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PROJECT SUMMARY

A novel adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type

neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification

of cluster centers has been developed.

The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which

learns on-line in a stable and efficient manner. The system uses a control structure similar to that found

in the Adaptive Resonance Theory (ART-l) network to identify the cluster centers initially. The initial

classification of an input takes place in a two stage process; a simple competitive stage and a distance

metric comparison stage. The cluster prototypes are then incrementally updated by relocating the cenlroid

positions from Fuzzy c - Means (FCM) system equations for the centroids and the membership values.

The operational characteristics of AFLC and the critical parameters involved in its operation are

discussed. The performance of the AFLC algorithm is presented through application of the algorithm to

the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully

classifies features extracted from real data, discrete or continuous, indicating the potential strength of

this new clustering algorithm in analyzing complex data sets.

This hybrid neuro-fuzzy AFLC algorithm will ehnance analysis of a number of difficult recognition

and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude

controller.
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I. INTRODUCTION

Clus_r analysis has been a significant research area in pattern recognition for a number of years[I]-

[4]. Since clustering techniques are applied to the unsupervised classification of pattern features, a neural

network of the Adaptive Resonance Theory (ART) type[S],[6] appears to be an appcopdate candidate for

implementation of clustering algorithms[7]-[101, Clustering algorithms generally operate by optimizing

some measures of similarity. Classical, or crisp, clustering algorithms such as ISODATA[I 1] partition

the data such that each sample is assigned to one and only one cluster. Often with data analysis it is

desirable to allow membership of a data sample in more than one class, and also to have a degree of

helief that the sample belongs to each class. The application of fuzzy set theory[12] to classical

clustering algorithms has resulted in a number of algorithms[ 13]-[16] with improved performance since

unequivocal membership assignment is avoided. However, estimating the optimum numher of clusters in

any real data set still remains a difficult problem[ 17].

It is anticipated, however, that a valid fuzzy cluster measure implemented in an unsupervised neural

network architecture could provide solutions to various real data clustering problems. The present work

describes an unsupervised neural network architecture[18],[19] developed from the concept of ART-I[5]

while including a relocation of the cluster centers from FCM system equations for the centroid and the

membership values[2]. Our AFLC system differs from other fuzzy ART-type clustering algorithms

[20],[21] incorporating fuzzy rain-max learning rules. The AFLC presents a new approach to

unsupervised clustering, and has been shown to correctly classify a number of data sets including the Iris

data. This fuzzy modification of an ART-I type neural network, i.e. the AFLC system, allows

classification of discrete or analog patterns without a pr/ori knowledge of the number of clusters in a data

set. The optimal number of clusters in many real data sets is, however, still dependent on the validity of

the cluster measure, crisp or fuzzy, employed for a particular data set.
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II.ADAPTIVE FUZZY LEADER CLUSTERING SYSTEM AND ALGORITHM

A. AFLC System and Algorithm Overview

AFLC is a hybrid neural-fuzzy system which can be used to learn cluster structure embedded in

complex data sets, in a self-organizing, stable manner. This system has been adapted from the concepts of

ART-I sa'ucture which is limited to binary input vectors[5]. Pattern classification in ART-I is achieved

by assigning a Wototype vector to each cluster that is incrementally updated[ 10].

Let Xj = { Xj 1, Xj2 .... Xjp } be the j th input vector for 1 < j < N where N is the total number of

samples in the data set and p is the dimension of the input vectors. The initialization and updating

procedures in ART-I involve similarity measures between the bottom-up weights (bid where k = 1,2,...4))

and the input vector (Xj), and a verification of Xj belonging to the i th cluster by matching of the top-

down weights (tik) with Xj. For continuous-valued features, the above procedure is changed as in ART-

216]. However if the ART-typu networks are not made to tewesent biological networks, then a greater

flexibility is allowed to the choice of similarity metric. A choice of Euclidean metric is made in

developing the AFLC system while keeping a simple control structure adapted from ART-I.

Figure 1

Figures l(a) and l(b) represent the AFLC system and operation for initialization and comperison of

cluster prototypes from input feature vectors, which may be discrete or analog. The updating procedure in

the AFLC system involves relocation of the cluster prototypes by incremental updating of the cenlroids

v i, (the cluster prototypes), from FCM system equations[2] for v i and _j as given below :

Nj1
V_- _, __(ktiJ)"x j ,. l<i<C (1)

j=l
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/.l_j = _,,,__>, l<_i<_C; I_j<_N (2)

Xj - V t I

where N i is the number of samples in cluster i and C is the number of clusters. The vi's and _j's are

recomputed over the entire data sample N.

As described here, AFLC is primarily used as a classifier of feature vectors employing an on-line

learning scheme. Figure l(a) shows a p-dimensional discrete or analog-valued input feature vector, X to

the AFLC system. The system is made up of the comparison layer, the recognition layer, and the

surrounding control logic. The AFLC algorithm initially starts with the number of clusters (C) set to zero.

The system is initialized with the input of the fast feature vector X. Similar to leader clustering, this fast

input is said to be the prototype for the first cluster. The normalized input feature vector is then applied to

the bottom-up weights in a simple competitive learning scheme, or dot I_,oduct. The node that receives

the largest input activation Y is chosen as the prototype vector as is done in the original ART-I.

_X ,Y_=max{ , jkb._}" I<_j<N (3)
k'=-I

Therefore the recognition layer serves to initially classify an input. This first stage classification

activates the prototype or top-down expectation (tik) for a cluster, which is forwarded to the comparison

layer. The comparison layer serves both as a fan-out site for the inputs, and the location of the

comparison between the top-down expectation and the input. The control logic with an input enable

command allows the comparison layer to accept a new input as long as a comparison operation is not

currently being processed. The control logic with compare imperative command disables the acceptance

of new input and initiates comparison between the cluster prototype of Yi i.e., the centroid v i and the

current input vector, using equation (4). The reset signal is activated when a mismatch of the first and
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second input vectors occurs according to the criterion of a distance ratio threshold as expressed by

equation (4)

_d2(Xi,vi)
R= < z (4)

where : k = I....N i the number of samples in class i and 3/d 2 (X j, v_ ) is the Euclidean distance as

indicated in equation(5).

d2(x_-v,)=lx j -v,I 2 (5)

If the ratio R is less than a user-specified threshold x, then the input is found to belong to the cluster

originally activated by the simple competition. The choice of the value of x is critical and is found by a

number of initial runs. Preliminary runs with x varying over a range of values yield a good estimate of the

possible number of clusters in unlabeled data sets.

When an input is classified as belonging to an existing cluster, it is necessary to update the

expectation (prototype) and the houom-up weights associated with that cluster. First, the degree of

membership of X to the winning cluster is calculated. This degree of membership, _t, gives an indication,

based on the current state of the system, of how heavily X should be weighted in the recalculation of the

class expectation. The cluster prototype is then recalculated as a weighted average of all the elements

within the cluster. The update rules are as follows: the membership value Pij of the current input sample

Xj in the winning class i, is calculated using equation (2), and then the new cluster centroid for cluster i is

generated using equation (1). As with the FCM, m is a parameter which defines the fuzziness of the

results and is normally set to be between 1.5 and 30. For the following applications, m was

experimentally set to 2.

The AFLC algorithm can be summarized by the following steps :

1. Start with no cluster prototypes, C = O.

2. Let Xj be the next input vector.
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3.Find thef'_rststagewinnerYi, astheclusterprototypewith themaximum dot-product.

4.IfYi does notsatisfythedistanceratiocriterion,thencreatea new clusterand make its

prototype vector be equal to xj. Output the index of the new cluster.

5. Otherwise, update the winner cluster prototype Yi by calculating the new centroid and

membership values using equations (1) and (2). Output the index of Yi. Go to Step 2.

A flow chart of the algorithm is shown in Figure 2.

Figure 2

Ill. OPERATIONAL CHARACTERISTICS OF AFLC

A. Match-based Learning and the Search

In match-based learning, a new input is learned only after being classified as belonging to a

particularclass. This process ensures stable and consistent learning of new inputs by updating parameters

only for the winning cluster and only after classification has occurred. This differs from error-based

learning schemes, such as backpropagation of error, where new inputs are effectively averaged with old

learning resulting in forgetting and possibly oscillatory weight changes. In [5] match-based learning is

referred to as resonance, hence the name Adaptive Resonance Theory.

Because of its ART-like control structure, AFLC is capable of implementing a parallel search when

the distance ratio does not satisfy the thresbolding criterion. The search is arbitrated by appropriate

control logic surrounding the comparison and recognition layers of Figure 1. This type of search is

necessary due to the incompleteness of the classification at the first stage. For illustration, consider the

two vectors (1,1) and (5,5). Both possess the same unit vector. Since the competition in the bottom-up

direction consists of measuring how well the normalized input matches the weight vector for each class i,

these inputs would both excite the same activation pattern in the recognition layer. In operation, the

comparison layer serves to test the hypothesis returned by the competition performed at the recognition
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layer. If the hylx)thesis is disconfirmed by the comparison layer, i.e. R > _, then the search phase

continues until the correct cluster is found or another cluster is created. Normalization of the input

vectors (features) is done only in the recognition layer for finding the winning node. This normalization

is essential to avoid large values of the dot products of the input features and the bottom-up weights and

also to avoid initial miaclassification arising due to large variations in magnitudes of the cluster

prototypes. The search wocess, however, renormalizes only the centroid and not the input vectors again.

B. Determining the Number of Output Classes

AFLC utifizes a dynamic, self-organizing structure to learn the characteristics of the input data. As a

result, it is not necessary to know the number of clusters a priori; new clusters are added to the system as

needed. This characteristic is necessary for autonomous behavior in practical situations in which

nonlinearities and nonstationarity are found.

Clusters are formed and trained, on-line, according to the search and learning algmithms. Several

factors affect the number, size, shape, and location of the clusters formed in the feature space. Although

it is not necessary to know the number of clusters which actually exist in the data, the number of clusters

formed will depend upon the value of x. A low threshold value will result in the fmmation of more

clusters because it will be more difficult for an input to meet the classification criteria. A high value of

will result in fewer, less dense clusters. For data structures having overlapping clusters, the choice of x is

critical for correct classification whereas for nonoverlapping cluster data, the sensitivity of x is not a

significant issue. In the latter case the value of x may vary over a certain range, yet yielding correct

classification. Therefore the sensitivity of x is highly dependent on specific data sw_ctme as shown in

Figure l(c). The relationship between x and the optimal number of clusters in a data set is currently

being studied.

C. Dynamic Cluster Sizing
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Asdescribedearlier,x is compared to a ratio of vector norms. The average distance parameter for a

cluster is recalculated after the addition of a new input to that cluster, therefore, this ratio (R) represents a

dynamic description of the cluster. If the inputs are dense around the cluster prototype, then the size of

the cluster will decrease, resulting in a more stringent condition for membership of future inputs to that

class. If the inputs are widely grouped around the cluster prototype, then this will result in less stringent

conditions for membership. Therefore, the _ clusters have a self-scaling factor which tends to keep

dense clusters dense while allowing loose clusters to exist.

D. The Fuzzy Learning Rule

In general, the AFLC architecture allows learning of even rare events. Use of the fuzzy learning rule

in the form of equations (1) and (2), maintains this characteristic. In weighted rapid learning[5], the

learning time is much shorter than the entire processing time and the adaptive weights are allowed to

reach equilibrium on each presentation of an input, but the amount of change in the prototype is a

function of the input and its fuzzy membership value (Ixij). Noisy features which would normally

degrade the validity of the class prototype are assigned low weights to reduce the undesired affect. In the

presence of class outliers, assigning low memberships to the outliers lead to correct classification.

Normalization of membership is not involved in this process. However, a new cluster of ontliers only can

be formed during the search process[22]. Development of such outlier/noise cluster in AFLC is currently

under progress.

Weighted rapid learning also lends to reinforce the decision to append a new cluster. This is due to

the fact that, by definition, the first input to be assigned to a node serves as that node's first prototype,

therefore, that sample has a membership value of one. Future inputs are then weighted by how well they

match the prototype. Although the prototype does change over time, as described in the algorithm, each

sample retains its weight which tends to limit moves away from the current prototype. Thus the clusters

possess a type of inertia which tends to stabilize the system by making it more difficult for a cluster to

radically change its prototype in the feature space.
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Finally, the fuzzy learning rule is stable in the sense that the adaptive weights represent a normalized

version of the cluster centroid, or prototype. As such, these weights are bounded on [0,1] and are

guaranteed not to approach infinity.

E. AFLC as a General Architecture

As with most other clustering algorithms, the size and shape of the resultant clusters depends on the

metric used. The use of any metric will tend to influence the data toward a solution which meets the

criteria for that metric and not necessarily to the best solution for the data. This statement implies that

some metrics are better for some problems than are others. The use of a Euclidean metric is convenient,

but displays the immediate problem that it is best suited to simple circular cluster shapes. The use of the

Mahalanobis distance accounts for some variations in cluster shape, but its non-linearity serves to place

constraints on the stability of its results. Also, as with other metrics, the Euclidean and Mahalanobis

distance metrics lose meaning in an anisotropic space.

IV. TESTS AND RESULTS: FEATURE VEC'I_R CLASSIFICATION

A. Clustering of the Anderson Iris Data

The Anderson Iris data set[23], consists of 150 4-dimensional feature vectors. Each pattern

corresponds to characteristics of one flower from one of the species of Iris. Three varieties of Iris are

rewesented by 50 of the feature vectors. This data set is popular in the literature and gives results by

which AFLC can be compared to similar algorithms.

We had 52 runs of the AFLC algorithm for the Iris data for 13 different values of "L with 4 runs for

each x. Figure l(c) shows the x-C graph. With Euclidean distance ratio and "granging between 4.5 and

5.5, the sample data was classified into 3 clusters with only 7 misclassifications. The misclassified

samples actually belonged to Iris versicoior, cluster #2, and were misclassified as Iris virginica, cluster
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#1. From Figure l(c) it can be observed that the optimal number of clusters can be determined from the "¢

dC
-C graph as the value of C that has -- = 0; for C # 1, for the maximum possible range of_.

d_

Figure 3, shows the input Iris data clusters using only three features for each sample data point.

Figure 4a shows the computed cenlroids of the three clusters based on all four features. The intercluster

Euclidean distances are found to be 1.75 (d12), 4.93 (d23), and 3.29 (d13). dij is the intercluster

distance between clusters i & j. The comparatively smaller intercluster distance between clusters 1 and 2

indicates the proximity of these clusters. Figure 4b shows a confusion matrix that summarizes the

classification results.

Figure 3

Figure 4

B. Classification of Noisy Laser-luminescent Fingerprint Image Data

Fingerprint matching poses a challenging clustering problem. Recent developments in automated

fingerprint identification systems employ primitive and computationally intensive matching techniques

such as counting ridges between minutae of the fingeq_'ints[24]. Although the technique of laser

luminescent image acquisition of latent fmgerI_nt provide often identifiable images[25], these images

suffer from amplified noise, poor contrast and nonuniform intensity. Conventional enhancement

techniques such as adaptive binarization and wedge filtering provide enhancement at the expense of

significant loss of information necessary for matching. Recent work[26] presents a novel three stage

matching algorithm for fingerprint enhancement and matching. Figure 5b shows the enhanced image of

5a subsequent to selective Fourier spectral enhancement and bandpass filtering. We used the AFLC

algorithm to cluster three different classes of fingerprint images using seven invariant moment

features[26],[27] computed from images that are enhanced[26]. A total of 24 data samples are used, each

sample being a 7-dimensional moment feature vector. These moment invariants are a set of nonlinear

functions which are invariant to translation, scale, & rotation. The three higher order moment features
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are given less weights thus reducing the affect of noise and leading to proper classification. The x-C

graph for the fingerprint data in Figure 1(c) shows a range of 'g from 3.0 to 4.5 for which proper

classification resulted. The fingerprint data has also been correctly classified by a k-nearest neighbor

clustering using only four moment features[26]. Euclidean distances of these clusters indicate that the

clusters are well separated which is consistent with the comparatively larger range of "gfound for proper

classification. Figures 5a and 5b represent one fingerprint class before and after enhancement. Figure 6a

shows the computed centroids of three fingerprint clusters. Figure 6b shows a confusion matrix that

indicates correct classification results.

Figure 5, Figure 6

V. CONCLUSION

It is possible to apply many of the concepts of AFLC operation to other control structures. Other

approaches to Fuzzy ART are being explored[20],[21] that could also he used as the control structure for

a fuzzy learning rule. Choices also exist in the selection of class prototypes. With some modification,

any of these techniques can be incorporated into a single AFLC system or a hierarchical group of

systems. The characteristics of that system will depend upon the choices made.

While AFLC does not solve all the problems associated with unsupervised learning, it does possess a

number of desirable characteristics. The AFLC architecture learns and adapts on-line, such that it is not

necessary to have a priori knowledge of all data samples or even of the number of clusters present in the

data. However the choice of x is critical and requires some a priori knowledge of the compactness and

separation of clusters in the data structure. Learning is match-based ensuring stable, consistent learning of

new inputs. The output is a crisp classification and a degree of confidence for that classification.

Operation is also very fast, and can be made faster through parallel implementation. A recent work[28]

shows a different approach to neural-fuzzy clustering by integrating Fuzzy C - means model with

Kohonen neural networks. A comparative study of these recently developed neural-fuzzy clustering

algorithms is needed. Future work will involved further modification of the AFLC system and algorithm

for analyzing simulation data of the TSS system[29] and for automated attitude controller design of on-

orbit shuttle[30].
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FIGURECAPTIONS

Figure 1. Operation characteristics of AFLC Architecture. l(a) shows the initial stage of identifying

a cluster prototype, l(b) shows the comparison stage using the criterion of Euclidian distance

ratio R > "g to reject new data samples to the cluster prototype. The reset control implies the

deactivation of the original prototype and activation of a new cluster prototype and I(c)

shows the x - c graph for choosing _ for unlaheil_l datasets.

Figure 2.

Figure 3.

Figure 4a.

Figure 4b.

Figure 5a.

Figure 5b.

Figure 6a.

Figure 6b.

Flow-chart of the _ Algorithm

Iris Data Represented by Three-Dimensional Features

Computed Centroids of Three Iris Clusters Based on All Four Feature Vectors

Iris Cluster Classification Results shown as a confusion matrix

A Noisy Laser-luminescent Fingerprint Image

The Enhanced Image of 5a. by Selective Fourier Spectra] Filtering

Computed Centroids of Three Fingerprint Clusters in Seven-Dimensional Vector Space

Fingerprint Data Classification Results

324



,&cl;q_livt: I:u,'.zy I +;tch:v C'ht_;ICving

[ Inpu! Applied J

I Dot product operation between input Iand each recognition layer neuron

I Lateral inhibition in recognitionlayer to determine winner

Winning class centroid compared with input.

A ratio of average euclidean distance for all

samples of the class to the euclidean distance

for the current input is used.

]Ratio (R) < Ratio Threshold (07]

I Classification A 1 Y

I Current input is assigned towinning recognition layer neuron

Winning class centroid is updated 1using fuzzy ISODATA algorithm

Bottom-up weights adjusted to

normalized version of class

centroid

I Disable current recognition Ilayer winner

neurons disabled?

Add and initialize

new recognition laycr

neuron with current

input

Figure 2.

_5



ANI)I-RN()N II_IS I)A'IA

5 J

4 J

J

2 J

t<

J
f

J
J

J

J
J

J

J

J E .

• IO •
.-.---- _ •

, _

q ,

i

-,o.<

-6

4

3

Figure 3.

CLUSTER

No: -

I

2

3

CLUSTER CENTROID

VECTOR xi, i=1,2,3,4

5.95

6.72

5.00

2.76 4.33

3.05 5.66

3.42 ! .46

1.34

2.14

0.24

OUTPUT

\
1

3

ACTUAL

1 2 3

50 7

43

50

Figure 4a. l-igure 41).

326



o

o.0

o ....q

Q

or-

o

r'_

<

0
<

/

O0

0,0

O0

2_
0

z_

._

LL

327


