
A New Approach for Designing Self-Organizing
Systems and Application to Adaptive wontrol

P.A. Ramamoorthy, Shi Zhang, Yueqing Lin and Song Huang

Department of Electrical and Computer Engineering

University of Cincinnati, M. L. 30

Cincinnati, Ohio 45221-0030

FAX:(513) 556-7326; TEL: (513) 556-4757

Emaih pramamoo_nest.ece.uc.edu

Abstract

There is tremendous interest in the design of intelligent machines capable of autonomous

learning and skillful performance under complex environments. A major task in designing

such systems is to make the system plastic, and adaptive when presented with new and

useful information and stable in response to irrelevant events. A great body of knowledge,

based on neuro-physiological concepts, has evolved as a possible solution to this problem.

Adaptive resonance theory (ART) is a classical example under this category. The system

dynamics of an ART network is described by a set of differential equations with nonlinear

functions.

An entirely new approach for designing self-organizing networks characterized by non-

linear differential equations is proposed in this paper. Similar to the neuro-physiologicai

approach, the method presented here relies upon another area - that of passive nonlinear

network theory. A passive nonlinear network is formed by proper interconnection of various

nonlinear elements where each and every nonlinear element is constrained to be lossless or

lossy. When energy storing elements are present in such a network, we can obtain a set of

Input/Output relationships as nonlinear differential equations. The basic property that the

network is lossy (consumes energy) ensures that the nonlinear differential equations obtained

from the network would represent absolutely stable systems and this property holds as long

as the individual element values are maintained in their permissible range of values. Thus,

to deign complex nonlinear systems (a complex nonlinear plant plus a controller to optimize

its performance, for example) and self-organizing systems, one simply has to force the sys-

tem dynamics to mimic the dynamics of a properly constructed passive nonlinear network,

a process akin to reverse engineering.

In our research which is in its early stages, we have developed the basis for the above

approach and applied it with relative ease to a number of problems leading to encouraging

results. The fruits of such an approach seem to be endless. For example, the approach can

be applied to linear and nonlinear controller design (for linear and nonlinear plants), self

tuning controllers, model reference adaptive controllers, self-organizing networks, adaptive

IIR filter design, adaptive beam-forming, two-dimensional systems, fuzzy systems etc. In

this paper, we provide some details of this approach and show results from some of these

topics to show the power of this approach.
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1 Introduction

There is currently tremendous interest and research activity in the areas of neural networks

and fuzzy logic. The major driving force behind all these efforts is the hope that they can

provide creative and novel solutions to the design of complex, autonomous and self-organizing

systems. Fuzzy logic tries to mimic human approach to decision making when presented with

fuzzy and often conflicting data and rules. Neural networks have originated from efforts to

mimic neuro-physiological behavior.

From a functional point of view, both neural networks and fuzzy expert systems imple-

ment a mapping f: u ---, y, where u is an input vector, y the output vector and f is the

mapping function which in general is a highly nonlinear function. In the case of fuzzy expert

systems, the mapping is achieved through higher order logical relations between the inputs

and the outputs where as in the case of neural networks, it is achieved through simple but

repetitive linear and nonlinear operations. Fuzzy expert systems by themselves are feed-

forward systems but their use in applications such as control lead to systems with feedback.
Neural net architectures can either be feed-forward architectures or architectures with feed-

back. The system dynamics of feedback (also known as recurrent) neural networks are in

general represented by a set of differential equations with nonlinear terms. Self-organizing

techniques through which fuzzy rules and membership functions are learnt or improved are

conceptually similar to the learning or training procedures in the neural network domain.

When we deal with systems with feedback, the object of this paper, stability becomes

an important issue and has to take precedenc e over learning or self-organizing. However, it

is not easy to establish stability of large-scale nonlinear systems. In fact, it is known that

a first-order nonlinear equation with just one parameter can lead to stable, unstable and

chaotic situations depending upon the value of that parameter. In this paper, we establish a

frame work for designing such feedback or recurrent systems that are guaranteed to

be stable with relative ease and show how it can be incorporated into fuzzy expert systems

and neural networks with self-organizing capability.

2 The Basic Philosophy

As indicated before, our desire to mimic human cognition and functioning of neuro-physiological

architectures has led to the two areas: Fuzzy logic and neural networks. The basic philos-

ophy behind our new approach is to use "Passive Nonlinear Network Theory" to build new

neural architectures with internal feedback. As will be shown, it leads to a new paradigm

that is easier to handle (at least for engineers and computer scientists) than neuro physiology

or human cognition.

A passive nonlinear network is simply an electrical network formed by proper intercon-
nection of various nonlinear elements.The nonlinear elements in the network are constrained

to be either lossless or lossy and the interconnections are such that the basic circuit laws are

obeyed. As an example, the equation
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iR(t) = a
represents a two-terminal passive nonlinear resistor since

(i)

p(t) = iR(t)vR(t) > 0 for all t

indicating that the element consumes power all the time. In addition to the already

known passive nonlinear resistors, we have defined a number of passive nonlinear elements.

When such elements are interconnected with dynamic elements as shown in Fig.l, we can

write down the dynamic equations for the network as a set of stable nonlinear equations:

[PI]J( = F[X, U] (2)
where

X = [iLl, iL2,..., iLL, re,, vc2,...vcc] r

P = ILl, L2,..., LL, C,, C2,..., Co]

U = [I, , ,..., h ,V,, ,..., Vv]

I, an identity matrix of size (Lt, + Co) * (LL + Cc)

F, a vector of nonlinear functions of X and U

and

'.' indicates differentiation.

It can be observed that the set of equations given in (2) represents a stable network or

system as long as the element values are in the permissible range so as to retain the lossy or

lossless property. The stability property holds good even if we incorporate complex, exotic

nonlinear elements. If such a system is turned on with only initial stored energy in the

dynamic elements, the state variables will all go to zero as time progresses.

Reader familiar with the ART networks [1-4] will recognize immediately the similarity in

the structure of the set of equations (2) obtained from the passive network and the set of

equations characterizing ART networks:

e.i:k=--xk+(1--Axk)J + - (B + Cx_)J[ k= 1 to M + N (3)

Z,ij = klf(xj)[-EijZii + h(x;)] i = 1 to M; (4)

Zji = k2f(xi)[-EjiZj, + h(xi)] j = i to M + 1 (5)

where the descriptions of the various terms can be found in the references. However,

a major difference between ART dynamic equations and the set of equations derived from
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the passive networks is that the former has been derived from an understanding of difficult

cognition processes and slow evolution (ART-1 to ART-2 and so on). The passive network

approach enables us to come up with a number of entirely different sets of equations with

relative ease as will be obvious from the examples given. Another difference is that the ART

equations are written in such a way that some state variables are forced to reach saturation

(similar to introducing activity or nonlossy property in some of the elements in the network).

The "Winner-Take-All" portion of the ART network belongs to this category.

The basic philosophy behind our design approach is to 1) define a number of nonlinear

elements obeying the lossless or lossy condition, 2) form a generic network architecture that

would lead to most general form of nonlinear state equations and 3) force the state equations

corresponding to the system under consideration to obey the form given in equation (2). The

property that the equations represent a stable network whether they are set to a fixed mode

or in a self-organizing mode makes this approach unique and promising.

3 Simulation Examples

In this section, we provide a number of examples to illustrate the applicability of the ap-

proach to a number of problem domains.

3.1 Nonlinear/Adaptive Controller Design

Consider a single-degree-of-freedom manipulator represented by a 2nd - order transfer func-

tion as shown in Fig.2. The task is to design an adaptive controller which will force the

manipulator to follow a desired trajectory.

The classical approach in adaptive control is to define a control input

T(t) = -klq - k2q

and adapt the coefficients K=[kt, k2] r using

(6)

0£ 2

[k]=

where e corresponds to the tracking error.

(7)

A network based controller using the same form for control input as in (6) is given by

]q = -(k, + 4tan-t(kt)) + q_l + k2 + 1
7r

= + - k, + 3 (8)
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where the controller equations have been obtained so as to force the plant and the controller

combination mimic a fourth-order passive nonlinear dynamic network 1 and assuming that

the desired output of the plant as qd, qd = O. The constants in the equations are chosen to

let ka,k_ to 1 as t _ oo.

Another set of controller equations based on the network approach is given by

k, = -(k, + 4-tan-'(k,)) + qO+ + 1
7r

(9)

k2 = -(k2 + 4tan-'(k2)) + fl2 - k2 + 3
r

We provide this addition controller expression simply to illustrate how easy it is to derive

alternate forms.

We have shown some simulation results in Figs. 3A-C using the controller expressions

in (8) . The simulations were carried out assuming different initial values for q, q and some

initial values for kl and k2 and the task of the controller is to move the manipulator to

location zero. Figs. 3A and 3B shows q, _ as a function of time and Fig 3C shows a phase

plane plot (q V_ _) of the manipulator. It can be noted that the adaptive controller does a

good job of controlling the manipulator. Though we are not including the results, we have

performed the simulations with a) error in the plant coefficient values, b) a sudden change in

the values of the friction and compliance coefficients and c) unmodeled dynamics represented

by another second-order transfer function. The results were really impressive and showed

the robustness of the nonlinear adaptive controller obtained using the network approach. It

should be noted here that nonlinear functions such as tan-l(ka), initial and final values for

kl and k2 etc were chosen randomly with no efforts to optimize anything.

3.2 Application to Fuzzy Control

Fuzzy logic [5] has been used to design controllers for various systems and processes [ref. 6,

for example]. The classical approach is to find the difference between the actual and desired

outputs and the derivatives of the outputs and use a fuzzy expert system to generate the

control input(s) (see Fig. 4A). Thus, the plant and the controller form a closed loop and

the stability of the feedback system could become an issue. The architecture could be easily

modified to mimic a passive network (as shown in Fig. 4B) and hence guarantee stability.

To illustrate this concept, we have taken a third order model example used in ref.[7],

retained only the two dominant poles and used the fuzzy look-up table given in that paper

with some modifications to generate the fuzzy controller output F(e, _). Denoting the trans-

fer function of the plant as

1We are not going into complete details of deriving the equations as we are in the process of patenting some of

the nonlinear elements and their applications.

299



b Y(s)
H(s) - s2 + as + b - U(s) (10)

with u as input to the plant, and y the output of the plant, the dynamics of the complete

system is given by

Y----Y1

_ = -by - ayl + u (11)

u = kF(e, _)

k = -yIF(e,_)- k- 4--tan-_(k) + u_
rc

where ul is chosen to force k to a particular value as the plant output moves to the target

value. The responses of the plant using the classical fuzzy control approach and the new

network based approach for two values of k(oo) are shown in Fig 5. It can be noted that

there is some improvement in the response 2. However, the key point here is that the system

represented by equation (11) will remain stable and robust for external disturbances.

3.3 Application to Model Reference Adaptive Control (A Simple Self-Organizing

System)

Here we consider the application of the passive network approach to model reference adap-

tive control (MRAC) where the aim is to design a controller such that the combined system

(plant + controller) mimics a given model. The problem is quite simple if the plant model

and the parameters are known precisely. If that is not the case or if the parameters vary with

respect to time, an adaptive controller is the preferred solution. The set-up for the classical

adaptive control as well as the new network based approach are shown in Fig. 6 . The

classical approach is to use a gradient based technique to update the controller parameters

but is known to be prone to instability etc.

The set of equations comprising the whole adaptive system based on the network ap-

proach is given by footnoteWe used subscripts m, p, t to denote closed-loop-model, plant

and time-evolving model respectively.

Om = Or(t) + k (closed - loop - model requirement)

&p = -Opxp - kxp + r (plant dynamics)

_ct = -Otzt - kxp + r = k(zt - xp) - Omxt + r

(dynamics of the time-evolving model of the plant) (12)

4 2k = xpxp+ (xp- x,)x,- p,(z,- z,)(k + -tan-l(k))-
71"

2It appears that the original fuzzy controller has already been optimized very well.
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where

Fl(x - x,) =

(controller dynamics)

1 whenlzp- xtl >_ 1
]xp - xt] otherwise

Again, the expression for the controller dynamics was obtained by forcing the three dif-

ferent dynamics to mimic a highly coupled passive network. The set of equations were

simulated using some initial values for xp, x,,_, xt, k and r(t), a sinusoidal function. The time

evolution of k(t) is shown in Fig.7. It can be noted that k tends to its expected value of

0.5 in nearly 1500 iterations, a nice feat for an almost randomly chosen controller function.

The key point to be noted from this example is that self-organizing networks can also be

designed very easily using the new approach.

It is noted above that the classical MRAC approach can lead to instability under certain

conditions. This could probably be explained using network concepts by noting that there

are two closed loops in the whole system, one involving the plant and the controller and

the other involving the plant, adaptive control law and the controller. The two loops were

formed by some mathematical considerations and do not seem to be coupled as well as a

network based approach and the complete system is not constrained to be passive and lossy.

Hence the possibility for instability.

4 Summary

An entire new and exciting approach for designing nonlinear systems and self-organizing

networks is proposed in this paper. The approach is based on a simple yet powerful con-

cept that of using properties of properly constructed nonlinear passive networks. We have

shown examples from different areas indicating how the approach can be applied to many

different areas and the possible applications seem to be endless. The preliminary results

obtained so far are very encouraging. We believe that it is just the beginning of a new era

for a powerful methodology which can compete with approaches mimicking human cognition.
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Fig. 1 A passive nonlinear dynamical network.
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_1:joint velocity

T(t): applied torque

J: moment of inertia -- 1

B: viscous friction ---5

F: compliance coefficient -- 0.7

Fig. 2 A manipulator with a single degree of freedom.
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Fig. 6 Model reference adaptive control using classical adaptive control law and the new

tmtwork based appt_CtL 9 = 1. and 0 = 0.5 used in the simulation.
m p

307



k(n)

' 4000 ' ' ' gO00O0 1000 2000 3000 5000 6000 7000 9000

n

Fig. 7 Time evolution of the controller parameter k.
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