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Abstract

Clustering methods have been used extensively in computer vision and pattern recognition.
Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that
total commitment of a vector to a given class is not required at each iteration. Recently fuzzy
clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also
clusters which are actually "thin shells", i.e., curves and surfaces. Most analytic fuzzy clustering
approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the
probabilistic constraint that the memberships of a data point across classes sum to one. This
constraint was used to generate the membership update equations for an iterative algorithm.
Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the
intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in
noisy environments. Recently, we cast the clustering problem into the framework of possibility
theory. Our approach was radically different from the existing clustering methods in that the
resulting partition of the data can be interpreted as a possibilistic partition, and the membership
values may be interpreted as degrees of possibility of the points belonging to the classes. We
constructed an appropriate objective function whose minimum will characterize a good possibilistic
partition of the data, and we derived the membership and prototype update equations from
necessary conditions for minimization of our criterion function. In this paper, we show the ability
of this approach to detect linear and quartic curves in the presence of considerable noise.

1Research performed for NASA/JSC through a subcontract from the RICIS Center at the University of
Houston - Clear Lake
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I. Introduction

Clustering has long been a popular approach to unsupervised pattern recognition. It has
become more attractive with the connection to neural networks, and with the increased attention to

fuzzy clustering. In fact, recent advances in fuzzy clustering have shown spectacular ability to
detect not only hypervolume clusters, but also clusters which are actually "thin shells", i.e., curves

and surfaces [ 1-7]. One of the major factors that influences the determination of appropriate groups
of points is the "distance measure" chosen for the problem at hand. Fuzzy clustering has been
shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector
to a given class is not required at each iteration.

Boundary detection and surface approximation are important components of intermediate-
level vision. They are the first step in solving problems such as object recognition and orientation

estimation. Recently, it has been shown that these problems can be viewed as clustering problems
with appropriate distance measures and prototypes [ 1-7]. Dave's Fuzzy C Shells (FCS) algorithm
[2] and the Fuzzy Adaptive C-Shells (FACS) algorithm [7] have proven to be successful in
detecting clusters that can be described by circular arcs, or more generally by elliptical shapes.
Unfortunately, these algorithms are computationally rather intensive since they involve the solution
of coupled nonlinear equations lor the shell (prototype) parameters. These algorithms also assume
that the number of clusters are known. To overcome these drawbacks we recently proposed a
computationally simpler Fuzzy C Spherical Shells (FCSS) algorithm [6] for clustering
hyperspherical shells and suggested an efficient algorithm to determine the number of clusters
when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS) algorithm [5]
which can detect more general quadric shapes. One problem with the FCQS algorithm is that it
uses the algebraic distance, which is highly nonlinear. This results in unsatisfactory performance
when the data is not very "clean" [7]. Finally, none of the algorithms can handle situations in
which the clusters include lines/planes and there is much noise. In [8], we addressed those issues
in a new approach called Plano-Quadric Clustering. In this paper, we show how that algorithm,
coupled with our new possibilistic clustering, can accurately find linear and quadric curves in the
presence of noise.

Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means
t.FCM) algorithm [9]. The FCM uses the probabilistic constraint that the memberships of a data
point across classes must sum to one. This constraint came from generalizing a crisp C-Partition of
a data set, and was used to generate the membership update equations for an iterative algorithm.
These equations emerge as necessary conditions for a global minimum of a least-squares type of
criterion function. Unfortunately, the resulting memberships do not represent one's intuitive notion
of degrees of belonging, i. e., they do not represent degrees of "typicality" or "possibility".

There is another important motivation for using possibilistic memberships. Like all
unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in the data.
Since most distance functions are geometric in nature, noise points, which are often quite distant
from the primary clusters, can drastically influence the estimates of the class prototypes, and
hence, the final clustering. Fuzzy methods ameliorate this problem when the number of classes is
greater than one, since the noise points tend to have somewhat smaller membership values in all the
classes. However, this difficulty still remains in the fuzzy case, since the memberships of
unrepresentative (or noise) points can still be significantly high. In fact, if there is only one real
cluster present in the data, there is essentially no difference between the crisp and fuzzy methods.

On the other hand, if a set of feature vectors is thought of as the domain of discourse for a
collection of independent fuzzy subsets, then there should be no constraint on the sum of the
memberships. The only real constraint is that the assignments do really represent fuzzy
membership values, i.e., they must lie in the interval [0,11. In [10], we cast the clustering problem
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into the framework of possibility theory. We briefly review this approach, and show it's
superiority to recognize shapes from noisy and incomplete data.

II. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by

C N C

z z- zJ (L,U) = i = 1 j = 1 (/_tO) d , subject to i= 'tlij = 1 for allj. (1)

In (1), L = (/ll ..... &C) is a C-tuple of prototypes, d_) is the distance of feature point xj to cluster

_i, N is the total number of feature vectors, C is the number of classes, and U = [I.tiff is a C xN

matrix called the fuzzy C-partition matrix [9] satisfying the following conditions:

laij e [0,1 ] for all i and j,

N

0< ]_ tt., <N for alli.
j=1

C

_. /./, = 1 for allj, and
i 1

Here,/.t/j is the grade of membership of the feature point xj in cluster 2 i, and m e [1,,,o) is a

weighting exponent called the fuzzifier. In what follows,/]'i will also be used to denote the ith
cluster, since it contains all of the paramete,'s that define the prototype of the cluster.

Simply relaxing the constraint in (1) produces the trivial solution, i. e., the criterion
function is minimized by assigning all memberships to zero. Clearly, one would like the
memberships for representative feature points to be as high as possible, while unrepresentative
points should have low membership in all clusters. This is an approach consistent with possibility
theory [ 11]. The objective function which satisfies our requirements may be formulated as:

C N C N

Jm(L'U) = i =Xl j =Xl (Idij)".m d2ij + t=]_l t3i j =_1 ('l-Mij)''n .
(2)

where r/i are suitable positive numbers. The first term demands that the distances from the feature

vectors to the prototypes be as low as possible, whereas the second term forces the I.tO to be as

large as possible, thus avoiding the trivial solution. The following theorem, proved in [9], gives
necessary conditions for minimization, hence, providing the basis for an iterative algorithm.

Theorem:

Suppose that X = {x 1, x 2 ..... XN} is a set of feature vectors, L = ('_1 ..... AC) is a

C-tuple of prototypes, c_ is the distance of feature point xj to the cluster prototype/t i, (i = 1,

.... C; j = 1..... N), and U = [uij] is a C ×N matrix of possibilistic membership values. Then U
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may be a global minimum for Jm(L,U) only if Pij = 1 + _ ,,,-t . The necessary
r/i

conditions on the prototypes are identical to the corresponding conditions in the FCM and its
derivatives.

Thus, in each iteration, the updated value of I.tij depends only on the distance of xj. from

A,i, which is an intuitively pleasing result. The membership of a point in a cluster should be

determined solely by how far it is fi'om the prototype of the class, and should not be coupled to its
location with respect to other classes. The updating of the prototypes depends on the distance
measure chosen, and will proceed exactly the same way as in the case of the FCM algorithm and its
derivatives.

The value of r/i determines the distance at which the membership value of a point in a

cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on the desired
"bandwidth" of the possibility (membership) distribution for each cluster. This value could be the

same for all clusters, if all clusters are expected to be similar. In general, it is desirable that r/i

relates to the overall size and shape of cluster 2i. Also, it is to be noted that r/i determines the

relative degree to which the _cond term in the objective function is important compared to the first.

If the two terms are to be weighted roughly equally, then rIi should be of the order of d_- . In

practice we find that the following definition works best.
N

m d2jtt o

j=l (3)r/i- N

ill

_U
j=l

This choice makes Oi the average fuzzy intra-cluster distance of cluster A,i. The value of r]i can be

fixed for all iterations, or it may be varied in each iteration. When r/i is varied in each iteration, care

must be exercised, since it may lead to instabilities. Our experience shows that the final clustering

is quite insensitive to large (an order of magnitude) variations in the values of rli.

IlL The Possibilistic C Plano-Quadric Shells Algorithm

Suppose that we are given a second degree curve _i charactc,-ized by a prototype vector

T
P i = [Pi l, pi2 ..... pit]

to which it is desired to fit points xj obtained through the application of some edge detection
T

algorithm. Pi contains the coefficients of the second-degree curve that dcscribes cluster i.. If a

point x has coordinates [x I ...... _cnl, then let
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2q = [x , x 2 ...... ,cn. x lX2 ..... r(n- 1)xn,x I, x2 ...... _¢n, 1]T .

T
The equation of die second-degree curve that describes cluster i is given bypi q = O.

When the exact (geometric) distance has no closed-form solution, one of the methods
suggested in the literature is to use what is known as the "approximate distance" which is the first-
order approximation of the exact distance. It is easy to show [12] that the approximate distance of a

point from a curve is given by

d2Aij = dA2(Xj"a'i) - IV d2°QiJiil2

where V40 is the gradient

4_" (4)

= piTojojTpi,

of the distance functional

2 XlX2 ..... ,r(n_l)Xn,X 1, x 2, . x n, 11T (5)piTq = [Pil,Pi2 ..... Pir][X_, x 2 ..... x n .....

evaluated at xj. In (4) the mauix Dj is simply the Jacobian ofq evaluated at xj.
,,,}

One can easily reformulate the quadric shell clustering algorithm with d_Aij as the

underlying distance measure. It was shown in [8] that the solution to the parameter estimation

problem is given by the generalized eigenvector problem

Fi Pi = li Gi Pi , (6)

where

Fi=

N

Z 1(/10)m Mj,j=

T

Mj = qj qj, and

N

Gi = j --_1 (/'tij)m Dj Dj T ,

which can be converted to the standard eigenvector problem if the matrix Gi is not rank-deficient.

Unfortunately this is not the case. In fact, the last row of Dj is always [0 ..... 0]. Equation (6)

can still be solved using other techniques that use the modified Cholesky decomposition [ 13], and
the solution is computationally quite inexpensive when the feature space is 2-D or 3-D. Another
advantage of this constraint is that it can also fit lines and planes in addition to quadrics. Our
experimental results show that the resulting algorithm, which we call the Possibilistic C Plano-
Quadric Shells (PCPQS) algorithm, is quite robust in the presence of poorly defined boundaries (i.
e., when the edge points are somewhat scattered around the ideal boundary curve in the 2-D case
and when the range values are not very accurate in the 3-D case). It is also very immune to impulse
noise and outliers. Of course, if the type of curves required are restricted to a single type, e.g.,
lines, or circles, or ellipses, simpler algorithms can be used with possibilistic updates, as will be
seen.
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IV. Determination of Number of Clusters

The number of clusters C is not known a priori in some pattern recognition applications
and most computer vision applications. When the number of clusters is unknown, one method to
determine this number is to perform clustering for a range of C values, and pick the C value for
which a suitable validity measure is minirnized (or maximized) [14J. However this method is
rather tedious, especially when the number of cluste,'s is large. Also, in our experiments, we found
that the C value obtained this way may not be optimum. This is because when C is large, the
clustering algorithm sometimes converges to a local minimum of the objective function, and this
may result in a bad value Ibr the validity of the clustering, even though the value of C is correct.

Moreover, when C is greater than the optimum number, the algorithm may split a single shell
cluster into more than one cluster, and yet achieve a good value for the overall validity. To
overcome these problems, we proposed in [8] an alternative Unsupervised C Shell Clustering
algorithm which is computationally more efficient, since it does not perform the clustering for an
entire range of C values.

Our proposed method progressively clusters the data starting with an overspecified number
Cmax of clusters. Initially, the FCPQS algorithm is run with C=Cmax. After the algorithm

converges, spurious clusters (with low validity) are eliminated; compatible clusters are merged; and
points assigned to clusters with good validity are temporarily removed from the data set to reduce
computations. The FCPQS algorithm is invoked again with the remaining feature points. The
above procedure is repeated until no more elimination, merging, or removing occurs, or until
C=l.

V. Examples of Possibilistic Clustering for Shape Recognition

Figures 1 and 2 show the detection of a circular "fi'actal edge" from a synthetically
generated image. Figure l(a) is the original composite fractal image; Figure l(b) shows what a
gray-scale edge operator finds (or doesn't find); figure 1(c) is the output of the horizontal fractal
edge operator; with Figure l(d) giving the maximum overall response of the fractal operators in
four directions. Figure 2(a) depicts the (noisy) thresholded and tllinned result from Figure l(d).
Figure 2(b) gives the final prototype found by the FPQCS (which, since there is only one cluster
present, is the same as the crisp version). Note how the presence of noise distorts the final
prototype. Figure 2(c) shows the possibilistic algorithm output, which is superimposed on the
original image in Figure 2(d). The results of the PPQCS algorithm are virtually unaffected by
noise. Several examples comparing crisp, fuzzy and possibilistic versions of clustering can be
found in [6,8,10].

Figure 3 depicts the algorithm applied to the image of a model of the Space Shuttle. Figure
3(a) is the original image. Figure 3(b) gives the output of a typical edge operator. Note that, due to
the rather poor quality of the original image, the edges found both noisy and incomplete. This data
was then input into the possibilistic plano-quardic clustering algorithm. Figure 3(c) gives the eight
complete prototypes which were found after running tile algorithm. Finally, Figure 3(d) displays
the prototype drawn only where sufficient edges points exist.

VI. Conclusions

In this paper, we demonstrated how our new possibilistic approach to objective-function-
based clustering coupled with our piano - quadric shells algorithm call recognize first and second
degree shapes from incomplete and noisy edge data. This approach is superior to both crisp and
fuzzy clustering, as well as to traditional methods such as the Hough Transform. Extensions of
this approach to other classes of shapes is currently underway.
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Figure 1. Detection or"a I'ractal circular edge.
(a) Upper Left. Original l'ractal composite image.
(b) Upper Right. Output of gray scale edge operator.
(c) Lower Left. Output of "horizontal" fractal edge operator.

(d) Lower Right. Results o1"Maximum magnitude o1 outputs of lk)ur directions of fractal operators.
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Figure 2. Recognition of circular boundary.
(a) Upper Left. Figure l(d) thresholded and thinned.
(b) Upper Right. Circular prototype found by fuzzy (or crisp) clustering.
(c) Lower Left. Circular prototype lbund by possibilistic clustering.
(d) Lower Right• Possibilistic prototype superimposed on original image.
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Figure 3. Recognition of Shuttle model boundaries.

(a) Upper Left. Original Shuttle image.

(b) Upper Right. Incomplete and noisy edges found by edge operator.
(c) Lower Left. Prototypes Ibund by Possibilistic Plano-Quadric clustming.
(d) Lower Right. Possibilistic prototypes superimposed drawn where there is sufficient edge

information.
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