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ABSTRACT

This paper presents an application of fuzzy sets and Dempster
Shafer theory (DST) in modeling the interpretational process of

organic geochemistry data for predicting the level of maturities of oil

and source rock samples. This has been accomplished by (i)

representing linguistic imprecision and imprecision associated with

experience by a fuzzy set theory, (ii) capturing the probabilistic
nature of imperfect evidences by a DST, and (iii) combining multiple

evidences by utilizing John Yen's[1] generalized Dempster-Shafer

Theory(GDST), which allows DST to deal with fuzzy information. The

current prototype provides collective beliefs on the predicted levels
of maturity by combining multiple evidences through GDST's rule of

combination.

I. INTRODUCTION

Modeling the interpretation process of an expert requires

representation and management of uncertain knowledge. This is
because nearly every interesting domain contains knowledge that is

inherently inexact, incomplete, or unmeasurable.

In this paper we explicitly treat two forms of uncertainties. One form

of uncertainty is fuzziness related to linguistic imprecision. Based on

fuzzy set theory, Zadeh[2] developed possibility theory to express

this type of imprecision. The other form of uncertainty is the

probability with which a certain evidence correctly predicts a subset

of hypotheses. Dempster-Shafer Theory[3,4] (DST) deals with this

type of uncertainty and provides a mechanism for combining

multiple evidences for an overall belief in a subset of hypotheses.

Unlike classical probability theory, DST enables the degree of
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ignorance to be expressed explicitly and does not fix hypothesis

negation probability once occurrence probability is known.

In the past, several attempts[5,6] have been made to generalize DST

to deal with fuzzy information. While these attempts fall short of

fully justifying their approaches, John Yen[l] proposed a generalized

Dempster-Shafer Theory (GDST), in which the important principle of

DST is preserved: That the belief and the plausibility functions are

treated as lower and upper probability bounds.

In this paper, we demonstrate representation and management of

two types of uncertainties by GDST as applied to the interpretation of

organic geochemistry data. In the following sections, we review the

basics of GDST, and the development of a knowledge-based system

for geochemistry interpretation

II. BASICS OF A GENERALIZED DEMPSTER.SHAFER

THEORY

This review is not intended to describe detailed theory and

developments of DST and GDST. Rather, we plan to describe their

representation of imprecise information and the rule of combination

in a qualitative way. More interested readers should refer to the
references [1,3,4] cited.

In the DST, hypotheses in a frame of discernment must be mutually

exclusive and exhaustive, meaning that they must cover all the

possibilities and the individual hypothesis cannot overlap with

others. An important advantage of DST over classical probability

theory is its ability to express degree of ignorance associated with an

evidence. Also, unlike classical probability theory, a commitment of

belief to a hypothesis does not force the remaining belief to be

assigned to its compliment. Therefore, the amount of belief not

committed to any of the subsets of hypotheses represents the degree

of ignorance. In DST, a basic probability assignment(bpa) m(A), as a
generalization of a probability, indicates belief in a subset of

hypotheses A. This quantity m(A) serves as a measure of belief
committed to the subset A.

DST also provides a formal process for combining bpa's induced by

independent evidential sources, which is called the rule of

combination. This process is a tool for accumulating evidences to
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narrow the hypothesis set. If ml, and m2 are two bpa's from two

evidential sources, a combined bpa is computed according to the rule
of combination:

ml(_m2(C) = _ ml(Ai)m2(Bj)/k

Aic_Bj= C

(1)

where k is a normalization factor,

k = 1 - _-'.ml(Ai)m2(Bj), (la)

Aic_Bj=¢

mlOm2(C) is a combined bpa for a hypothesis C,
0 is a null set, and

Ai, Bj are hypotheses sets induced by the two
evidential sources.

In the GDST proposed by Yen[6], a basic probability m(A) is assigned
to a fuzzy subset of hypotheses. In this framework, each fuzzy subset

of hypotheses has bpa m(A), and fuzzy membership function _A(Xi),

where xi's are elemental hypotheses in the frame of discernment.

The rule of combination in GDST consists of two operations: a cross-

product operation and a normalization process. Basic probabilities are

first combined by performing a generalized cross-product including

fuzzy set operations:

ml2(C) = ml ® m2(C) = X ml(Ai) m2(Bj) (2)

Aic'_Bj=C

where ml2(C ) is an unnormalized bpa induced by two

evidences, and n denotes a fuzzy intersection operator.

Then, a normalization is performed on fuzzy subsets of hypotheses

whose maximum membership values are less than one. A detailed

procedure and justification of this normalization process can be

found in the reference [1]. Yen[l] also showed that this normalization

can be postponed until the last evidence without affecting the

computational results and the commutativity of the rule of
combination.

In case of combining only two fuzzy bpa's, a combined bpa using
GDST's rules of combination is:
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mt• m2(C) = y. Max _AnB(Xi) ml(A)m2(B)/k

(_¢C xi

(3)

where

k = 1 - '_-'(1 - Maxp, AnB(xi)) ml(A)m2(B), and
xi

A,B

is a normalized AnB.

(3a)

As can be noticed in the equations above, GDST allows partially

conflicting evidences, while DST only allows either conflicting or
confirming evidences.

IlL BIOMARKER INTERPRETATION SYSTEM

In exploration for oil and gas, it is important to be able to assess the

maximum temperatures to which sediments or oils have been

exposed in the subsurface. This is referred to as the level of thermal

maturity. Organic chemical compounds known as biomarkers enable

the geochemist to assess the level of maturity (LOM) of oils and

sedimentary organic matter. In this paper, we focus our attention on

modeling the process of interpreting biomarker data to predict LOM.

The LOM scale ranges from 1 to 20, with LOM=I being least mature
and LOM=20 most mature. There exist more than 10 biomarkers

whose intensities have definite links to the maturity with varying

degrees of resolution and prediction power.

In our approach, these varying degrees of resolution among
biomarker evidences are represented by fuzzy subsets of maturity

intervals, and the probability with which an evidence correctly

predicts a fuzzy maturity interval is represented by a basic

probability in GDST. Therefore, evidential knowledge is represented
in fuzzy rules, and the confidence for a specific rule is represented

by a bpa. Moreover, GDST's rule of combination provide collective

belief in the predicted level of maturity. In the following, detailed

representation methods are presented along with actual application
results.

(A) Representing Two Types of Imprecision

Interpretation of geochemical data is based on experience as well as

theory. This interpretational knowledge is descriptive in nature, and
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best represented by fuzzy logic and possibility theory. For example,

one may have an experience based correlation study between level

of maturity (LOM) and %C2920S, which is a ratio of the intensities of

several organic compounds. Then, the correlation curve in Figure 1

may be used by an interpreter as follow:

IF %C2920S is 40 %,

THEN expected LOM is about 8.

In the rule above, the concluding part is descriptive in that LOM = 8

is most possible, but LOM values of 6,7,9, and 10 are also possible

with lesser degree as shown in Figure 2. Another example is the case

where both premise and conclusion are best represented by fuzzy

membership functions. Based on theory and experience, Heptane

value can only predict maturity levels in four qualitative categories,

such as immature, early mature, mature, and over mature. Examples
of Heptane rules are:

IF Heptane value is medium,

THEN maturity is early mature

IF Heptane value is high,

THEN maturity is mature

IF Heptane value is very high,

THEN maturity is over mature

In the rules above, both the premise and the conclusions are

descriptive and best represented by membership functions for

Heptane value and maturity as depicted in Figure 3a and Figure 3b.

From the fuzzy rules above and the membership functions in Figures

3a and 3b, observation of a Heptane value of 19 will result in the

possibility values of 0.5, 1.0, 1.0, and 0.5 for LOM = 6, 7, 8, and 9

respectively:

1-I LOM = {0.5/6, 1/7, 1/8, .5/9} (4)

In the current system, LOM is predicted from 10 evidences each of

which predicts LOM with different degree of resolution as shown by

the two examples above.

In addition to the imprecision in the knowledge represented by

possibility theory above, there exists another type of uncertainty

associated with evidences. For example, rules associated with

%C2920S have higher probability of being true than the Heptane
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rules. In our approach, the probability with which a proposition " If

A is al Then B is bl" is true is represented by bpa assigned to the

fuzzy subset of hypotheses induced by the proposition. The

compliment of this probability is assigned to the degree of ignorance

associated with the proposition, since our system generates only one

fuzzy subset of hypotheses for each evidence.

(B) Test Result

In order to validate the system, thirty interpretations were tested to

see if the system's interpretations conformed to those of the expert.
With reference to the test results listed in Table 1, one can notice

that the system interpreted maturities are biased towards higher
LOM. However, these errors are all higher than they should be and

consistent by itself, and can be traced to the membership function
definitions. We are currently fine tuning these membership functions

to correct the problem and plan to test the system with additional
field data..

V. CONCLUSIONS

We presented a knowledge-based system in which linguistic

imprecisions and uncertainties associated with fuzzy rules are
modeled in the frame work of a generalized Dempster-Shafer Theory.

This development is significant in that many application problems in

oil exploration requires a mechanism of combining fuzzy information
from various sources.

Even though the current biomarker interpretation system has been

tested on only 30 data sets, the system will be further tested with
additional field data and expanded to handle interpretations for
other characteristics such as source facies, depositional

environments, and the degree of biodegradation.
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Data

Table 1.

Set Number

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

Comparison of interpretations

Interpreted LOM System Generated

LOM

8-9

9

9

9

9

9

8.5-9

>I0

9

9

9

7.5-8

>i0

>i0

I0-Ii

ii

9

7.5-8

8

10

10

10

10

9

9

10

9-10

9

10-11

10-11

9-10

I0

I0
I0-ii

i0

I0-Ii

9-10

Ii

9-10

9-10

9-10

7

11-11.5

11-11.5

ii

Ii

i0

8-9

9-10

ii-ii .5

11-11.5

Ii

Ii-II .5

9

9.5-10

Ii-Ii .5

ii

9.5-10

Ii

I0-II

280



o

_o

o

o

i

p,

¢I

a,

¢.

qll

II
o

f,b

al

a,

4;I

I:
.a
I
o

f,.

llj

o
,=i

ul
I I
o _

_.J

s..

281


