausible physically than crisp assignment of x 3 to

an incorrect class. It is appropriate to note that statistical clustering algorithms - e.g.,

unsupervised learning with maximum likelihood also produce solutions in Mfc n. Fuzzy

clustering began with Ruspini 8 • see Bezdek and pal9 for a number of more recent papers on this

topic. Algorithms that produce unconstrained fuzzy partitions of X are relatively new; for

example, see the work of Krishnapuram and Keller m.

Prototype classification Is illustrated in Figure 2. Basically, the vector v i is taken as a

prototyplcal representation for all the vectors in the hard cluster X t c X. There are many

synonyms for the word prototype in the literature: for example, quantizer (hence LVQ),

signature, template, paradigm, exemplar. In the context of clustering, of course, we view v i as

the cluster center of hard cluster X c X. Each of the clustering algorithms discussed in this

paper will produce a set of c prototype vectors V = {Vk} from any unlabeled or labeled input data
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set X in 9_ p. Once the prototypes are found (and possibly relabeled if the data have physical

labels), they define a hard nearest prototype (NP) classifier, say DNP,V:

Crisp Nearest Prototype (1-1V_ Cl_.

Decide z e i ¢:> _p,v{Z) = e i ¢:_

Given prototypes V = {vk l 1< 1¢_ c} and z e ¢_P:

[Z-Vii A _<]Z-Vj[A" I _<j < c,J_i (4}

In (4) A is any positive definite pxp weight matrix - it renders the norm in (4} an inner product

norm. That is, the distance from z to any v i is computed aslz-V_]A = _(z-vl)rA(z-vl}.

Equation (4) defines a hard classifier, even though its parameters may come from a fuzzy

algorithm. It would be careless to call DNP,V a fuzzy classifier Just because fuzzy c-means

produced the prototypes, for example, because (4) can be implemented, and has the same

geometric structure, using prototypes {v k} from any algorithm that produces them. The {v k}

can be sample means of hard clusters (HCM); cluster centers of fuzzy clusters {FCM); weight

vectors attached to the nodes in the competitive layer of a Kohonen clustering network (LVQ);

or estimates of the (c} assumed mean vectors {]_k} in maximum likelihood decomposition of

mixtures.

Figure 2. Representation of many vectors by one prototype (vector quantlzer).

X i

The geometry of the I-NP classifier is shown in Figure 3, using Euclidean distance for (4) - that

is A=I, the pxp identity matrix. The 1-NP design erects a linear boundary halfway between and

orthogonal to the line connecting the i-th and J-th prototypes, viz., the hyperplane HP through

the vector {v_ - vj)/2 perpendicular to it. All NP designs defined with inner product norms use

(piecewise} linear decision boundaries of this kind.
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Figure 3. Geometry _ the Nearest Prototype Classifier for Inner Product Norms

HP Xj

Clustering algorithms imaged in Mfcnu eventually "defuzzify" or "deprobabilize" their label

vectors, usually using the maximum membership (or maximum probability) strategy on the

terminal fuzzy (or probabilistic) c-partitions produced by the data:

Maximum membership (MM) conversion of U in Mfcnu to UMM in Mfc :

1; u& > Usk, I < S <_C,S _ i_UMM_---- 0; other/_/se J l<L<c; l<k__n (5)

UMM is always a hard c-partition; we use this conversion to generate a confusion matrix and

error statistics when processing labeled data with FCM and FLVQ. For HCM/FCM/LVQ/FLVQ,

using (5) instead of (4) with the terminal prototypes secured is fully equivalent- that is, UMM

/s the hard partition that would be created by applying (5) with the final cluster centers to the

unlabeled data. This is not true for GLVQ.

2. I2F..ARNING VECTOR QUANTIZATION AND SEQUENTIAL HARD C-MEANS

Kohonen's name is associated with two very different, widely studied and often confused

families of algorithms. Specifically, Kohonen initiated study of the prototype generation

algorithm called learning vector quantization (LVQ}; and he also introduced the concept of

self-organizing feature maps (SOFM} for visual display of certain one and two dimensional
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data sets I. LVQ is not a clustering algorithm per se; rather, it can be used to generate crisp

{conventlonal or hard) c-partitions of unlabeled data sets in using the I-NP classifier designed

with its terminal prototypes. LVQ is applicable to p dimensional unlabeled data. SOFM, on the

other hand, attempts to find topological structure hidden in data and display it in one or two

dimensions.

We shall review LVQ and its c-means relative carefully, and SOFM in sufficient detail to

understand its intervention in the development of general_ed network clustering algorithms.

The primary goal of LVQ Is representation of many points by a few prototypes; identification

of clusters is implicit, but not active, in pursuit of this goal. We let X = {x 1, x 2 .... x n} c 9_Pdenote

the samples at hand, and use c to denote the number of nodes (and clusters in X) in the

competitive layer.

The salient features of the LVQ model are contained in Figure 5. The input layer of an LVQ

network is connected directly to the output layer. Each node in the output layer has a weight

vector (or prototype) attached to it. The prototypes V= {v 1, v 2 ..... v c) are essentially a network

array of (unknown) cluster centers, v i e 9_Pfor I _<i _<c. In this context the word learning refers

to finding values for the {Vlj}. When an input vector • is submitted to this network, distances

are computed between each v r and x. The output nodes "compete", a (minimum distance]

'Winner" node, say v i, is found ; and it is then updated using one of several update rules.

x
1

x
2

x
3

x

P

Figure 5. LVQ Clustering Networks

Input Layer Output Layer
(Fanout) (Competive} ueg_

xe 9_p Vl

V
i
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We give a brief specification of LVQ as applied to the data in our examples. There are other

versions of LVQ; this one is usually regarded as the "standard" form.

...... [l_[I _ll[[] . . . llll [ ....... i .... [E'_ZZZ .......
.................. i ]...... ]J[ ........ ] ........ L .Z...ZZ ..... LZJZ ...... 'Z............

The LV 0 Clusterlnl AI_orithm!

LVQ1. Given unlabeled data set X = {x 1, x 2 .... x n} C _P, Fix c, T, and e > 0.

LVQ2. Initialize V 0 = ( vl. 0 ..... Vc.(_ • 9{ep, and learning rate a 0 • (i,0).

LVQ3. For t = 1,2 ..... T;

For k = 1,2 ..... n:

b. Update the winner • vl. t = vi.t_ 1+ atlx k- vi,t_ 1)

Next k

d. Apply the 1-NP (nearest prototype) rule to the data :

(6)

(7)

{1; Ixk-v_l<[xk-vjl 'l< J<-c'J_ti} ,l<_L<candl<_n. (8)ULVQ_= O; oiherwise

c c

=y.v - Eve.  --Iv-v4 ' rJ r.*"*.'-'11,-- r-,I-
f. If _ _<_ stop; Else adjust leanm,.g rate at;

Next t

_E I at (8) are a _ matrl'_ that define a hard c-partition Of x uSIB_ theThe numbers ULV Q ULVQ,

I-NP classifier assignment rule shown in (4). The vector u shown in Figure i represents a

crisp label vector that corresponds to one column of this matrix; it contains a i in the winner

row i at each k; and zeroes otherwise. Our inclusion of the computation of the hard I-NP c-

partition of X at the end of each pass through the data (step LVQ3.d) is not part of the LVQ

algorithm - that is. the LVQ iterate sequence does not depend on cycling through U's. Ordinarily

this computation is done once. non-iteratively, outside and after termination of LVQ. Note

that LVQ uses the Euclidean distance in step LVQ3.a. This choice corresponds roughly to the

update rule shown in (7) , since Vv(_Z- v_)=-2I(x-v) =-2Ix- v). The origin of this rule

comes about by assuming that each • f _P is distributed according to a probability density

function f(•). LVQ's objective is to find a set of vi's such that the expected value of the square

of the discretlzation error is minimized :

206



In this expression v i is the winning prototype for each •, and will of course vary as • ranges

over 9(p. A sample function of the optimization problem is e = Ix - vt[ z. An optimal set of vi's

can be approximated by applying local gradient descent to a finite set of samples drawn from f.

The extant theory for this scheme is contained in Kohonen _2 , which states that LVQ converges

in the sense that the prototypes V t = (v I .t' v2,t ..... Vc, t) generated by the LVQ iterate sequence

converge, i.e., {Vt} t-_- _V, provided two conditions are met by the sequence {a t} of

learning rates used in (7) •

a. = _ • and (10a)
t=0 •

One choice for the learning rates that satisfies these conditions is the harmonic sequence

a t = 1 / t for t _>1; a o _ (0,1). Kohonen has shown that (under some assumptions) steepest

descent optimization of the average expected error function (9) is possible, and leads to the

update rule (7). The update scheme shown in equation (7) has the simple geometric

interpretation shown in Figure 6.

8. Updating the LVg Prototype.

V

J,t-1

Vc,t-1

Vl,t-1 at = 0
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The winning prototype Vl,t_ 1 is simply rotated towards the current data point by moving along

the vector (x k- vi,t_ I) which connects it to x k. The amount of shift depends on the value of a

"learning rate" parameter a t, which varies from 0 to I. As seen in Figure 2. there is no update ff

o.t=0, and when at=l, vi. t becomes x k (vi, t is Just a convex combination of x k and Vl,t_l). This

process continues until termination via LVQ3.f, at which time the terminal prototypes yield a

"best" hard c-partition of X via (3].

Comments on L_ :

I. Limit point property : Kohonen _2 refers to _a._4, and mentions that LVQ converges to a
unique limit if and only if conditions (10) are satisfied. However, nothing was said about what

sort or type of points the final weight vectors produced by LVQ are. Since LVQ does not model a
well defined property of clusters (in fact, LVQ does not maintain a partition of the data at all).

the fact that {Vt} t-,- >,_ does not insure that the limit vector "# is a good set of prototypes

in the sense of representation of clusters or clustering tendencies. All the theorem guarantees
is that the sequence HAS a limit point. Thus, "good clusters" in X will result by applying the l-
NP rule to the final LVQ prototypes only if, by chance, these prototypes are good class
representatives. In other words, the LVQ model is not dr/yen by a well specified clustering goal.

2. Learning rate a : Different strategies for a t often produce different results. Moreover, LVQ

seldom terminates unless ctt_0 (i.e., it is forced to stop because successive iterates are

necessarily close}.

3. Termination : LVQ often runs to its iterate limit, and actually passes the optimal (clustering)
solution in terms of minimal apparent label error rate. This is called the "over-training"
phenomenon in the neural network literature.

Another, older, clustering approach that is often associated with LVQ is sequential hard c-

means {SHCM). The updating rule of MacQueen's SHCM algorithm is similar to LVQ _5. In

MacQueen's algorithm the weight vectors are initialized with the first c samples in the data set

X. In other words, Vr, 0 = x r, r=l .... c. Let qr.0=l for r=l .... c (qr,t represents the number of

samples that have so far been used to update Vr, t ). Suppose xt+ I is a new sample point such

that vi, t is closest (with respect to, and without loss, the Euclidean metric) to it. MacQueen's

algorithm updates the Vr'S as follows (again, index i identifies the winner at this t):

vi,t+l = (vi,t qi,t + Xt+l}/(qi.t +I) • (11a)

qi,t+ I = qi,t + 1 • ( IIb}

Vr,t+ I =Vr, t for rxi, • (llc)

qr.t+l = qr, t for rzi. (lld)
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MacQueen's process terminates when all the samples have been used once ( i.e., when t = n). The

sample points are then labeled on the basis of nearness to the final mean vectors (that is, using

(3) to find a hard c-partition USHCM). Rearranging (11a), one can rewrite Macqueen's update

equation •

vi,t+ 1 = vi,t + (xt+ 1- vi,t ) / qi,t+ 1 "
(12)

Writing 1/qi,t+l as ai,t+ 1, equation (12) takes exactly the same form as equation (7). However,

there are some differences between LVQ and MacQueen°s algorithm: (i) In LVQ sample points are

used repeatedly until termination is achieved, while in MacQueen's method sample points are

used only once (other variants of this algorithm pass through the data set many times tin. (ii}

In MacQueen's algorithm eti,t+l is inversely proportional to the number of points found

closest to vi, t , so it is possible to have ai,tl < _,t2 when t I > t 2. This is not possible in LVQ.

MacQueen attempted to partition feature space _P into c subregions, say (S 1 ..... Sc), in such a

way as to minimize the functional

where f is a density function as in LVQ, and _t is the (conditional) mean of the pdf f i

obtained by restricting f to S i, normalized in the usual way, i.e., fi(x) = f(x)ISi/P(Si); and

_r =(Vl' v2 ..... _c) c _cp. Let V t = (Vl, t ..... Vc,t): S t = (SI(T t) ..... Sc(Vt)) be the minimum distance

partition relative to We; P(Sj)= prob(x-Sj), PJ,t = P(Sj(vt)) = prob(x ,, Sj(vt)); and vj,t' the

conditional mean of • over Sj(vt), is vj,t = fsj(Vt)xdf(•)/P(Sj) when P(Sj) > 0, or vj,t = vj,t

when P(Sj) = 0. MacQeen proved that for the algorithm described by equations (I la-d),

nc IZ(Y.P v
iLrnJt=IJ=l J'tl J.t - " J,tl )

n_- [ n

=0

Since { _j ) are conditional means, the partition obtained by applying the nearest prototype

labeling method at (4) to them may not always be desirable from the point of view of

clustering. Moreover, this result does not eliminate the possibility of slow but indefinite

oscillation of the centroids (limit cycles).
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LVQ and SHCM suffer from a common problem that can be quite serious. Suppose the input

data X = {Xl,_213_4,x5.x6} c _2 contains the two classes A ={x l,x2,x3} and B = {x4,x5,x6} as

shown in Figure 7. The initial positions of the centroids Vl, 0 and v2. 0 are also depicted in

Figure 7. Since the initial centroid for class 2 (v2, 0) is closer to the remaining four input

points than v 1. each of them will update (modify) v 2 only; v I will not be changed on the first

pass through the data. Moreover, both update schemes result in the updated centrold being

pulled towards the data point some distance along the line joining the two points.

Consequently, the chance for v 1,0 to get updated on succeeding passes is very low. Although

this results in a locally optimal solution, it is hardly a desirable one.

Figure 7. An initialization problem for LVQ/SHCM

• =V
l 1.0

• =V
2 2.0

A

X 4

X 6

B

X 5

There are two causes for this problem : (i) an improper choice of the initial centroids, and (li}

each input updates only the winner node. To circumvent problem (i), initialization of the vi's

is often done with random input vectors; this reduces the probability of occurrence of the above

situation, but does not eliminate it. Bezdek et. a117 attempted to solve problem (ifl by updating

the winner and some of its neighbors (not topological, but metrical neighbors in _Rp ) with

each input in FLVQ. In their approach, the learning coefficient was reduced both with time and

distance from the winner. FLVQ, in turn, raised general two issues : defining an appropriate
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neighborhood system, and deciding on strategies to reduce the learning coefficient with

distance from the winner node. These two issues motivated the development of the GLVQ

algorithm.

We conclude this section with a brief description of the SOFM scheme, again using t to stand for

iterate number (or time). In this algorithm each prototype Vr, t • 91P is associated with a

display node ,say dr, t • 912. The vector vi, t that best matches [ in the sense of minimum

Euclidean distance in the feature space) an incoming input vector z k is then identified as in

(4). vl, t has an "image" di, t in display space. Next, a topological {spatial) neighborhood NIdi, t )

centered at di, t is defined in display space, and its display node neighbors are located. Finally,

the vector vi, t and other prototype vectors in the inverse image [_/Idi, t ) ]-1 of spatial

neighborhood _[dl, t) are updated using a generalized form of update rule [7} :

Vr,t = Vr,t_ 1 + ark, t (Xk-Vr,t.l), dr. t • aldl. t ). (]3)

The function Ctrk,t defines a learning rate distribution on indices (rl of the nodes to be updated

for each input vector x k at each iterate t. These numbers impose (by their definitionl a sense of

the strength of interaction between (output) nodes. If the {Vr, t} are initialized with random

values and the external inputs z k = xk(t) are drawn from a time invarlant probability density

function f(z], then the point density function of Vr, t ( the number of Vr,t's in the ball B(Zk,¢)

centered at the point zkwith radius ¢ ) tends to approximate f (z) . It has also been shown that

the Vr,t's attain their values in an "orderly fashion" according to f(x) 12. This process is

continued until the weight vectors "stabilize." In this method then, a learning rate distribution

over time and spatial neighborhoods must be defined which decreases with time in order to

force termination (to make Ctrk,t =0). The update neighborhood also decreases with time. While

this is clearly not a clustering strategy, the central tendency property of the prototypes often

tempts users to assume that terminal weight vectors offer compact representation to clusters of

feature vectors; in practice, this is often false.
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4. GENERALIZED IF_.ARNING VECTOR QUANTIZATION (GLVQ)

In this section we describe a new clustering algorithm which avoids or fixes several of the

limitations mentioned earlier. The learning rules are derived from an optimL_.ation problem.

Let • • _P be a stochastic input vector distributed according to a time invariant probability

distribution f(x), and let i be the best matching node as in {7). Let L x be a loss function which

measures the locally weighted mismatch (error) of • with respect to the winner •

L L(x • v t, _g_x- [I where (14a)• = ...,Vc) :- V r ,
r=I l

I 1 if r=i

1
gv = c m2 , otherwise

j___ll• -- VJ !
(14b)

Let X = {x I ..... x n .... } be a set of samples from f(x) drawn at time instants t:i,2 ..... n ..... Our

objective is to find a set of c Vr'S, say V = {v rj such that the locally weighted error functional L x

defined with respect to the winner v i is minimized over X. In other words, we seek to

Minimize • F(V)= J'j'._. J" r=1_ge[x-vr_f(x)d•" (I,5)

For a fixed set of points X = {•I ..... x n} the problem reduces to the unconstrained optimization

problem:

Minimize F(V) = t=Ir=l el ty" y'g • - Vr

n
(16)

Here L x is a random functional for each realization of x, and F(V) is its expectation. Hence

exact optimization of F using ordinary gradient descent Is difficult. We have seen that 1, the

Index for the winner, Is a function of • and all of v r s. The function L x is well defined. If we

assume that • has a unique distance from each v r , then i and 9Lr are uniquely determined, and

hence L x is also uniquely determined. However, ff the above assumptions are not met, then 1

and g_ will have discontinuities. In the following discussion we assume that 9e does not have

discontinuities so that the gradient of L x, exists. As most learning algorithms do ]a, we
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approximate the gradient of F(V) by the gradient of the sample function L z. In other words, We

attempt to minimize F by local gradient descent search using the sample function L z. It is our

conjecture that the optimal values of v r's can be approximated in an iterative, stepwise

fashion by moving in the direction of gradient of L z . The algorithm is derived as follows (for

notational simplicity the subscript for • will be ignored). First rewrite L as :

-l.-.,f+,- (17)

Differentiating L with respect v i yields (after some algebraic manipulations) •

VvL{vl) =-2{x-vt) D2-D_ x-v([_
(18)

ej _ . On the other hand. differentiation of L with respect to vj (j = i) yields:where D= I_ •-v r

VvLIYjl = -2(x-v j) [_ 1191

Update rules based on (17) and (18] are"

D+i•-,,(.,_,f
Vl, t = Vt.t_ l+a t (X-Vl,t_ 1} D2

for the winner node i, and (201

• -- Vf,t_l_ 2

Vj. t = Vj.t_ I + a t (X -- Vj.t_l) D2
for the other (c-I) nodes, J_i. 12 I)
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To avoid possible oscillations of the solution, the amount of correction should be reduced as

iteration proceeds. Moreover, llke optimization techniques using subgradient descent search,

as one moves closer to an optimum the amount of correction should be reduced (in fact, a t

should satisfy the following two conditions : as t _ -; a t _0 and r at --> ,)19. On the other

hand, in the presence of noise, under a suitable assumption about subgradients, the search

becomes successful if the conditions in (I0) are satisfied. We recommend a decreasing sequence

of at ( 0 < a t < I) satisfying (10) , which insure that a t is neither reduced too fast nor too slow.

From the point of view of learning, the system should be stable enough to remember old

learned pattems, and yet plastic enough to learn new patterns [Grossberg calls It the stabtltttj-

plasticity dilemma) 2°. Condition (10a) enables plasticity, while {10b) enforces stability . In

other words, an incoming input should not affect the parameters of a learning system too

strongly, thereby enabling it to remember old learned patterns (stability); at the same time,

the system should be responsive enough to recognize any new trend in the input (plasticity].

Hence, _t can be taken as o_0(l-t/T), where T is the maximum number of iterations the learning

process is allowed to execute and _0 is the initial value of the learning parameter. Referring to

(20), we see that when the match is perfect then nonwinner nodes are not updated; in other

words, this strategy then reduces to LVQ. On the other hand, as the match between • and the

winner node v i decreases, the impact on other (nonwinner) nodes increases. This seems to be

an intuitively desirable property. We summarize the GLVQ algorithm as follows:

11 .... 1 II]1 I ........... [I . IIIIL.] J _ _ I]1 [ . . .Ill]ill _ Jill ....... ] ...........

GLVQ Clusterb_ Alforlt.hm:

GLVQ1. Given unlabeled data set X = {x I , z 2 .... Zn} c 9_p . Fixc, T, and e > 0.

GLVQ2. Initialize Vo= (Vl, 0 ..... Vc,0) a 9_cv . and learning rate o0 a (1,0).

GLVQ3. For t = I, 2 ..... T.

a. Compute a t = a0 (l-t/T].

While l__n

c. Update all (c) weight vectors {Vr, t} with

v,. t = v,_ l + at (z k - vt.t_l) 'D= Y.Z-V r
r=]
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D 2

Wend

c n c

Yv =d._pute IIV,-V,_,l=rJ".'-'".'-'1, _,_J_.'--Vr'_.'-'l"
e. If E t < _ stop: Else

Next t.

GLVQ4. Compute non-iteratively the nearest prototype GLVQ c-partition of X •

IC, D= x-v r

F. F.--,I., 1
UGLVQ_ = O; otherwise

, l<L<cand l<k_n.

Ccxnm_ts cm GLVQ :

1. There is no need to choose an update neighborhood.

2. Reduction of the learning coefficient with distance (either topological or in 9_p) from the

winner node is not required. Instead, reduction is done automatically and adaptively by the

learning rules.

3. For each input vector, either all nodes get updated or no node does. When there is a perfect

match to the winner node, no node is updated. In this case GLVQ reduces to LVQ.

4. The greater the mismatch to the winner ( i.e., the higher the quantizatlon error}, the greater

the impact to weight vectors associated with other nodes. Quantization error is the error in

representing a set of input vectors by a prototype - in the above case the weight vector

associated with the winner node.

5.The leaming process attempts to minimize a well-defined objective function.

6. Our termination strategy is based on small successive changes in the cluster centers. This

method of algorithmic control offers the best set of centroids for compact representation

(quantization] of the data in each cluster.
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4. FUZZY LEARNING VECTOR QUANTIZATION (FLVQ)

Huntsberger and Ajjimarangsee II used SOFMs to develop clustering algorithms. Algorithm I

in ii is the SOFM algorithm with an additional layer of neurons. This additional set of

neurons does not participate in weight updating. After the self-organlzing network terminates,

the additional layer, for each input, finds the weight vector (prototype) closest to it and assigns

the input data point to that class. A second algorithm in their paper used the necessary

conditions for FCM to assign a membership value in [0,I] to each data point. Specifically,

Huntsberger and AJJimarangsee suggested fuzziflcation of LVQ by replacing the learning rates

{¢Xik,t} usually found in rules such as (7) with fuzzy membership values [uric,t} computed with

the FCM formula 2:

-2

t_k't = U&,t = j_=l Djk.t J {22)

I |

- [ . Numerical results reported in Huntsberger and AjJimarangsee suggestwhere Dik.t Zk vi't A

that in many cases their algorithms and standard LVQ produce very similar answers. Their

scheme was a partial integration of LVQ with FCM that showed some interesting results.

However, it fell short of realizing a model for LVQ clustering; and no properties regarding

terminal points or convergence were established. Moreover, since the objective of these LVQ is

to find cluster centroids (prototypes), and hence clusters, there is no need to have a topological

ordering of the weight vectors. Consequently, the approach taken in _ seems to mix two

objectives, feature mapping and clustering, and the overall methodology is difficult to

interpret in either sense.

Integration of FCM with LVQ can be more fully realized by defining the learning rate for

Kohonen updating as"

-2¢n t

%.,--lu..,l m' --( t
j=l m flc,t J , where (23a}

rn t = m o + t[{mf - m o) / T] = m o + tam • mf.m o > I" t=l,2 .... T. {23b}

m t replaces the (fixed} parameter m in (22}. This results in three families of Frizzy LVQ or FLVQ

algorithms, the cases arising by different treatments of paramerer m t. In particular, for
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t e {1,2 ..... T}. we have three cases depending on the choice of the initial (rn o) and final (mf)

values of m:

I. m 0 > mf _ {mr} $ mf •Descending FLVQ (24a)

2. m o <mr _ {mt }$ m f •Ascending FLVQ (24b)

3. m o = mf =, m t = m o = m • FLVQ - FCM (24c)

Cases I and 3 are discussed at length by Bezdek et. al)7. Case 2 is fully discussed in Tsao et.

al. 21. Equation (24c) asserts that when m 0 = mf, FLVQ reverts to FCM; this results from

defining the learning rates via (23a1, and using them m FLVQ3.b below. FLVQ is not a direct

generalization of LVQ because it does not revert to LVQ in case all of the Uik.t's are either 0 or 1

[the crisp case}. Instead, ff m 0 = mf = 1. FCM reverts to HCM. and the HCM update formula,

which is driven by finding unique winners, as is LVQ, is a different formula than (7). FLVQ is

perhaps the closest possible link between LVQ and c-Means type algorithms. We provide a

formal description of FLVQ :

l_zzv LVQ_aq,'vm

FLVQ1. Given unlabeled data set X = {x 1. z 2 ..... Xn}. Fix c, T, ] _a and e>0.

FLVQ2. nitialize v 0 = ( Vl. 0 ..... Vc, 0) _ _Xcp . Choose m o, mf >I.

FLVQ3. For t = 1.2 ..... T.

a. Compute all (cn) learning rates {aik,t} with (23}.

n rl

b. Update all (c) weight vectors {viA} with via = via _ I + k--l_ a.o¢.t(X._ - V_.t_I ) / s___i=a_, t

C. Compute Et= ]v t - vt_,[ = ,_,]v,. t - ".t-'l"

d. If E t < e stop; Else

Next t.
.............................. li............ 11......... In ................................ _ ] II .... II ............. I I .................... [ _

For fixed c, {viA} and mt. the learning rates aik,t = (Utk,t)mt at (23a) satisfy the following •

(25)

where x is a positive constant. Apparently the contribution of x k to the next update of the node

weights is inversely proportional to their distances from it. The "winner* in (29) is the via - 1
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closest to x k, and it will be moved further along the line connecting vi,t. i to x k than any of the

other weight vectors. Since _ u_. t = I _ Y a_cj < 1, this amounts to distributing partial updates

across all c nodes for each Xk_ X. This is in sharp contrast to LVQ, where only the winner is

updated for each data point.

In descending FLVQ (24a), for large values of m t (near mo), all c nodes are updated with lower

individual learning rates, and as mt--> I, more and more of the update is given to the "winner"

node. In other words, the lateral distribution of learning rates is a function of t, which in the

descending case "sharpens" at the winner node (for each x k) as m t _ I. Finally, we note

again that for fixed m t, FLVQ updates the [viA} using the conditions that are necessary for

FCM; each step of FLVQ is one iteration of FCM.

Figu_ 8. Updating Feature Space _ in FLVQ Clustering Nets.

Yank ,-<1_]

J,t-1 vj,t

................ Xk;

Vc,t .............. '
I

I

Vc,t - 1 vi, t

aikt(X k - Vl,t_ I)

vi,t-I

Figure 8 illustrates the update geometry of FLVQ; note that every node is (potentially) updated

at every iteration, and the sum of the learning rates is always less than or equal to one.

Comnmntl ott $2,VQ :

1. There is no need to choose an update neighborhood.

2. Reduction of the learning coefficient with distance (either topological or in 9_p) from the
winner node is not required. Instead, reduction is done automatically and adaptively by the

learning rules.
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3. The greater the mismatch to the winner ( i.e., the higher the quantization error), the smaller
the impact to the weight vectors associated with other nodes (recall (25) and (2c)]. This is
directly opposite to the situation in GLVQ.

4.The learning process attempts to minimize a weU-defined objective function (stepwise).

5. Our termination strategy is based on small successive changes in the cluster centers. This
method of algorithmic control offers the best set of centroids for compact representation
(quantization) of the data in each cluster.

6. This procedure depends on generation of a fuzzy c-partition of the data, so it is an iterative
clustering model - indeed, stepwise, it is exactly fuzzy c-means 17

5. IMAGE S_ENTATION WITH GLVQ AND FLVQ

In this section we illustrate the (FLVQ and GLVQ) algorithms with image segmentation, which

can be achieved either by finding spatially compact homogeneous regions in the image; or by

detecting boundaries of regions, i.e.. detecting the edges of each region. We have applied our

clustering strategies to both paradigms. Image segmentation by clustering raises the important

issue of feature extraction / selection. Generally, features relevant for identifying compact

regions are different from those useful for the edge detection approach.

Feature selectioa for homogeneous regloa extractiou

When looking for spatially compact regions, feature vectors should incorporate information

about the spatial distribution of gray values. For pixel (i,j) of a digital image F= {(i,J) l 1 _<i < M ;

I < J < N}. we define the d th order ne/ghborhood of (iJ), where d > 0 is an integer as ;

N d dj N d_.j ={(k,l)eF} suchthat (i,J)_ Ndt.j andif(k,l)eN then (i,j) e k.l " {26)

Several such neighborhoods are depicted in Figure 9, where N d consists of all pixels marked
i,J

with an index < d. For example N 1 is obtained by taking the four nearest neighbor pixels to

(i,J). Similarly, N 2 is defined by its eight nearest neighbors, and so on. N dl.j as defined in (26} is

the standard neighborhood definition for modeling digital images using Gibbs or Markov

Random Fields. To define feature vectors for segmentation, we extend the definition of a d-th

order neighborhood at (26} to include the center pixel (i,J):

d'=Nd
N,.j i.j u {(l,j}} ; DIj= ]N_d (27)
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Figure 9. An Ordered Neighborhood system
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Next, let L= ( 1,2 ..... G } be the set of gray values that can be taken by p/xels in the/mage, and let

iflJ} be the intensity at (iJ} in F, that is, f: F _-_ L. We define the collection of gray values of all

p/xels that belong to Ndj z_

S_f,j={f(k.l_ (k,l}E N_,_ } (28}

Note that S d may contain the same gray value more than once. We say two neighborhoodsl.j

N d" and N d'
_,j k.l are equa//y homogeneous in case S d and S dcj k.l are identical up to a permutation.

This assumption is natural and useful as long as the neighborhood size is small. To see this,

consider two 100xl00 neighborhoods that contain 5000 pixels with gray value ] and 5000

with value G. Satisfaction of this property gives the impression of two perfectly homogeneous

regions ; but in fact one of these neighborhoods might have all 5000 pixels of each intensity in,

say, the upper and lower halves of the image, while other neighborhood has a completely

random mixture of black and white spots. When the neighborhood size is small, however,

spatial rearrangement of a few gray values among many more in the entire image will not

create a much different impression to the human visual system as far as homogeneity of the

region is concerned. Therefore, for small values of d we can derive features for (i,J) from S d
i,j

which are relatively independent of permutation of Its elements (typically. such features

might include the mean, standard deviation, etc. of the intensity values in S d
_.j ).

Subsequently, these features are arrayed into a pixel vector xij for each pixel. In this
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investigation, we used the gray values in S d+.j themselves as the feature vector for pixel (i,J);
D

thus, each (i,J) in F (excluding boundaries) is associated with xij in 9{ w

Since FLVQ and GLVQ both use distances between feature vectors, we sorted the values in S d
i.J

to get each xij. Sorting can be done either in ascending or in descending order, but the same

strategy must be used for all pixels. We remark that an increase in the d-size of the

neighborhood will obscure finer details in the segmented image; conversely, a very low value

of d usually results in too many small regions. Experimental investigation suggests that

3 < d < 5 provides a reasonable tradeoff between fine and gross structure.

Featwe _ for edge extraction

_ly speaking edges are regions of abrupt changes in gray values. Therefore, features used

for extraction of homogeneous regions are not suitable for edge-nonedge classification. For

this approach, we nominate a feature vector giJ in 9{3 with three components : standard

deviation, gradient 1 and gradient 2. In other words, each pixel is represented by a 3-tuple xij

= (o_f,J),Gl(l,J),G2(i,J)). The standard deviation is defined on S di.j as follows:

O_l'J)={l._-'_,] ]_(g-/_i ,)2}I/2 (29)
9,_S" 'J

i.J ,,j

where _j is the average gray value overSdj . Since standard deviation measures variation of

gray values over the neighborhood, using too large a neighborhood will destroy its utility for

edge detection. The two gradients are defined as"

Gl(i,J) =Ifi+l.j - f__l.jl+If,.j_l - ft.j+l I ; and

G2(i, J) =l f l+l.j+l - f i_l,j_ll +l f l+l.j_l - ft_l.J+i I .

(30)

(31)

Note that G i measures intensity changes in the horizontal and vertical directions, while G2

takes into account diagonal edges; thisJustlfles the use of both G1 and G2.

Implementation

FLVQ (ascending strategy) and GLVQ were used for segmentation of the house image depicted in

Figure 10(a). This image is a very complex image for segmentation into homogeneous regions,

because it has some textured portions (the trees) behind the house. For the region extraction
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scheme we used neighborhoods of order d=3 and d=5. The number of classes chosen was c=8.

The computing protocols used for different runs are summarized in Table 2.

Table 2. C_nputing protocols far the segmentat/ons

Since FLVQ produces fuzzy labels for each pixel vector, the fuzzy label vector is defuzzlfled

using the maximum membership rule at (5). Thus, each pixel receives a crisp label

corresponding to one of the c classes in the segmented image. Coloring of the segmented image

is done by using c distinct gray values, one for each class. Defuzzffication is not required for

the GLVQ algorithm as it produces hard labels.

Figure 10 contains some typical outputs of both FLVQ and GLVQ using the region-based

segmentation approach. To show the effect of sorting we ran both algorithms with unsorted

and sorted feature vectors. Figure 10(b} represents the segmented output produced by FLVQ

with d=3 and unsorted features; while figure 10(c) displays the output under the same

conditions, but with sorted features. Comparing figures 10{b} and (c} one sees that the noisy

patches on the roof of the house that appear in Fig, 10(b} are absent in Fig, 10(c}. Similar

occurences can be found in other portions of the image. This demonstrates that sorted pixel

vectors seem to afford some noise cleaning ability. Figure 10{d) was produced with FLVQ using

sorted neighborhoods of size 5. Note that the textured tree areas have been segmented more

compactly; this illustrates the effect of increasing the neighborhood size. Figures I0 (e) and (f)

are produced by the GLVQ algorithm with sorted neighborhoods of orders 3 and 5, respectively.

_LV_ norm c mo Am T _ iterations

Fig. 10('o) Euclidean 8 1.05 0.2 80 0.5 25

Fig. 10(c} Euclidean 8 1.05 0.2 80 0.5 24

Fig. lO{d) Euclidean 8 1.05 0.2 80 0.5 29

Fig. I l{a_ Euclidean 2 1.05 0.2 80 0.5 17

, _V_ norm e °O _a T _ iterations

Fig. lO(e,f) Euclidean 8 0.6 0.06 100 0.5 100

Fl_. 1 l(b) Euclidean 2 0.6 0.06 100 0.5 100

Comparing figures 10(c} and (e) we find that FLVQ and GLVQ are comparable for the house, but

GLVQ extracts more compact regions for the tree areas. Another interesting thing to note is

that for GLVQ with a window of size 5x5, the roof of the house is very nicely segmented wlth

sharp inter-region boundaries; this is not true for all other cases using either algorithm.
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We used the same image [Figure 10 (a))to test the edge-based approach. The results produced by

FLVQ and GLVQ are shown in Figures I l(a) and (b), respectively. Comparing these two figures,

one can see that both algorithms have extracted the compact regions nicely. A careful

analysis of the images shows that FLVQ detects more edges than GLVQ. As a result of this FLVQ

produces some noisy edges and GLVQ fails to extract some important edges. To summarize,

both algorithms produce reasonably good results, but GLVQ has a tendency to produce larger

compact (homogeneous) areas than that by the FLVQ. It appears that GLVQ is less sensitive to

noise which might cause a failure to extract finer details.

6. CONCLI/SIONS

We have considered the role of and interaction between fuzzy and neural-llke models for

clustering, and have illustrated two generalizations of LVQ with an application in image

segmentation. Unlike methods that utilize Kohonen's SOFM idea. both algorithms avoid the

necessity of defining an update neighborhood scheme. Both methods are designed to optimize

performance goals related to clustering, and both have update rules that allocate and distribute

learning rates to (possibly} all c nodes at each pass through the data. Ascending and descending

FLVQ updates all nodes at each pass, and learning rates are related to the fuzzy c-means

clustering algorithm. This yields automatic control of the learning rate distribution and the

update neighborhood is effectively all c nodes at each pass through the data. FLVQ can be

considered a (stepwise} implementation of FCM. GLVQ needs only a specification of the
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learning rate sequence and an initialization of the c protoytpes. GLVQ either updates all

nodes for an input vector, or it does not update any. When an input vector exactly matches the

winner node, GLVQ reduces to LVQ. Otherwise, all nodes are updated inversely proportionally

to their distances from the input vector.
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