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Abstract

The hidden units in multi-layer perceptrons are believed to act as fea-

ture extractors. In other words, the outputs of the hidden units represent

the features in a more traditional statistical classification paradigm. This

viewpoint offers a statistical, objective approach to determining the optimal

number of hidden units required. This approach is based on a F-ratio test,

and proceeds in an iterative fashion. The method, and its application to

simulated time-series data are presented.

1 Introduction

Artificial neural nets are increasingly being used for a variety of pattern recog-

nition problems [1, 7, 8, 9]. Recently, Gallinari et al. [4] proved the formal

equivalence between the linear multi-layer perceptron (MLP) and Discrimi-

nant Analysis (DA). Specifically, they noted that in a linear MLP, the first

layer of weights realizes a DA of the input data, that is, projects the in-

puts onto a subspace so as to form well-aggregated clusters for each class.

Experiments on problems with an increasing degree on nonlinearity demon-

strated that DA on the hidden states gave similar performance as that of

MLP. This suggests that hidden units activations can be interpreted as fea-

tures. Consequently, feature selection techniques such as commonly used in

statistical pattern recognition may be used to determine which hidden units

are most significant, and which hidden units may be eliminated. One such

method is presented here, and we show its usefulness in a problem involving

the detection of specific waveforms in a time-series.
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The results presented here are part of a larger study (see [2]), which

investigated the use of recurrent and feed-forward neural networks for the

detection of K-complexes in recordings of the electrical activity of the brain

during sleep (electroencephalograms or EEGs). K-complexes are relatively

large waves with a duration of between 500 and 1500 msec often seen during

Sleep Stage 2. Automated detection of K-complex activity in the EEG is an

important component of sleep stage EEG monitoring. Neural nets have been

applied before to EEG waves with some success [3, 6].

2 Methods

The experiments described here involve the use of the multi-layer perceptron

to detect bi-phasic triangular waveforms of various shapes in model-generated

time-series. Both the triangular waveform and the time-series were made to

resemble actual sleep EEG and K-complexes. The magnitude was extracted

from segments of these time-series using the Fourier transform, and used as

input to the neural nets. Once training was complete, a step-wise procedure

was applied to determine the optimal number of hidden units required. The

reduced net was then trained again, and tested using other data sets. The de-

tails of the data generation, net architecture and input, and net optimization

procedure are provided next.

2.1 Data Generation

EEG data were obtained from six subjects. Five EEG channels (Fpl, F3,

F4, T3, and T4) with observable K-complexes were used. An artificial data

set was generated by producing a time series resembling actual EEG, to

which a pattern representing a K-complex was added. EEG-like activity

was produced through an 8th-order autoregressive (AR) model. The model

coefficients were computed from actual EEG segments in the neighborhood

(within 5 sec) of K-complexes (as identified by an electroencephalographer)

to be used in generating "positive" examples, and from EEG taken far away

from K-complexes to generate _negative" examples. Triangular patterns, re-

sembling a K-complex, were placed in the artificial, "positive" EEG segments

at various locations. No such pattern was added to the "negative" artificial

EEG segments. Each positive or negative example consisted of 1000 sam-
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pie points, representing 10 sec of data. The shape of the pattern differed

between each of the positive examples. Specifically, the peak-to-peak ampli-

tude of the pattern was varied in such a way that the ratio of the peak-to-peak

amplitude of the pattern and the root-mean-square (rms) of the background

activity would range between 0.05 and 0.15, the pattern was inserted at a

random location, and the duration of the pattern varied randomly within a

range similar to that of actual K-complexes. Three of such data sets were

generated, referred to as the Train, Test1, and Test2 set, respectively. The

2_rain and Testl ("seen") data sets were generated from the same AR mod-

els, but different seed points were used to generate the EEG-like data and to

control the shape and the location of the K-complex-like pattern. The Test2

data set ("uns_n') was generated from the AR models obtained from EEG

examples not included in the training data set.

2.2 Net Input and Architecture

Our basic approach was to compute the magnitude spectrum of 10 sec signal

segments (using a FFT routine). These data were input to a multi-layer

perceptron, which was trained using the backpropagation algorithm. Unless

otherwise stated, the inputs to the net consisted of the magnitude at each of

64 frequency bins. A 512-point Fast Fourier Transform (FFT) was computed

to obtain the magnitude, which was subsequently smoothed and reduced

to 64 sample values by averaging over 8 adjacent points. These smoothed

magnitude and phase values were then normalized between 0 and 1 for use as

inputs to the neural network input nodes. Experiments with the hidden unit

selection technique were performed on nets with 64 input units, one hidden

layer with 8 units, and one or two output units.

2.3 Optimizing using Discriminant Analysis

The core of the optimization procedure derives from stepwise feature selection

methods often used in statistical pattern recognition. In these approaches,

the 'best' feature is selected from a pool of features using some criterion. All

the pair-wise combinations of this best feature with any of the remaining fea-

tures are explored to determine which is the 'best' pair, and if this additional

feature has any discriminating power. If the answer to the last question is

yes, triplets are formed by combining the best pair with any of the remaining
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features. This process is repeated until it is found that adding a feature to

the ones already selected does not lead to significant improvements in the
criterion function.

In the present application, the outputs (activations) of the hidden units

are treated as features. The Wilks' A is used as the criterion function to

determine which feature should be selected. The Wilks' A is a multiovariate

statistic that tests the equality of group means for the selected features [5].

The A may be converted to an approximate F-ratio. In the present method,

the conditional F-ratio is used. The latter measures how much a given feature

contributes to the group differences given the variables already selected. At

each step the conditional Foratios are computed for each feature. If a feature

which has already been selected has a non-significant F-ratio, it is removed. If

none of the features are removed, then the feature which creates the largest
change in the criterion function is added to the selection. If none of the

remaining features have a significant F-ratio, the procedure halts.

3 Results

In the first experiment, magnitude data were used to train a single output

net with the Train data set. Upon convergence, training was halted, and the

Train, Testl, and Test2 data sets were input to determine the classification

performance of the net. A correct classification rate of 100% was found for

Train, 92% for Test1, and 87% for Test2, respectively. Following this stage,

the activations of the 8 hidden units for each example in the Train data

set were recorded and subjected to the F-ratio test. The results shown in

Table 1. Hidden units are listed in the order in which they were selected,

together with their F-value at the time of selection.

The relatively large difference in F-value between unit 3 and 7 suggests

that unit 3 is a very important feature. The scatter plot of the activations

of unit 3 and 7, in response to the presentation of the training examples,

is shown in Figure 1. It can be observed that the two classes are very well

separated, except for a few positive examples that fall in the negative class
cluster.

Mamelak, et a/. [7] found that the overall performance of a single output

net is usually worse than a 2 output net for a two-class problem. Even though

each example can be assigned an unique pattern, with no indeterminate pat-
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Figure 1: Scatter plot of the activations o/2 hidden units (3rd and 7th), for

the net with 8 hidden units and I output unit trained on the power spectra of

exp.4.
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Table 1:

outputs of a single-output net.

Hidden

Unit

3

7

8

2

5

6

1

F-values obtained by performing an F-test on the 8 hidden unit

F-v_ue

155.88

37.77

68.73

43.43

43.51

34.28

4.25

terns, if a single output unit is used for a two-class problem, they found that

the mapping between input and output patterns is actually too restricted,

limiting the ability of the single-output net to fine-tune the threshold levels

for all remaining patterns. We decided to explore this issue by applying the

same training set as used above to a net with 8 hidden units and 2 output

units. The net converged in 1187 cycles. The results of the F-test on the 8

hidden unit outputs are presented in Table 2.

Table 2: F-values obtained by performing an F-test on the 8 hidden units

activations of a net with 2 output units

Hidden F-value

Unit

5 203.22

8 106.47

1 193.73

7 12.12

3 34.13

2 9.66

Observe that units 5, 8, and 1 produce large F-values, indicating their

relative importance. Figure 2 shows the scatter plot for the first two selected

hidden units. As shown, both classes axe well clustered and are sitting well
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in the corners of the square box. Compared to the results obtained with

the net with one output unit (see Figure 1), the separation between the two

classes is better defined. This confirms the observations made by Mamelak

et al..
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Figure 2: Scatter plot o/the activations of 2 hidden units (5th and 8th), /or

the net with 8 hidden units and 2 output units.

Both of the aforementioned experiments suggest that a net with just two

hidden units would perform as well as a net with 8 hidden units. This was

explored in the next experiment involving a net with 2 hidden units and 2

output units. Again, training was done using the magnitude data, and it

was found that the net converged in 1503 cycles. The scatter diagram of the
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activations of the two hidden units is shown in Figure 3. As one can see,
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Figure 3: Scatter plot of the activations of 2 hidden units for the net with 2

hidden units and 2 output units.

the two classes are well-separated and occupying the corners of the feature

space. The negative examples (N) are grouped into one corner, whereas the

positive examples (P) are distributed over the other 3 corners. There was no

specific relationship between the positive examples within one corner. This

strongly suggests that a net with two hidden units should be sufficient to

classify all the examples correctly. This was tested on the Train, Testl, and

Test2 data sets, and although not perfect classification results were obtained

for the two testing sets, the results were not significantly different from those
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obtained with a net with 8 hidden units and 2 output units, and with a net

with 8 hidden units and a single output.

4 Conclusions

We have presented a simple technique for the a posteriori determination of the

hidden units required in a multi-layer perceptron. The method uses the fact

that the hidden units appear to perform a discriminant analysis, essentially

extracting features from the neural net input. The relative importance of

each hidden unit can be assessed using an F-ratio test. In addition, the

absolute value of the F-ratio provides insight in the degree of confidence one

may place in the classifications produced by the net. For example, if the most

significant hidden units have F-values barely above the level of significance,

the classifying power of the net will be small.

The method described here is part of most widely available software pack-

ages for multi-variate data analysis, including BMDP and SPSS, making it

very easy to apply this method.
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