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Fuzzy Logic Controllers: A Knowledge—Based System
Perspective

S5 63
Piero P. Bonissone N9S _'_ 26’1::3 3%73 3
d R
Artificial Intelligence Laboratory f A

GE Corporate Research and Development
Bidg. K1-5C32A, PO Box 8
Schenectady, NY 12301
Bonissone@crd.ge.com

Over the last few years we have seen an increasing number of applications of
Fuzzy Logic Controllers. These applications range from the development of
auto-focus cameras, to the control of subway trains, cranes, automobile sub-
systems (automatic transmissions), domestic appliances, and various consumer
electronic products.

A Fuzzy Logic Controller is a knowledge based system in which the knowledge
of process operators or proeduct engineers has been used to synthesize a
closed loop controller for the process. We will compare the development and
deployment of Fuzzy Logic Controllers (FLC) with that of Knowledge Based
System (KBS) applications.

Traditional controllers are derived from a mathematical model of the open-loop
process to be controlled, following classical control theory techniques. FLCs
are typically derived from a knowledge acquisition process (or are automatically
synthesized from a self-organizing control architecture). In either case, the
result of the synthesis is a Knowledge Base (KB), rather than an algorithm. The
KB consists of a set of fuzzy-rules (rules and termsets), which is evaluated by an
interpreter. The interpreter is composed of a quantification (or fuzzification)
stage, an inference engine (or fuzzy matcher), and a defuzzification stage.

We will analyze FLCs according to three organizing layers typically used in
describing Knowledge Based Systems: knowledge representation, inference,
and control. In the knowledge representation layer we will describe fuzzy state
vectors, term-set of linguistic values, and fuzzy production rules. In the
inference layer we will provide a geometric interpretation (for the disjunctive
case) of the generalized modus ponens, and describe the inference process
based on fuzzy predicate evaluation, rule Left Hand Side (LHS) evaluation, rule
detachment, and rules aggregation. In the control layer we will show three
different defuzzification methods and we illustrate meta-reasoning capabilities
(supervisory mods).



FLC interpreters are used during the development phase of a FLC application
to provide inference traceability (transparency), which facilitates the KB design,
implementation, and refinement. However, the use of an interpreter requires
the evaluation of all the rules in the KB at every iteration.

Therefore, after a functional validation (stability or robustness analysis), the KB
is compiled like a programming language or a traditional knowledge base
application, and a simpler run-time engine is used for deployment. The result of
this compilation process is a look-up table that allows for a faster, more efficient
execution that can be performed by simpler processors. Not only is the
response time reduced, but the memory requirements are so drastically
decreased that it is possible to implement the FLC using very small amounts of
memory. This feature enables us to build inexpensive FLCs for cost-sensitive
applications.

In summary, we consider a Fuzzy Logic Controller to be a high level language
with its local semantics, interpreter, and compiler, which enables us to quickly
synthesize non-linear controllers for dynamic systems.



Efficiently Modeling Neural Networks on Massively Parallel Computers

Robert M. Farber
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Neural networks are a very useful tool for analyzing and modeling complcx
real world systems. Applying neural network simulations to real world problems general-
ly involves large amounts of data and massive amounts of computation. To efficiently han-
dle the computational requirements of large problems, we have implemented at Los
Alamos a highly efficient neural network compiler for serial computers, vector computers,
vector parallel computers, and fine grain SIMD computers such as the CM-2 connection
machine. This paper will describe the mapping used by the compiler to implement feed-
forward backpropagation neural networks (D. Rummelhart and J. McClelland 1986) for a
SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Ma-
chines Corporation has benchmarked our code at 1.3 billion interconnects per second
(approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer
1990). This mapping is applicable to other SIMD computers and can be implemented on
MIMD computers such as the CM-5 connection machine. Our mapping has virtually no
communications overhead with the exception of the communications required for a global
summation across the processors (which has a sub-linear runtime growth on the order of
O(log(number of processors))). We can efficiently model very large neural networks
which have many neurons and interconnects and our mapping can be extend to arbitrarily
large networks (within memory limitations) by merging the memory space of separate
processors with fast adjacent processor inter-processor communications. This paper will
consider the simulation of only feed forward neural network although this method is ex-
tendible to recurrent networks.

A simple XOR network can be seen in Fig 1. This network (or any feed-
forward neural network) is "trained" as follows: First, the outputs for each example of a
"training set" of examples are calculated for a given set of network parameters (neuron
thresholds and connection weights). This can be seen for the XOR problem of fig 1 in eqn.
1.1 - 1.4. In these equations W(a,b) means the connection weight from a to b and g() is a
user specified linear or non-linear function. The fitness of the calculated outputs (and

= *
H=H o g+ WALH Y1 + WO, H) Eqn1.1
= *
0= Olhrcshold + W( Il,O) * Il + W(IZ,O) 12 Eqn 1.2
O +=g(H) * W(H,0) Eqn 1.3
0 =g(0) Eqn 1.4

hence the network parameters) is determined by some function of the known and calculat-
ed outputs. A common fitness function is the sum of the square of the differences as
shown in eqn. 2. The parameters of the network are then adjusted by some nonlinear

num_examples
Flmess—z {(known_output - calculated oulpul) Eqn 2
0
minimization scheme such as powell’s method or conjugant gradient (Press et. al._1988).
The network is continually adjusted and re-evaluated until a "best fit" is found. The neu-
ral network is then said to be "trained”. If the number of examples is small relative to the




number of network parameters, then the network can "memorize” the training set. In oth-
er words, there are so many parameters in the network that it "memorizes” the training
set. Unfortunately, neural networks which are over parameterized generally predict poor-
ly on examples which were not in the training set. Hence most neural networks are
trained with a number of examples far larger than the number of network parameters.
This "overloading” of the network is done to force the network to "generalize" a solution
from the training set. It is then hoped that the network will then predict well on data
which was not in the training set. The literature abounds with important problems where
neural networks have been shown to be good predictors. For example, neural networks
can be used to predict time series with orders of magnitude increases in accuracy over
conventional methods (Lapedes and Farber 1987 and Lapedes and Farber 1987). Neural
networks have also been shown to be highly accurate predictors of coding regions for
short regions of DNA (Farber et. al. 1992 and Lapedes and Farber 1989). We can see
that the runtime growth for evaluating a neural network during training is on the order of
O@m*n) where m is the number of network parameters and n is the number of examples.
From our discussion we can see that n generally dominates the runtime growth.

This means that contrary to what one would first expect, the most efficient
method of mapping neural networks on to a massively parallel machine is not one neu-
ron per processor. Rather, the most efficient method is to map one example to each pro-
cessor. By using this mapping for SIMD or MIMD (Multiple Instruction Multiple Data)
parallel computers, it is possible to get number_of_example operations done in each in-
struction cycle of the machine by having each processor evaluate the network for it’s ex-
ample. Hence, we effectively get no change in our runtime for a problem which has one ex-
ample over a problem which has 250,000 examples. In reality, there will be a small in-
crease in the runtime as the number of examples exceeds the number of processors.
However this increase is on the order O(number_of_examples/number_of processors)
and is very small for the large numbers of processors in current SIMD machines. Thus,
we get essentially large training sets for free. This allows neural networks to be applied
to problems of a size and complexity not possible using serial machines. Our mapping can
also be used to efficiently implement neural networks on vector computers. However, the
runtime growth is much more strongly affected by the number of examples (effectively,
the number of processors is small). Thus conventional vector machines such as a CRAY
cannot achieve the reduction in the runtime growth possible with a SIMD machine con-
taining a large number of processors. This analysis is overly simplistic since there are
complex trade-offs between cycle time, vector pipeline length, and the number of proces-
sors. The bottom line is that given access to both vector machines and highly parallel
SIMD/MIMD machines, we use vector machines for medium sized problems (generally
less than 8,000 examples) and parallel machines for larger problems (from 8,000 exam-

ples to 106 examples).

The overall computational efficiency of a parallel computer can be high only
as long as the associated communications overhead for the problem is low. Otherwise
the parallel processors will spend all their time waiting for data. Using our mapping onto
SIMD hardware, we will show that it is possible to avoid any communications overhead
by mapping neural networks onto the parallel machine via the one example per processor
approach. In our implementation on the CM-2 connection machine, the only communica-
tions required (with one minor exception) are global broadcast and local processor to
processor communications. Since both of these operations occur in one clock cycle on the



connection machine, they provide no delay over a simple memory fetch. Hence the rate
limiting step is how fast the parallel hardware of the connection machine can do floating
point operations. In other words, our mapping turns the training of neural networks into a
paralle] algorithm which is limited by the computational rate of the hardware and not by
communications overhead.

The mapping onto the CM-2 for the XOR architecture of fig 1 can be seen
in fig 2-4. As can be seen in fig 2, the front-end computer contains all the network pa-
rameters and the SIMD processors contain all examples and temporary storage for the
network. We can see the initial calculation of the hidden neuron (given in egn 1.1) as it
would be executed in parallel in Fig 3 - 4. The feedforward pass is initiated by broadcast-
ing the neuron threshold from the front-end computer 10 all processors (see fig 3). The
connection weight W(I,,H) is then broadcast to all processors with the instruction to

multiply it by the local memory location containing the value of I; and add it to the local

memory location containing the value of the hidden neuron (see fig 4). Since each SIMD
processor contains onec example, we get the number_of_examples instructions done per
instruction cycle with no communications overhead. Similarly the calculations of eqn 1.2 -
1.4 occur using only global broadcast and local processor memory. It is clear that we are
able to calculate the outputs for all the training examples for the XOR architecture or
any arbitrary neural network, without communications delays, using only global broad-
cast communications. (The evaluation of recurrent networks is dependent upon how the
back connections are to be evaluated. It is possible to do a purely parallel implementation
for SIMD architectures using our mapping (see Pineda 1988 for the mathematical descrip-
tion). Other recurrent implementations may require a MIMD architecture as the required
number of conditional operations would result in an extremely inefficient use of the SIMD
processors per machine cycle.) The next step is to evaluate how the calculated outputs
fit the known outputs. To do this the front-end issues an instruction to subtract the
known output from the calculated output and square the result. Since all memory values
are in local processor memory there is no communications overhead. The front-end then
issues an instruction to calculate the summation over all processors of the squared differ-
ences. On the CM-2, the global summation instruction is provided by Thinking Machines
Corporation and is optimized for their hardware. However, the global summation instruc-
tion has a runtime growth which is approximately O(log(n)) where n is the number of pro-
cessors. Fig 5 diagrams how a O(log(n)) runtime growth could be achieved for a global
summation. Since the run-time growth of this instruction is sub-linear with respect to the
number of processors (or number of examples for our problem), it does not provide a sig-
nificant decrease in the runtime performance. All other network calculations required for
backpropagation occur in a similar manner and have no communications overhead except
for that required by the global summation over processors.

Our mapping of one example per processor also allows networks with
large numbers of parameters to be trained. We can see in Fig 6 that the worst-case
memory growth for a fully interconnected recursive neural network is on the order O(n2);
where n is the number of neurons. Since the network parameters (neuron thresholds and
connections weights) are the same for all examples and hence for all the SIMD proces-
sors, it is makes sense to store them in one common block of memory and broadcast
them to all other processors. This makes for an ideal mapping onto the CM-2 hardware
as the O(n?) network parameters can be stored in the large virtual memory space of the
front-end computer and broadcast to the SIMD processors. This frees the limited memo-



ry available to each CM processor to be used for the storage of the example input(s) and
output(s) and intermediate values of the calculations.

It is the memory available to each SIMD processor which limits the size of
the neural network, the size of individual training examples, and the amount of training
data which can be evaluated. If the SIMD hardware has fast adjacent processor communi-
cations it is possible to efficiently merge the memory of adjacent processors to allow arbi-
trarily large training examples and neural networks to be evaluated. (It is possible to use
a fast /O memory device for the SIMD processors such as the CM-2 data vault to allow
essentially unlimited network sizes and number of examples. However, we have not

found it necessary to go to such extremes to train complex networks with even 105 to 109
examples.) This means that the memory map of individual SIMD processors will differ.
However, we can merge the memory space of different processors by defining a special
memory location in the memory map of all the SIMD processors to be a memory data bus.
If we consider the example of fig 4 in evaluating an example of the XOR network, we
would see a mapping onto the SIMD processor as seen in fig 7. If a value is required in
the first processor which is in the memory of the second processor, it is copied to the
common memory bus location and transferred via adjacent processor communications to
the first processor. The arithmetic operation then proceeds on the first processor. Data
shifts between adjacent processors on the CM-2 connection machine occur in one ma-
chine cycle (which is as much as 103 time faster than using the router communications).
Thus we incur minimal communications overhead when using merged processors. Howev-
er, merging processors introduces inefficiencies other than in moving data between the
memory space of separate processors. In the case of merging two processors, only half of
the SIMD processors can be active per computational instruction cycle. Similarly only 1/3
of the processors would be active if three processors were merged together and so forth.
The advantage of the merged memory model is that arbitrarily large neural networks and
data sets (which normally would be impossible to evaluate due to memory limitations)
can be evaluated and in a manner transparent to the user. Since the number of proces-
sors which have to be merged to provide adequate memory storage is quite small in most
cases, the performance loss is quite acceptable.

At Los Alamos, we have been using the mappings described above within
the context of a neural network compiler since 1988. The details of the compiler are too
numerous to present here. However, the compiler implements a paradigm familiar to any
code developer as seen in fig 8. Aside from receiving the problem specification (the neu-
ral network architecture, initial parameter values, and training data) the compiler does all
the remaining steps automatically for the destination machine including "writing" of the
neural network program. Fig 9 shows how data moves through a complete neural net-
work simulation. We can see that the neural network can be specified interactively by a
graphical interface or by a machine generated file. The graphical interface allows a user
to merge sub-networks “trained” to task into a large complex network. The sub-net-
works parameters may be locked to preserve the functionality of the sub-network or they
may be "equivalenced" to force the unique sub-network parameters to maintain identical
values during training. Of course the user may "unlock” the network parameters at will to
allow "tweaking" of the parameter for the particular problem. The user may also automati-
cally generate the network architecture so that the neural network may be modified so
that various "pruning” or "growing" heuristics may be used. The training set data is pre-
sented to the compiler as either floating point or single bit boolean values. This allows



the compiler to minimize floating point operations for the individual training set and can
provide significant increases in computational throughput. The data manipulation prior to
the compiler can be a non-trivial task. We have had intermediate amounts of data ex-
ceeding 60 gigabytes which had to be pre-processed prior to presentation to the compiler.

The compiler takes the network/data specification and generates an inter-
mediate language "program". This program then goes through a dependency analysis and
is presented to a "compiler" which creates a relocatable instruction stream which is then
passed to the loader linker. For the CM-2 the loader/linker creates an appropriate memo-
ry map (including merging multiple processors together) and creates a state machine in-
struction stream which is then executed once the data is loaded into the connection ma-
chine.

The compiler automatically calls the user specified optimization code as
well as user functions specifying arbitrary neuron types. The user code on the front-end
computer sees the compiler generated calculation of the forward pass, error propagation
and calculation of the gradient (if possible) for the destination machine given the specified
training set and neural network architecture. The user can then call these routines from
their optimization code. Since algorithms for nonlinear or multidimensional optimization
are quite complex and are either difficult or impossible to implement efficiently on a SIMD
processor array, they are instead executed serially on the front-end computer. This al-
lows the use of optimization algorithms such as conjugant gradient, powell’s method,
steepest descents or some other algorithm written in the users favorite language. This
use of the front-end provides advantages on the connection machine. For example, the
optimization code can “twiddle" network parameters with a 100 ns clock instead of the
ps cycle time of the connection machine processors. In addition, some of the work done in
the optimization code can be gotten "for free" due to the asynchronous operation of the
front-end computer and the SIMD array of processors.

In summary, we have been able to exploit the gigaflop capabilities of the
connection machine to train arbitrary feed forward neural networks on large, complex, and
noisy data sets with examples on the order of hundreds of thousands to millions. We
have done this with a neural network compiler which implements an extremely efficient
mapping to SIMD architecture parallel computers. The mapping allows efficient use of the
computational facilities of the parallel hardware with virtually no communications over-
head. Arbitrarily large networks can be implemented by using the large virtual address
space of the front end computer and by merging the memory space of adjacent SIMD pro-
cessors together via fast local inter-processor communications. Thinking Machines Cor-
poration has acknowledged that our implementation is considerably faster than other
known implementations and that our implementation "has either constant time behavior
or linear time dependence with respect to the number of training patterns, depending on
the size of the connection machine used" (Singer 1990). Since the number of examples is
the dominating factor in the runtime growth of training, our method allows the use of the
CM-2 Connection Machine for real world problems of a complexity not possible using
other computational hardware.

This work was done under the auspices of the U. S. Department of Energy and was partially
funded by a grant from the National Institutes of Health (GM 40789-03). We express our gratitude for
the hospitality of the Santa Fe Institute where part of the work was performed. We also acknowledge
the help and support of Alan Lapedes who has been an integral part of the design and use of this work
and without whom this work would have been impossible.



Fig 1: An XOR Neural Network
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The Front End Computer (Generally a SUN) holds
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ent although the user has complete flexibility to use

his own code.
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Fig 3: Example of a global broadcast
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Fig 4: Calculation of Hidden Neuron Tor XUR Network. All operations
are local except for the global broadcast of connections W(I,,H) and W(I,,H).
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Fig 5: log(n) Runtime Growth of Global Summation
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Fig 6: O(n?) Memory Growth for a Fully Interconnected Neural Network
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Fig 7: Calculation of Hidden Neuron (eqn 1.2) for XOR Network. All
operations are local except for the global broadcast of the connections
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Fig 8: Compiler Paradigm

Neural Dependency Load
Network Analysis Compilation Link
Specification [ Code [ Execyte

and Data Generation

Fig 9: Block Diagram of Neural Network System

Data Extraction o Text Form of
‘ Neural
Network
Data Manipulation Specification

N ~

Neural Network Compiler

|

SERIAL CRAY CM2 CM5

1"




References

A. S. Lapedes, R. M. Farber, "How Neural Networks Work" Proceed-
ings of the IEEE, Denver Conference on Neural Networks, 1987.

A. S. Lapedes, R. M. Farber, "Non-linear Signal Processing using Neu-
ral Networks, Prediction and System Modeling ", LANL technical re-
port LA-UR-87-2662

A. S. Lapedes, C. Bamnes, C. Burks, R. M. Farber, K. Sirotkin,
"Application of Neural Networks and Other Machine Learning Algo-
rithms to DNA Sequence Analysis" published in Computers and DNA,
SFI Studies in the Sciences of Complexity, vol. VII (1989).

R. M. Farber, A. S. Lapedes, K. Sirotkin, "Determination of Eukaryotic
Protein Coding Regions Using Neural Networks and Information Theo-
ry”, J. Mol. Biol. (1992) 226, 471-479.

F. J. Pineda, "Generalization of Backpropagation to Recurrent and High-
er Order Neural Networks", Neural Information Processing Systems,
Dana Z. Anderson editor, pg. 602-611.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
“Numerical Recipes in C”, Cambridge University Press, 1988.

D. Rummelhart, J. McLelland, "Parallel Distributed Processing”, Vol. 1,
M.LT. Press, Cambridge, MA. (1986)

Singer A., "Implementations of Artificial Neural Networks on the Con-
nection Machine"”, Parallel Computing, 14:305-315, 1990

12



Learning Fuzzy Information in a Hybrid Connectionist, gf'mbolic-Model

()
8-22854
. . 3 )
Steve (3. Romauiuk and Lawrence O. Hall Sy "’3 -
Departinent of Computer Science and En Aneering
| ] ‘ g g /ﬂ/ /7

University of South Florida
Tampa, FL 33620
e-mail: romaniuk@daffy.csec.usf.edu, hall@waterfall.csee.usf.edu

Abstract

An instance-based learning system is presented. SC-net is a fuzzy hybrid connec-
tionist, symbolic learning system. It remembers sone examples and makes groups of
examples into exemplars. All real-valued attributes are represented as fuzzy sets. The
network representation and learning method is described. To illustrate this approach
to learning in fuzzy domains. an example of segmenting magnetic resonance images of
the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or
fuzzy. Example fuzzy rules for recognition are generated. Segmentations are presented
that provide results that radiologists find nseful.

1 Introduction

This paper describes the use of a Lhybrid connectionist, symbolic machine learning system,
SC-net [4, 8], to learn rules which allow the discrimination of tissues in magnetic resonance
(MR) images of the human brain. Specifically, a S thick slice in one spatial orientation
will be used to illustrate SC-net’s capabilities. The problem involves identifying tissues of
interest which include gray matter, white matter, cerebro-spinal fluid (csf), tumor when
it exits, edema and/or necrosis. Esscntially, a segmentation of the MR image into tissue
regions is the aim of this research. The training data is chosen by a radiological technician
who is also familiar with image processing and pattern recognition.

SCnet is an instance-based learning system. It encodes instances or modifications of
instances in a connectionist architecture for use classification after learning. Fuzzy sets
are directly represented by groups of cells in the network. Membership functions for any

defined fuzzy sets are also learned during the training process with the dynamic plateau
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modification feature of SC-net [7].

The rest of this paper will consist of a description of the relevant features of the SC-net
learning system, a description of the processing of a MR image slice, the presentation and
discussion of the segimentation results obtained with the SC-net system, a discussion of how
these results compare with other techniques that have been used [3] and an analysis of the

feasibility of the SC-uet approach i this domain.

2 The SC-net approach

Fach cell in an SC-net network is either a min, max, negation or linear threshold cell. The
cell activation formulae are shown in Figure 1. The output structure of the network is
set up to collect positive and negative evidence for cach output. For an output cell in a
classificatory domain, an output of 0 indicates no presence, 0.5 indicates unknown and 1
indicates true. We will show an example of a different us of the output values in the MR
image segmentation domain.

SC-net configures its connectionist architecture based upon the training examples pre-
sented to it. The learning algorithm responsible for the creation of the network topology
is the Recruitment of Cells algorithm (RCA) [4. 7. RCA is an incremental, instance-based
algorithm that requires ouly a single pass through the training set. Every training instance is
individually presented to the network for a single feedforward pass. After the pass has been
completed, the actual and the expected activation for every output are compared. Three

possible conditions may result from this comparison.

o The example was correctly identified (error is helow some epsilon). No modifications
are made to the network.

o The example is similar to at least one previously seen and stored instance (error
within 5 epsilon). For those output cells that have an activation within 5 epsilon of

the expected output, a bias is adjusted to incorporate the new instance.

e The example could not be identified by the network. This results in the recruitment of
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O, puurive and O are the positive and negative collector cells for C; respectively.
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Figure 1: Cell activation formula

a new cell (referred to as an information collector cell, ICC). Appropriate connections
from the network inputs to the ICC ave created. The ICC cell itself is connected to
either the positive (PC) or negative collector (NC) cell. The PC is used to collect
positive evidence, whereas the NC accumulates negative evidence. The initial empty
network structure for a two input {(one output) fuzzy exclusive-or is presented in Figure
9 Note that the uk cell always takes an activation of 0.5. The complete learned

network for the fuzzy exclusive-or is shown in Figure 3, where cells cl-c3, ¢b are IC

cells and nl, n2, c4, and G are negation cells.

To improve on the generalization capabilities of the RCA generated SC-net network a
form of post training generalization is cmployed. This method is called the min-drop feature.
Whenever a test pattern is presented to the system, which cannot be identified by any of
the output cells, the min-drop feature is applied. If a new pattern cannot be recognized
by the network, all output cells will be in an inactive state (an unknown response of 0.5

is returned). In this case the min-dvop feature is applied to find the nearest corresponding
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Figure 3: The network for the fuzzy exclusive-or
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output for the current pattern. New patterns are stored in the network through recruitment
of IC cells (and possibly some negation cells). These 1C cells are essentially min-cells, which
return the minimum of the product formed from the incoming activation and the weight on
the corresponding connection. The min-drop feature works by dropping (ignoring) the next
piece of evidence which is below some threshold. The process is repeated until one or more
output cells enter an active state (fire). The final number of connections dropped indicates
the degree of generalization required to match the newly presented pattern. In a second
mode, a bound may be placed on the min-drop value, preventing an unwarranted over-
generalization. RCA and post training generalization in the form of the min-drop feature
provide good generalization. However, several problems can be associated with the RCA

learning phase.

o Network growth can be linear in the number of training examples.

e As a direct consequence of the first problem storage and time (to perform a single

feedforward pass) requirements may increase beyond the networks physical limitations.

e Generalization on yet unseen patterns is limited, and requires use of min-drop feature.

To address the above problems a network pruning algorithm was developed. The GAC
(Global attribute C'overing) algorithmn’s [7] main purpose is to determine a minimal set of
cells and links, which is equivalent to the network generated by RCA. That is, all previously
learned information should be retained in the pruned network. GAC attempts to determine
a minimal set of connections, which may act as inhibitors of the information collector cells
(ICC). Each information collector cell is introduced to the network as the result of an
example in the training set which was distinct from all previously seen examples. GAC is

completely described in [3].
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2.1 Dynamic Plateau Modification of fuzzy membership func-
tions

All fuzzy membership functions in SC-net are represented as trapezoidal fuzzy sets [7, 9].
They are represented in the network by a group of cells as shown in Figure 4 for the fuzzy
variable teenager. Teenager takes membership values of 1 in [13..19], of course. In this
implementation the membership goes linearly to 0 at the ages of 5 and 25. In the network
ages are translated into [0,1] from the [0,100] year range. So the age of 22 is translated to
0.22. Figure 5 shows the actual graph of the membership function for the fuzzy teenager
variable.

The dynamic plateau modification function (DPM) is designed to bring in the arms of
the fuzzy membership function. In general, we allow the range of the membership function
for unknown functions to initially be the range of the fuzzy variable. The range in which
the function obtains a value of | is at least one point (all fuzzy sets in SC-net are normal
in the sense that they contain at least oue full member) and usually much smaller than the
function range. Hewce! for the teenage example with a 100 year range the right arm of the
trapezoidal memberslip function would mitially go to 0 at age 100, if we had no information
on constructing the membership function other than where it is crisp (attains a membership
value of 1). We always assume that the crisp (normal) portion of the membership function
is known. The DPM function allows us to arbitrarily set the arms too wide and then adjust
them during the learning process. Clearly, in our example it is impractical for someone 99
or 100 years old to have membership in the fuzzy set teenager.

A high-level description of the DPM method is as follows. When it is determined that
the fuzzy membership value has caused an incorrect output, the maximal membership that
will not cause an error is determined. This value for the set element given and the nearest
element at which the membership function takes a value of 1 are used to specify the linear
arm of the function. This provides a new upper or lower plateau value (point at which the

function goes to 0) for the fuzzy membership function which is used to update the weights
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labeled a thru e in Figure 4 [9].

2.2 Automatic partition generator

In SC-net all real-valued inputs are modeled by a set of individual fuzzy sets which cover
the range of the input. In the case that real-valued data is truly fuzzy, but domain experts
do not exist to provide indications of how to model it by fuzzy sets, the choice of the
fuzzy sets to cover the range is difficult. Since the data is fuzzy, it may not be possible to
accurately identify distinct ranges of the real-valued output associated with specific output.
However, this type of idea of associating (fuzzy) ranges with actual outputs can be used. The
automatic partition generator (APG) is a method to develop a viable set of fuzzy sets for
use in the learning process in domains which have real-valued input, but no expert identified
ranges that may belong to specific fuzzy sets.

The APG algorithm works as follows. For each real-valued attribute or feature it
makes a partition such that the boundary going from low value to higher value includes at
least one element of a class. It will further contain as many elements of the same class as
possible. Given the strategy to have all the partitions contain only one class, the maximum
number of partitions for any given feature would be the number of classes and would indicate
it is very difficult to partition the train set based on that feature or attribute alone. It is the
case that a partition may be bounded on both sides by partitions that belong to the same

class which is a different class than the examples in the bounded partition belong to.

3 The Nature of MRI Data

Magnetic Resonance Imaging (MRI) systems measure the spatial distribution of several soft
tissue related parameters such as T1 relaxation (spin lattice), T2 relaxation (transverse) and
proton density. By discrete variations of the radio frequency (RT) timing parameters, a set
of images of varying soft tissue contrast can be obtained. The use of time varying magnetic

field gradients provide spatial information based on the frequency or phase of the precessing
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protons using both multi-slice (2DFT) or volume (3DI'T) imaging methods [10, 11]. Hence,
a multi-spectral image data set is produced.

In our work, male volunteers (25-15 years) and patient tumor studies were performed
on a high field MRI system (1.5 tesla) using a resonator quaduature detector head RF
coil. Transverse images of 5 mm thickness were obtained using a standard spin echo (SE)
technique for T1 weighted images (pulse repetition time TR = 600 ms, echo time TE=20
ms) and proton density (p) and T2 weighted images (TR=3000 ms, TE=20 and 80 ms
respectively), using the 2DFT multi-slice technique {12, 13, 2]. Volunteers were imaged for
the same anatomical location.

Pixel intensity based classification methods were employed in this work as opposed to
methods based on the calculation of magnetic resonance relaxation parameters. The latter
methods require tailored RF pulse sequences [10, 11]. Image intensity based methods can be
applied to any imaging protocol and are not restricted to the number of images acquired, i.e.
it is possible to accommodate images with features other than MR relaxation parameters,
such as perfusion and diffusion imaging, metabolic imaging and the addition of images from
other diagnostic modalities [2]. The transverse images were acquired, centrally located in
the resonator RF head coil, and hence did not require uniformity corrections for RF coil
geometry or dielectric loading characteristics as developed at this institute [3]. Similarly,
the subjects studied did not move significantly during the imaging procedure and hence,

corrections were not required for related registration problems.

4 Segmenting magnetic resonance images

SC-net is a supervised instance-based learning system. Hence, in order to use it to segment
an image a training set of labeled pixels must exist. Each pixel has 3 features associated
with it a T1, T2 and proton density value. In this paper, we will focus on one normal slice
and one abnormal slice. There are 271 pixels in the abnormal training set and 216 pixels

in the normal training set. There are 5 classes in the normal train set; gray matter, white
5 b 9
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matter, csf, fat and air. The abnormal train set also contains a class for tumor or pathology
for a total of 6 classes. Each of the train sets was chosen by a radiological technician.

Each of the input features is real-valued taking values in [0,255] and hence will be
represented as fuzzy sets within SC-net. However, it is unclear how these fuzzy sets should
be constructed. Further, in [6] it is shown that the values associated with specific tissues
vary from subject to subject with significant overlap. Therefore, the partitions of the input
ranges for the initial fuzzy sets for each of the inputs were obtained by the use of the APG
algorithm.

The inputs in each dimension are first translated from [0,max_value] maz value < 255
to the [0,1] range. The APG algorithm is then run which, for example, in the normal
(volunteer) training set produces 11 partitions in T1, 19 partitions in proton density (p) and
5 partitions in T2. It is interesting that T2 requires the least partitions as it has been the
most used single parameter in the literature and few partitions will belong to features or
attributes that are “good” data separators. The initial range of each constructed fuzzy set
is [-0.2,1.2]. Allowing the range of the membership function to be larger than the range of
the set it models 1s an implementation convention which allows membership values to be 1
at the edges of the actual range.

There are two possible ways to assign examples to classes. One is to use 5 outputs
for the normal exaniple and 6 outputs for the abnormal example. This is the most straight-
forward method. Another possibility exists, which is to use just 1 output. This output is
then broken into 5 ranges for the normal example (i.e. [0,0.2]. (0.2.0.4], (0.4, 0.6], (0.6, 0.8],
and (0.8,1}) which respectively represent the 5 tissue types of interest. Similarly, the single
output range can be broken up for 6 outputs. The use of one output provides a very compact
network with just 3 inputs which {an out into 35 fuzzy sets in the normal example.

In all experiments, after traming all of the remaining pixels are presented to the
network for classification. The image is 256 by 256, which means that the training set is

very small in relation to the total set of 65,536 pixels.
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Table 1: Synthetic Colors for MR Tissue Classes.

blue air
yellow | cerebrospinal fluid (csf)
red white matter
orange gray matter
brown fat
purple pathology

4.1 Results

In Figure 6, we show the segmentation results for a patient with pathology (6a) using 6
outputs and a normal volunteer with 5 outputs (Gb). In both cases the fuzzy outputé have
been made into one crisp color. The chosen color is the one associated with the output
which has the highest membership value. A color table for the figures>is listed in Table 1.
The patient with pathology has received chemo and radiation therapy which has eliminated
obvious tumors; but left some pathology.

The segmentations in I"igure 6 are comparable to segmentations pronounced as good by
a teamn of radiologists [5]. The only real difference is that some fat (brown) shows up within
the brain. However, this is a minor inconsistency. The case with pathology is segmented
as well as any of t_he other fuzzy unsupervised and non-fuzzy supervised techniques used in
[5]. In the lower left-hénd part of the image tile pathology is clearly defined and it can be
seen that there is also pathology in the top of the image and the lower right-hand part of
the image.

In Figure 7, we show the results using only 1 output for the abnormal case (7a) and
normal case (7b). It can be seen that the scgmentations are much the same as before. The
fat in 7b is only weakly misclassified in this instance and barely shows up in the segmented
image. These displays are fuzzy, which means that a pixel that strongly belongs to a class
gets a bright color value, while a pixel that weakly belongs to a class is a darker shade of

the same color. This generally shows the wncertainty in the segmentation better and tends
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a) b)

Figure 6: An abnormal and normal segmentation by SC-net with multiple outputs.

24



to highlight borders [5].

5 Summary

SC-net is able to provide good segmentations of MR images of the brain. This is a domain
in which there is significant tissue overlap and the boundaries are fuzzy. With the use of the
APG function the real-valued inputs are automatically partitioned into fuzzy sets. These
fuzzy sets are further refined after the RCA learning algorithm has been applied by the use
of DPM.

The results of the segmentation are comparable to those obtained by K nearest neigh-
bor (K-nn) (K=7) and Cascade Correlation [5] in another study of supervised learning
techniques. In the normal volunteer image the SC-net segmentation is a little clearer than
the k-nn segmentation with the one exception of misclassified fat. The fuzzy connectionist
representation of SC-net is very effective and [ast in learning and classifying the MR images.
The rules that are generated after the use of GAC for the normal case numbered 9 and
13 for the abnormal case. They can be used to provide a sense of what portions of which
features are important in the recognition process. In Figure 8, the 9 rules for a normal case
are shown. It can be seen that for output 5, fat, the 16 partition of the T2 parameter
is crucial. For output 2, csf, around the 2" proton density partition is the an important
indicator. Output 1, which is air, is very easy to distinguish by one rule. This is a known
fact since it essentially has a 0 return. The number of rules required to distinguish a class
can also be an indication of how difficult it is to recognize. Hence, the rules can have se-
mantic meaning and may be useful in tuning the system which is an advantage of a hybrid
representation.

Acknowledgements: Thanks to Robert Velthuizen for helping us with the image display
and providing an expert interpretation of the images. This research was partially supported

by a grant from the Whitaker Foundation.
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Figure 7: An abnormal and normal segmentation by SC-net with 1 output.
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Rule 1: if and( fuzzy(I3[p16]) = 1.000, fuzzy(I2(p12]) = 1.000,
fuzzy(I1[p5]) = 1.000 ) then OutS ( 1.000 ).
Rule 2: if and( fuzzy(I3[p16]) = 1.000, fuzzy(I2[p17]) = 1.000,
fuzzy(I1{p7]) = 1.000 ) then Outs ( 1.000 ).
Rule 3: if and( fuzzy(I3[p16]) = 1.000, fuzzy(I2[p19]) = 1.000,

fuzzy(I1[p16]) = 1.000 ) then OutS ( 1.000 ).

Rule 4: if and( fuzzy(I3[p2]) = 1.000, fuzzy(I2[p2]) = 1.000,
fuzzy(I1[p17]) = 1.000 ) then Out4 ( 1.000 ).

Rule 5: if and( fuzzy(I3[p15]) = 1.000, fuzzy(I2[p3]) = 1.000,
fuzzy(I1[p17]) = 1.000 ) then Out3 ( 1.000 ).
Rule 6: if and( fuzzy(I3[p22]) = 1.000, fuzzy(I2[p3]) = 1.000,
fuzzy(I1[p5]) = 1.000 ) then Out2 ( 1.000 ).
Rule 7: if and( fuzzy(I3[p17]) = 1.000, fuzzy(I2[p2]) = 1.000,
fuzzy(I1{p5]) = 1.000 ) then Out2 ( 1.000 ).
Rule 8: if and( fuzzy(I3[p19]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(I1[p6]) = 1.000 ) then Out2 ( 1.000 ).

Rule 9: if and( fuzzy(I3([pt]) = 1.000, fuzzy(I2(p1]) = 1.000,
fuzzy(I1{p1]) = 1.000 ) then Outl ( 1.000 ).

Figure 8: Rules for normal volunteer

27



References

1]

3]

[4]

(6]

7]

Bensaid, A. M., Hall, L. O., Clarke, L. P., and Velthuizen, R. P. MRI Segmentation
Using Supervised and Unsupervised Methods. IEEE Eng. Med. & Biol., Proceedings of

13th Annual Meeting, Oct. 31st-Nov. 3rd, Orlando, Florida, 1991.

Clarke, L. P. Comparison of Bayesian Maximum Likelihood (MLM) and Artificial Neu-
ral Network for Supervised Tissue Classification and 3D Segmentation by MRI. Scien-
tific Symposium, American Association of Physicists in Medicine (AAPM), 33rd Annual

Meeting, San Francisco, California, July 1991; Med. Physics, 18(3), 673, 1991.

Glennon, D. T., Clarke, L. P., Velthuizen, R. P. and Silbiger, M. L. MR Image Non-
Uniformity Correction Techniques. IEEE Eng. Med. Biol., Proceedings of 13th Annual

Meeting, Oct. 31st-Nov. 3rd, Orlando, Florida, 1991.

Hall, L.O. and Romaniuk, S.Gi., * A hybrid connectionist, symbolic learning system”,

AAAI-90, Boston, Ma. 1990.

Hall, L.O., Bensaid, A., Bezdek, J.C., Clarke, L., Silbiger, M. and Velthuizen, R. A4
Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Mag-
netic Resonance Images of the Brain, IEEE Transactions on Neural Networks, V. 3,

No. 5, 1992.

Li, C., Goldgof, D. and Hall, L.O., Towerds Automatic Classification and Tissue Label-
ing of MR Brain Images, International Association for Pattern Recognition Workshop

on Structural and Syntactic Pattern Recognition, Bern, Switzerland.

Romaniuk, 5.G. * Extracting Knowledge from a Hybrid Symbolic, Connectionist Net-
work”, Ph.D. Dissertation, Department of C‘omputer Science and Engineering, Univer-

sity of South Florida, 1991.

28



[8]

[9]

[10]

[11]

12]

[13]

Romaniuk, S.G. and Hall, L..O. *SC-uet: A Hybrid Connectionist, Symbolic Network”,

Information Sciences, To Appear, 1993.

Romaniuk, S.G. and Hall, L.O. “Learning Fuzzy Information in a Hybrid Connectionist,
Symbolic Model”, IEEE International Conference on Fuzzy Systems 1992, pp. 309-312.,
San Diego, Ca. 1992.

Bottomley, P. A., Foster, T. H., Argersinger, R. E. and Pfeifer, L. M. A. Review of
Normal Tissue Hydrogen NMR Relaxation Times and Relaxation Mechanisms from 1-
100 MHz: Dependence on Tissue Type, NMR Frequency, Temperature, Species, excision

and Age. Medical Physics, 11(4), 425-448, 1984.

Hyman, T. J., Kurland, R. J., Leroy, G. C. and Shoop, J. Characterization of Nor-
mal Brain Tissue Using Seven Calculated MRI Parameters and a Statistical Analysis

System. Mag. Res. Med. 11, 22-34 1939.

Bensaid, A. M., Hall, L. O., Clarke, L. P., and Velthuizen, R. P. MRI Segmentation
Using Supervised and Unsupervised Methods. IEEE Eng. Med. & Biol., Proceedings of
13th Annual Meeting, Oct. 31st-Nov. 3rd, Orlando, Florida, 1991.

Schellenberg, J. D., Naylor, W. C. and Clarke, L. P. Application of Artificial Neural
Networks for Tissue Classification from Multispectral Magnetic Resonance Images of the
Head. IEEE Symposium, Computer-Based Medical Systems, Third Annual Conference
Proceedings, Chapel Hill, North Carolina, June 3-6, 1990.

29



On the Neural Substrates Leading to the Emergence of Mental
Operational Structures
Y e3 .o

s B 7//7[ H. Ogmen N 9 3 ‘ ?‘ 22

Department of Electrical Engineering
, University of Houston
Q \Q Houston, Texas. 77204-4793
/

ABSTRACT
A developmental approach to the study of the emergence of mental operational structures
in neural networks is presented. Neural architectures proposed to underlie the six stages of the
sensory-motor period are discussed.

1 Introduction

Historically. the study of intelligence has heen polarized into explanations based on neurophys-
iology and those based on logic. The same dichotomy manifests itself in current approaches.
the former corresponding to the neural network theory and the latter to the symbolic reasoning
schemes used in artificial intelligence (logic. fuzzy logic. etc.). At a first glance these two explana-
tions fail to extend to each other. for logic does not tell us anything about neurophysiology and it
seems difficult to explain the rules of logic from the connectivity and firing patterns of neurons.
lHowever. logic is housed in neurophysiological substrates and there should be a reconciliation
hetween these two explanations (if we reject dualism). Since logical reasoning emerges as a result
of an extensive development and since the early phases of development consist of sitnpler hehav-
tors. the link between adult intelligence and the underlying neural correlates can he established
by relating the early developmental stages to neurophysiological substrates and by studving the
adaptive dynamics of the system that leads to the emergence of higher mental operations. The
theory of genetic psvchology (Piaget. 1967) provides us with a very detailed study of various
phases starting from birth to the adulthood. This paper extends various psychological concepts
of the theory of genetic psychology to the neurophysiological domain. In particular, it outlines
neural networks proposed to give rise to the various stages of the sensory-motor period,

2 A neural theory of development

Our study of development is closely linked to the theory of genetic psychology (Piaget. 1967).
Piaget (1963) named the post-natal developmental period where language is absent the sensory-
motor period and suggested the existence of six consecutive stages that govern its dvnamics.
These stages start from reflexes and end with mental manipulations of sensorv-motor schemes to
invent new intelligent structures. Mental internalization of early sensorv-motor schemes lead to
the capability of applying them to formal reasoning in the adult life.
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2.1 The six stages of the sensory-motor level according to the theory of genetic
psychology

The first stage of the sensory-motor period consists of simple reflexive sensory-motor hehavior.
In the second stage, the repetitive use of these reflexes. called “primary circular reactions™. leads
to the formation of habits. The primary circular reactions refine genetically encoded reflexes and
enable the emergence of multi-modal coordination. At the third stage the infant starts to draw
a distinction between the “means” and “ends” and uses “secondary circular reactions™. During
the fourth stage, existing sensory-motor schemes are coordinated and extended to new situations.
In stage 5. new sensory-motor schemes are acquired through physical groping. Finally during
the sixth stage. which marks the end of the sensory-motor level, new sensory-motor scheimes are
acquired by mental groping.

2.2 A model for primary sensory-motor schemes

We first start by describing the seed sensory-motor circuit with nonassociative learning properties
(Ogmen 1991, Ogmen & Moussa. in press). The architecture, which is illustrated in Figure 1. has
three main parts: the sensory circuit, the sensory-motor gate circuit, and the motor circuit. Since
the model was originally formulated explicitly for the prototypical landing behavior of the fiv. the
sensory and motor parts are specialized for this animal. The sensory part consists of visual signals
conveyed by the compound eves and of tactile pathways. In the fly. signals from the componud
eves are processed by three optic ganglia: lamina, medulla. and lobula complex. denoted by lLa.
Me. Lo respectively in Figure 1. The output of the visual processing stage results from a behavior
sensitive pooling of motion detector neuron activities. In the case of landing, stimuli indicating
the approach of a landing site, such as expanding patterns, are detected by an appropriate pooling
of directionally selective large field motion sensitive neurons and constitute the “agonist™ inpnt
to the sensory-motor gate circuit. This input is denoted by 15, in Figure 1. Stimuli of opposite
character (such as contracting stripes) constitute the “antagonist™ input deunoted by 14, Agonist
and antagonist tactile inputs are added to these visual signals. One such input is marked by /;,
in Figure 1. The following stage. which is a gated dipole anatomy (Grossherg. 1972). constitutes
the scnsory-motor gate network because this is the stage where various sensory signals are pooled
to determine whether a motor command signal will be issued. The sensory-motor gate network
has agonist and antagonist outputs denoted respectively by 244 and x,,. These signals project to
motor circuits (not shown) to control agonist-antagonist muscle pairs (indicated by Ag and An).
This sensory-motor model exhibits nonassociative learning as observed in the landing reaction of
the fly as well as in human infants (Lipsitt 1990).

Figure 2 illustrates this architecture augmented with adaptive capabilities. The adaptive ver-
sion of this sensorv-motor model has also three major parts: sensory. sensory-motor gate. and
motor. These parts are augmented by inclusion of adaptive mechanisms similar to those proposed
in the INFANT (Kuperstein & Rubinstein 1989) and AVITE (Gaudiano & Grossherg 1991) mod-
els. x, represents an environmental variable. These environmental variables are converted into
neural activities by the sensory loci. The activities of the sensory loci are denoted by ry. The
sensory loci project to the sensory-motor gate networks. The first laver of the sensory motor gate
network consists of nodes interconnected by recurrent on-center ofl-surround connections. Fach
node corresponds to the agonist-antagonist inputs of a given sensory-motor scheme. The gated
dipole of Figure 1 is represented in a condensed way by a single node in this layer. An arbitrary
number of sensory-motor schemes, similar to the one shown in Figure I, exists. The competition
between these nodes selects and triggers one of the sensory-motor schemes. The second laver of
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Figure 1: Model for primary sensorv-motor schemes (Ogmen & Moussa in press)
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sensorv-motor gate

Figure 2: Adaptive version of the sensory-motor model shown in Figure 1.
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the sensory-motor gate part is is used convert the representation of the sensory space into the rep-
resentations of the motor space. The connections converging 1o this layer are adaptive. The motor
part consists of three layers and has AVITE model’s anatomy (Gaudiano & Grossherg 1991). The
output layer produces motor command signals while the input layer receives the desired motor
command signals. The layer between these “target™ and “present™ motor signals computes the
error. This organization constitutes a basic fredback control system where the ontput is driven
by an error signal during real-time operation. Moreover. the same “motor error™ laver is nsed to
adapt to changes in the plant. making the system an adaptive feedback control svstem, What is
notable in this anatomy is that the same error signals are used both for performance and learning.
Auother important feature of the AVITE circuit is the “Endogenous Random Generator™ (ERG)
which generates random postures and enables the spontaneous learning of sensory-motor coordi-
nate transforms. The filled circles depict in a condeused way the function of the ERG. During
the active phase of the ERG a random motor signal is dictated to the output of the motor circuit.
During the passive phase of the ERG, activity of the motor layer is transferred to the first laver
of the motor circuit which is transferred to the buffer layer of the sensorv-motor gate network.
The arrow from the bottom filled circle to the motor output layer depicts the generation of ran-
dom motor signals. The pathway from the motor signal level to the motor target level depicts
the transfer of activity between these layers during the learning phase. A similar transfer occurs
between the motor target layver and the sensorv-motor gate buffer laver. Note that. in addition to
internal feedback. the sensory-motor circuit constitutes a closed loop through the environmental
variable denoted by x.. The interaction between the environmental variables and neural variables
is essential and constitutes an overall organization by the relationship of ussimilation that unites
them (Piaget. 1963).

The circuit described above constitutes the proposed basic neural correlate for the reflexive
hehavior of Stage 1. The adaptive nature of the circuit requnires the use of these reflexes for

consolidation and fine tuning. The repetitive use of reflexes leads to the second stage. the stage of

habits. Figure 3 shows how the beginnings of “cortexification™ occurs at this stage. In Figure 3. the
architecture of Figure 2 is depicted in a simplified form as a closed loop of environmental. sensory.
sensorv-motor gate, and motor variables denoted by .. . and &, respectively. To this basic loop,
additional circuits. proposed to be of cortical origin. are added. These cortical networks recejve
sensorial inputs and have a feedback structure. They are proposed to be adaptive resunance theory
(ART) architectures (Carpenter & Grossherg 1988, Grossherg 1976) and each node represents a
laver of ART. At this stage. sensorial stimuli start to be recorded and generalized cortically.
The outputs of these ART circuits also make connections with the sensorv-motor circuits, The
connections from ART circuits to sensoryv-motor loops are proposed to he Hebbian syunapses so
that an association between the cortical representation of sensory stimuli and the active sensory-
motor circuits occurs through the reinforcement of the svnaptic weight between the ART circuits
and the sensory-motor gate nodes. A second feature of cortical development at this stage is the
heginnings of cortico-cortico associations. This is shown by svnaptic connections between varions
ART circuits. This phase of operation corresponds to Stage 2. in that the sensorv-motor schemes
are not decomposed and consequently there is no differentiation between the “means™ and the
“cnds™. The lack of decomposition comes from the property that one cannot. at this point. access
these closed loop circuits from an arbitrary entry point and the only wayv to activate them is 1o
provide the appropriate environmental signals.

During Stage 3. such a decomposition is introduced by the development of “secondary circular
reactions”™. Once the sensorv-motor repertoire hecomes sufficiently rich and multi-modal coordi-
nation (in particular the coordination between vision and grasping) reaches a satisfactory level,
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Figure 4: Secondary circular reactions

the infant stacts grasping objects placed in her vicinity. Asswme that the infant is presented with
a tov. grasps the tov. shakes rhe toy. and that the rov produces a characteristic sound new ta the
infant. This sound will retrigger the sensorv-motor scheme. i.e. will generate a circnlar reaction.
Later. when the infant is presented with a similar tov. she will rryv the same sensory-motor scheme.
Similarly. when the sound of the toy is reproduced by the experimenter. she will took fur the tov
(Piaget 1963).

Figure 4 illustrates how this occurs in the proposed neural cirenits. Tuitiallv. a 1oy is presented
(&.1) and it triggers a sensory-motor scheme (grasping and shaking) whose output is a surprising
sonnd (r.;). The sensorv-motor scheme is repeated many fimes until the novelty of stimuli
vanishes. ! During this circular reaction. a connection from the cortical circuits to the sub-cortical
circuits is also reinforced. If there are cousistent stimuli pairings. association between these stimuli
also occurs. In the example of toy shaking. at least an association between the object (o) and
the sonnd (.x.;) occurs. Later. assume that the infant is presented with a different object ., and
that this object does not trigger directly the grasping scieme (the dotted connecrion in Fignre 1).
Now. il this object has an equivalent cortical generalization. it will send a signal to this sensory-

"u the basic architecture of Figure 2. habituating sensory and sensory-motor gate signals nnderlie the habitnation

properties of the circuit.
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motor scheme via the cortical connection which was reinforced during the circular reactions. If
this signal is strong enough to trigger the sensory-motor scheme without the sensory signal. the
infant will shake this new object. If this object also makes a similar sound (.y). it will re-activate
this sensory-motor scheme via a circular reaction. The repetition of the sensory-motor scheme
will reinforce the direct sub-cortical connection as shown at the hottom of Figure 4.

While the previous example considered a single sensory-motor scheme for simplicity. in practice
a larger number of environmental variables (the first heing the object. the last being the sound)
are involved.

Note that one can see the important distinction that Piaget drew between his notion of adap-
tation through an equilibrium between assimilation and accommodation and the associationistic
theory of intelligence. While. the behavioral analysis of the network described above may look like
an associationistic paradigm, it is important to emphasize that the associations are not passive
but involve existing sensory-motor schemes. Initially. @ and the intermediate environmental
variables are assimilated to generate this particular sensory-motor scheme. During this assimi-
lation process. other environmental variables are also registered. This registration is primed by
the neural activities occurring in the sensory-motor scheme that is active. The time scales of as-
sociation (i.e. the inter-stimulus intervals) are not arbitrary but are determined by the temporal
characteristics of the active sensory-motor scheme. Later. wlen 7.3 is represented to the system.
it can activate the same sensory-motor scheme either hecause it is an equivalent stimulus or be-
canse it was associated with x., during the previous repetitions. ('onsider the classical example
of food bell pairings. The presentation of an object that resembles food will trigger a complex
sensory-motor scheme in a dog. The same sensory-motor scheme can also be gencrated by a
different food. Another possibility is that a conditioned stimulus. such as the sound of a bell. is
delivered. In a future trial. if this bell is delivered alone it will trigger the sensory-motor scheme.
llowever. following the first phase (salivation) if the appropriate environmental variables cannol
be assimilated. the chain of actions will be broken and the glohal sensory-motor scheme will be
aborted (the dogs do not continue to chew etc..). If such a pairing ceases to occur, it will be
extinguished. Ilowever. assume now that the conditioned stimulus not only generates the initial
stages of the sensory-motor scheme but also is accompanied by the appropriate intermediary en-
vironmental variables so that a complete assimilation cycle can occur. The successful completion
of the assimilation will reinforce the direct path so that this stimulus will be able to generate the
whole cvcle directly. This change. which consists of an adaptation to the environment. is called
acconmmodation (Plaget. 1963).

Once the sensory-motor schemes become accessible via cortical circuits as outlined above. they
hecome decomposed and the essential property of Stage 3 emerges: the distinction hetween means
and ends. A sensory-motor scheme is the means to achieve a goal. The goal corresponds to the
final environmental variable or internal variables associated with this external variable. \ssume
that the infant acquired a sensory-motor scheme consisting of opening a drawer and receiving a
new toy. [nitially. this sensory-motor scheme can be generated only by the sight of the drawer.
Once it hecomes decomposed. the infant will look for a drawer with the goal of receiving a new
toyv.

In stage . the decomposed sensory-motor schemes are coordinated into new wholes to achieve
new goals. The activation of a new goal can generate multiple or a chain of existing sensory-motor
schemes. In the case of multiple activation. the competition at the sensorv-motor gate level selects
the hest alternative. In the case of a chain, the chain gets activated as a whole as long as the
appropriate environmental variables can be assimilated. This new grouping becomes reinforced if
it leads to the achievement of the goal and can be accessed more readily in the future.
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IFignre 5: Mental groping: Motor lavers are actively inhibited and the infant intent ionally activares
sensorv-motor schemes without motor reactions.

Il the existing sensory-motor schemes fail to combine with the environmental variables in order
o complete the cycle leading to the achievement of the goal. new meaus have to be inveuted. This
ocenrs in Stage 5 by use of physical groping. Assume that the goal activates some existing seusory-
motor schemes through the competition at the sensorv-motor gate laver. This competition will
start with the best possibility and the svstem will try different schietnes. If all {ails. the ERC will
generate random motor behavior or will bias existing sensorv-motor schentes. This constitites
the basis of physical groping. If by chance the resulting behavior reaches the goal. it will he
reinforced through circular reactions and will be integrated to the sensorv-motor repertoire as a
newly djscovered meauns.

The functional operation of Stage 6 is illustrated in Figure 6. At this stage. the motor lavers
are actively inhibited. This wav. the discovery of new means can be disconnected frour actnal
physical action. As a result. the subject can carry ont “mental groping” and discover new means
withont phyvsical contact.

3 Concluding remarks

The early developmental period outlined above indicate that passive perception is inadequate for
explaining intelligence and the svstem should activelv explore the environnent to generate a rich
repertoire of sensorv-motor schemes whose abstractions lead to the formal reasoning structures

i adult life.
Acknowledgment: This work was supported in part by a grant from NASA-JSC'.
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Abstract

The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped
members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for
output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the
sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller.

If N approaches o<, the global controller becomes a nonlinear controller while the local controller
disappears. If linear control rules are used, the global controller becomes a global two-
dimensional multilevel relay which approaches a global linear proportional-integral (PI)
controller as N approaches .

1. Introduction

Efforts have been made to clarify the fuzzy controller structures. The structure of a
nonlinear fuzzy controller was revealed using a novel method (Ying, 1987; Ying et al., 1990).
The work showed that a simplest possible nonlinear fuzzy controller was equivalent to a
nonlinear PI controller. In (Ying, 1991 ), the author analytically proved that the structure of a
typical nonlinear fuzzy controllers with linear fuzzy control rules is the sum of a global two-
dimensional multilevel relay and a local nonlinear PI controller. The author makes further
efforts in this paper to investigate the structure of fuzzy controllers using any type of fuzzy
control rules, covering a much broader range of fuzzy controllers.

2. Analytical Analysis of the Structure of the Fuzzy Controllers
2.1 Components of the Fuzzy Controllers

A fuzzy controller usually employs error and rate change of error (rate, for short) about a
setpoint as its inputs. That is ‘

e* = GE-e(nT) = GE[y(nT) - setpoint]
r* = GR-r(nT) = GR[e(nT) - e(nT-T)) i

N

B =t
~—
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where e(nT), r(nT) and y(nT) designate error, rate, and process output at sampling time nT (T is
sampling period), respectively. Error at sampling time (n-1)T is specified as e(nT-T). The
setpoint is the desired target of the process output and GE and GR are the scalars for the error
and rate.

Input fuzzy sets, "error" and "rate,” are obtained by fuzzifying ¢*and r*. Assume there
are J (J 2 1) members for positive "error” ("rate"), J members for negative "error” ("rate") and
one member for zero "error” ("rate”). Therefore, there are total

N =2J+1 (2.3)

members for the fuzzy set "error” ("rate"). Members of "error” ("rate”) are represented as E; (R;)
where -J <i < J. The membership functions corresponding to these members are denoted as
i;(x) which has a central value A;. Define A_j=-L, 4p=0, and A;=L. Let the space between the
central values of two adjacent members be equal. Then the space, denoted as S, is:

S=7 2.4
and consequently the central value of p;(x) is A;=i-S.

The p;(x) in this study is the commonly-used trapezoidal-shaped membership function.
Assume the membership functions for "error” and "rate" are identical, and specifically denote
{;(¢*) as the membership function for E; and y;(r*) as the membership function for R;. The
trapezoidal-shaped membership function y;(x) satisfies the following two conditions:

(1) For-J+1 i <]J-1, 2.5)
0, x<(i-1S
S_IA[x—(i—l)S], (i-1)S<x<i-S-A
B, (x) =11, i-S-A<x<i-S+A
—S_IA[x—(i+1)S], i-S+ASx<(@G+DS
0, x>(@{+1)S
2) Fori=Jori=-J,
0, x<(J-1S
By (x)= SIA[x—(J——l)S], J-1)S<x<J-S-A
1, J-S—A<Xx<+o00
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1, —0<x<-J-S+A

n_,(x) = —S_IA[x—(—J+1)S], ~J-S+A<x<(-J+DS

0, x>(-J+1)S.

An illustration of the definition is given in Fig. 1.

membership
A

Hy(x) Hy(x)

1.0 +
\ f\
0 i — 11 ]

l

IS A (J+D)S (1718 *1)3 J-DS A JS

JS+A iIS+A IS-A

Figure 1. Illustration of the definition of the trapezoidal-shaped membership function.

Denote Uy as a member of the output fuzzy set "incremental output” ("output,” for short)
and assume there are

M=2K +1 (2.6)
such members where

K = Max[If(, ji}. 2.7
f will be described below. The central values of the members of the fuzzy set "output” are

designated as ¥, (-K <k <K) and let Y_g=-H, ¥p=0 and yx=H. Further, let the space between
the central values of two adjacent members be equal. Consequently, the space, denoted as V, is

V=yx 2.8)

and the central value of a member of "output,” Uy, can be written as ¥ = k-V. The membership
functions of "output" are required to be regular, unimodal and symmetrical about its central
value ¥,. The shape of the membership functions of all the members is identical.
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N2 fuzzy control rules are constructed according to the following rule:

IF "error" is E; and "rate" is Rj THEN "output” is Uy 2.9)

where k = f(i, j). f, determined by the constructors of the fuzzy controllers, may be any
function as long as its value is always an integer with respect to the inputs, i and j, because the
index k must be an integer.

Zadeh fuzzy logic AND is used to execute the IF side of the fuzzy control rule in (2.9).
That is,

HG, j) = Min(u;(e®), pi(r™) (2.10)

where u(i, j) is the membership for the member Uy obtained when E; and R; are in the IF side.
The center of gravity of defuzzification algorithm is used. The scaled crisp incremental output,
denoted as GU-Au(nT), is calculated as

GU - Au(nT) = GU 2 KDYk
2 u(@,j) (2.11)

where GU is the scalar for the incremental output.

2.2 Main Results

Theorem 1.
The structure of the fuzzy controllers, constructed by the components defined in the

above section, is the sum of a global nonlinear controller (denoted as Aug(i, j)) and a local
nonlinear Pl-like controller (denoted as Auy (1, j)).

Proof.
Without losing generality, assume that,

iS<e* <{+1)S
jS <r* < (j+1)S. (2.12)

ui(e"), tiy (e, uj(r ) and uJ+1(r ), which are the respectlve memberships for the members E;,
E;,1, Rjand R;,, are obtained by fuzzifying ¢* and r*. Membership for all other members of
“error" and "ratc" is zero. Therefore, only the following four fuzzy control rules are executed:

If "error" is Ej, and "rate" is R;, | then "output” is Uy, (r1)
If "error” is E;; and "rate” is R;  then "output" is Uy, (r2)
If "error” is E; and "rate" is Rj, | then "output” is Uy, (r3)
If "error” is E; and "rate" is R then "output” is Uy, (rd)

where

ky = f(i+1,j+1), ko = f(i+1,]), k3= f(i,j+1) and k4= fG,j).
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Applying the equation (2.10) to each of the fuzzy control rules, we get

WG+1, j+1) = MinQui, (%), By () (r1%)
HG+1,j) = Min(ui,(e™), ™) (r2%)
MG, j+1) = MinGe®), pjy ™) (r3%)
ud@, ) = Min(u;(e”), p;(r)). (r4%)

In order to decide the outcomes of the Min operations in (r1*) to (14*), the author conﬁgures a
square, which has 16 regions in it as shown in Fig. 2. In different regions, pi(e®), 1 1(€®),

uj(r ) and Hj +1(r™) have different relationships in terms of their magnitudes and consequently the
Min operations in (r1*) to (r4*) can be evaluated. For example, in rcglon IC3, the followmg
mequalmes can be obtained: u,(c )2 uj(r ), u,+1(c )< uj,,l(r ), ul(c )< uj+1(r ) and uj(r )<
p,+,(c ). Asaresult, p(i+1, j+1) = pl+1(e ), M(i+1, j) —pj(r ), u@, j+1) = u,(c Yand u(i, j) =
uj(r *), based on (r1*) to (r4™). Similarly, (r1*) to (r4*) for the rest of 15 regions can be
evaluated.

GR*r(nT)
'y
J+1)s
1C4' IC3'
ICS’ IC4 1C3 C2
Ty+ns-A
IG5 IC2
. J+0.5)
1S IS+A (1+0.5)S (I+l])s-A DS » GE*e(nT)
I1Cé6 IC1
JS+A
IC6; icz T I8 1
cr cs'
5
Figure 2. Possible input combinations (IC) of scaled error, e* (GE-e(nT)), and scaled rate

change of error, r* (GR-r(nT)), of process output when both €* and r* are within the interval [-L,
L].
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Substituting these outcomes into the defuzzification algorithm (2.11) and simplifying the
resulting expression, GU-Au(nT) for the 16 regions can be found. To illustrate this procedure
more clearly , let us take region IC3 again as an example.

Substituting p@i+1, j+1), p(i+1, j), u(, j+1) and u(, j) for the IC3 region into (2.11),

1“”1(6 )+ KM, (r')+kyu, (e’ )+k,u; (r' )
GU - Au(nT) = V-GU )
B TN 7S P AT FETI OS] PUTirea) 2.13)

(ky —ky )y, (€7) +(k; +k, - 2k3)uj(r.)

=k, V-GU+ : 2 : V-GU
Hia(e )+ (e )+2p,(r)
= f(i,j+ 1V -GU +(K;[e(nT)- S‘ic?—f’@]u( [r(n ( nT) - G £R5)51+s}
where
K ___(2f(i,j+1)—f(i+1,j)—f(i,j))V-GR-GU-S
P 2S—2[GR -r(nT)—-(j+0.5)S]

_(fG+1,j+)-fG,j+1)V-GE-GU-§
FT T 25-2[GR-r(nT)-(j+0.5)S]

e=0.

Denote f(i, j+1)V-GU as Aug(i, j) and the rest of the expression as Aug (i, j). Aug(, j) is a
global nonlinear controller because it calculates control action with respect to i and j. Auy (i, j) is
a local nonlinear Pl-like controller because it calculates control action according to the relative
position of the current input state (e(nT), r(nT)) with respect to a dynamically changing point,
((i+0.5)S/GE, (j+0.5)S/GR). K, and K, are the proportional-gain and integral- gain. € is nonzero
in some IC regions.

Similar proof can be conducted for the rest of 15 regions. .
Theorem 2 (General Limit Theorem for Control Rules).

When N approaches oo,

(1) Au (i, j) =0 (2.14)
and
(2)  Aug(i, j) becomes

i K 2.15)
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Proof.

Proof is trivial. .
Theorem 3.

If linear control rules are used, i.e., if f(i, j) = -(i +j), then
(1)  The global nonlinear controller becomes a global two-dimensional multilevel relay

H-GU (2.16)
N-1

2) As N approaches oo, the global two-dimensional multilevel relay becomes a global linear
PI controller:

Aug (i, )=~ +j+1)

GU - Au(nT) =—(K; -c(nT)+f(P -r(nT)) 2.17)
where

K = GR-GU-H

o= _____2L (2.18)
K, = GE -GU-H'
2L
Proof.
) K = Max({If(, j)l} =2J =N-1. f(i+1,j) = fGi,j+1) =-G+j+1). Therefore,
.. . H-GU

Bug(i, ) =~(i+j+ D= (2.19)

(2) See (Ying, 1991) for proof. -

3. Conclusions

With fuzzy control rules being expressed by a function f, the author has been able to
analytically reveal the structure of the fuzzy controllers. The structure is the sum of a global
nonlinear controller and a local nonlinear Pl-like controller.

The work accomplished in this paper furthers understanding on the nature of fuzzy

controllers. Fuzzy controllers generally are nonfuzzy nonlinear controllers. Therefore,
nonlinear control theory can be utilized to solve fuzzy control problems, such as stability.
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To explore the benefits of fuzzy logic and understand the differences between
the classical control methods and fuzzy control methods, the Togai Infral.ogic
applications engineering staff developed and implemented a motor control
system for small servo motors. The motor assembly for testing the fuzzy and
conventional controllers consist of servo motor RA13M and an encoder with a
range of 4096 counts. An interface card was designed and fabricated to
interface the motor assembly and encoder to an IBM PC. The fuzzy logic based
motor controller was developed using the TiLShell and Fuzzy C Development
System on an IBM PC. A Proportional-Derivative (PD) type conventional
controlier was also developed and implemented in the IBM PC to compare the
performance with the fuzzy controller. Test cases were defined to include step
inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20
hertz frequency range, as well as ramp inputs. In this paper we describe our
approach to develop a fuzzy as well as PD controller, provide details of
hardware set-up and test cases, and discuss the performance results. In
comparison, the fuzzy logic based controller handles the non-linearities of the
motor assembly very well and provides excellent control over a broad range of
parameters. Fuzzy technology, as indicated by our results, possesses inherent
adaptive features.
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1. Introduction
In [1] Yager provides an example in which the flat representation [2] of fuzzy if-then rules
leads to unsatisfactory results. Consider a rule base consisting to two rules
ifUis 12 the Vis 29 I.
If U is [10-15] the V is [25-30] II.
If U = 12 we would get V. is G where G = [25 - 30]. The application of the defuzzification process
leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed.
The problem with the technique used is that the most specific information was swamped by
the less specific information. In this paper we shall provide for a new structure for the
representation of fuzzy if-then rules. The representational form introduced here is called a
Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming
the problem illustrated in the previous example this HPS representation has an inherent capability to
emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how
human beings store information.

2. Hierarchical Prioritized Structure

Figure 1, shows in a systematic view the of representation of the function V = f(U) by this
new HPS representation. The overall function f, relating the input U to the output V, is comprised
of the whole collection of subboxes, denoted fj. Each subbox is a collection of rules relating the

system input, U, and the current iteration of the output, Vj_1, to a new iteration of the output. The

output of the nth subsystem, Vj;, becomes the overall output of the system, V. In the HPS the

higher priority boxes, for i < j we say that fi has a higher priority than fj, would have less general
information, consist of rules with more specific antecedents then those of lower priority. As we
envision this system working an input value for U is provided, if it matches one or more of the rules
in the first (highest priority) level then it doesn't bother to fire any of the less specific rules in the
lower priority levels.

u
fy
u
Vi
f
2 u
24
f3
Y-, [
fn
v

Figure 1 Hierarchical Prioritized Structure
In the following we describe the formal operation of this HPS. As we indicated V; denotes
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the output of the jth level. We shall assume V( = ®. In the HPS we shall use the variable V,- to
indicate the maximum membership grade associated with the output of the jth level, Vj.
In the HPS each fj (accept for the lowest level, j = n) is a collection of n;j rules
When U is Aji is certain and Vi_y is low then Vj is Bj; I
The representation and aggregation of rules at each level is of the standard Mamdani type|[2],

disjunction of the individual rules. If Bj is the value obtained from the aggregation of the outputs of
the collection of individual rules in I then the output of this subbox is

Vj=Vj1 U ]:3:]

In I a rule fires if we are certain that the input U lies in A;; and Vj_l is low. Since Vj_l is
the maximum membership grade of Vj_1 it can be seen as a measure of how much matching we
have up to this point. Essentially this term is saying that if the higher priority rules are relevant,
V-1 is not low, then don't bother using this information. On the other hand if the higher priority

rules are not relevant, not to much matching V;_; is low, then try using this information.
The representation of the box fp, is a collection of rules

When U is Apj and Vy_1 is low then V is By; II

plus the rule V=V =V, 1 U Bp. The notable difference between the lowest priority box and the

other ones is that the antecedent regarding U is certainly quality in the higher boxes. The need for
this becomes apparent when the input is not a singleton.

In the HPS structure Vj_y is the highest membership grade in Vj—l and as such the term

Vj_1ds low is used to measure the degree to which the higher prioritized information have matched
the input data. We note that low is a fuzzy subset on the unit interval. One definition for low [1] is
low (x)=1-x.
In [1] Yager looks at the formal operation of this kind of HPS we shall present the results

obtained in [1]. We shall denote 3 ij as the degree of firing (or relevancy) of Ajj under the input, if

the input is U = x* then Sij = Ajj(x*). We shall denote gj = Maxy Gj (y) = Poss[Gj]. We let
n;

Ti= v Sij A Bjj, the aggregation of the rules in the ith level for input U, it is essentially the

J=1
contribution of the ith subsystem using the Mamdani type reasoning.. We shall let G; be the output

of the ith subbox, that is V; = Gj. In [1] itis shown that

Gi(y) = (Ti(y) A (1 - gi-1) v Gj-1(y)- 111
We notice that the term (1 — g;_1) bounds the allowable contribution of the ith subsystem to

the overall output. We see that as we get at least one element y to be, a good answer (an element in
Gj_1) we limit the contribution of the lower priority subsystems. It is this characteristic of a kind of

saturation along with the prioritization that allows us to avoid the problem described earlier.
In the following we suggest a modification of the above that leads to a more suitable

formulation to the aggregation between the levels of the HPS [1]. We can replace A by another t-
norm operator product * and replace v by another t-conorm, bounded sum, a b = Min(l,
a+b)[3]. Thus we get

Gi(y) = Ti(y) * (1 - gi_1) [+] Gi_1(y)-
However we note that since gj_] = MaxyGj_1 then Ti(y) * (1 - gi—1) € Gj—1(y) hence
Ti(y) * (1 - gi—1) + Gj_1(y) < 1 thus we can replace by +. This gives us the formulation

Gi(y) = Ti(y) * (1 - gi—D) + Gi—1(¥) av)

Gi(y) = Ti(y) * (1 - Poss[Gj_1]) + Gj_1(y)

What is happening in this structure is that as long as we have not found one y with
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membership grade 1 in Gj_1, Poss[Gj_1] # 1, we add some of the output of the current subbox to
what we already have. Each elementy, gets 1 — Poss{G;_1] portion of the contribution at that level,

Ti(y)
We should point out that the aggregation performed in the hierarchical structure, whether we
use 11T or IV, is not a pointwise operation. This means that the value of Gj(y) doesn't only depend

on the membership grade of y in Gj_1 and Tj but on membership grades at other points. In
particular through the termgj_1 = 1 — Maxy Gj(y) it depends upon the membership grade of all
elements from Y in Gi-1.

We should note that implicit in this structure is a new kind of aggregation. Assume A and B
are two fuzzy subsets we define the combination of these sets as the fuzzy subset D, denoted

D = y(A, B) where
D(x) = (1 — Poss(A)) * B(x) + A(x).

3. Representation and Operation of the HPS

In the previous part we have described the formal mechanism used for the reasoning and
aggregation process in the HPS. While the formal properties of the new aggregation structure are
important a key to the usefulness of the HPS in fuzzy modeling is the semantics used in the

representation of the information via this structure.
In constructing an HPS representation to model a system we envision that the knowledge of
the relationship contained in the HPS structure be stored in the following manner. At the highest

level of priority, i = 1, we would have the most specific precise knowledge. In particular we would
have point to point relationships,
When U is 3 thenV is 7
When U is 9 then Vis 13
This would be information we know with the greatest certainty.
At the next level of priority the specificity of the antecedent linguistic variables, the
Azj's, would decrease. Thus the second level would contain slightly more general knowledge.

Essentially what we envision is that at the highest level we have specific point information.
The next level encompass these points and in addition provides a more general and perhaps fuzzy
knowledge. We note that the lowest most level can be used to tell us what to do if we have no
knowledge up to this point. In some sense the lowest level is a default value.
Example: Assume we are using an HPS representation to model a function V = f(U), where the
base set for U is [0, 100]. A typical HPS representation could be as follows.

LEVEL #1
Ri1 When U is 5 then V is 13
R12 When U is 75 then V is 180
Ri3 When U is 85 then V is 100
LBVEL #2
Ro1 When U is "about 10" then V is "about 20"
R22 When U is "about 30" then V is "about 50"
Ry3 When U is "about 60" then V is "about 90"
Ro4 When U is "about 80" then V is "about 120"
Rps When U is "about 100" then V is "about 150"
(we assume triangular fuzzy subsets)
LEVEL #3
R3q When U is "low then V is "about 40"
R32 When U is ":meet" then V is "about 85"
R31 When U is "high” then V is "about 130"
LEVEL #4
R41 U is anything the V is 2u.
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Having defined our knowledge base we now look at the performance of this system for various
inputs;
Case 1: U=75. Atlevel one we get T = {T}KE} hence since
G1(y) =80 * T1(y) + Go(y)-
Since G = @ then g1 = 1 which giveus G =T = {—1—

180/
other rules will fire lower in the hierarchy. This system provides as its output for U =75 that

V is 180.

Case 2: U = 80. Atlevel no rules fire, Sij =0 for all j. Thus T{ = ® hence
Gi=gp*T1 +Go=2

and therefore g1 = 1. Atlevel two

We now see that g1 = 0 and hence no

Gy=g1*Tr+®=T».
For U = 80 we assume that Rp4 fires completely, 324 = 1 and that all other rules don't fire,
32j=0,forj= 2. Thus Ty = "about 120" and G7 = "about 120". Since g3 =1 then g3 = 0 and
no rules at lower priority will fire thus G, "about 120", is the output of the system for U = 80.

Case 3: U =20. No rule at level one will fire, hence G = Gg = @. Atlevel two we shall assume
that R fires to degree .3 and Ry also fires to degree .3. Thus

T2=.3AB1U.3AB2=.3A(B1UB2)

Ta(y)=-3 A (B1(y) v B2(y)).
We note B and B7 are "about 20" and "about 30" respectively. Hence

Ga(y) = (1 —g1) * T2(y) + G1(y) = T2(y)
At level three R3 fires to degree 1 while R31 and R3p don't fire at all. Hence
T3 = "about 40"
Since Max [Gp] = .3 thus 1 —g2 =.7 and therefore

G3(y) =.7 * T3(y) + Ga(y)
Since Max T3(y) = 1 we see that the process stops here and G is the output of the system.

What we see with this HPS representation is that we have our most general rule stored at the
lowest level of priority and we store exceptions to this rule at higher levels of priority. In some
cases the exceptions to general rules may themselves be rules, we would then store exceptions to
these rules at still higher levels of priority. As the previous example illustrates in the HPS system
for a given input we first look to see if the input is an exception, that is what we are essentially
doing by looking at the high priority levels.

4.Learning in the HPS

The HPS representation is a formulation that has an inherent structure for a natural human
like learning mechanism. We shall briefly describe the type of learning that is associated with this
structure.

Information comes into the system in terms of point by point knowledge, data pairs between
input and output. We store these points at the highest level of priority. Each input/output pair
corresponds to a rule at the highest level. If enough of these points cluster in a neighborhood in the
input/output space we can replace these points by a general rule (see figure 2).

Thus from the dots, input/output pairs, we get a relationship that says ifUisinAthenVis
B. We can now forget about the dots and only save the new relationship. We save this at the next
lowest priority in the system, in subbox 2.

We note that the introduction of the rule essentially extends the information contained in the
dots by now providing information about spaces between the dots. We can also save storage
because we have eliminated many dots and replaced them by one circle. One downside to this
formulation is that in generalizing we have lost some of the specificity carried by the dots.
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Figure 2 Formulation of Rules for Input/Qutput Pairs

It may occur that there are some notable exceptions to this new general rule. We are able to
capture this exception by storing them as high level points.

We further note that new information enters the system in terms of points. Thus we see that
the points are either new information or exceptions to more general rules. Thus specific information
enters as points it filters its way up the system in rules.

We see that next that it may be possible for a group of these second level rules to be
clustered to form new rules at the third level.

In figure #3 the large bold circle is seen as a rule which encompasses the higher level rules
to provide a more general rule. The necessity to keep these more specific rules, thus in level 2,
depends upon how good the less specific rule captures the situation.

O
v"

Figure 3 Aggregation of Rules into More General Rules
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1. Introduction

Uncertainty may be caused by the ambiguity in the terms
used to describe a specific situation. It may also be caused
by skepticism of rules used to describe a course of action or
by missing and/or erroneous data. [For a small sample of work
done in the area, the reader is referred to (Arciszewski &
Ziarko 1986), (Bobrow, et.al. 1986), (Wiederhold, et. al.
1986), (Yager 1984), and (Zadeh 1983).]

To deal with uncertainty, techniques other than classical
logic need to be developed. Although, statistics may be the
best tool available for handling likelihood, it is not always
adequate for dealing with knowledge acquisition under
uncertainty. [We refer the reader to Mamdani, et. al. (1985)
for a study of the limitations of traditional statistical
methods. ]

Inadequacies caused by estimating probabilities in
statistical processes can be alleviated through use of the
Dempster-Shafer theory of evidence. [ For a sample of works
using the Dempster-Sshafer theory see (Shafer 1976), (de
Korvin, et. al. 1990), (Kleyle & de Korvin 1989), (Strat
1990), and (Yager).] Fuzzy set theory is another tool used to
deal with uncertainty where ambiguous terms are present.
[Articles in (Zadeh 1979, 1981 & 1983) illustrate the numerous
works carried out in fuzzy sets.] Other methods include rough
sets, the theory of endorsements and nonmonotonic logic. [The

work on rough sets is illustrated in (Fibak, et. al. 1986),
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(Grzymala-Busse 1988), and (Mrozek 1985 & 1987). Also, see
(Mrozek 1985) and (Pawlak 1982) for the application of rough
sets to medicine and (Arciszewski & Ziarko 1986) and (Pawlak
1981) for applications to industry.]

J. Grzymala-Busse (1988) has defined the concept of
lower and upper approximation of a (crisp) set and has used
that concept to extract rules from a set of examples. We will
define the fuzzy analogs of lower and upper approximations and
use these to obtain certain and possible rules from a set of
examples where the data is fuzzy. Central to these concepts
will be the idea of the degree to which a fuzzy set A is
contained in another fuzzy set B, and the degree of
intersection of set A with set B. These concepts will also
give meaning to the statement; A implies B. The two meanings
will be: 1) if x is certainly in A then it is certainly in B,
and 2) if x is possibly in A then it is possibly in B. Next,
classification will be looked at and it will be shown that if
a classification is well externally definable then it is well
internally definable, and if it is poorly externally definable
then it is poorly internally definable, thus generalizing a
result of Grzymala-Busse (1988). Finally, some ideas of how to
define consensus and group opinions to form clusters of rules
will be given.

2. Results

We now recall some basic definitions such as lower and

56



upper approximations and the concept of an information systemn.

Let U be the universe. Let R be an equivalence relation
on U. Let X be any subset of U. If [x] denotes the equivalence
class of x relative to R, then we define

R(X) (x € U/[x] < X} and

R(X) = (x € U/[X] n X * o).
R(X) is called the lower approximation of X and R (X) is
called an upper approximation of X. Then R(X) < X < R(X). If
R(X) = X = ﬁ(X), then X is called definable.

An information system is a quadruple (U,Q,V,7) where U is
the universe and Q is a subset of C v D where C n D = o. The
set C is called the set of conditions; D is called the set of
decisions. We assume here that Q = C. The set V stands for
value and 7 is a function from UxQ into V where 7(u,q) denotes
the value of attribute g for element u. The set C induces
naturally an equivalence on U by partitioning U into sets over
which all attributes are constant. The set X is called roughly
C-definable if

R(X) * @ and R(X) * U.
It will be called internally C-undefinable if
R(X) = @ and R(X) * U.
It will be called externally C-undefinable if
R(X) * @ and R(X) = U.
Fuzzy sets defined
Next, we define two functions on pairs of fuzzy sets that

will be of importance in the present work.
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I(AcB)=i?f Max (1 - A(x), B(x)) (1)
J(A#B)=M?x Min (A(x), B(x)). (2)
Here A and B denote fuzzy subsets of the same universe. The
function I(A c B) measures the degree to which A is included
in B and J(A # B) measures the degree to which A intersects B.
It is important to note that for the crisp case, I(AcB) =1
iff AcB and is 0 otherwise. Similarly, J(A#B)= 1 iff A nB * o.
The goal is to define the fuzzy terms involved in the
decision as a function of the terms used in the conditions.
This is accomplished as a function of how much the decision
follows the conditions. Let (B;} be a finite family of fuzzy
sets. Let A be a fuzzy set. By a lower approximation of A
through (B;}, we mean the fuzzy set
R(A) = u I(BchA)B (6)
The decision making process may be simplified by disregarding
all sets B, if I ( B, ¢ A ) is less than some threshold a.
Then,
R(A),=vI (B cA)B (7)
over all B, for which I ( B, cA ) 2 a.
Similarly, we can define the upper approximation of A
through (B.) as
E(A)a=}JJ(B‘.#A)Bi (8)
over all B, for which J ( B; # A ) 2 a.
The operators I and J will yield two possible sets of
rules: the certain rules and the possible rules. It |is

straightforward to see that if (B,) are crisp equivalency
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classes we get the lower and upper approximations as defined
by Grzymala-Busse (1988).

Determining Fuzzy Rules

We now show how rules can be obtained from the raw data
given in Table 1 after converting this data according to the
professor’s evaluation of the performance of the students,
relative to exams high, exams low, project high, project low,
and his belief with respect to each student getting an A. (See

Table 2 for the converted data.)

Table 1: Production/Operations Management Grades

Student Exams (2) Project Course Grade
(Written & Oral)

1 75 85 75.36
2 94 87 89.53
3 88 89.3 89.93
4 79.5 95 78.06
5 85 97 90.85
6 56.5 88.6 60.89
7 65 91.6 76.15
8 49 76.7 59.22
9 63.5 89.1 69.99
10 57 76.9 55.77
11 70 98 80.3

12 93 88 90.1

It can be observed that none of the course grades was a
strong predictor of "success". In other words, the course
grades of 90 or slightly better than 90 as a "quality" measure
of the final product did not allow the professor strong belief
in the awarding of an "A" to the student. The professor’s
pelief in these grades being the best in the class and

therefore deserving of an "A" grade was approximately .67. The

59



belief in the lower scores is scaled downward from .67 to .41
(the latter representing belief that 55.77 will be the top
score in the class.)

The professor recognized the high exam scores of 94 and
93, with belief of .99/EH and .98/EH, respectively (EH: Exams
High). The low exam score of .49 was designated .92/EL (EL:
Exams Low) by the professor. Since all project grades were
relatively close and relatively high, the professor saw little
differentiation between the "top" score and the other scores.
The "top" project score is .54 high and .46 low. (.54/PH and
.46/PL, respectively) This contrasts with the worse project
score being .43/EH and .59/EL, where .59 is the highest belief
that a project grade is a "low" score. This approach was
considered to be consistent since although exam grades varied
from 49 to 94, no project grade was below a 76.7. It was felt
that keeping the project grades from being too strongly biased
toward "high" would prevent the decision rules from being
overly biased toward high project grades. Enough
differentiation was considered to allow the rough set
formulation to consider both attributes in the decision rules
for awarding a "top" score of "A" to a student. Each student’s

scores were translated into belief with respect to EH, EL, PH,

PL and "A".

For our example of twelve POM students, Xx,, X,,...,X;,
we let EH:exams high PH:project high

EL:exams low PL:project low "A": Top Grade
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Thus, for the first student, x,, the belief that the exams
were high is .79/EH, and that the exams were low is .60/EL:;
that the project grade was high is .47/PH and that it was low
is .53/PL. The strength of belief for an A is .56/"A". In
addition, EH may be viewed as a fuzzy set of students, such
that EH = .79/x, + .99/X%, +...+ .98/x,,, Wwhere X, is an
excellent example of EH (.99) while Xx, is not such a good
example (.52). (See Table 2 below for all the professor’s

evaluative scores.)

Table 2: Professor’s Evaluative Scores

Student EH EL PH PL nAN
1 .79 .60 <47 .53 .56
2 .99 .48 .48 .52 .66
3 .93 .51 .50 .50 .67
4 .84 .57 .53 .47 .58
S .89 .53 .54 .46 .67
6 .58 .81 .49 .51 .45
7 .68 .69 .51 .49 .56
8 .52 .92 .43 .58 .44
9 .67 .71 .50 .51 .52

10 .60 .79 .43 .59 .41
11 .74 .64 .54 .46 .59
12 .98 .48 .49 .51 .67

Using our rough set theory formulas as they have been

developed for fuzzy systems of attributes and decisions, we

compute:

I(EH c "A") = .41 I(EH n PH ¢ "A") = .51
I(EL c "A") = .41 I(EH n PL c "A") = .42
I(PH c "A") = .51 I(EL n PH c "A") = .51
I(PL c "A") = .42 I(EL n PL c "A") = .42

with a lower approximation for a = .50 defined by:
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R =.51 PH u .51 (EH n PH).

The extracted rules would imply that high project scores
and high exam scores both impact a high course grade with
certainty .51.

Possibility rules can be determined by computing:

J(EH #"A") = .67 J(EH n PH # "A") = .54
J(EL # A") = .59 J(EH n PL # "A") = .53
J(PH #"A") = .54 J(EL n PH # "A") = .54
J(PL #"A") = .53 J(EL n PL # "A") = .53
with an upper approximation at a = .60 defined as:

R = .67 EH.

Thus, we can see that the factors dictating the "best"
in the class are:

1) If project grades are high, an "A" score will be attained.
(Certainty = .51)

2) If project grades and exam grades are high, an "A" score
will be attained. (Certainty = .51)

3) If exam grades are high, an "A" score will be attained.
(Possibility = .67)

Indeed, these rules reflect the fact that exam grades
are more heavily weighted than the project grade toward
determining the final course grade. Additionally, these two
grades comprise the majority of the weighted scores from which
the course grade is calculated.

Belief & Possibility

We can use the functions I and J to determine two
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meanings of A implies B. The belief that if x is certainly in
A then it is certainly in B is given by:

Il R (A) < R (B)] (9)
and the belief that if x is possibly in A then it is possibly

in B can be defined by:

JLR (A) # R (B) ] (10)
This interpretation follows from the fact that R(A) are
objects certainly in A and ﬁ—(A) are objects possibly in A. We
now turn to the study of classifications.

Classifications

The study of classifications is of great interest
because in learning from examples, the rules are derived from
classifications generated by simple decisions. In this
section, we turn our attention to classifications. Of course,
the traditional meaning is to partition. In our setting, we
have ill-defined boundaries, so we need to relax the concept
of partitions by requiring that the sets not overlap too much.

As earlier, consider a finite family of fuzzy sets,
(B;}. Let « denote a finite family of fuzzy sets

7 = (A, By, ..., A)
We define

Pr, = { R(AQ)qr -+ R(AJ ),
Pr._ = ( R(A,), ---s R(B),}
where the lower and upper a-approximations are generated by
the finite sequence (B.).

We can develop the following relationship:
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d°[A =B] = Min { I (A cB), I( B cA))

using the following definitions:

d*[(Pr, = 7] = Min (d"[R(A), = A,))

a°[Pr, = 7] M{n{d’f_R(Ak)a = A))
m will be called (B;,} definable to the degree 8 with
threshold a if
Min ( d°(Px, = x], d°[Pr, = 7]) 2 B.
If we define
a*[Br, = Pr,] = Min ( d°[R(A), = R(&),1),
it can be shown that if B > %, then
d°[pPr, = 7] 2 B and d°fbwa = 7] 2 B imply that

d°[pr, = Pm,] 2 B.

Recall that the following result is shown in information
systems. For classifications, if-ﬁAkis the universal set for
each k, then PA, is empty for each k. Also, if PA, is nonempty
for each Kk, the__PAk is not the universal set for any value of
k. We would like to get the analog of this by showing if R(A,),
"has some substance" for some Kk, then E(Aﬂa for j * k is "not
too large", and if ﬁ(AQa is "fairly substantial", R(A;), for
j # k cannot be "too large". In this sense, the results of
Grzymala-Busse (1988) will be generalized.

We would like (A,} and {B;} to somewhat approximate a
partition. We define the following two conditions:
(*) For every 0 < € < 1, there exists 0 < § < 1 such that if

B;(x,) > €, then B,(X%,) < 1 - § for & » 1i.

(**) For every pair j,k with j # k and all x, A (x) +A;(x) £ 1.
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conditions (*) and (**) both express that the overlap is not
too large and obviously hold for partitions. We note that if
(**) holds for {B,} then it implies (*). Indeed, in this case
we pick 6§ = €. Thus, the results that follow may be shown
assuming condition (**) for (B;} and {A}.

We first show that under conditions (*) and (**),
whenever R(A,), is bounded away from 0, then ﬁ]Aﬂa for j #* k
is bounded away from 1. Suppose R(A,), (X%;) > €, then for some
i, I(B, < A) > € and B,;(x,) > €, so for g » i from condition
(*), we have B,(%,) < 1 - §. For any ¢ # 1 we have

J(B, # Aj)Bt(Xo) <1 - 6. Now

J(B; # A) =1~ I(B A

I(B; < A)

M%P Max (1-B;(x), A (X)}7
I(B; ¢ —A;) = Mi:x Max (1-B;(x), 1-A;(X)}.
Condition (**) implies I(B; < A,) < I(B; < -A;) for all j # k.
From the above it follows that J(B; # A;) < 1 - €. Thus,
R(A;), (%) < Max { 1- €, 1= §).

We now show a rough converse to the above. If E(AQ is
bounded away from 0, then for j # k, R(3;), is bounded away
from 1. Suppose E(Aﬂa(xo) > 1 - ¢ for some k, then

J(Bio# Ak)B“}Xo) > 1 - € for some i,.
Pick j #* k. Then
I(B; < A, ) =1 - J(B, 0# -A,) -
Now, J(Bio# HAJ) = Mix Min {Biéx), 1 - Aj(x))r
J(Bio# A) = Mix Min {Biéx), A (x)).

By (**) it follows that J(B, # -A;) 2 J(B; } A,)-
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From above, I(Bioc A;) <1 - J(Bi(# A) < €.
Since Biéxo) >1 - €, by (*), B;(x,) <8 for i » i, where 0<6 <1.

Therefore, R(A;),(X;) < Max { €,0).

Consensus

We can define consensus between two rows of a table by
Consensus [Row;, Row;] = Min ( I[Row; c Row;], I[Row; < Row;]}
Here, Row; and Rowj are considered to be fuzzy subsets of the
set of all attributes and decisions. If y is some
predetermined threshold, we pick some x, and then all X; for
which Consensus [Row,, Rowj] 2 y. If any of the x’s are left
over, we start again with the first x available. We thus get
fuzzy sets s5,, S,, ..., S, where uﬁ(tg = 1 for some ¢, ( which
we might call the leader of S;) and u%(x) = Consensus (1;, Xx)
provided pﬁ(x) exceeds y. Within each S; we then can recompute
the symptoms/decisions for X; taking ke (x;) into account
If 1 <i< ¢, then we have £ (aggregated) decisions and using
fuzzy cardinality we can compute the "firing strength" of each
block of rules. This approach has the advantage of taking
consensus of opinions into consideration in the decision. The
detailed methodology will be discussed in a later paper.
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Since the pioneering work of Zadeh(!] and Mamdani and Assilian(2], fuzzy logic
control has emerged as one of the most active and fruitful research areas3}¢4]. The
applications of fuzzy logic control can be found in many fields such as control of stean
generators, automatic train operation systems, elevator control, nuclear reactor control,

automnobile transmission control , etc.

In most of existing fuzzy rule-based controllers, the rules are based upon the error
and the change in error, where the error is defined as the difference between the desired
output and actual output. However in a large-scale system, the signals emror and change in
error only provide a limited amount of information about system status. Therefore, the
performance of the controller will be limited, since only a fraction of the feedback
infonnation will be available to the controller, To avoid this limitation, the fuzzy rules need
to be based upon more system variables. It is well known that the total number of rules in a
complete rule set is a exponential function of the system variables on which the rules are
based. As such when more system variables are used, the number of the rules will increase
exponentially. This will make the fuzzy rule-based controller more complex as well as

expensive to realize,

To make the problem manageable, the concept of a 'hicrarchical fuzzy rule set’ was

introduced in referencel3l. In a hierarchically structured rule base, the number of rules
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increases linearly (not exponentially) with the number of system variables. This makes it
possible to apply a fuzzy rule-based contraller to large-scale systems,

In this paper, two new structures of hierarchical fuzzy rule-based controller are
proposed to reduce the number of rules in a complete rule set of a controller. In one
approach, the overall system is split into sub-systems which are treated independently in
parallel. A coordinator is then used to take into account the intcractions. This is done via an
irerating information exchange between the lower level and the coordinator level. Figure 1
schematically shows the main idea. From the point of view of information used, this
structure is very similar to central structure in that the coordinator can have at Jeast in

principle, all the information that the Jocal controllers have.

A more general structure of this approach is shown in Fig. 2, where more coordinate
levels are introduced. By using this hierarchical structure, the theoretical minimum total
number of rules will be a lincar function of the system variables. The actual total is
dependent upon the number of system variables used in each local controller's rule sets and
coordinator's rule sets. Specifically, if we denote N as the total number of rules, then

=N,

=N,
N= 2 mMi 4 sz'ﬂ + E mMi+,,,

i=1 ia)
i=N
):‘ mes
i=1
where Ny is the number of locat controllers or coordinators in the jth level, n is the number

of variables used in the ith local controller or coordinator in the jth level, and m is the

number of the linguistic fuzzy variables used in cach local controller or coordinator.

One important advantage of this approach over that in reference!s) is that all the rule
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sels in the same level can be fired simultaneously. As such, this approach will be more

suitable for parallel computing, However, using the structure in referencel5), additional

system varlables can be easily included in the fuzzy rule set without affecting other rules. A

more versatile hierarchical structure, combining the hierarchical structure proposed in Fig.

2 and that in reference(), will be presented in the paper. This versatile structure will have

the advantages of all the structures discussed carlier.
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Fig. 1 Hierarchical structure of 8 controller with a coordinator and several
Jocal controllers

Fig.2 A general structure of a hierchical controller with several coordinate levels
and a local controller level.
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Robust vision capability for intelligent control systems has been an elusive goal
in image processing. The computationally intensive techniques a necessary for
conventional image processing make real-time applications, such as object
tracking and collision avoidance difficult.

In order to endow an intelligent control system with the needed vision
robustness, an adequate image enhancement subsystem capable of
compensating for the wide variety of real-word degradations, must exist
between the image capturing and the object recognition subsystems. This
enhancement stage must be adaptive and trust operate with consistency in the
present of both statistical and shape-based noise.

To deal with this problem, we have developed an innovative algebraic
approach which provides a sound mathematical framework for image
representation and manipulation.

Our image model provides a natural platform from which to pursue dynamic
scene analysis, and its incorporation into a vision system would serve as the
front-end to an intelligent control system.

We have developed a unique polynomial representation of gray level imagery
and applied this representation to develop polynomial operators on complex
gray level scenes. This approach is highly advantageous since polynomials can
be manipulated very easily, and are readily understood, thus providing a very
convenient environment for image processing. Our model presents a highly
structured and compact algebraic representation of grey-level images which
can be viewed as fuzzy sets.
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Utilizing the algebraic structure we have devised an innovative, efficient edge
detection aigorithm, the Lerner Algebraic Edge Detector. This edge detector
provides a continuous, single-pixel-wide edge which is a distinct improvement
over classical convolution-based edge detectors for enhancing images for
object recognition .

Real-time implementation of these algebraic operations on massively parallel
architecture can be easily realized due to the parallel characteristics of the
polynomial structure as well as the efficient min-max nature of our algebraic
system.

Because our algebraic algorithms are highly amenable to high-speed parallel
architectures, they have been selected for implementation on a state-of-the-art
systolic array processor, the electronically reconfigurable SPLASH Board
developed by the Institute of Defense Analysis Supercomputing Research
Center (IDA/SRC). In particular, the Lerner Algebraic Edge Detector and the
Hough Transform are being ported onto the SPLASH Board to approach a
realtime linear feature extraction system .

Based upon our new edge detection scheme, we have developed an accurate
method for deriving gradient component information. Moreover, a robust
method of linear feature extraction has been derived by combining the
techniques of a Hough transform and a line follower. The major advantage of
this feature extractor is its general, object-independent nature. Target attributes,
such as line segment lengths, intersections, angles of intersection, and
endpoints are derived by the feature extraction algorithm and employed during
model matching.
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Fuzzy logic controllers have some often cited advantages over conventional
techniques such as PID control: easy implementation, its accommodation to
natural language, the ability to cover wider range of operating conditions and
others. One major obstacle that hinders its broader application is the lack of
systematic way to develop and modify its rules and as result the creation and
modification of fuzzy rules often depends on try-error or pure experimentation.
One of the proposed approaches to address this issue is self-learning fuzzy
logic controllers (SFLC) that use reinforcement learning techniques to learn the
desirability of states and to adjust the consequent part of fuzzy control rules
accordingly. Due to the different dynamics of the controlled processes, the
performance of self-learning fuzzy controller is highly contingent on the design.
The design issue has not received sufficient attention. The issues related to the
design of a SFLC for the application to chemical process are discussed and its
performance is compared with that of PID and self-tuning fuzzy logic controller.
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This paper describes the early states of work to implement a fuzzy logic controller to
optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems
running at less than optimal speed and torque conditions. In this paper, the process by
which the membership functions of the controller were tuned is discussed and a controller
which operates on frequency as well as voltage is proposed. The membership functions
for this dual-variable controller are sketched. Additional topics include an approach for
fuzzy logic to motor current control which can be used with vector-controlled drives.
Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC)
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microchip is planned.
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FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

In research funded by the U.S. Environmental Protection Agency (EPA), the authors have
been pursuing the development of energy optimizer algorithms for ac induction motors
driven by adjustable speed drives (ASDs). Our goals are:

1) increase the efficiency of ASD/motor combinations, especially when operating off
of rated torque/speed conditions. ASDs using V/Hz control, which is the current
predominant industry standard, still do not gain maximum efficiency from motors
operating at less than rated loads and speeds;

2) develop a generic energy efficiency optimizing controller (EEOC) which can be
applied to a wide range of ac induction motors, regardless of their size and
corresponding equivalent circuit values;

3) develop an energy efficiency optimizing controller (EEOC) which can eliminate the
requirement for tachometer or encoder feedback, and still maintain the stability of
closed-loop control; and

4) develop an energy efficiency optimizing controller (EEOC) which is self-tuning, thus
eliminating the need for extensive operator/manufacturer involvement in the
installation of the energy optimizer into ASDs.

Fuzzy logic approaches to these goals are attractive for two reasons:

1) the use of fuzzy logic promises to simplify the energy efficiency optimizing
controler (EEOC) control problem, which is highly nonlinear;

2) fuzzy logic offers a way to develop an energy efficiency optimizing controller
(EEOC) controller which will offer the stability of closed loop control without the
need for speed feedback, thus eliminating the cost of tachometers and encoders.

Fuzzy Efficiency Optimization for Steady State Motor Operation

Our main interest has been to solve the problems above for large horsepower motors
(>10 hp) running at steady state conditions in industrial applications (e.g. pump and fan
motors).

An induction motor simulator has been developed based on the equivalent circuit
representation of a motor. As a starting point, the simulation values which are produced
correspond to those which would be produced by a V/Hz controller. The simulator
computes the values of the motor state variables (currents, voltages, power, frequency,
etc.) in response to changes in the value of the stator voltage, V,. The values of V are
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provided to the simulator by a fuzzy energy optimizer. (This energy optimizer was
discussed in a previous paper delivered at FUZZ-IEEE '92 in San Diego in March.) This
energy optimizer, referred to as the Single Variable Fuzzy Logic Motor Controller, and
illustrated in the accompanying block diagram, alters the value of stator voltage (V,) and
then measures the input power P, to see if it has changed.

Delta P in

Perturber Delta V_new

Delta V_old

Figure 1. Block Diagram of the Fuzzy Logic Energy Optimizer

Dependent on the magnitude and direction of the change in P,, a set of fuzzy rules,
represented here by the section labeled 'Perturber’ in the block diagram and using AP,
and the last change in V,, AV, _, as inputs, computes an incremental change in the
stator voltage AV, ., which is then applied to the simulator. A new set of state variables
is computed and the process is repeated until either a minimum input power is obtained,
characterized by the return of a value of 0 for AV, from the fuzzy controller, or, if
tolerance limits on the output torque or the shaft speed of the motor have been exceeded.
After some testing, the max-dot inference method and centroid defuzzification were

employed.

This technique is essentially a search scheme for the minimum input power point, which
occurs in a motor driven by a pulse-width-modulation (PWM) ASD when the copper
losses and core losses of the motor are equivalent, as shown in the following figure.
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Figure 2. Efficiency Optimization Control based on Real-time Search.
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Note that the prediction in the search scheme is that the stator voltage will decrease and
the stator current will increase. This prediction has been borne out by the simulator
results. The simulator also predicts efficiency improvements by the energy efficiency
optimizing controller (EEOC) over standard V/Hz control, as shown in Figure 3.

After the controller rules were refined from simulation of motors of various sizes, a set of
13 fuzzy rules were developed, shown in Table 1.

RULES

1. IF AP, IS N AND AV, . IS N, THEN AV, ., = N.

2. IF AP, IS N AND AV, IS P, THEN AV, ., = P.

3. IF AP, IS N AND AV, IS NM, THEN AV, , = NM.

4. IF AP, IS N AND AV, ,, IS PM, THEN AV, _, = PM.

5. IF AP, IS NM AND (AV, 4 IS NM OR 4V, ., IS N), THEN AV, ., = NM.
6. IF AP, IS NM AND (AV, 4 IS PM OR AV, ;IS P), THEN AV, ., = PM.
7. IF AP, 1S PM AND (AV, o4 IS NM OR AV, o IS N), THEN AV, ., = PM.
8. IF AP, IS PM AND (AV, 44 IS PM OR AV, , IS P), THEN AV, ., = NM.

9. IF AP, IS P AND AV, ., IS NM, THEN AV, ., = PM.

10. IF AP, IS P AND AV, ,, IS PM, THEN AV, ., = NM.
11. IF AP, IS P AND AV, ., IS N, THEN 4V, ., = P.
12. IF AP,, IS P AND AV, IS P, THEN &V, = N.

13. IF AP, IS Z AND AV, IS ANY, THEN AV, ., = Z

Table 1. Single Variable Controller Rules
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The variable values, N, NM, P, PM, and Z stand respectively for negative, negative
medium, positive, positive medium, and zero. Data gathered from the motor simulator
led to development of limits for membership functions for the fuzzy variables voltage and
power. Figure 4 illustrates this for the linguistic variable AP, .

A P in

NM [{EM

0.5~ N 1‘

N
v}
]

— 0.5

| | 1 ] Wats
-4000 0 400

Figure 4. Final Membership Functions for the Fuzzy Variable AP,

It was found from the simulator that the P, can vary by as much as +400W. Surfaces
were constructed from curves relating the various changes in AV, to changes in AP,
and AV,, An example of such a surface, generated from data collected with the
simulator, is shown in Figure 5.
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These surfaces can be used to optimize the membership functions by examining the
surfaces for abrupt or discontinuous changes in the output variable AV, at various values
of the input variables AP, and AV, .. Based on the magnitude of the discontinuity either
the input membership functions’ overlaps could be changed or the width of the output
membership functions could be changed.

As this initial controller was used to simulate, from equivalent circuit data, several different
motors, several features of the controller became clear as this data was analyzed. For
example, any change in stator voltage produced a drop in the output shaft speed @,
which is generally undesirable. Also, for a given set of equivalent circuit values,
maximum efficiency is closely related to total circuit impedance, Z,, , regardless of the
torque/speed condition.

Because of the loss of shaft speed, it was clear that even the optimized controlier would
never perform adequately working alone. Therefore attention was turned to a controller
which could both compensate for the loss in shaft speed resulting from the voltage
perturbations and still allow a minimum input power point to be reached. It was
recognized that the loss of rotor speed could be corrected by increasing the frequency
of the stator voltages and currents, while the minimum power input point can be obtained
by perturbing the voltage. Furthermore, a correlation of ®, impedance suggested that if
the change in input impedance were known for a particular change in synchronous
frequency w, and voltage V,, then approaching an optimum impedance as rapidly as
possible should achieve both the minimum input power and the correction of the drop in
®@,. This led us to develop a preliminary controller concept for a frequency perturber,
shown here in block diagram form in conjunction with the existing voltage perturber.

AVve_old
AVold l \
N——» Aw,., (
Fuzzy Controller e Motor Model
AV,
P in_old Zm_ol 4 AZ in
A Pin - Z in_pew

P i0_pew

Figure 6. Dual Variable Fuzzy Logic Controller for AC Iinduction Motor
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Thus the set of rules which perturbed the voltage were augmented by another set of rules
which perturbed w, using the previous value of Aw,, Aw, o4, @and AZ,,. This new fuzzy
rulebase, which has 9 rules, fires simultaneously with the 13 rules of the SVFLC. The
rule-base for inference of the synchronous frequency is shown in the following table.

RULES
1) IF Aw, g IS P AND AZ,, IS N.THEN Ao, = P
2)  IF Aw, gq IS Z AND AZ, IS N THEN A, = P
3) IF Aw, 44 IS N AND AZ,, IS N THEN A, = N

4)  IF Awg g IS P AND AZ,, IS Z THEN Aw, = Z

5) IF Aw, .4 IS Z AND AZ, IS Z THEN Aw, = Z

e_old

6) IF A, 44 IS N AND AZ,, IS Z THEN Aw, = Z

7)  IF Ao, 44 IS P AND AZ;, IS P THEN Aw, = N
8) IF Aw, gq IS Z AND AZ,, IS P THEN Aw, = N
9) IF Aw, 44 IS N AND AZ, IS P THEN Ao, = P

Table 2. Added Rules for Control Frequency

The symbols P, N, and Z stand respectively for positive, negative and zero. Limits on the
membership functions were developed as before by analyzing output data from the
simulator and setting the limits. The preliminary output membership functions for Ao, are
illustrated in the following figure.
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As in the previous work, a control surface was generated and could be used to tune the
membership functions. Note in the control surface graph that there are certainly abrupt
changes in Aw, for certain values of AZ, and A®, o4-

DELTA We

DELTA Z_in
DELTA We_old

Figure 8. Control Surface for Synchronous Frequency Perturber

Fuzzy Efficiency Optimization using Indirect Vector Control

A parallel effort is taking place to provide fuzzy efficiency optimization for induction motors
which use indirect vector or field-oriented control of induction motors rather than PWM.
indirect vector control is another approach to the control of ASD/motor combinations
which controls current rather than voltage. This type of energy optimizer emphasizes the
suppression of transient phenomena in the motor, and is focused more on dynamic
process control applications (lathe motors, steel mill rolling, etc) than the steady state
controlier. The controller is illustrated in Figure 9.
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Figure 8. Fuzzy Efficiency Optimization for indirect Vector Control.

In indirect vector control, the motor is modeled using a change of variables which
represents the state variables of the motor in terms of two magnetically decoupled
equivalent circuits, generally referred to as the d-q representation of a motor. When
vector control is employed the currents iy and iqs control the flux and the torque of the
machine, respectively.

Fuzzy efficiency optimization for indirect vector control utilizes the same type of minimum
input power search scheme outline above, however rather than perturbing the stator
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voltage, the rotor flux A, is changed by perturbing the current iy,. Then P, is measured
to see if the input power has changed. In the event that it has, a set of fuzzy rules
computes a new value of Aiy, based on AP, and the previous value of Aiy,, referred to
as LAi,,. Then P, is measured again and the process is repeated. A table showing the
preliminary rules relating Aiy to AP, and LAiy is shown in the following table.

RULES

If LDids is N and APi is PB, then LDids is PB.
If LDids is N and APi is PM, then LDids is PM.
If LDids is N and APi is PS, then LDids is PS.
If LDids is N and APi is ZE, then LDids is ZE.
If LDids is N and APi is NS, then LDids is NS.
If LDids is N and APi is NM, then LDids is NM.
If LDids is N and APi is NB, then LDids is NB.
If LDids is P and APi is PB, then LDids is NB.
If LDids is P and APi is PM, then LDids is NM.
If LDids is P and APi is PS, then LDids is NS.
If LDids is P and APi is ZE, then LDids is ZE.
If LDids is P and APi is NS, then LDids is PS.
If LDids is P and APi is NM, then LDids is PM.
If LDids is P and APi is NB, then LDids is PB.

® N o 0k~ Db~

[ U Ul U S (o ]
DN+ o

Table 3. Fuzzy Rules for Efficiency Optimization with Indirect Vector Control.

A total of 14 IF-THEN rules are defined for the energy optimizer utilizing indirect vector
control.

Figure 10 illustrates the preliminary membership functions derived from observation of
results obtained from computer simulations.
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Figure 10. Preliminary membership functions for fuzzy efficiency controller: (a)
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The membership functions were developed using variables normalized in the interval [-
1,1], hence the magnitudes of the endpoint variables (+/- Py, +/- L,, +/- l,)across the
domain of the membership functions is 1. The values of the interior limits on the
membership functions have not at present been arrived at.

The max-min method of inference is being applied to obtain truth values of any particular
rule, hence the design of the fuzzy membership functions for LAiy provides a degree of
limitation for the truth value of a rule when LAiy is "negative small" or "positive small”,
even though there is no membership function specifically for those fuzzy values. This
avoids using multiple membership functions in a place where fewer will perform the same
job, and thereby reduces the size of the fuzzy rulebase. The overlap between the
positive and negative membership functions assure that division by 0 will not occur in the
height defuzzification method used by UT, since even if LAiy is O, it will have a non-zero
degree of belief in either the 'P’ or ‘N’ region.

Reducing the flux to achieve minimum input power has an effect similar to that of
reducing voltage in the previous controller. The shaft speed will drop. We have found
that this can be compensated for by a change in the torque component of current i..
This is a function of the change in iy,. After a change in the value of i ¢ is made (which
is not a fuzzy operation) fuzzy efficiency optimization is not reapplied until the machine
has returned to steady-state condition, which is determined by comparing the sum of the
absolute values of the last three rotor speed errors (Aw, to a tolerance value of 1
rad/sec. At that time a new value of Ai, is computed by the fuzzy efficiency optimizer
and the cycle repeats. Even after optimum efficiency has been reached, this steady-state
condition is checked for periodically in order to determine that no process disturbance has
taken place which would require the controller to act in order to produce the required
torque output or required speed.

All rules and membership functions are being tuned using computer simulation and by

testing the controller in a laboratory setting. The following diagram shows the overall
scheme of the laboratory setup.
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Figure 11. Motor Laboratory System

The fuzzy rules are executed in a 486/33 MHz from code compiled with other C routines,
which also monitor system information via a data acquisition board, and communicate
with the ASD to alter the ASD voltage and frequency output. The same code also directs
an analog output on the data acquisition board to vary the strength of the field in the DC
brake via the dynamometer controller, thus simulating various degrees of load on the
motor.

Summary

Computer simulations have shown that a fuzzy controller which optimizes the use of
energy by a motor/ASD combination can be developed. To be truly effective, the
controller should alter both the stator voltage and stator frequency while maintaining the
output power required of the motor/ASD system for the drive at hand. Energy efficiency
optimization can be applied not only to drives which produce sinusoidal PWM output, but
to indirect-vector controlled drives as well.
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ADVANCED TELEROBOTIC CONTROL UBSING NEURAL HETWORKS* /7Kj; ukvj,
Robert M. Pap(llz); k Atkins (1,2) ; chadwick Cox (1'2): 1.2 :,;;;%2?3 '
Charles Glover (2,4 ; Ralph Kissel (3) "and Richard Saeks (1,2,8) 7~
1 Accurate Automation Corp; P.0.BoX 11295; Chattancoga, TN 37401 A
2 Tennesgee Center for Neural Engineering @ Tennesgee State Univ./O/
3 NASA, George C. Marshall Space Flight Center
4 Oak Ridge National Laboratory
5 Illinois Institue of Technology, Armour gchool of Engineering

Accurate Automation is designing and developing an adaptive
decentralized joint controllers using neural networks. We are
then implementing these in hardware for the Marshall Space Flight
center PFMA as well as to ba usable for the Remote Manipulator
gystem (RMS) robot arm. our design is being realized in hardware
after completion of the softwars simulation. Thise is implemented
using a Funotional-Link neural network.

We have completed the theoretical analysis and design of the
neural network based Decentralized Adaptive Joint Controller
(DAJC) for use in a telerobotic systen including, evaluating
appropriate neural network architectures and learning rules, a6
well as a mathematical and empirical robustness analysis.

We are building an neural net based controller to model the
arm dynamice and generate the necessary joint torques. This
neural network receives position and velocity information from
the joint encoders and provides a mapping from this space to the.
Joint-torque space of the arm. Our neuro-joint controller pro-=
duces a trajectory in joint-torque space. This trajectory repre-
sents the sequence of torques values as a function of time that
are neceessary to perform a given task.

our tests to date have on a gimulated Puma 560 robot arm and
a NASA RMS8 rcbot arm run on a gilicon Graphics 4D340VGX super-
Wworkstation. The simulation modeled inertia, interjoint cou-
plings, centrifugal torgque, gravity loading, and viscoues and
Coulomb frictions. This is a three 4oint simulation. This is now
being interfaced to tha Extendable Stiff Arm Manipulator (ESAN)
robot arm from NASA Marshall to validate the simulation before
the neuro joint controller is translated to a hardware implenen-
tation. In the future ve will test our neurocontroller on the
PFMA or RMS.

In the simulation testing that we have done so far, we have
controlled three joints and moved the arm from various starting
positione to various ending positions in different amounts of
fime. We have alsoc subjected the controller to variable amounts
of mass on the end-effector, including masses dropped on the arm
during the move and taken off the arm before the move was com=
plete. Oscillations tend to damp out quickly as the controller
conpensates for error. The controller has proven to be very
stable and robust. End effector mass changes of 90kg can be
handled during a two second move from (=-180,0) to (0,90) in 1 q.
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1. Introduction

Real world consists of a very large number of instances of events and continuous numeric values.
On the other hand, people represent and process their knowledge in terms of abstracted concepts
derived from generalization of these instances and numeric values. Logic based paradigms for
knowledge representation use symbolic processing both for concept representation and inference.
Their underlying assumption is that a concept can be defined precisely. However, as this assumption
hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts.
Thus symbolic processing has essential problems from a practical point of view of applications in the
real world. In contrast,fuzzy set theory can viewed as a stronger and more practical notation than
formal, logic based theories because it supports both symbolic processing and numeric processing,
connecting the logic based world and the real world.

For example, in the case of an intelligent control system, control actions are determined not only by
numeric processing but also integrated with the result of intellectual decision making at a more
abstract level based on meaning understanding of numeric data. Using only numeric processing or
describing simple correspondences of instances produces a black box effect and is difficult to
integrate with symbolic, logic based information processing. For this reason, multi-layer structured
frameworks have been proposed, where intellectual information processing based on meaning
understanding and state recognition in upper layer supervises the data processing in lower layer [2]-
[3]. The duality abstract/concrete of the real world is reflected in the intelligent/lack of intelligence
duality at the intellectual level (Increasing Precision with Decreasing Intelligence principle, IPD], [4] -
[5]) To cope with this duality a knowledge representation paradigm must be able to hierarchically
represent both aspects. Thus we are led to consider multi-layered structures representation.

A concept such as an operator's know-how in the upper abstracted layer is essentially vague.
Moreover, it is difficult to eliminate this vagueness during the generalization process from control
experiences. For this reason, fuzzy set theory can be expected to provide us with a strong notation
for concept representation at different levels of granularity: lower, concrete concepts describe an
upper, vague concept constructing thus a multi-layered structure and a capability connecting
information processing in different layers.of abstraction.

However, simple notion using ordinary fuzzy sets cannot solve all the problems of (concept)
knowledge representation because of the following:

* Currently at Systems & Software Engineering Laboratory, Toshiba Corp.
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1. Lack of context dependency
2. Impossibility of explicit formulation of a concept.

These problems arise because the meaning of a concept changes depending on various situations and
concrete events cannot always be generalized into logical notation explicitly. For example, a fuzzy
controller of a car aims to realize intelligent control in terms of modeling the driver's know-how such
as : "If the distance between cars is big, then the change of acceleration is big". Nevertheless, since
the concepts such as "big" or "small" describing control rules are defined on a numeric axis
absolutely using a simple formulation, the definition indicates only a simply unique meaning of a
concept and cannot cover the variety of meanings (depending on the size of a car and road
conditions). The fuzzy control does not achieve the intellectual information processing in the upper
level nor the aims of intelligent control.

All these problems relate to the representation of the meaning of a concept. According to
Wittgenstein [1], the meaning of a concept is represented by the totality of its uses. In this spirit we
proposed [2] the notion of Conceptual Fuzzy Sets:( henceforth referred to as CFS). In the CFS the
meaning of a concept is represented by the distribution of activation of labels naming concepts. Since
the distribution changes depending on the activated labels to indicate a situation, CFS can represent
context dependent meanings. CFES are realized using bidirectional associative memories implemented
as neural networks. Since the propagation of activation realizes logical operations and inference as
well as the representation of meanings, many advantageous features are obtained which are not
realized by logic based representation alone.

Further, since the distribution of activation determined by the propagation of activation in CFS
represents the meaning of a concept, the propagation of activations corresponds to reasoning. In
particular, a multi-layer structured CFS represents the meaning of a concept in various expressions in
each layer. Therefore, it follows that due to the capability of naturally realizing information
processing in multi-layered structures, the CFS have the following features:

1. Because CFSs are realized and connected using a bi-directional associative memory, CFS can carry
out information processing both in the upper layer and lower layer simultaneously exchanging
information. Thus they provide us easily with a framework where the processing in the upper layer
supervises the processing in the lower layer.

2. Since CFS are realized as a bi-directional associative memory, it can carry out both bottom-up
processing from the lower layer to the upper layer, and top-down processing from the upper layer to
the lower layer simultaneously.

In this paper, we propose Multi-layered Reasoning realized by using CFS and we discuss the above
two features. In section 2, we show the general characteristics of CFS. In section 3, we discuss the
structure where the upper layer supervises the lower layer and we illustrate it with examples. In
section 4, we discuss the context dependent processing carried out by the simultaneous bottom-up
processing and top-down processing.

2. Conceptual Fuzzy Sets

2.1. Conceptual Fuzzy Sets for Concept Representation

A label of a fuzzy set represents the name of a concept and a fuzzy set represents the meaning of the
concept. Therefore, the shape of a fuzzy set should be determined from the meaning of the label
depending on various situations. According to the theory of meaning representation from use
proposed by Wittgenstein [7], the various meanings of a label (word) may be represented by other
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labels (words) and we can assign grades of activation showing compatibility degrees between
different labels.

The Conceptual Fuzzy Set proposed in [8], achieves this by the distributions of activations. Since the
distribution changes depending on the activated labels which indicate conditions, the activations
resulted through CFS show a context dependent meaning. When more than two labels are activated
CFS is realized by the overlapping propagations of activations. In CFS notations, operations and
their controls are all realized by the distributions of activation and their propagations in associative
memories.

We can say that the distribution determined by the activation of a label agrees with the region of
thought corresponding to the word expressing its meaning. Since situations are also indicated by
activations, the meaning is expressed by overlapping the regions of thought determined by these
activations. Fig 2.1 illustrates the different meanings of the same label, L1, in different situations, S1
and S2.

of Thought by
Situatiyn S1

Regionfof Thought by the meaning of L1 in the Situation S1

Label it the meaning of L1 in the Situation S2

' of Thought by

Situgftion S2

Fig.2.1 Different meanings in different situations

A CFS is realized as an associative memory, in which a node represents a concept and a link
represents a strength of the relation between two (connected) concepts. Activations of nodes produce
a reverberation and the system energy is stabilized to a local minimum where corresponding concepts
are recollected as a result. The recollections are carried out through a weight matrix encoded from
stimulus-response paired data.

In this paper we use Bidirectional Associative Memories (BAMs) [9] because of the clarity of
constraints for their utilization. At the association in BAMs reverberations are carried out according
to:

Yo = ¢6(MXp), Xes1 = pMT.Y,) . (1)

where, Xt=[xl1, x2, ..., xm]T, Yt=[yl, y2, ..., yn]T are activation vectors on x and y layers at the

reverberation step t, and ) s a sigmoid function of each neuron. BAMs memorize
corresponding pairs of elements at each layer in terms of a synaptic weight matrix, M, to memorize
CFS, and calculated from corresponding input/output pairs of Ai /Bi with coefficient « i:

M=3i «aiAi'Bi’ )

Example 2.1. CFS representing a composed concept which has multiple meanings

depending on situations
Let us consider the concept "tall", and its meaning according to whether it is applied to an American
or Japanese person. The meaning of concept "tall” changes in these two situations. The distribution
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of activation of other labels explains the meaning of "tall" depending on these contexts. Fig. 2.2
shows the concept "tall American” which agrees with the meaning of "tall" in case of an American
person. In this figure and throughout the remainder of this paper, "American" and "Japanese" refer
to "American height” and "Japanese height" respectively. The activations of nodes which express
"American” and "tall" make the distribution of activation in the middle layer which consists of
numerical values.

Japanese American

Fig.2.2 CFS representing "tall" American

In contrast, activating only "American”, the different distribution from above in middle layer
expresses its general meaning in the numeric support set. The propagated activation of "tall” in
lowest layer indicates the perception of the height of an American, and it means "(an) American is
tall". As we see in this latter example, the meaning of a label in CFS is expressed in multi-layers
simultaneously and it is interpreted by each expression.

2.2. Construction of CFS by Learning
We proposed the method to inductively construct CFS as a representation of concepts using neural
network learning [10]. It means that the construction is carried out in terms of instances.

Inductive Construction of CFS

CFS are constructed inductively using Hebbian learning. CFS is realized using associative
memories in which a link represents a strength of the relation between two concepts. Hebbian
leaming modifies the strength m;; of links by the product of the activations of two nodes x; and i
according to:

M = - M + XiYj (3)
In this case the correlation matrix is obtained directly from instances such as

"The height of Mark is 175cm. He is tall with a grade 0.8"
"The height of George is 160cm. He is tall with a grade 0.2"

On the other hand CFS are also constructed by the previously proposed algorithm [2] from the fuzzy
set.

"tall" = { 0.2/160cm, 0.8/175cm, ... )
generalized from the instances above.

Structural Learning of Concepts

The proposed construction method also covers the structural learning. Since the proposed learning
method makes negative correlation for the pairs of elements which are not relating to the concept in
question, the obtained CFS does not make unnecessary elements activated. For this reason the
proposed method can provide us with a desirable CFS even in support sets which contain verbose
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elements.

Composition of Subdivided Knowledge

A complex CFS is realized by composing several pieces of associative memory structured
individually. Further composition of pieces of knowledge makes the representation of the concept
context dependent. In this procedure the constraints of associative memories are very important.

If Cl’ C2, . Cn, denote individual CFSs and Ml, M2, e Mn are their corresponding correlation
matrices then we can combine them to obtain a CFS, C, whose correlation matrix, M, is given by:

M=M +...+ M, 4

The following features of CFS allow for solving the shortcomings of purely symbolic knowledge
representation paradigms:

1. CFS can represent the context dependent meaning of a concept. At the same time being built
through simple combinations it avoids combinatorial explosion.

2. CFS can explicitly represent the concept whose logically explicit representation is impossible.

3. Since CFS can employ a multi-layered distributed structure, many kinds of expressions such as
denotative and connotative can be mixed. Inference is performed by passing through layers and
propagating activations.

4. As indicated in [11] propagations of activations realize approximate reasoning. Thus, associative
memories lend CFS's the characteristics of intellectual information processing such as decrease of
fuzziness, bidirectional inference, context dependent reasoning, etc..

3. Fusion of symbolic processing and numerical processing

3.1. Fuzzy Reasoning by means of CFS

As we see above, CFS represent the meaning of a concept in multiple layers. The meaning of the
concept is translated into the expression indicated by the distribution of activation in each layer.
Since the representation of the meaning in the input layer is translated into a representation in the
output layer, the propagation of activation corresponds to reasoning. CFS can realize many kinds of
reasoning which behave consistently with other reasoning methods (slight differences are due to
different notation).

In particular, rule based approximate reasoning is realized as follows. Consider a rule of the form IF
x is A then y is B. A layer consists of nodes representing premises A1,A2, ..., Am, describing x.
Another layer consists of nodes representing the consequences B1,B2, ..., Bn, describing y. These
layers are connected by a weight matrix M calculated from correspondences of premise Ai and
consequence Bj. If the input is x=x*, the concepts A1,A2, ..., Am are activated with the activations
being equal to the corresponding membership values of x*. The propagation of activation determined
by the activation of the premise layer produces the distribution of activations in the consequence
layer, that is B1,B2, ..., Bn. As each activation corresponds to the truth value of each concept,
approximate reasoning is realized [12].

As CFS behave beyond the limitation of logic based notation, the following reasoning can be realized
using CFS:

1. Propagations which arise from the activation of an abstracted concept show its meaning in the
concrete layer. This corresponds to answering the question asking the meaning of the concept.
2. In contrast, the activation of a lower concept determines the activations of an upper concept and it
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corresponds to recognition or understanding.

Further, due to its bidirectional features, the reasoning in CFS has various characteristics which
cannot be achieved by the logic based paradigm[11].

3.2. Multi-layered Reasoning

Consider a simple example of predicting the currency exchange rate. In the case of a war happening,
we use concrete examples from past experience, such as the Gulf War, to predict a precise value. At
the same time, we refer the macroscopic knowledge such as "dollar rises in case of emergency" and
make rough prediction such that dollar rises up. We can say that the abstracted knowledge described
in the upper layer supervises the generous reasoning path and corrects the result of reasoning in the
lower layer in terms of concrete knowledge such as numeric data and event data.

In general, quantitative processing or neural network deal with numeric data and are not capable of
integrating symbolic semantics. In contrast, symbolic processing suits intellectual information
processing, but does not suit numeric processing. Since both processing methods take completely
different approaches to knowledge processing and knowledge acquisition, the effective integration of
these methods, while desirable, is difficult to achieve in a way of which combines their best features.

A reasoning in a multi-layer structured CFS realizes, to some extent, the integration of these two
paradigms. The upper layer is meant to carry out symbolic processing using abstracted concepts
while the lower layer to process numeric data and instances. If only the reasoning in the lower layer
is used, it gives us precise results, but possibly a wrong reasoning path from macroscopic view
point. On the other hand, the reasoning in upper layer alone cannot provide a precise result.
Bidirectional association connecting two layers enable us to fuse the simultaneous processing in
upper and lower layers to obtain a semantic guide supported by the upper layer and the precise
processing supported by lower layer. The correspondences of concepts in upper layer represent the
abstracted knowledge and the correspondences of examples or numeric data in the lower layer
represent concrete knowledge. Since the concepts in the upper layer are connected with examples in
lower layer, these connections result in the fusion of two differently abstracted layers. In the case
when more than two layers exist various abstracted processes are carried out at the same time.

The reasoning in a multi-layer structured CFS is carried out according to the following procedure:
The activation of the node in premises activates the corresponding several nodes in consequences in
the lower layer. At the same time, the result of the semantic information processing in the upper layer
propagated by the activation of the node in the premises in lower layer affects the consequences in the
lower layer. As aresult, the nodes affected by both the direct propagation in the lower layer and the
semantic propagation in the upper layer remains to be activated. Finally, a concrete result is obtained
in the lower layer and abstracted results are obtained in the upper layer simultaneously. We call
Semantic Guide Line the supervision of the processing in lower layer by the intellectual
information processing in upper layer.

Example 3.1. Decision regarding the amount to steering

When driving a car the amount to steering changes depending on situations. In the case that parking
spaces are indicated by a painted line, we usually park the car passing the line. If the spaces are
surrounded by borders or walls (as in a garage), another trajectory is considered (to avoid the
collision with the wall as in Fig.3.1).

100



if white paint (no wall) = go straight
if wall - turn left

';G'aail

Consider the case that we decide the amount to steering besides parking space and the direction of the
car is placed at 30 degree with the direction of parking space as indicated in Fig 32.

Fig.3.1 Parking Conditions

We decide the amount to steering using generous rule such as "steer to right to make right turn”. The
"right" is a concept generalized from various driving experiences and:

1. This kind of symbolic representation is effective to describe explicit and semantic knowledge.
2. However, its indications are vague and can not determine the amount to steering precisely.
3. Its meaning changes depending on the situations such as the position of a car.

On the other hand, cases such as "when the car makes x degree, we steered y degree" are described
by concrete numeric values and:

1. The concrete experience indicates the precise amount to steering.
2. However, purely quantitative correspondence of conditions and actions does not suit logical
information arising from varieties of conditions.

The CFS fuse both representations consisting of two layers. The lower layer memorizes the
correspondences of the numerically described direction of the car and decided amount of steering.
Since the lower layer consists of superficial numeric correspondences, it does not recognize the
difference between the cases "with wall" and "without wall". In the upper layer, the conditions
described by the symbolic notation such as ndirection of the car" correspond to the actions such as
"with wall" or "without wall". The correspondences of symbols are equivalent to the semantic
control rules generalized from experiences . The nodes in the lower layer represent: direction of the
car (left nodes) and decided amount of steering (right nodes). The nodes in the upper layer
represent: the concept associating with the degree of the car such as "about 45 degree" and "about 90
degree (parallel to the front wall), two nodes on the left, and the conditions "wall" and "no wall" , the
remaining two nodes on the left. The nodes on the right side of the upper layer represent the resulted
actions such as "Turn left","Go Straight" and "Turn Right". Further, the concepts of the upper layer
are connected to the concrete nodes of the lower layer, thus realizing meaning representation.
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Fig. 3.2 Decision of the amount to steering by two-layered reasoning

Fig.3.2 also shows the conditions and the decided action when the car is placed in 30 degrees with a
parking space having a wall. The condition "30 degrees” results in two kinds of actions depending
on the cases "with wall” and "without wall". Because the lower layer simply memorizes both actions
"15 degree to left" and "45 degree to right” corresponding to the conditions 30 degrees, the correct
result cannot be recollected by using only the lower layer.

In the upper layer the recognition of a close wall activates "Turn Right" and it produces the activation
of "turn right by 45 degrees” in the lower layer. The results of this multi-layered reasoning are "Turn
right” in the upper layer and “turn right by 45 degrees" in the lower layer. This process of
determining the actions indicates the successful supervision by the macroscopic views in the upper
layer of the lower layer. Moreover, the results of the reasoning are equivalent to the meaning of
"right" depending on different conditions.

4. Fusion of top-down and bottom-up processing

Usually natural language processing consists of two steps: (1) parsing and (2) semantic analysis. A
lot of meaningless results are obtained by parsing alone. If semantic information could be used
simultaneously in the step of parsing it would lead to a more efficient parsing. In image processing,
recognition is carried out using characteristic values which are already obtained by low image
processing. The fusion of referring a model of an object or the context with the image processing
makes the image recognition more efficient. We can say that people simultaneously realize both
image processing and recognition.

For the reasons indicated above substantial work has been focused on replacing serial processing by
parallel processing [2]. However, this work fails to achieve a real fusion of bottom-up and top-down
processing supported by simultaneous information exchange and parallel processing, as it makes use
of external procedures (such as for deciding the priority of layers or looping algorithms).

CFS can realize the parallel processing to support the fusion of bottom-up and top-down processing
in terms of combining the semantic information processing in upper layer and local processing in
lower layer. For example, in image recognition, the upper layer describes the knowledge on a context
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while the lower layer describes primitive concepts. The concepts in the upper layer are explained by
the primitives in the lower layer. The characteristic values activate the primitives in the lower layer.
This results in the activation of the concept in the upper layer. At that time the context described in the
upper layer depresses the meaningless patterns of distribution of activation and promotes the
meaningful patterns of activations in lower layer. Thus the primitives activated are those affected by
the characteristic values and also satisfying the context. This context sensitive processing
provides us with an accurate result. It uses the context to eliminate vagueness which may come from
noisy and vague data and which could otherwise cause misunderstandings.

Example 4.1. Recognition of "THE CAT"

We recognize the words "THE CAT" in Fig. 4.1. Actually the characters in the middle of THE and
CAT have exactly the same shape, and the shape can be recognized as either A or H. Therefore if the
recognition of the characters is carried out before the recognition of words, it cannot be decided what
the character is: A or H. Our actual response recognizing THE CAT indicates the simultaneous
processing of character recognition and word recognition (context). CFS can realize this recognition
supported by the fusion of bottom-up recognition process and top-down context sensitive processing
as in Fig.4.2.

THE CAT

Fig.4.1 THE CAT

A and H

Fig.4.2 The recognition of THE CAT using CFS

The CFS in Fig.4.2 consists of the nodes indicating each character in the lowest layer, alphabets as
results of character recognition in the middle layer, and correct words as a context in the upper layer.
The lower half of CFS indicates how each character looks like and the upper half indicates the
alphabets constructing word. Although the character T, E and C are recognized without vagueness
and are connected to corresponding places in the alphabets in the middle layer, the characters of
interest which have the shape between A and H are connected to both alphabets to indicate the
possibility to be recognized as A or H.

The activation of T, E and the ambiguous character in the lowest layer carry out the recognition. As a
result of the propagation of activations, T, H and E are activated in the middle layer and node "THE"
is activated in upper layer. The simultaneous recognition indicates that the character in the middle of
the word is H and the word is "THE". It should be noticed that context sensitive recognition
supported by the upper layer and bottom-up recognition from the lower layer are processed
simultaneously.
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Example 4.2. Recognition of facial expressions

A facial expression is a vague concept: it is difficult of explicitly describing a facial expression: any
descriptions have vague boundaries. In this example, the recognition of facial expression is
discussed using multi-layered reasoning by means of CFS. The CFS for facial expressions consists
of three layers: the upper layer contains facial expressions, the middle layer contains characteristics of
the components of a face and the lower layer contains attributive characteristic values. The facial
expressions are described in terms of the following characteristics:the condition of both eyes
(UP:upward, HZ:horizontal, DW:downward), and of the mouth (UP, HZ, DW). The above
characteristics are described by the following characteristic values: the angle of the edge of both eyes
(RA, LA) and the angle of mouth (M) in Fig.4.3. Fig 4.4 shows the object face. The recognition of
facial expressions is carried out by activating the node in the lowest layer describing characteristic
values.

—

RAE o7 4% ‘} o
()

M
Fig. 4.3 Face characteristic value Fig. 4.4 Object image

We can say that humans recognize objects using generous (global) characteristics instead of detecting
precise numerical characteristic values. Also, the context constructed by several patterns of facial
expressions improves the efficiency and accuracy of recognition. In this section we illustrate the
context sensitive image processing by describing general patterns of facial expressions in the middle
and upper layers. Fig.4.5 shows the constructed CFS to recognize facial expressions. The general
patterns of facial expressions are described by promoting links connecting the characteristics to
represent the facial expressions in the middle layer. These patterns are connected to the node in the
upper layer standing for facial expressions. The patterns in the middle layer are connected by
depressing links. We investigated the recognition using vague characteristic values, which are
described by fuzzy sets, to simulate the recognition process by humans without using accurate
characteristic values. The object face is recognized as "Angry" and the result is in agreement with our
recognition.

Angle of Right Eye Angle of Left Eye Angle of Mcuth

Fig. 4.5 Recognition of facial expressions by means of multi-layered reasoning

104



In contrast, the recognition using simple logical notation was "Happy" as shown in the following
example: facial expression are determined by:

Angry = (Angle of right eye is big) and (Angle of left eye is big) and (Angle of mouth is big)
Happy = (Angle of right eye is small) and (Angle of left eye is small) and (Angle of mouth is small)
Sad = (Angle of right eye is medium) and (Angle of left eye is medium) and (Angle of mouth is big)

Each truth value is calculated as:

Tv(Angry)= min(1.00, 1.00, 0.62) = 0.62
Tv(Happy)= min(0.73, 0.82, 1.00) = 0.73
Tv(Sad) = min(0.92, 0.82, 0.62) = 0.62

Taking the facial expression which has maximum truth value produces the result "Happy".

We also investigated the face recognition of 28 people as shown below and the results show the
advantage of context sensitive recognition using CFS.

CFS: 14.3 % fail
logic based: 21.4 % fail

The results show the advantage of context sensitive recognition which is supported by the fusion of
bottom-up and top-down processing, in particular, when the recognition starts with error containing
vague characteristic values. It also implies the possibility of CFS for image understanding to
eliminate the need for precise image processing

§. Conclusion

Fuzzy set theory can be viewed as a stronger and more practical notation than purely symbolic
information processing paradigms, connecting the logic based world and the real world. The duality
abstract/concrete of the real world is reflected in the intelligent/lack of intelligence duality at the
intellectual level. To cope with this duality a knowledge representation paradigm must be able to
hierarchically represent both aspects.

Previously we proposed Conceptual Fuzzy sets (CFS) based on the meaning representation of a
concept: the meaning of a concept is represented by the distribution of activations of labels naming
concepts. In particular, a multi-layer structured CFS represents the meaning of a concept in various
expressions in each layer.

In this paper, we proposed Multi-layered Reasoning in CFS. Since the propagation of activations
corresponds to reasoning, multi-layer structured CFS can realize multi-layered reasoning which has
following features:

1. capable of simultaneous symbolic and quantitative processing (semantic guide line)
2. capable of simultaneous top-down and bottom-up processing (context sensitive processing)

We also showed its effectiveness through illustrative examples.
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This paper discusses an application of fuzzy control to an unmanned helicopter.
The authors design a fuzzy controller to achieve semi-autonomous flight of a
helicopter by giving macroscopic flight commands from the ground.

The fuzzy controller proposed in this study consists of two layers: the upper
layer for navigation supervising the lower layer and the lower layer for ordinary
rule based control. The performance of the fuzzy controller is evaluated in
experiments where an industrial helicopter YAMAHA R-50 is used.

At present an operator can wirelessly control the helicopter through a flight

computer with eight commands such as "hover”, "fly forward", “turn left", "stop”,
etc. The results are shown by video.
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Fuzzy Logic Mode Switching in Helicopters

Porter D. Sherman and Frank W. Warburton
Advanced Research & Design
Sikorsky Aircraft

The application of fuzzy logic to a wide range of control problems has been
gaining momentum internationally, fueled by a concentrated Japanese effort.
Advanced Research & Development within the Engineering Department at
Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate
how effective fuzzy logic research effort designed to evaluate how effective
fuzzy logic control might be in relation to helicopter operations. The mode
switching module in the advanced flight control portion of Sikorsky's motion
based simulator was identified as a good candidate problem because it was
simple to understand and contained imprecise (fuzzy) decision criteria. The
purpose of the switching module is to aid a helicopter pilot in entering and
leaving coordinated turns while in flight. The criteria that determine the
transitions between modes are imprecise and depend on the varied ranges of
three flight conditions (i.e. simulated parameters). Commanded Rate, Duration,
and Roll Attitude. The parameters were given fuzzy ranges and used as input
variables to a fuzzy rulebase containing the knowledge of mode switching. The
fuzzy control program was integrated into a real time interactive helicopter
simulation tool. Optimization of the heading hold and turn coordination was
accomplished by interactive pilot simulation testing of the handling quality
performance of the helicopter dynamic model. The fuzzy logic code satisfied all
the requirements of this candidate control problem.

108

s &

.
3 w©! L
i Q s LA et *
L3 Land
“



N93 2“3;2

A Neural Based Intelligent Flight Control System for the
NASA F-15 Flight Research Alrcraft
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NASA-Dryden Flight Research Facility
Edwards, California

A flight control concept that can identify aircraft stability properties and
continually optimize the aircraft flying qualities has been developed by McDonnell
Aircraft Company under a contract with the NASA-Dryden Flight Research Facility.
This flight concept, termed the Intelligent Flight Control System, utilizes Neural
Network technology to identify the host aircraft stability and control properties during
flight, and use this information to design on-line the control system feedback gains to
provide continuous optimum flight response. This self-repairing capability (Figure 1)
can provide high performance flight maneuvering response throughout large flight
envelopes, such as needed for the National Aerospace Plane. Moreover, achieving
this response early in the vehicle's development schedule will save cost.
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Figure 1. Self Designing Neural Flight System
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The Intelligent Flight Control System (Figure 2) incorporates an Aircraft
Performance Model to provide the ideal system response. On-time measurements of
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Figure 2. Intelligent Flight Control System

the aircraft state parameters are determined by neural network models that relate
aircraft stability coefficients (Figure 3), utilizing aircraft sensors such as Angle of Attack
(AOA) as inputs to the networks. Thus, aircraft stability and control coefficients are
continuously updated, and used in the control process to achieve the ideal desired
response to pilot steering commands. The concept was designed to the NASA F-15
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Figure 3. Neural Network Organization
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flight vehicle characteristics. Simulated response of the Intelligent Flight Control
system to a pilot stick command is shown in Figure 4.
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Figure 4. Intelligent Flight Control System Response
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As a test of the concept, aircraft conditions representing a damaged wing was
introduced into the problem, using the F-15 wind tunnel data for a 50% missing right
wing (Figure 5). Neural Networks were developed to measure the damage, and tested
using simulated time histories of the control system sensors as inputs to the networks.

Factors: (1) Determine Extent of Damage
525 Determine Aircraft Stability
and Control Properties
(3) Revise Control Law

Complete in < 1 Second

In-Fiight

- Damage Detection

Control < —
Reconfiguration

Figure 5. An Example Problem: Control of a Damaged Alrcraft



Figure 6 illustrates the aircraft response time history when the wing damage occurs.
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Figure 6. F-15 Response: Right Wing 50% Missing

The information from the Neural Networks will be used to quickly reconfigure the
aircraft control surfaces and regain stable, controlled flight.

The Neural-based Self Designing Control Concept that is the basis of the
Intelligent Flight Control system can be applied to future fighter and transport vehicles
(Figure 7) to optimize engine and flight control performance.
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Figure 7. Neural-Based Self-Designing Flight/Propulsion Control
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Abstract

NASA and the U.S. Army are jointly developing a teleoperated unmanned rotorcraft
research platform at the National Aeronautics and Space Administration (NASA) Langley Research
Center. This effort is intended to provide the rotorcraft research community an intermediate step
between wind tunnel rotorcraft studies and full scale flight testing. The research vehicle is scaled
such that it can be operated in the NASA Langley 14- by 22-Foot Subsonic Tunnel or be flown
freely at an outside test range. This paper briefly describes the system's requirements and the
techniques used to marry the various technologies present in the system to meet these
requirements. The paper also discusses the status of the development effort.

Background and Introduction

Several recent analyses and simulated aerial combat flight tests have demonstrated that
agility is a very powerful element of rotorcraft combat survivability. Dynamic stability,
maneuverability, and agility are not presently addressed in helicopter wind tunnel testing for both
economic and technical reasons, and the investigation of these dynamic issues must therefore be
conducted on free-flight vehicles of some type, whether full scale or model scale. Unfortunately,
the cost of conducting full-scale flight tests has become so high that it can only be considered for
the most important elements of research and development where any other method of test is wholly
inadequate. Considerable work is now underway to supplement flight testing with simulation to
the maximum extent possible. Simulation, however, can only be exploited when there is a model
of the system. Recently developed techniques to validate simulation models require some form of
high fidelity flight testing for confirmation. A joint U.S. Army and NASA program is currently
underway to evaluate the suitability of using a teleoperated, instrumented, free-flight , reduced-
scale powered rotorcraft model equipped with Mach-scaled wind tunnel model rotor systems to
refine these validation techniques. This paper provides an overview of the approach and the
current status of this free-flight program with an indepth focus on the model's control system.

Free-Flight R rch_Techni

The free-fight research technique using a model for conducting simulation research is
illustrated in figure 1. A specialized flight dynamics research model known as the Free-Flight
Rotorcraft Research Vehicle (FFRRV) is flown by a research pilot located in a ground control
station. Flight data is telemetered to the ground and recorded in a data acquisition station. The
technique of placing the research pilot in the model by means of telepresence technologies rather

*Paper reprinted from IEEE 1992 National Telesystems Conference Proceedings
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FIGURE 1:
The Proposed Free-Flight Test Technique.

than having him fly by line of sight should ease some of the FFRRV's control systems autonomy
requirements because the pilot's perceptions about what is occurring will be keener and his
reactions faster. Having the research pilot as an integral part of the aircraft should also allow the
pilot to fly more aggressive maneuvers often encountered in nap-of-the-earth (NOE) flight than
would be possible with an external pilot. The research pilot's sensory inputs are provided by
images from three miniature television cameras and two microphones mounted in the vehicle's
nose. The video images are projected onto three, color 26- inch television monitors, and the audio
signals are fed into a headset. The video link provides the research pilot sitting in a ground station
with a 150 x 35 degree field of view (figure 2). The research pilot's control commands are
interrogated by a computer in the ground station and broadcast to the flight vehicle. In addition to
the research pilot radio links with the aircraft, there is an external safety pilot who has overall
authority over the model in an emergency situation and flies the craft by line of sight like a
conventional radio controlled model helicopter.

The Flieht Vehicl

The FFRRYV is a minimum 225 pound gross weight, aerodynamically scaled model that
was designed specifically for conducting flight dynamics research. Almost all of the primary
parameters that one would desire to study in rotorcraft research are easily varied. For example, the
control system could command excursions in the main rotor RPM to study the resulting variation in
dynamics without having to conduct major system redesign and validation as is the case with full
scale flight vehicles being flown at an off-design point.

In-house studies indicate that it becomes unfeasible to achieve aeroelastic scaling of a
rotorcraft flying in air when the rotor gets any smaller than about 2 meters in diameter. A 2 meter
diameter rotor when loaded like a full scale rotorcraft, with 3 to 7 pounds per square foot of disk
load, corresponds to a model weight of 200 plus pounds. This rotor size is also scaled similarly to
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FIGURE 2:
Ground Control Station Cockpit.

other wind tunnel models that the U.S. Army Aerostructures Directorate operates in the NASA
Langley 14- by 22-Foot Subsonic Tunnel.

To maintain the desired flexibility of the test platform there is a core vehicle within the
model to which the other essential modules are attached. This core vehicle consists of:

- A steel frame

- 40-horsepower rotary engine and its accessories

- 1.6 KW alternator

- Variable speed ratio belt drive system

- Fixed ratio main rotor transmission

- High speed (greater than 10 inches per second) swashplate actuators
- Flexible shaft and tail rotor drive gearbox

The core vehicle is designed to carry all the loads generated in the system. Tests involving
different rotor speeds can be conducted by sizing different diameter pulleys in the belt drive
system. Modifying the design rotor speed at this point in the power train greatly reduces costs and
the time to modify the system when compared to modifying the rotor speed by using different gear
ratios in the transmission. Since the tail rotor is driven off the main drive gearbox with a flexible
shaft its location can be moved without requiring a drive system redesign. Attached to this basic
core are the additional modules which can be added or modified as the mission requires. The
aeroshell itself is one of these additional modules and therefore must only carry the aerodynamic
loads that are imposed directly on it. With such an easily modifiable shape some basic phenomena
related to detectability or the effects of fuselage shape on agility can be studied quickly and at a
very low cost. Some typical configuration studies such as research to obtain a better understanding
of unconventional anti-torque systems, like those depicted in figures 3 through 6 could also be
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conducted on the FFRRYV. The overall effect of this approach is to provide a unique capability to
explore new ideas in rotorcraft design in a timely and cost effective way.

. FIGURE §;
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The Control System

Modularity and flexibility are emphasized in the design of the control system architecture as
with all other pieces of the complete system. Subsystem component sets as well as discrete
capabilities of the integrated system are broken into separate objects. The objective of breaking the
system into submodules facilitates rapid prototyping and testing of new modules and capabilities
with minimal impact on existing modules.

The overall goal of the control system is to allow maximum utility to the FFRRV as a
research tool by not hampering a test schedule or limiting the scope of a test because of a deficient
or inadequate controller for the task. For example, if the researcher requires a certain aggressive
flight trajectory to be flown at a certain location over the test range, the desired trajectory could be
loaded into the flight computer to fly the vehicle much the same as a human pilot could if he were
able to monitor all the parameters of interest quickly enough to maintain them within their test
limits. Another desired feature of the control system is to provide a highly stable platform upon
which pilot commands can be overlaid. This requirement of the controller is a greater issue with a
vehicle of this small scale than it is with a full sized helicopter because the scale factors are different
for aerodynamics than for mass and inertia. This difference in scale factors allows the FFRRV to
naturally respond quicker to control movements than a full sized helicopter. This "overly
sensitive” control responsiveness requires some measure of stability augmentation for piloted
flight.

The present control system architecture allows the research pilot to vary the stability and
control augmentation system (SCAS) to the specific piloting requirements during flight. The
SCAS will operate in various modes in order to achieve this variability. The basic mode is where
the control inputs are coupled and an input on one axis has responses on other axes. Another
mode is where the controls are uncoupled to a tunable degree where the pilot can vary how much
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of an input on one axis affects the off-axes aircraft responses. The most augmented mode is
where the vehicle is fully autonomous and the maneuver flown is preplanned. In order to (1) meet
these specifications, (2) provide an easily modifiable controller essential for a research tool, and (3)
enable some form of vehicle recovery in case of a loss of communication, portions of the control
system are located both in the manned ground control station and on the air vehicle. The control
systems data analysis and response processing cannot occur entirely on the ground if there is to be
any way for the vehicle to sense a loss of communication with the ground station and/or the safety
pilot and attempt self-recovery. There are various ways this self-recovery could happen since
some of the vehicle's machine intelligence is located on the flight platform and is not entirely on the
ground.

A secondary but highly relevant advantage of splitting the control system between the
ground and the airvehicle is the potential for reducing the speed and volume of the telemetered data.
One computer talking to another in a predefined language can perform at a given level with a lower
communication rate than having to encode and decode raw sensor and actuator data at each end of

the communication link!.

Within the ground station, pilot and
researcher commands are processed and broadcast to the flight vehicle for execution. Autonomous
flight modes, where the vehicle flies a preprogrammed course on its own, will utilize the ground
control station as a source from which to execute the commands. The only autonomous flight
planning mode located on the air vehicle is the mode where the vehicle senses a loss of
communication and performs a self recovery.

The problem of providing the tunable multilevel controller described above is addressed
from both ends of the control authority spectrum. At one extreme the human pilot is in full control
without any computer augmentation, and on the other extreme lies an autonomous autopilot capable
of flying preprogrammed maneuvers. The middle set of flight modes, where the human augments
the autonomous system, is achieved by a blending of the two extremes. In all three modes the
resulting commands from the ground station broadcast to the flight vehicle remain the same.
Keeping this continuity simplifies design of the airborne controller and places the burden of
developing such capabilities on ground based computers where size is not of primary concern.
Having this higher level problem solving on the ground eliminates the burden of packing such a
capable control system into a volume that will fit into the small airframe of FFRRV.

: While looking at the various scenarios which the
FFRRV must perform, it quickly becomes apparent that some means of embedding machine
intelligence into the flight vehicle would be advantageous. Putting a digital controller on the flight
vehicle allows for much faster processing throughput than if all data processing occurred on the
ground. Some specific benefits of having a digital controller on the flight vehicle are: (1) Servo
control loops require only telemetry to drive a set point. (2) Sensor data can be preprocessed
before telemetering it to the high level controller on the ground. (3) It provides the model with
some from of machine intelligence that can react to deteriorated communications from the ground.

Being a research tool, where all future uses are not known, it is logical to provide control
processing capability on the airvehicle beyond that required in the initial development. This
additional capability and speed can be used in two ways:

1. Providing room for growth with new research missions.
2. Allowing rapid testing of unoptimized algorithms without having computational

speed become a major limiting factor.
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The airborne controller will receive commands from either the safety pilot or the ground
station. If the safety pilot commands the vehicle then the airborne controller will ignore any
information coming from the ground station and will respond to the safety pilot in a manner similar
to a hobby radio controlled helicopter model. If however, the safety pilot has relinquished control
to the ground station, as in normal operation, then the airborne controller executes orders from the
ground station following a predefined format. This format will be developed to simplify testing the
logic of both the airborne and ground station controllers.

The airborne controller will also preprocess the analog signals from the sensor suite and
broadcast to the ground control station the following processed sensory information:

- Conditioned sensor data from each sensor.
- A mathematical estimate of the vehicle attitude based on combining the various sensors.

This sensor fusion occurring in the airborne controller relieves the telemetry system from
accommodating sensitive analog signals and only requires it to transmit pre-conditioned digital
data. This fusion also provides the self recovery capability resident entirely in the airborne
controller with accurate knowledge about the vehicle state.

Research Data Recording
The aerodynamic and rotor performance data of interest are collected and transmitted to the
ground as a separate entity with minimal interference with other systems on the vehicle. The scope

and accuracy of the parameters measured by the data acquisition system mimic that of a wind
tunnel Mach scaled rotorcraft model.

The recording of research data occurs independently of the flight data required for the
control system. There are two reasons for this:

First, the data of research interest will vary widely depending on the tests being
conducted. If the control system data is not a subset of the research data being taken then the
additional burden placed on the research data system to acquire the control data will hamper its
flexibility. The control systems requirements for data will generally not change whereas the
research data collected will vary widely. By separating the two data systems the necessary changes
are restricted to one module only.

Second, the control system must be tested and validated irrespectively of the
research data or research specific sensors. This allows the vehicle to be developed and flown
without any research data collection facility in place. Having this capability facilitates development
and makes the system more portable, so it could perform research on various flight test ranges, not
just the one it is being developed on.

When a measured parameter necessary for research is the same as one required for the
control system, only one instrument which satisfies the more stringent of the two requirements is
used to save space. There will, if possible, be two independent pickoff's for the single sensor and
all other efforts will be made to isolate any disturbances on one system caused from interrogating
the sensor with the other.

If however, the subject of research is related to flight controls, like blade state feedback

control, then the control system will require access to the research data recorder. This loop
closure, occurring only when necessary, will be on the ground between the Research Data
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Acquisition System and the Digital Flight Control System Ground Station to simplify processing
and avoid potential contamination of the Airborne Control System.

Status and Plans
We are following a four phase development plan:

1. Proof of concept tests and prototyping of systems.
2. Design and fabrication of a research model.

3. Validation of systems in wind tunnel.

4. Research flight tests.

Currently we are deeply involved in the first two phases of this plan. We are conducting proof of
concept flights and control system development with smaller commercial "hobby" helicopters
equipped with video cameras, inertial sensors and the associated telemetry (figures 7 and 8). The
actual research vehicle is approximately 80 percent complete and has already entered the NASA
Langley 14- by 22-Foot Subsonic Tunnel in an unpowered configuration (figure 9). A powerful
custom flight computer capable of providing the machine intelligence required on the air vehicle has
been designed, built, and is being tested. FFRRV's first flights are scheduled late in the fall of
1992. Prior to these flights the vehicle will again enter the wind tunnel, but this time powered to
verify an accurate implementation of the control system. The vehicle will also enter NASA
Langley's anechoic chamber for tests to ensure that the assorted telemetry systems supporting the
project do not have any transmission dropouts due to antenna blind spots.

The following two sections discuss our current status on the first two phases.

ORIGINAL PAGE
FIGURE 7: BLACK AND WHITE PHOTOGRAPH

Proof Of Concept Flight Testing Of A Large Commercial Model.
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FIGURE 8:
The Large Commercial Model Equipped With Three Video Cameras.

Mmmm_am_mmm

To speed development and reduce the risk of prematurely damaging the research vehicle,
we are using commercial hobby-type radio controlled helicopters to resolve issues about systems
integration. These RC helicopters are out-of-scale when you look at their aerodynamic surfaces
and power systems. However, these models are very useful because we can port much of the
integrated systems, debugged on these vehicles, unchanged onto the FFRRV.

Presently we have one model flying at a 200 percent gross weight increase from its original
design. Normally the model would have a flying weight of 9.5 pounds, however, the addition of
proof of concept equipment, brings the gross weight up to 30 lbs. The benefits of using this
model are:

1. The availability of an inexpensive prototype testbed that can fly a large portion of our

subsystems for development work.
2. The training of safety pilots on how to recover heavier models. Heavy models respond

at different rates than the stock lighter models.

The first use of this heavy out-of-scale vehicle is to clean up the video transmission and
receiving system. This work has been going on through the fall of 1991 and is nearing
completion.

Following video development, the next task these vehicles will undertake is to fly missions
to develop the control system. Initially this effort involves building a mathematical model of the
aircraft by performing a system identification of the models and collecting flight data to validate this
simulation model. This will be conducted by telemetering sensor data from the aircraft to the
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ground. This simulation model of the aircraft will be used to initially tune the control system prior
to flight. Once modules of the control system are verified against this simulation model they will
be flown and will build upon existing modules that have already gone through this checkout phase,
adding incrementally more capability to the model control system. To reduce risk to the research
vehicle the control system will only be flown on FFRRYV after testing it as much as reasonable on

the smaller models.

FIGURE 9:
The Scaled Research Vehicle (FFRRYV)
In The NASA 14- by 22-Foot Tunnel. ORIGINAL PAGE

BLACK AND WHITE PHOTOQRAPH

Desi  Fabrication of a R b Model

The initial wind tunnel test of the FFRRV was
completed on November 14, 1991. The goals of this test were:

1. Obtain aerodynamic data for baseline studies of the initial fuselage shape.
2. Ensure the tail is adequately sized and placed so it will provide the stability required.
3. Study the effects that forward flight has on the radiator used for engine cooling and

ensure there is enough energy being dissipated by the radiator.
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The results of this tunnel entry drove slight changes to the initial tail configuration which increased
longitudinal and directional stability and provided a capability for in-flight adjustment of pitching
moment due to the tail. These changes which involved the addition of vertical tip fins to the ends
of the horizontal tail and the incorporation of a short-chord elevator into the horizontal tail surface
were verified during the wind tunnel test. The wind tunnel test also identified the need for
approximately 30 percent more hieat exchange capability to cool the powerplant.

Currently the drive train is being integrated and tuned. We will initially tune the drive train
with an electric motor and then later introduce the internal combustion rotary engine. Separating
the integration of the drive train and the engine simplifies the tuning required.

A model support system for the wind tunnel has been designed and built which will allow
the FFRRV model a limited amount of travel about all three rotational axes and along the vertical
axis. This new support system provides a methodological approach to testing the control system in
a controlled environment, one motion at a time, prior to flight, and will make possible a new focus
in powered rotor testing where body dynamics are the major factor of interest. -

: The distinct tasks that this control system must perform have
been logically broken down into separate modules, each with a specific objective (figure 10). The
resources necessary to achieve each distinct objective are assigned to the respective module. With
this breakdown, parallel development of the separate systems are occurring and will culminate with
the final integration and complete system testing.

Sensor

Master Module
Module |\ |Process the Controtler
Fly the sensors

Servo the

aircraft actuators

High Level
ontrol
Module

Synthesize

Research flight
Pilot commands
Module
Interface to

FIGURE 10:
Control System Breakdown.
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Two methodologies are presently being compared to determine how best to achieve the three
distinct modes of control already discussed: (1) the basic mode, where unfiltered inputs are
directly applied to the aircraft (2) the filtered mode, where there is a tunable control augmentation
system (3) the autonomous mode, where the aircraft flies a preplanned course. The first
methodology under evaluation is based on an accurate model of the aircraft where a nonlinear exact
model-following control system, using a model inversion technique, is applied2. The second
methodology is based on a hybrid of a fuzzy logic controller and a neural network model
identifier3. At this stage it appears that integrating the human pilot back into the control system will
be easier to accomplish using the second approach. Two basic questions presently require
resolution: (1) Given the limited information possessed about the model, can a hybrid fuzzy neural
controller provide the same precision that an exact model-following controller can? (2) Can an
exact model-following controller actually be built with the limited knowledge we have about the
model?

The following sections describe the current status of the ground control station and the
hardware designed for flight vehicle control system.

Ground Control Station: A working ground station capable of interrogating the research
pilot, displaying transmitted video images, and relinquishing control when necessary to the safety
pilot is complete (figure 2). Currently a highly modified FUTABA model 1024 9-channel PCM
transmitter is operated from the research pilot's seat. In the future, when the ground station is
operational with a tunable control system, the FUTABA radio will be replaced with a single high
speed telemetry link from a ground computer to an airborne computer. The connection between the
safety pilot's radio and the ground station is complete and allows the safety pilot to override control
of the model. The video images are each transmitted on their own frequency. The three video
receivers are integrated into the ground station enclosure such that the research pilot can tune the
video prior to takeoff. Sensory data for the control system is also sent down on a video

transmitter.

Initial flights of the heavy weight model helicopter from the ground station are awaiting
installation of a stability augmentation system for the aircraft. The RC model, even in its heavy
condition, requires stability augmentation prior to flying with cockpit cues without excessive
training since it responds so much quicker than full scale rotorcraft.

Airborne Control System: We decided to assign computers with an identical architecture to
each submodule in the airborne control system since all the flying modules have identical
reliability, weight, and volume restrictions. This decision provides a single development
environment and will greatly simplify the final stages of system integration. A market survey of
small, powerful computers designed for embedded control application capable of accommodating
these specifications was conducted in December 1990. This survey showed that several new 32-
bit processors designed for embedded control had just been released. Two microprocessor
families of specific interest, the Motorola 683XX and the Intel 80960, had not yet been made into
an integrated system small enough to fit into the FFRRV's limited space.

We decided the flight computer must be designed specifically for the mission at hand to
maximize its usefulness as a research tool and capitalize on recent microelectronics advances. Asa
result a control computer based on the Motorola 68332 was developed. The decision to use the
68332 was based on the available software to support it, its advanced internal time processing unit,
and because board design is simplified when working with its integrated architecture [4]). The
resulting airborne computer system is based on a loosely coupled network of 68332's enhanced

with a user selectable amount of:
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-Analog input and output for sensor processing

-Additional digital input and output for sensor processing

-Linear Variable Differential Transformer (LVDT) readers for actuator controls

-Flash memory for non-volatile program storage without having to extract the computer
from its embedded location in the flight vehicle.

-Large static RAM banks to ease program development, execution, and data collection.

The computer hardware package is very compact measuring 1.5 inches by 4 inches and varies in
height from 1 to 5 inches. The height depends on the amount of additional features that a
particular module in the multiprocessor control system requires in addition to the basic system.

A multi-tasking real time operating system has been successfully ported to this custom
control computer. Low level driver routines, interprocessor communication, and some of the basic
I/O functions required in the flight control system have been programmed and tested.

An initial sensor suite was specified and is presently being integrated into the model. The
sensor suite is best characterized by its small size and the individual measurements of attitude
positions, rates, and accelerations along all 6 axes. Table 1 lists the states being measured and the
particular sensor used for observing them [5].

Concluding Remarks

« This is a small scale program which requires a high degree of multi-disciplinary research for its
success.

» The program's main goal is to develop a research tool. As the program matures it has a
promising future for providing low cost research flight testing where parametric studies can be
rapidly executed.

« Successful development of this novel control system will provide a test bed capable of bridging
basic artificial intelligence research with systems integration.

« Relatively inexpensive rotor aerodynamic studies will be able to be conducted on hardware in
both the wind tunnel and flight completely independent of scale factor corrections.
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MEASURED STATES FOR DYNAMIC CONTROL

Quantity Symbol Sensor

Range Location X Differential GPS
Range Location Y "
Altitlldc Z Hh nee "
Altitude Z 15psia Transducer
Near Ground Altitude Z Polaroid Transducer
Pitch e Vertical Gyroscope
Roll ¢ " mn ne
Heading b 4 Magnetometer
Vertical Rate w Variometer

Pitch Rate q Reed Rate Sensor
Roll Rate p " " "
Yaw Rate r "
Fwd Acceleration u' 3 Axis Accelerometer
Side Acceleration v' " " "
Vertical Acceleration w' " "
Pitch Acceleration q' 3 Axis Accelerometer
Roll Acceleration p' " "
Yaw Acceleration r' " " "

Air Speed v of Bird

Velocity Fwd Angle a " " "
Velocity Side Angle B " "
Main Rotor Speed Q Rotary Encoder
Ground Contact Switches Ge (4) Micro Switches
Flapping Angle B 1 Blade Potentiometer

MEASURED STATES FOR ACTUATOR SERVO CONTROL

Quantity Symbol Sensor

Main Rotor Collective Qc LVDT and Encoder
Longitudinal Cyclic Al
Lateral Cyclic B1 o
Tail Rotor Collective Qur Rotary Potentiometer
Throttle Position S Rotary Potentiometer

MEASURED STATES FOR MODEL MONITORING

Quantity Symbol Sensor
Engine Speed NE Rotary Encoder
Engine Temperature TE Thermocouple
Ambient Temperature TAmb e "
Transmission Temp 1 TT1 e "
Transmission Temp 2 ™ n e "
Exhaust Temperature TEx o " i
Clutch Temperature TCl
Water Pressure Pwater 30 psig Transducer
Clutch Actuator Switches CAct (2) Micro Switches
Fuel Quantity F Float Potentiometer
Lubricant Oil Quantity L Float Potentiometer
Alternator Current I Ammeter
Alternator Voltage \Y% Voltmeter

TABLE 1:

Measured States For Control And Associated Sensors
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Abstract

A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating
tethered payloads in earth orbit. Due to the interaction between the Earth's magnetic field
and current pulsing through the tether, the tethered system may exhibit a circular transverse
oscillation referred to as the "skiprope" phenomenon. Effective damping of skiprope
motion depends on rapid and accurate detection of skiprope magnitude and phase. Because
of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations
during the skiprope motion. Since the satellite attitude motion has many other
perturbations, the relationship between the skiprope parameters and attitude time history is
very involved and non-linear. We propose a Space-Time Neural Network implementation
for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and
phase. Training and testing of the skiprope detection system will be performed using a
validated Orbital Operations Simulator and Space-Time Neural Network software
developed in the Software Technology Branch at NASA’s Lyndon B. Johnson Space
Center.

1.0 Introduction

NASA and the Italian Space Agency plan to fly the Tethered Satellite System (TSS) aboard
the Space Shuttle Atlantis in July, 1992. The mission, lasting approximately 40 hours, will
deploy a 500 kg satellite upward (away from the earth) [1,2] to a length of 20 km, perform
scientific experiments while on-station, and retrieve the satellite safely. Throughout the
deployment, experimentation, and retrieval, the satellite will remain attached to Atlantis by a
thin tether through which current passes, providing power to experiments on-board the
satellite. In addition to the scientific experiments on-board the satellite, the dynamics of the
tethered satellite will be studied. The TSS dynamics are complex and non-linear due to the
mass of the tethered system and the spring-like characteristics of the tether. A high fidelity
finite element model of the TSS, in which the tether is modelled as a series of beads
connected via springs (Fig. 1), realistically represents the dynamics of the TSS, including
the longitudinal, librational, and transverse circular oscillations referred to as "skiprope”
motion. Since the satellite is a 6 degree of freedom vehicle, it also properly exhibits the
satellite attitude oscillations. The skiprope motion is generally induced when current
pulsing through the tether interacts with the Earth's magnetic field [3, 4]. The center bead
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typically displaces the most from the center line. Thus, the “skiprope” can be viewed by
plotting a trajectory of the mid-point of the tether as it is retrieved slowly from the on-
station-2 phase in high fidelity simulation test cases. As shown in Fig. 2-a, the circular
skiprope motion is very simple when there are no perturbing forces. However, when the
current is partially flowing, or the current is pulsing with the satellite spin, the skiprope
motion is very non-linear as shown in Fig. 2-b and 2-c. Detection and control of the
various tether modes, including the “skiprope" effect, is essential for a successful mission.
Since there are no sensors that can directly provide a measure of skiprope oscillations,
indirect methods such as the Time Domain Skiprope Observer [4] and Frequency Domain
Skiprope Observer [3] are being developed for the TSS-1 mission. We are investigating a
Space-Time Neural Network (STNN) based skiprope observer.

The Software Technology Branch (STB) is evaluating technologies such as fuzzy logic [5],
neural networks [6,7], and genetic algorithms for possible application to various control
and decision making processes [8,9,10] for use in NASA's engineering environments.
This paper describes the feasibility of applying neural networks, in particular Space Time
Neural Network (STNN), to detect and possibly control the skiprope phenomenon using
training data from real-time man—in—the—loop simulations. The first phase, detection of
skiprope effect (in terms of magnitude and phase angle with respect to the tether line), is
vital for tether dynamics control. An STNN architecture has been developed which
provides the capability to correlate the time behavior and generate the appropriate output
parameters to identify and control skip rope behavior. In this paper, a brief description of
the STNN architecture is provided (section 2) along with a scenario of the TSS mission
with a focus on the 'skiprope’ effect (section 3). The STNN configuration used in our
initial test cases and preliminary results are described in section 4. Advantages of utilizing
STNN over conventional methods for the detection of skiprope parameters are discussed in
section 5. A summary including future activities is provided in section 6.

2.0 Space Time Neural Networks

The Space-Time Neural Network [11] is basically an extension to a standard
backpropagation network in which the single interconnection weight between two
processing elements is replaced with a number of Finite Impulse Response (FIR) filters.
The use of adaptable, adjustable filters as interconnection weights provides a distributed
temporal memory that facilitates the recognition of temporal sequences inherent in a
complex dynamic system such as the TSS. As shown in Fig. 3a, the inputs are processed

through the filters before they are summed at the summing junction.

Instead of a single synaptic weight with which the standard backpropagation neural
network represents the association between two individual processing elements, there are
now several weights representing not only spatial association, but also temporal
dependencies. In this case, the synaptic weights are the coefficients to adaptable digital
filters:

N M
y(n)y= D bix(n-k)+ Y, amy(n-m)
k=0 m=1 $Y)

Here the x and y sequences are the input and output of the filter and the a's and by 's are
the coefficients of the filter.
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Figure 3 a.... A pictorial representation of the Space-Time processing element.
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Figure 3b - A depiction of a STNN architecture showing the
distribution of complex signals in the input space.
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A space-time neural network includes at least two layers of filter elements fully
interconnected and buffered by sigmoid transfer nodes at the intermediate and output
layers. A sigmoid transfer function is not used at the input. Forward propagation involves
presenting a separate sequence dependent vector to each input, and propagating those
signals throughout the intermediate layers until the signal reaches the output processing
elements. In adjusting the weighting structure to minimize the error for static networks,
such as the standard backpropagation, the solution is straightforward. However, adjusting
the weighting structure in a recurrent network is more complex because not only must
present contributions be accounted for but contributions from past history must also be
considered. Therefore, the problem is that of specifying the appropriate error signal at each
time and thereby the appropriate weight adjustment of each coefficient governing past
histories to influence the present set of responses. A detailed discussion of the algorithm
can be found in the provided reference [11]. For the tether skiprope detection, the
parameters like satellite spin in terms of roll, pitch and yaw body rates, angles which are
derived from these rates, and length and tension will be input, while, the skiprope
magnitude and phase will be the output of the net as shown in Fig. 3b.

3.0 Tether Skiprope Phenomenon in Space Operations

The TSS mission is divided into five phases: Deployment, On-station 1 (OST1), Retrieval
to a 2.4 km. length, On-station 2 (OST2), and Final Retrieval. The tether motion exhibits
longitudinal as well as librational modes as shown in Fig. 1 due to the interaction between
gravity gradient forces and spring like characteristics of the tether. These natural modes are
damped by controlling the deployed length and length rate using the reel motor drive. A
conventional controller is baselined to utilize the sensed length and length rate
measurements from sensors. Performance of this baseline controller is adequate in
controlling these modes during all phases.

During the OST1 phase, scientific experiments planned include pulsing large electric
currents through the conducting tether. Because of interaction between the Earth’s
geomagnetic field and the pulsing current, transverse circular oscillations known as the
'skiprope’ effect as shown in Fig.2 are induced in the tether motion. Simulation results
with a 19 bead model of the tether showed the skiprope magnitude between 20 and 70
meters at 20 km. tether length during the OST1 phase of the mission. The skiprope motion
is slightly elliptical, i.e. asymmetric around the axis defined by orbiter-satellite line and thus
the determination of phase angle becomes involved. To visualize the skiprope motion, we
have plotted the z-y motion of the central bead as shown in Fig. 2-a. This motion is the
departure from the line that connects the satellite and orbiter. The skiprope motion is very
regular for a simple case with no satellite spin, and no current pulsing. When the satellite
has spinning motion and the scientific experiments pulse the current through the tether, the
skiprope motion is very non-linear as shown in Fig. 2-c. Various combinations of current
flow and satellite spin can result in a motion similar to Fig. 2-b. For our initial study, we
have utilized the skiprope motion from a simple case. In later test we progressed to more
complicated skiprope motions.

Simulation results have shown that the librational amplitude increases about 6 times if there
is a skiprope motion present during the retrieval. If librational amplitude is above a critical
value, then, the librational oscillations must be damped to a safe value using the Orbiter
pitch jets before any further retrieval can be performed. The skiprope amplitude remains
between 10-20 meters during the OST2 phase. If the skiprope motion is not properly
damped at 2.4 km. then two issues arise during the final retrieval: 1) The satellite pendulus
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motion increases significantly (about 6 degrees per meter of skiprope amplitude) such that
the attitude control for the satellite fails. 2) The departure angle of the tether from the boom
tip may go beyond 60 degrees, thus causing concerns about the tether hitting the Orbiter tail
and getting tangled. This may result in a mission failure due to a situation known as "wrap-
around" where the safety of the crew and the orbiter is questionable. Therefore the control
of skiprope magnitude is very important during the final retrieval phase.

The satellite attitude motion depends on the orbital environment (e.g. perturbations from
aero torques) as well as the tension resulting from tether modes. The longitudinal and
librational modes affect the satellite rates because of tension coupling at the attach point.
However, simulation results indicated that the skiprope effect induces highly characteristic
oscillations in the satellite attitude motion (Fig. 1). Due to the dynamical coupling, the
skiprope energy seems to be transferred to satellite attitude oscillations. Currently there is
no direct measurement available that can provide information regarding the skiprope
motion, particularly, the magnitude and phase of the skiprope. Since the satellite attitude
behavior is coupled with skiprope, it is possible to utilize the satellite rate (and angles
derived from them) information to detect the skiprope parameters.

Controlling the skiprope effect requires knowledge of the magnitude and phase angle of the
tether. The amount of pitch torque applied using the Orbiter pitch jets is proportional to the
skip rope magnitude. To decrease the skiprope magnitude, the pitch jets are used when the
phase angle is O or 180 degrees. A pitch pulse increases the skiprope magnitude, if the
phase is 90 or 270 degrees. Thus, the phase angle provides the timing of pitch pulse, while
the magnitude establishes the amount of pitch torque to be applied.

Performance of the Neural Network Skiprope Observer (NNSO) will be evaluated in terms
of the following top level requirements for the Time Domain Skiprope Observer (TDSO).

1.) Operate during all mission phases, where length < 1000 m.
2.) Operate during satellite spin.

3.) Operate during current flow.

4.) Operate during satellite spin and current flow.

In addition to these general requirements, the following goals should be met.

1.) During periods in which the skiprope motion is circular, and there exists no current
flow and no satellite spin, the observer must predict skiprope amplitude to within 10% of
actual amplitude or 5.0 m, whichever is greater, and predict phase to within 10 degrees

2.) During periods in which the skiprope is circular or non-circular, and there exists current
flow and satellite spin, and after 20 minutes settling time, the observer must predict
amplitude to within 20%, and phase to within 45 degrees.

3.) The observer must predict in-plane and out-of-plane libration to within 1 degree of
actual values.

4.0 STNN configurations and Test Results
To provide data for the STNN training and testing, we have logged data from a high
fidelity simulation of the TSS-1 mission, including the OST2 phase. The purpose of OST2

is to halt the retrieval phase at 2.4 kilometers so that skiprope motions and librational
oscillations can be reduced to safe magnitudes to allow for final retrieval. Several different
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simulation runs were used to gather data for STNN training. The simulation runs are
consistent with the requirement that the skiprope observer must be capable of performing
during various combinations of current flow through the tether, and satellite spin. For
example, our first set of test cases are based on data from a simulation in which there is no
current flow or satellite spin which results in a circular skiprope motion. Another
simulation represents the case in which current flows through the tether only during the on-
station phase, and the satellite is in yaw-hold. A third simulation represents continuous
current flow, and satellite spin at 4.2 degrees/second. These three scenarios will form the
basis for STNN skiprope observer training and testing, and are consistent with simulations
used for testing the Time-Domain Skiprope Observer (TDSO)[4] which will be used for
skiprope recognition during TSS-1.

In each simulation run, we have logged 3,000 to 4,000 data points just prior to and during
OST?2 phase for neural network training. In our initial test cases we use roll rate, pitch rate,
roll and pitch position, tether tension, and tether length as inputs to the neural network.
Based on these inputs, we hope to find a neural network configuration which will predict
skiprope amplitude and phase. The assumption that satellite rates are coupled with
skiprope motion is consistent with the baseline Time Domain Skiprope Observer (TDSO)
which will be utilized during the TSS-1 mission. The following sections discuss the results
of four major test cases.

4.1 Identifying Skiprope Amplitude

To determine the feasibility of using STNN for skiprope detection, we initially trained on
data from a simple, circular skiprope case with no satellite spin or current flow through the
tether, which is consistent with the first requirement listed above. The data used for training
and testing in preliminary tests reflect a near circular skiprope , as depicted in Fig. 2-a.
Future test cases will concentrate on more difficult skiprope conditions, such as that
pictured in Fig. 2-c, which results from satellite spin and current flow through the tether.
The test cases described in this section attempt to evaluate the STNN's ability to identify
skiprope amplitude only. We will present the results of test cases involving other skiprope
parameters in subsequent sections.

The STNN configuration used in our initial test cases has six inputs, one output, 30 hidden
units and 40 zeros for the filters. The choice of the inputs is based on the coupling between
the satellite attitude and rates. We have used the roll and pitch angles, roll and pitch rates,
tension and deployed length as input to the STNN, and skiprope amplitude as the output.
Yaw angles and rates were not used on the inputs in this case because the satellite remains
in yaw hold throughout the simulation. To determine if the network is capable of learning
the training data, we first train and test on all available (4,001 in this run) I/O pairs. Fig. 4-
a shows that the STNN reaches a MAX error of 0.07, and an RMS error of 0.02 within
150 cycles of training. As shown in Fig. 4-b, the STNN predicts skiprope amplitude to
within about 3 meters of actual amplitude. For clarity, we have shown STNN performance
on I/O pairs 1501-2000. This is fairly representative of the STNN's performance on all
4,001 I/O pairs.

In the next test case, in order to evaluate the network's ability to recognize previously
unseen data based on limited exposure to training data, we train on only the first and last
200 I/O pairs, and test on the middle 3,600. Neural network practitioners typically test a
network by training until the network reaches some minimum error, and then presenting the
test data to the network. In our tests we alternate training and testing throughout a number
of training cycles so we can see the correlation between training cycles and test errors. For
this reason, our test error plots indicate errors over several presentations of the test data,
rather a single presentation. Fig. 4-c shows the errors produced upon presentation of the
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test data. The lowest errors were reached after 240 cycles when the maximum error reached
0.2 and the RMS error reached 0.02. Fig. 4-d shows the STNN prediction of skiprope
amplitude compared to actual amplitude. Again, performance seems to be within 2-to-3
meters of actual skiprope amplitude. The previous two test cases indicate that the STNN
identifies circular skiprope motion within the required 5.0 meters or 10% of actual
amplitude, as specified in the Skiprope Observer requirements.

Next, we train and test the STNN on skiprope data corresponding to the motion shown in
Fig. 2-b. This motion results from current flowing through the tether during the On-
Station-1 portion of the mission. In this test case, we use roll, pitch, and yaw rates, roll,
pitch, and yaw angles, sensed length, and sensed tension as inputs, and skiprope amplitude
as output. Fig. 4-e shows the MAX and RMS errors reached during training and testing on
all 3501 I/O pairs. After 360 cycles, the STNN reached a MAX error of 0.17, and an RMS
error of 0.04. Fig. 4-f shows that the STNN seems to have learned the training data after
360 cycles of training.

In our next experiment, we split the data into a training set and a test set by training on the
first and last 200 I/O pairs and testing on the middle 2000. Fig. 4-g shows that the errors
decrease for only about 50 cycles, and then begin to increase. Fig. 4-h shows that
performance after 100 cycles of training is not as good as what was achieved above on
circular skiprope data.

In our next experiment, we train and test on data corresponding to the skiprope motion
depicted in figure 2-c. This very complex motion results from combinations of current flow
and satellite spin throughout satellite deployment and retrieval. In this experiment, we train
and test on all I/O pairs (3,502). Fig. 4-1 shows that after 40 cycles, the network reached a
MAX error of 0.29, and RMS error of 0.05. Fig. 4-j reveals that the network identifies the
skiprope amplitude to within 2 meters. Again, for clarity, we only show a portion of the
mapping of the entire data set. A plot of the entire data set reveals that the network can be
off by as much as 6 meters in some areas.

4.2 Identifying Phase

In this section we examine test cases in which the STNN has been asked to identify
skiprope phase in addition to amplitude. As in the previous section, we start with a circular
skiprope motion and progress to more difficult situations. In our first experiment, we use
roll and pitch rates, roll and pitch angles, sensed length, and sensed tension as input, and
produce amplitude and phase on the outputs. In addition to the 6 inputs, and two outputs,
the network consists of thirty hidden units, and forty filters between input and hidden, and
hidden and output layers. Fig. 5-a shows the MAX and RMS errors achieved as the
network trained on the first and last 200 I/O pairs, and tested on the middle 3,600 I/O pairs
from the full set of 4,001 I/O pairs. Fig. 5-b shows a portion of the network's estimation
of skiprope amplitude. The performance of the network is generally within 6 meters over
the entire test data set. Fig. 5-c shows that the network identifies skiprope phase to within
50 degrees, which is not within the required 10 degrees.

Subsequent efforts to identify skiprope phase also fall short of the requirements. Fig. 5-d
shows the training errors resulting from an attempt to train on data corresponding to a
skiprope motion resulting from satellite spin and current flow through the tether. In this test
case, the network trained and tested on a complete set of 3,501 I/O pairs. Although Fig. 5-¢
shows that the network identifies amplitude to within 4 meters, the network may incorrectly
identify amplitude by as much as 8 meters. Fig. 5-f shows that the network performs
poorly in identifying skiprope phase.

142



NNLS e jabael —

00°000¢

0070061 00°008T 00°00LT 00°009T

1 1 L 1 L 1 ) 1 1 1 1 1

00°00ST

TTITYTTITIIS(ITES

TTTY[ISTIT T iged

TITTITITIs et lllll

00°6¢
06°6¢
00°0F
05" 0V
00" 1V
061V
00°2V
06° 2%
007tV
06°¢elb
00° 7P
0s°vb
00°S¥P
0G°S?P
00°9%

-andano NNIS Sa 39bxel ‘p-v "BTd

143



SIWYE s XEW —

00°0SP 00°00% 00°0SE 00°00€ 00°0S¢C 00°00Z 00°0ST 00°00T 00°0S 0070

| U . | 11 1.1 U W I | (RS W T B S T W e | [ U U | [ | [N T U B D T B W O0.0

S0°0
01°0
G170
0Z°0
sZ°0
0€°0
se’0
0%°0
S¥*0
05°0
S6°0
09°0
G9°0

1 a R AL RS LAARS LARA

SRR LA LRI LALLM 1208 RALA N ALARE LALA)

*3013% SWH SA XYW ‘®-% *bta

144




NNLS e j9bael —

00°008T 00°00L1 00°0091

1 1 1 1 1 [ 1 1 1 1 1

LLAA!

LRAR

LA

LA

LA

LA

0070061

00°9
00°L
00°8
00°6
00°0T
00" 1T
00°¢1
00°¢T
00° %1
00761
00791

00°LT

qnd3no NNIS SA 19Bbael ‘I-p bTd

145




SWY wew XBW —

00°00%

A 1 1

00°00¢

00°00¢

00° 00T

LERLILIR]

J

Ty LRI AL LRI ll‘:

=

f s\

AlA N

A

YV

LR LI

1TV

LELID)

01°0

g1°0

0Z°0

TRV

0€°0

GE'0

ov°0

Sv°0

06°0

-1013F SWY SA XYW ‘B-p "HBTd

146




NNIS =  30PIRL —

00°000¢

00°006T

L 1 1 1 1 i 1 | 1 1 1

00°0081 00°00LT 00:0091

00°00ST

LA RA!

LILELA

T

Tery

L II1II|III

00°9
00°L
008
00°6
00701
00°T1
00°21
00°¢tTl
00°v1
00761
0091

00°LT

-andano NNIS sa 1ebxel ‘u-v "BTa

147



00°00T

L 4 1 [l

00°08

e

LI

LBALR]

LILIELAL

LR

LB LI

LI

LILILE]

v

0170

s1°0

020

§Z'0

0€°0

ce’ 0

0%°0

S¥ 0

06°0

70239 SWY SA XYW ‘T-v "HB1d

148




NNIS wee 196101 —

0070002

00°006T

0070081 00°00LT 00°0091

i 3 1 1 1

00°00ST

e

/ " \

1III|I

-

LELEL lllllllll'lll1lil|l|ll

00°¢

00"V

00°9

00°8

00°0T

00°21

00° ¥l

00791

00°81

00702

-andano NNIS Ssa 39bael ‘(-¥ ‘bt1a

149



SWY ww XBHW —

00°0S¥ 00°00F 00°0SE 00°00€ 00°0SZ 00°00Z 00°0ST 00°00T 00°0S 00°0

L1 1 1 bl 11 1 1 L v g 1 1 1 1 3 L1 11 et il -pn_n.-._mo.o

0T1°0

1y

S1°0

LA

0¢°0

S¢°0

0€°0

LARLS LARARAAAA)

SE°0

ov°0

Sv°0

06°0
§S°0
09°0
G9°0

AR LA RLR AL AR ARIRARRIRLEL

*I01I7 SWY SA XYW ‘e-G "bTa

150




NNIS e 19bael —

0S° 0V

" , 00" T¥

E 05" b
00" 2V
05" 2¥
. 00° €Y
A , 05" €V
NAVE VBT
05" b¥
00°S¥
05" GV
00°9¥

0070002 0070061 000081 00°00LT 00°009T 00°00ST
e L L C o L oo L o00°eE
E_ 057 6¢
w 00° 0¥

—_—
>
188 81000 RALA)

-opn3TTduwy NNIS SA epnitrduy qebael ‘q-g "b1d

151




NNIS e j9bael —

00°000¢ 00°006T 0070081 00°00LT 00°0091 00°00S1

1 11 1 1 .>. 1 I 2 1 1 1 00°0
\\ 00°00¢
\ 00°06¢
ﬁ 00°00¢€
: 00°06¢

00° 00V

-
=

1 L A [l

1

00°0S

00°00T

00°0GT1

T10 0

TV 0 1

LSS/

LIl

-aseyd NNIS sa @seyd 3iebrel ‘O-G ‘b1a

152




00°00S

00°00¢ 00°00¢

L I L 1 1 [l L | I

00°0
L0170

g1°0

0Z°0

§Z°0

0e"0

LELILER]

ge"o0

ov-0

TiI01

Tilg,
ietetyy,

“ogeset®

G¥°0

06°0

10119 SWd SA XWA ‘P-G D14

153



NNLS s 19bael —

1uunuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuunuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuunuuuuuuﬂlllll

00°000¢

1

00°0061 00°008t1 00°00L1 00700971

1 ] 1 1 1 1 1 L 1 [l 1 1 i

0070061

1

, LA

00°¢

Tret

00°0T

lllll'lll

00°2T

00° %1

00°91

00781

00°0¢

-opn3TTdUY NNIS SA 9pn3TTdwy jebae] ‘9-G "HTJ

154



NNIS s 39bae] —

0070002

00°0061

0070081 00°00LT

1 1 1 | 1 1 [ [ 1 1 ]

0070091

00°00ST

L

TeEv

00°0

00°0¢

007001

lllllll‘l

00°06T

T8 1

00°00¢

LILELIR!

00°05¢

00°00¢

LI

T

00° 0S¢

00700V

-aseyq NNLS sa oseyd 1i9biel ‘-G ‘b1a

155



4.3 Identifying X, Y Components of Skiprope Amplitude

The biggest challenge to network training so far has been to learn the phase mapping.
Several different network configurations have yielded good results in predicting skiprope
amplitude, but we have not been as lucky with skiprope phase. Since the ultimate goal is to
provide the crew with a reasonable estimate of skiprope amplitude and phase to support the
yaw maneuver, the skiprope observer should learn not only to identify but also to predict
amplitude and phase based on the available inputs. For predicting the skiprope motion, one
can use the past estimates of the amplitude and phase and thus the network will have a
feedback of its output as shown in Fig. 6-a. In other words, the characteristics of the
skiprope motion can be identified based on several parameters that include the past x and y
coordinates of the mid-point of the tether during skiprope motion. '

The networks in the following test cases use satellite rates (roll, pitch, and yaw), sensed
tension, and current x and y coordinates of the mid-point of the tether as inputs, and
produce the next x and y position, x(t + 1), y(t + 1). Fig. 6-b shows the MAX and RMS
errors achieved while training and testing on all 3,500 I/O pairs. As Fig. 6-b shows, the
network reaches a low RMS error of 0.01, and a low MAX error of 0.05 within 500
training cycles. Figs. 6-c, and 6-d show that the network produces an accurate estimation
of x and y components of the skiprope motion. Next, we divide the data into a training set
and a test set and test for network generalization. Fig. 6-¢ shows the MAX and RMS test
errors achieved after training on the first and last 400 I/O pairs, and testing on the middle
2,700 I/O pairs. Figs. 6-f and 6-g show that the network performed well on the test set. In
reality, it may be impractical to use current x and y on the inputs to the network, so in
subsequent test cases, we have used only satellite rates (roll, pitch, and yaw), satellite
angles (roll, pitch, and yaw), sensed length, and sensed tension as inputs and trained the
network to output x and y.

4.4 Combined Test Cases

So far we have focussed our efforts on training an STNN based skiprope observer to
perform based on inputs representing one type of skiprope motion at a time. However, in
order to place a neural network based skiprope observer in an operational environment, we
must ensure that the network can be trained on data representing many different scenarios
and perform adequately on conditions that it may have never seen. In the test cases
described above we divided data sets into training sets and test sets to test for
generalization. However, these experiments only tested the networks ability to generalize
on data that was consistent with the training data. In the following test case, we train on
part of the data from a simulation containing current flow and satellite spin, and data from a
simulation with partial current flow and no satellite spin. The network is then tested on data
that it has not seen from a simulation containing satellite spin and current flow. This
method of testing ensures that the test data is consistent with some, but not all of the
training data. As Fig. 7-a shows, the network reaches a low test set MAX error of 0.48 and
RMS error of 0.12 after 150 cycles. Figs. 7-b and 7-c show that the network performs
poorly in identifying skiprope X and Y components in this experiment.

5.0 Advantages and disadvantages of STNN over other methods
The primary skiprope detection system developed for the TSS-1 flight uses a ground-based
Kalman filter coupled with a one-bead finite element model of the tethered system. The

filter estimates amplitude, phase, and frequency of the skiprope motion based on the
downlinked telemetry data. The simulation uses the downlinked satellite rate gyro data to
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compare its predictions based on one bead model. The filter's gains are adjusted until the
difference between simulated and actual rate gyro data is minimized. At this time the filter
can be used to provide the crew with an estimation of skiprope motion parameters so that
appropriate orbital maneuvers can be carried out to damp the skiprope motion.

The time-domain Kalman filter technique runs at real time on an HP 9000 computer and is
expected to run faster than real time on the "back-room" computers at the Johnson Space
Center. However, depending on the tether length, skiprope frequency, and actual phase
angle during the mission, this single bead simulation could take from several seconds to
several minutes to reasonably estimate the skiprope motion. During various phases of the
mission, including satellite spin and current pulsing activities, the filter requires the
maximum amount of time synchronized data to arrive at a prediction. In addition, the filter
uses only a one bead simulation of the tethered system, and therefore, the predictions may
not be as accurate as a multi bead simulation. Verification of the time-domain skiprope
observer must be performed on Multi Purpose Support Room (MPSR) hardware to verify
that the observer will perform within the required limits. As of this writing, the overall
level of confidence that the time-domain skiprope observer will perform adequately in real
time situations is not high. However, the technique is very well-known, well-studied and
frequently used in space operations and thus there are no questions about the validity of the
technique.

A frequency based method for skiprope observation has also been studied. This technique
requires three full cycles, or up to 1500 seconds, of downlinked data that relates skiprope
activity to arrive at a prediction. This method works well during steady state conditions but
is less effective with perturbations such as satellite spinning or current pulsing. The
frequency based method is also susceptible to data dropout and rate gyro saturation. The
frequency domain filter is designed specifically to support the yaw maneuver scheduled
during On-station 2 and does not perform well at On-station1. Results indicate that the
frequency domain filter performs well for a 50 m skiprope, but not for skiprope in the 10 m
to 15 m range. Again, the method is well-known, well-studied and has a history of
utilization in many applications.

The STNN method that we have proposed offers the advantage that it is trained using a
high fidelity simulation where from 10 to 50 beads are modelled, and the orbital
environment is also modelled with high fidelity and accuracy. In addition, the network can
be trained to account for a changing orbital environment due to crew inputs. The Orbital
Operations Simulator (OOS) used to evaluate the STNN skiprope observer is also used for
actual crew training during tethered satellite deployment and retrieval. Crew inputs to
maintain attitude and damp skiprope motion may be logged and included in STNN training
data. STNN is based on the promise that it can be trained for nonlinear behavior and it will
perform proper interpolation for this non-linearity. Our objective is to demonstrate that the
STNN skiprope observer can accurately predict skiprope parameters more accurately and
with fewer data cycles than either the time-domain or frequency-domain methods.

Disadvantages of STNN based skiprope observer are many, especially in light of well-
known methods. First of all, this a new method, and therefore, is not well-known. It has
not been applied earlier in any other application and therefore it does not have a history like
frequency domain method. There is no rigorous mathematical proof that neural networks
map one set of parameters to another set of parameters uniquely. Thus, the method may not
provide a confidence required for space operations. Further, the verification and validation
of this method has to be carried out in detail. This task will be resource consuming and may
prohibit the application of the method to real operations.
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6.0 Future Work

Since the time-domain method has been baselined as the skiprope observer for TSS-1, the
STNN skiprope observer will probably not be used operationally during the mission.
However, we plan to utilize the STL's capability to receive telemetry data to test the STNN
skiprope observer during the TSS-1 mission to evaluate it's performance. If the STNN
observer meets the requirements, then it may be used on follow-up missions that are
currently being proposed.

We plan to generate training data sets using the OOS that has a very high fidelity bead
model for the tether dynamics and high fidelity space shuttle and Italian Satellite models
with respective control systems. We can simulate up to S0 beads for the tether behavior and
generate required data for the satellite attitude and skiprope parameters. Training and test
data sets have already been prepared using the OST2 segment simulation.

Our next step is to configure STNN and train it using the data set. Once the training is
completed, we will test the performance of the STNN using part of the data. Based on the
results we will enhance the STNN configuration and perform retraining if necessary. Using
the TSS-1 mission profile, we will generate the skip rope data for the On station 1, retrieval
up to 2.4 km. and Onstation-2 and final retrieval phases so that we can train the STNN for
full retrieval phase. We will test the performance of STNN using simulated telemetry data
(while connecting the simulation with STNN ) and see if the STNN can perform real time.
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In our previous work on the GARIC architecture, we have shown that the system
can start with the surface structure of the knowledge base (i.e., the linguistic
expression of the rules) and learn the deep structure (i.e., the fuzzy membership
functions of the labels used in the rules) by using reinforcement learning.
Assuming the surface structure, GARIC refines the fuzzy membership functions
used in the consequents of the rules using a gradient descent procedure. This
hybrid fuzzy logic and reinforcement learning approach can leam to balance a
cart-pole system and to backup a truck to its docking location after a few trials.

In this paper, we discuss how to do structure identification using reinforcement
learning in fuzzy inference systems. This involves identifying both surface as
well as deep structure of the knowledge base. The term set of fuzzy linguistic
labels used in describing the values of each control variable must be derived.
In this process, splitting a label refers to creating new labels which are more
granular than the original label and merging two labels creates a more general
label. Splitting and merging of labels directly transform the structure of the
action selection network used in GARIC by increasing or decreasing the
number of hidden layer nodes.

After each splitting or merging of a label, the learning resumes by refining the
fuzzy membership functions used in the consequent of the rules. Depending on
the performance of the learning algorithm after a change in the structure of the
system, our algorithm selects the next node(s) to be split or to be merged and
the process is then iterated. The proposed method provides a more flexible
structure for encoding the prior control knowledge where both the structure of
the rules and the fuzzy membership functions used in the labels can be learned
automatically.
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Abstract: In this paper we discuss approximations between
neural nets, fuzzy expert systems, fuzzy controllers, and con-
tinuous processes.

1. Introduction.

In this section we will first present the definition of a continuous process
(system). The following sections discuss neural networks, fuzzy expert systems,
the fuzzy controller, and approximations between all four objects. The last section
has a brief summary and suggestions for future research.

A system (process) S has m inputs z; and n outputs y;. Letz = (zy,- -+, 2,,)
and y = (y1,---,¥a). The inputs are all bounded so assume that each input is
scaled to belong to [0, 1]. This means that S will be a mapping from [0, 1]™ into
R™ written as y = S(z). We assume that S is continuous and let S denote the
set of all continuous mappings from [0,1]™ into R®. By a continuous process
(system) we will mean any S in S.

2. Neural Nets.

The neural network will be a layered, feedforward, net with m input neurons
and n output neurons. The net can have any number of hidden layers. Input to
the net will be a vector z = (z1,---,2m,), z; in [0, 1] all £, and the output is also
avector y = (y;,-- - yn). We assume that the activation function! within a neuron
is continuous. Therefore, the neural net is a continuous mapping from input z in
[0,1]™ to output y in R™ denoted as y = F(z). We note that F belongs to S.

The following result comes from recent publications in the neural network
literature ([1], [9], [14], [15], [16]) where it was shown that multilayer feedforward
nets are universal approximators. Given S in S and € > 0 there is a neural net
F so that [S(2) — F(a)] < € for all = in [0,1]™, see [8).
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3. Fuzzy Expert Systems.
The fuzzy expert system will contain one block of rules written as?
Ri : If X = A;, then Z = C;,

1<i < N. A; and C; represent fuzzy subsets of the real numbers. If A denotes
any fuzzy subset of the reals, then A(z) is its membership function evaluated at z.

Let X = A' be the input to the fuzzy expert system. The rules are
evaluated using some method of approximate reasoning (fuzzy logic) producing
final conclusion (output) Z = C'. Let A denote the type of approximate reasoning
employed by the fuzzy expert system.

We now discretize all the fuzzy sets. Let zo, - - -, 5, be numbers covering the
support of all the A; and A’ and let 2, - -, z)y, be numbers covering the support
of all the C; and C'. Let z = (A'(zg),---,A'(zn,)) in [0,1)" if m = N1+ 1
and let y = (C'(20),--+,C'(zn,)) in R™ if n = Na + 1. Then z is the input
to the fuzzy expert system and y is its output. So, the fuzzy expert system is a
mapping from z in [0,1]™ to y in R™® which we write as y = G(z). We assume
that we have selected an 4 so that this mapping is continuous. Hence, G also
belongs to S.

The first papers discussing the approximation of a neural net by a fuzzy expert
system were ([7], [10]) but the main result was proven in [8]. Given a neural net
F and € > 0 there exists a fuzzy expert system (block of rules and A) so that
|F(z) — G(z)] < eforall z in [0,1]™. In [8] we found only one .4 that will do the
job. From the second section we may conclude that given any S in § and € > 0
there is a fuzzy expert system G so that [S(z) — G(z)| < € for all z in [0, 1}™.

4. Fuzzy Controller.

- It will be easier now if we restrict m = 2 and n = 1, however we can
generalize to other values of m and n. Let us assume that the fuzzy controller
has only two inputs error = e and change in error = Ae, and only one defuzzified
output §. We assume that the inputs have been scaled to lie in [0, 1]. The fuzzy
control rules are of the form

R :If Eror = A; and Change in Error = B,
then Control = C}.
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Once a method of evaluating the rules has been chosen and a procedure for
defuzzification is adopted, the fuzzy controller is a mapping H from (e,Ae) in
[0, 1]2 to 6 in R. We assume that the internal operations within the controller are
continuous so that H belongs t0 S form = 2, n = 1. In general, we can have
H in S for any m and n.

Different types of fuzzy controllers are discussed in ({21, 3D. In [5] and
[6] we identified two types of fuzzy controller, now labeled 7; and T, that
can approximate any S in S to any degree of accuracy. A different type of
approximation result of S in S, by fuzzy controllers, is presented in [4]. Let this
third type of controller be called 73. So, given Sin S3, ¢ > 0 and i in {1,2,3},
there is a fuzzy controller H in 7; so that IS(z) — H(z)| < € for all z in [0, 1]°.
Hence, from the previous two sections, we may approximate fuzzy expert systems
and neural nets, to any degree of accuracy, by fuzzy controllers.

5. Conclusions.

The results discussed in this paper may be summarized as follows: given any
two objects E| and E; from the set {continuous process, neural net, fuzzy expert
system, fuzzy controller}, we can use an E; to approximate an E; to any degree of
accuracy. Assumptions needed to obtain this result are discussed within the paper.

Future research is needed to extend these results in many directions including:
(1) fuzzy neural nets ([11], [12]); (2) neural nets that employ t-norms and ¢-
conorms to process information [13]; (3) finding more fuzzy expert systems (A4’s)
that can be used to approximate neural nets; and (4) discovering other types of
fuzzy controllers that approximate continuous systems.
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7. Notes

1 In general, we assume that the mapping from input to output, for any neuron
in the net, is a continuous operation.

2 We could consider more complicated rules and/or more blocks of rules.

3m = 2 and n = 1. Can generalize.
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Abstract. Traditional control theory is well-developed mainly for linear control situations. In
non-linear cases there is no general method of generating a good control, so we have to rely on the
ability of the experts (operators) to control them. If we want to automate their control, we must
acquire their knowledge and translate it into a precise control strategy.

The experts’ knowledge is usually represented in non-numeric terms, namely, in terms of
uncertain statements of the type “if the obstacle is straight ahead, the distance to it is small, and
the velocity of the car is medium, press the brakes hard”. Fuzzy control is a methodology that
translates such statements into precise formulas for control. The necessary first step of this strategy
consists of assigning membership functions to all the terms that the expert uses in his rules (in our
sample phrase these words are “small”, “medium”, and “hard”).

The appropriate choice of a membership function can drastically improve the quality of a
fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced
endpoints. Because of that, many software packages for fuzzy control are based on this choice
of membership functions. This choice is not very efficient in more complicated cases. Therefore,
methods have been developed that use neural networks or genetic algorithms to “tune” membership
functions. But this tuning takes lots of time (for example, several thousands iterations are typical
for neural networks).

In some cases there are evident physical reasons why equally spaced domains do not work:
e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then
negative values (that are generated by equal spacing) simply make no sense. In this case it sounds
reasonable to choose another scale ' = f(u) to represent u, so that equal spacing will work fine
for u'.

In the present paper we formulate the problem of finding the best rescaling function, solve
this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy
control can be as good as the best state-of-art traditional non-linear controls.

1. INTRODUCTION TO THE PROBLEM

Traditional control theory is not always applicable, so we have to use fuzzy control.
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases,
although for many cases there are good recipes, there is still no general method of generating a
good control (see, e.g., [M91]).

Therefore, we have to rely on the ability of the experts (operators) to control these systems.
If we want to automate their control, we must acquire transform their knowledge it into a precise
control strategy.

The experts’ knowledge is usually represented in non-numeric terms. namely, in terms of
uncertain statements of the type “if the obstacle is straight ahead. the distance to it is small. and
the velocity of the car is medium, press the brakes hard”. Fuzzy control is a methodology that
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translates such statements into precise formulas for control. Fuzzy control was started by L. Zadeh
and E. H. Mamdani (271}, [CZ72], [273], [M74] in the framework of fuzzy set theory [Z65]. For the
current state of fuzzy control the reader is referred to the surveys [S85], [L90] and [B91].

Choice of membership functions: an important first step of fuzzy control methodology.
The necessary first step of this methodology consists of assigning membership functions to all the
terms that the expert uses in his rules (in our sample phrase these words are “small”, “medium”,
and “hard”). The appropriate choice of a membership function can drastically improve the quality
of a fuzzy control.

Simplest case: equally spaced functions. In the simplest cases, we can take the functions
whose domains have equally spaced endpoints: e.g., we can fix a neutral value N (usually, N = 0),
and a number A, and take “negligible” with the domain [N — A, N + A], “small positive” with the
domain [N, N + 2A], “medium positive” with the domain [N + A, N 4 3A], etc. Correspondingly,
“small negative has the domain [N — 2A, N], “medium negative corresponds to the domain [N —
3A, N — A, etc. If an interval [a — A, a+ A] is given, then we can take a membership function u(z)
that is equal to 0 outside this interval, equal to 1 for z = a, and is linear on the intervals [a - A]
and [a,a + A]. Many software packages for fuzzy control are based on this choice of membership
functions.

What is usually done in more complicated cases. This choice of equally spaced functions is
not always very efficient in more complicated cases. Therefore, methods have been developed that
use neural networks or genetic algorithms to “tune” membership functions (see, e.g., numerous
papers in [RSW92]). But this tuning takes lots of time (for example, several thousands iterations
are typical for neural networks).

The idea of a rescaling. In some cases there are evident physical reasons why equally spaced
domains do not work. For example, if the control variable u is always positive (i.e., if we control
the flow of some substance into a reactor), then negative values (that will be eventually generated
by an equal spacing method) simply make no sense.

A natural idea is to choose another scale ' = f(u) to represent the control variable u, so
that equal spacing will work fine for u'. This idea is in good accordance with our common-sense
description of physical processes. For example, from the physical viewpoint it is quite possible to
describe the strength of an earthquake by its energy, but, when we talk about its consequences,
it is much more convenient to use a logarithmic scale (called Richter scale). Non-linear scales are
used to describe amplifiers and noise (decibels, in electrical engineering), to describe hardness of
different minerals in geosciences, etc. (for a general survey of different scales and rescalings see
[SKLT71, 89)).

In our case we want to design such a scale that for f(u) the equally spaced endpoints N — kA
and N + kA would make sense for all integers k. Therefore, we are looking for a function f(uw),
whose domain is the set of all positive values, and whose range is all possible real numbers. In
mathematical notations, f must map (0,00) onto (—00,00). There are lots of such functions, and
evidently not all of them will improve the control. So we arrive at the following problem:

The main problem. What rescaling to choose?

What we are planning to do. We formulate the problem of choosing the best rescaling function
f(u) as a mathematical optimization problem, and then we solve this problem under some reason-
able optimality criteria. As a result, we get an optimal function f(u). We show that its application
to non-linear systems really improves fuzzy control.
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2. MOTIVATIONS OF THE PROPOSED MATHEMATICAL DEFINITIONS

Why is this problem difficult? We waat to find a scaling function f(u) that is the best in some
reasonable sense, that is, for which some characteristic 7 attains the value that corresponds to the
best performance of the resulting fuzzy control. As examples of such characteristics, we can take
an average running time of an algorithm, or some characteristics of smoothness or stability of the
resulting control, etc. The problem is that even for the simplest linear plants (controlled systems), -
we do not know how to compute any of these possible characteristics. How can we find f(u) for
which I(f(u)) is optimal if we cannot compute I(f(u)) even for a single function f(u)? There does
not seem to be a likely answer.

However, we will show that this problem is solvable (and give the solution).

The basic idea for solving these kind of problems is described in [K90J; for its application to
fuzzy logic see [KK90], to neural networks see [KQ91], to genetic algorithms see [KQF92], and to
different problems of fuzzy control see [KQLFLKBR92].

We must choose a family of functions, not a single function. Suppose that for some physical
quantity u (e.g., for z coordinate) equal spacing leads to a reasonably good control strategy.

In order to get numerical values of z coordinate, we must fix some starting point and some
measuring unit (e.g., a meter). In principle we could as well choose feet to describe length. Then
the numerical values of all the coordinates will be different (z meters are equal to Az feet, where
A is the number of feet in 1 meter). However, the intervals that were equally spaced when we used
one unit, are still equally spaced, if we use another unit to measure this coordinate.

In a similar way, we could choose a different starting point for the z coordinate. If we take as
a starting point a point that had a coordinate zo (so that now its coordinate is 0), then all other
coordinates will be shifted: z — z — z¢. Again intervals that were equal in the old scale (z) will
still be equal if we measure then in the new scale (z — z¢).

We can also change both the measuring unit and the starting point. This way we arrive at a
transformation z — Az + z,.

Summarizing: if z is a reasonable scale, in the sense that equally spaced membership functions
lead to a reasonably good control, then the same is true for any scale Az + zo. where A > 0,
and zg is any real number. The reason is that if we have a sequence of equally spaced intervals
[N + kA, N +(k+1)A), then these intervals will remain equally spaces after these linear rescalings
T — Az + zo: namely, these intervals will turn into intervals [N’ + kA’ N’ + (k + 1)A’], where
N'"= AN 4+ z¢ and A' = )\A.

Let us now consider a scale u, for which equal spacing does not work. Assume that u — f(u)
is a transformation, after which equal spacing becomes applicable. This means that if we use f(u)
as a new scale, then equal spacings work fine. But as we have just shown, for any A > 0 and z
equal spacing will also work fine for the scale Af(u) + zo.

Therefore, if f(u) is a function that transforms the initial scale into a scale. for which equal
spacing works fine, then for every A > 0 and zq the function f(u) = Af(u) + zo has the same
desired property.

This means that there is no way to pick one function f(u), because with any function Sflu),
the whole family of functions Af(u)+ z¢ has the same property. Therefore, desired functions form

176



a family {Af(u) + zo}r50,,- Hence, instead of choosing a single function, we must formulate a
problem of choosing a family.

Which family is the best? Among all such families, we want to choose the best one. In
formalizing what “the best” means, we follow the general idea outlined in [K90] and applied to
neural networks in [KQ91]. The criteria to choose may be computational simplicity, stability or
smoothness of the resulting control, etc. In mathematical optimization problems, numeric criteria
are most frequently used, where to every family we assign some value expressing its performance,
and choose a family for which this value is maximal. However, it is not necessary to restrict
ourselves to such numeric criteria only. For example, if we have several different families that lead
to the same average stability characteristics T', we can choose between them the one that leads to
the maximal smoothness characteristics P. In this case, the actual criterion that we use to compare
two families is not numeric, but more complicated: a family ®, is better than the family &, if and
only if either T(®,) < T(®;), or T(®;) = T(®;) and P(®;) < P(®;). A criterion can be even
more complicated. What a criterion must do is to allow us for every pair of families to tell whether
the first family is better with respect to this criterion (we’ll denote it by ®; < ®,), or the second is
better (81 < ®;) or these families have the same quality in the sense of this criterion (we’ll denote
it by Q] ~ @2)

The criterion for choosing the best family must be consistent. Of course, it is necessary
to demand that these choices be consistent, e.g., if ®; < ®; and ®; < ®3 then &, < ®5.

The criterion must be final. Another natural demand is that this criterion must be final in the
sense that it must choose a unique optimal family (i.e., a family that is better with respect to this
criterion than any other family).

The reason for this demand is very simple. If a criterion does not choose any family at all, then
it is of no use. If several different families are “the best” according to this criterion, then we still
have a problem choosing the absolute “best” family. Therefore, we need some additional criterion
for that choice. For example, if several families turn out to have the same stability characteristics,
we can choose among them a family with maximal smoothness. So what we actually do in this
case is abandon that criterion for which there were several “best” families, and consider a new
“composite” criterion instead: ®; is better than &, according to this new criterion if either it was
better according to the old criterion, or according to the old criterion they had the same quality,
and @, is better than &, according to the additional criterion. In other words, if a criterion does
not allow us to choose a unique best family, it means that this criterion is not ultimate; we have
to modify it until we come to a final criterion that will have that property.

The criterion must be reasonably invariant. We have already discussed the effect of changing
units in a new scale f(u). But it is also possible to change units in the original scale, in which
the control u is described. If we use a unit that is ¢ times smaller, then a control whose numeric
value in the original scale was u, will now have the numeric value cu. For example, if we initially
measured the flux of a substance (e.g., rocket fuel) into the reactor by kg/sec, we can now switch
to 1b/sec.

Comment. There is no physical sense in changing the starting point for u, because we consider
the control variable that takes only positive values, and so 0 is a fixed value, corresponding to the
minimal possible control.

We are looking for the universal rescaling method, that will be applicable to any reasonable
situation (we do not want it to be adjustable to the situation, because the whole purpose of
this rescaling is to avoid time-consuming adjustments). Suppose now that we first used kg/sec,
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compared two different scaling functions f(u) and f(u), and it turned out that f(u) is better (or,
to be more precise, that the family ® = {Af(u)+ zo} is better than the family & = {Af(u) + zo}).
It sounds reasonable to expect that the relative quality of the two scaling functions should not
depend on what units we used for u. So we expect that when we apply the same methods, but with
the values of control expressed in lb/sec, then the results of applying f(u) will still be better than
the results of applying f(u). But the result of applying the function f(u) to the control in Ib /sec
can be expressed in old units (kg/sec) as f(cu), where c is a ratio of these two units. So the result
of applying the rescaling function f(u) to the data in new units (Ib/sec) coincides with the result of
applying a new scaling function f.(u) = f(cu) to the control in old units (kg/sec). So we conclude
that if f(u) is better than f(u), then f.(u) must be better than fe(u), where fo(u) = f(cu) and

fo(w)=f (cu). This must be true for every c because we could use not only kg/sec or Ib/sec, but
arbitrary units as well.

Now we are ready for the formal definitions.

3. DEFINITIONS AND THE MAIN RESULT

Definitions. By a rescaling function (or a rescaling for short), we mean a strictly monotonic
function that maps the set of all positive real numbers (0,00) onto the set of all real numbers
(=00, +00). We say that two rescalings f(v) and f'(u) are equivalent if f'(u) = Cf(u) + &g for
some positive constant C and for some real number z;.

Comment. As we have already mentioned, if we apply two equivalent rescalings, we will get two
scales that are either both leading to a good control, or are both inadequate.

By a family we mean the set of functions {C f(u)+ 2o}, where f(u) is a fixed rescaling, C runs
over all positive real numbers, and z runs over all real numbers. The set of all families will be
denoted by §.

A pair of relations (<,~) is called consistent [K90], [KK90), [KQ91] if it satisfies the following
conditions:
(1) if F< G and G < H then F < H;
(2) F~ F;
(3) if F ~ G then G ~ F;
(4) if F~ G and G ~ H then F ~ H;
(5) f F < Gand G~ H then F < H;
(6) if F~ G and G < H then F < H;
(7) if F < G then it is not true that G < For F ~ G.

Assume a set A is given. Its elements will be called alternatives. By an optimality criterion
we mean a consistent pair (<, ~) of relations on the set A of all alternatives. If G < F. we say that
F'is better than G; if F ~ G, we say that the alternatives F and G are equivalent with respect to
this criterion. We say that an alternative F is optimal (or best) with respect to a criterion (<, ~)
if for every other alternative G either G < F or F ~ G.

We say that a criterion is final if there exists an optimal alternative, and this optimal alternative
is unique.

Comment. In the present paper we consider optimality criteria on the set S of all families.

Definitions. By a result of a unit change in a function f(u) to a unit that is ¢ > 0 times smaller
we mean a function f.(u) = f(cu). By the result of a unit change in a family & by ¢ > 0 we mean
the set of all the functions that are obtained by this unit change from f € ®. This result will be
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denoted by c®. We say that an optimality criterion on F is unit-invariant if for every two families
® and ® and for every number ¢ > 0 the following two conditions are true:

i) if ® is better than ® in the sense of this criterion (i.e., ® < 8), then cd < c®.

ii) if @ is equivalent to ® in the sense of this criterion (i.e., ® ~ &), then ¢® ~ c®.

THEOREM. If a family ® is optimal in the sense of some optimality criterion that is final and
unit-invariant, then every rescaling f(u) from ® is equivalent to f(u) = log (u).

(Proof is given in Section 5).

Comment. This means that the optimal rescalings are of the type vylog(u) + a for some real
numbers ¥ > 0 and a.

4. CASE STUDY: APPLICATION OF LOGARITHMIC RESCALING
TO FUZZY CONTROL (BRIEF DESCRIPTION)

Description of a plant. We design a control for chemical reaction within a constant volume,
non-adiabatic, continuously stirred tank reactor (CSTR). The model that describes the CSTR is
[M90]:
1 = —z1 + Da(l — zy)exp(z2/(1 + z2/7))
3 = —z9 + BDa(l — zy)exp(z2/(1 + 22/7)) — u(z2 - z.),

where z; is the conversion rate, z, is the dimensionless temperature, and u is the dimensionless
heat transfer coefficient. The objective of the control is to stabilize the system (i.e., bring it closer
to the equilibrium point).

What we did. We applied a logarithmic rescaling z; — X = logz;, and used membership
functions with equal spacing for X. No further adjustment of membership functions was made.

Results. Even without any further adjustment the results of this control were comparable to the
results of applying the intelligent “gain scheduled” (non-linear) PID controller ((HK85], [M90]). In
other words, we got the control that was as good as the one generated by the state-of-art traditional
control theory with respect to stability and controllability of the plant.

With respect to the computational complexity our fuzzy controller is much simpler.

Rescaling is necessary. Without the rescaling, we got a fuzzy control whose quality was much
worse than that of a PID controller.

Details. The details of this case study were published in {VT92].
5. PROOF OF THE MAIN RESULT

The idea of this proof is as follows: first we prove that the optimal family is unit-invariant (in
part 1), and from that, in part 2, we conclude that any function f from & satisfies a functional
equation, whose solutions are known.

1. Let us first prove that the optimal family ®,,, exists and is unit-invariant in the sense that
®,pt = cP,pe for all ¢ > 0. Indeed, we assumed that the optimality criterion is final, therefore there
exists a unique optimal family ®,,:. Let’s now prove that this optimal family is unit-invariant (this
proof is practically the same as in [K90], [KQ91], or [KQF92]). The fact that ®,,, is optimal means
that for every other @, either & < ®,,; or ®,,; ~ ®. If ®,,, ~ ¢ for some & # &,,;, then from the
definition of the optimality criterion we can easily deduce that ® is also optimal, which contradicts
the fact that there is only one optimal family. So for every ® either & < &,,, or &,,; = ®.
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Take an arbitrary ¢ and apply this conclusion to ® = ¢®,,;. If ¢®,,; = & < &4, then from
the invariance of the optimality criterion (condition ii)) we conclude that &,,; < ¢™1®,,, and that
conclusion contradicts the choice of ®,p; as the optimal family. So & = ¢®,,; < &, is impossible,
and therefore ®,,; = @, i.e., ®,5: = c¢Pop¢, and the optimal family is really unit-invariant.

2. Let us now deduce the actual form of the functions f(u) from the optimal family &,,,.
If f(u) is such a function, then the result f(cu) of changing the unit of u to a ¢ times smaller
unit belongs to c®,,;, and so, due to 1., it belongs to ®,,;. But by the definition of a family all
its functions can be obtained from each other by a linear transformation C f(u) + ¢, therefore,
f(eu) = Cf(u) + zo for some C and zo. These values C and zo depend on ¢. So we arrive at
the following functional equation for f(u): f(cu) = C(c)f(u) + zo(c). In the survey on functional
equations [A66] the solutions of this equation are not explicitly given, but a for a similar functional
equation f(z + y) = f(z)h(y) + k(y) all solutions are enumerated in Corollary 1 to Theorem 1,
Section 3.1.2 of [A66]: they are f(z) = 7z + a and f(z) = yezp(cz) + @, where v # 0, ¢ # 0 and
o are arbitrary constants. So, let us reduce our equation to the one with known solutions.

The only difference between these two equations is that we have a product, and we need
a sum. There is a well known way to reduce product to a sum: turn to logarithms, because
log (ab) = log(a) + log(b). For simplicity let us use natural logatithms In. So let us introduce
new variables X = In(u) and Y = In(c). In terms of these new variables z = erp(X), ¢ =
ezp (C). Substituting these values into our functional equation, and taking into consideration that
exp(X)exp(Y) = exp(X +Y), we conclude that F(X +Y) = H(Y)F(X)+ K(Y), where we
denoted F(X) = f(exp(X)), H(Y) = C(exp(Y)), and K(Y) = zo(ezp(Y)). So according to the
above-cited result, either F(X) =+vX + a, or F(X) = yezp(cX) + a.

From F(X) = f(exp(X)), we conclude that f(u) = F(In(u)), therefore either f(u) = v In (u)+
a, or f(u) = yezxp(cln(u))+ a = yu®+ a. In the second case the function f(u) maps (0,00) onto
the interval (a,o0), and we defined a rescaling as a function whose values run over all possible
real numbers. So the second case is impossible, and f(z) = vIn(u)+ a, which means that f(u) is
equivalent to a logarithm. Q.E.D.

6. CONCLUSIONS

One of the important steps in designing a fuzzy control is the choice of the membership
functions for all the terms that the experts use. This choice strongly influences the quality of the
resulting control.

For simple controlled systems, it is sufficient to have equally spaced membership functions,
i.e., functions that have similar shape (usually triangular or trapezoid), and are located in intervals
of equal length ...,[N — A, N + A],[N,N +2A], [N+ A, N +34A],...

For complicated systems this choice does not lead to a good fuzzy control, so it is necessary to
tune the membership functions by applying neural networks or genetic algorithms. This is a very
time-consuming procedure, and therefore, it is desirable to avoid it as much as possible.

We consider the case, when the equally spaced membership functions are inadequate because
the control variable u can take only positive values. Such situations occur. for example. when we
control the flux of the substances into a chemical reactor (e.g., the flux of fuel into an engine). Our
idea is to “rescale” this variable, i.e., to use a new variable ¥’ = f(u), and to choose a function
f(u) in such a way that we can apply membership functions, that are equally spaced in w’.

We give a mathematical proof that the optimal rescaling is logarithmic ( f(%) = alog(u) + b).
We also show on a real-life example of a non-linear chemical reactor that the resulting fuzzy control,
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without any further tuning of membership functions, can be comparable in quality with the best
state-of-art non-linear controls of traditional control theory.
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The design of neural networks and fuzzy systems can involve complex,
nonlinear, and ill-conditioned optimization problems. Often, traditional
optimization schemes are inadequate or inapplicable for such tasks. Genetic
Algorithms (GAs) are a class of optimization procedures whose mechanics are
based on those of natural genetics. Mathematical arguments show how GAs
bring substantial computational leverage to search problems, without requiring
the mathematical characteristics often necessary for traditional optimization
schemes (e.g. modality, continuity, availability of derivative information, etc.).
GAs have proven effective in a variety of search tasks that arise in neural
networks and fuzzy systems. This presentation begins by introducing the
mechanism and theoretical underpinnings of GAs. GAs are then related to a
class of rule-based machine learning systems called learning classifier
systems (LCSs). An LCS implements a low-level production-system that uses
a GA as its primary rule discovery mechanism. This presentation illustrates how,
despite its rule-based framework, an LCS can be thought of as a competitive
neural network. Neural network simulator code for an LCS is presented. In this
context, the GA is doing more than optimizing an objective function. It is
searching for an ecology of hidden nodes with limited connectivity. The GA
attempts to evolve this ecology such that effective neural network performance
results.

The GA is particularly well adapted to this task, given its naturally-inspired
basis. The LCS/neural network analogy extends itself to other, more traditional
neural networks. Conclusions to the presentation discuss the implications of
using GAs in ecological search problems that arise in neural and fuzzy systems.
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The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers
(FLCs) and learning classifier systems (LCSs). It brings together the expressive
powers of fuzzy logic as it has been applied in fuzzy controllers to express
relations between continuous variables, and the ability of LCSs to evolve co-
adapted sets of rules. The goal of the FCS is to develop a rule-based system
capable of learning in a reinforcement regime, and that can potentially be used
for process control.

Learning classifier systems are rule based machine-learning systems that can
evolve rules in a reinforcement learning environment. In a LCS, automatic
mechanisms adjust the strengths of rules according to their ability to receive
payoff from the environment. A genetic algorithm runs over the population of
rules, creating new rules by recombining those that have been successful in the
past. The syntax commonly used in LCSs is designed for binary message
matching, and therefore has great difficulty when dealing with continuous
variables.

Fuzzy logic controllers have shown how fuzzy logic can be successfully applied
to express in a few rules mappings between continuous variables. Their
succass is backed by a long list of applications. Nevertheless, in most of these
applications, the designer of the FLC has developed the rules by hand, from
interviews with the operator, from knowledge of the process, or from an
operator's manual. No automatic way to develop sets of fuzzy rules for a FLC
has gained recognition. In a FLC rules sets are stimulus-response, they do not
take into account variables not directly supplied to the controller. The control of
dynamic systems has usually been achieved by not only giving the reference
and the error as inputs to the FLC, but also giving the derivative and integral of
the error. Very complex processes might require the controiler to take into
account higher order derivatives or functions of variables that the designer
might not be aware of. The FCS attempts to take advantage of LCSs ability to
develop chains of rules automatically, and thus offer to the field of fuzzy control,
characteristics not found in common FLCs.

Initial results show that the FCS can effectively create fuzzy rules that imitate the

behavior of simple static systems. The current research work is directed towards
increasing the learning rate of the FCS while retaining stability of that which has

184

P

g

&R



been learned, and the imitation of more complex static systems. The next steps
will be oriented towards the control of simple dynamic systems.
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ABSTRACT

Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic
algorithms (GAs) are used to augment fuzzy logic controllers (FLCs). GAs are search algorithms that rapidly
locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural
genetics. FLCs are rule based systems that efficiently manipulate a problem environment by modeling the
*rule-of-thumb” strategy used in human decision making. Together, GAs and FLCs possess the capabilities
necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such
control systems require a control element to manipulate the problem environment, an analysis element to
recognize changes in the problem eavironment, and a learning element to adjust to the changes in the problem
environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH
system is used to demonstrate the ideas presented.

INTRODUCTION

The need for efficient process control has never been more important than it is today because of economic
stresses forced on industry by processes of increased complexity and by intense competition in a world market.
No industry is immune to the cost savings necessary to remain competitive; even traditional industries such as
mineral processing (Kelly and Spottiswood, 1982), chemical engineering (Fogler, 1986), and wastewater
treatment (Gottinger, 1991) have been forced to implement cost-cutting measures. Cost-cutting generally
requires the implementation of emerging techniques that are often more complex than established procedures.
The new processes that result are often characterized by rapidly changing process dynamics. Such systems
prove difficult to control with conventional strategies, because these strategies lack an effective means of
adapting to change. Furthermore, the mathematical tools employed for process control can be unduly complex
even for simple systems.

In order to accommodate changing process dynamics yet avoid sluggish response times, adaptive control systems
must alter their control strategies according to the current state of the process. Modem technology in the form
of high-speed computers and artificial intelligence (AI) has opened the door for the development of control
systems that adopt the approach to adaptive control used by humans, and perform more efficiently and with
more flexibility than conventional control systems. Two powerful tools for adaptive control that have emerged
from the field of Al are fuzzy logic (Zadeh, 1973) and genetic algorithms (GAs) (Goldberg, 1989).

The U.S. Bureau of Mines has developed an approach to the design of adaptive control systems, based on GAs
and FLCs, that is effective in problem environments with rapidly changing dynamics. Additionally, the
resulting controllers include a mechanism for handling inadequate feedback about the state or condition of the
problem environment. Such controllers are more suitable than past control systems for recognizing,
quantifying, and adapting to changes in the problem environment.

The adaptive control systems developed at the Bureau of Mines consist of a control element to manipulate the
problem environment, an analysis element to recognize changes in the problem environment, and a learning
element to adjust to the changes in the problem environment. Each component employs a GA, a FLC, or both,
and each is described in this paper. A particular problem environment, a laboratory acid-base pH system,
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serves as a forum for presenting the details of a Bureau-developed, adaptive controller. Preliminary results are
presented to demonstrate the effectiveness of a GA-based FLC for each of the three individual elements. Details
of the system will appear in a report by Karr and Gentry (1992).

PROBLEM ENVIRONMENT

In this section, a pH system is introduced to serve as a forum for presenting the details of a stand-alone,
comprehensive, adaptive controller developed at the U.S. Bureau of Mines; emphasis is on the method not the
application. The goal of the control system is to drive the pH to a setpoint. This is a non-trivial task since the
pH system contains both nonlinearities and changing process dynamics. The nonlinearities occur because the
output of pH sensors is proportional to the logarithm of hydrogen ion concentration. The source of the
changing process dynamics will be described shortly.

A schematic of the pH system under consideration is shown in Fig. 1. The system consists of a beaker and
five, valved input streams. The beaker initially contains a given volume of a solution having some known pH.
The five, valved input streams into the beaker are divided into the two control input streams and the three
external input streams. Only the valves associated with the two control input streams can be adjusted by the
controller. Additionally, as a constraint on the problem, these valves can only be adjusted a limited amount
(0.5 mL/s/s, which is 20 pct of the maximum flow rate of 2.5 mL/s) to restrict pressure transients in the
associated pumping systems.

The goal of the control problem is to drive the system pH to the desired setpoint in the shortest time possible by
adjusting the valves on the two control input streams. Achieving this goal is made considerably more difficult
by incorporating the potential for changing the process dynamics. These changing process dynamics come from
three random changes that can be made to the pH system. First, the concentrations of the acid and base of the
two control input streams can be changed randomly to be either 0.1 M HCI or 0.05 M HCI and 0.1 M NaOH
or 0.05 M NaOH. Second, the valves on the external input streams can be randomly altered. This allows for
the external addition of acid (0.05 M HCI), base (0.05 M CH,COONa), and buffer (a combination of 0.1 M
CH,COOH and 0.1 M CH;COONa) to the pH system. Note that the addition of a buffer is analogous to adding
inertia to a mechanical system. Third, random changes are made to the setpoint to which the system pH is to be
driven. These three random alterations in the system parameters dramatically alter the way in which the
problem environment reacts to adjustments made by the controller to the valves on the control input streams.
Furthermore, the controller receives no feedback concerning these random changes.

05 M HCL
Control External _8 Acd
1N HCL lsrv::;ms O Is?r):;ms
pH Buffer
05 W NodH ~—
“‘8 Base
.1 M NoOH

Fig. 1. Basic structure of the pH system.

The pH system was designed on a small scale so that experiments could be performed in limited laboratory
space. Titrations were performed in a 1,000-mL beaker using a magnetic bar to stir the solution. Peristaltic
pumps were used for the five input streams. An industrial pH electrode and transmitter sent signals through an
analog-to-digital board to a 33-MHz 386 personal computer which implemented the control system.
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STRUCTURE OF THE ADAPTIVE CONTROLLER

Figure 2 shows a schematic of the Bureau’s adaptive control system. The heart of this control system is the
loop consisting of the control element and the problem environment. The control element receives information
from sensors in the problem environment concerning the status of the condition variables, i.e., pH and ApH. It
then computes a desirable state for a set of action variables, i.e., flow rate of acid (Q,c;p) and flow rate of base
(Qgase)- These changes in the action variables force the problem environment toward the setpoint. This is the
basic approach adopted for the design of virtually any closed loop control system, and in and of itself includes
no mechanism for adaptive control.

The adaptive capabilities of the system shown in Fig. 2 are due to the analysis and learning elements. In
general, the analysis element must recognize when a change in the problem environment has occurred. A
"change, " as it is used here, consists of any of the three random alterations to a parameter possible in the
problem environment. (Of importance is the fact that all of these changes affect the response of the problem
environment, otherwise it has no effect on the way in which the control element must act to efficiently
manipulate the problem environment.) The analysis element uses information concerning the condition and
action variables over some finite time period to recognize changes in the environment and to compute the new
performance characteristics associated with these changes.

The new environment (the problem environment with the altered parameters) can pose many difficulties for the
control element, because the control element is no longer manipulating the environment for which it was
designed. Therefore, the algorithm that drives the control element must be altered. As shown in the schematic
of Fig. 2, this task is accomplished by the learning element. The most efficient approach for the learning
element to use to alter the control element is to utilize information concerning the past performance of the
control system. The strategy used by the control, analysis, and learning elements of the stand-alone,
comprehensive adaptive controller being developed by the U.S. Bureau of Mines is provided in the following
sections.

Problem F‘““Hﬂnﬂ

Environment

Control

"3‘.53&7 Element

updated
controller
parameters

Learning
Element

new values of
environmental
parameters

Analysis
Element

Fig. 2. Structure of the adaptive control system.

Control Element

The control element receives feedback from the pH system, and based on the current state of pH and ApH, must
prescribe appropriate values of Q,cp and Qg,se-  Any of a number of closed-loop controllers could be used for
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this element. However, because of the flexibility needed in the control system as a whole, a FLC is employed.
Like conventional rule-based systems (expert systems), FLCs use a set of production rules which are of the
form:

IF {condition} THEN {action}

to arrive at appropriate control actions. The left-hand-side of the rules (the condition side) consists of
combinations of the controlled variables (pH and ApH); the right-hand-side of the rules (the action side) consists
of combinations of the manipulated variables (Q,cp and Qguse). Unlike conventional expert systems, FL.Cs use
rules that utilize fuzzy terms like those appearing in human rules-of-thumb. For example, a valid rule for a
FLC used to manipulate the pH system is:

IF {ph is VERY ACIDIC and ApH is SMALL} THEN {Qy,s; is LARGE and Q,cyp is ZERO}.

This rule says that if the solution is very acidic and is not changing rapidly, the flow rate of the base should be
made to be large and the flow rate of the acid should be made to be zero.

The fuzzy terms are subjective; they mean different things to different "experts,” and can mean different things
in varying situations. Fuzzy terms are assigned concrete meaning via fuzzy membership functions (Zadeh,
1973). The membership functions used in the control element to describe pH appear in Fig. 3. (As will be
seen shortly, the learning element is capable of changing these membership functions in response to changes in
the problem environment.) These membership functions are used in conjunction with the rule set to prescribe
single, crisp values of the action variables (Q,cip and Qguge). Unlike conventional expert systems, FLCs allow
for the enactment of more than one rule at any given time. The single crisp action is computed using a
weighted averaging technique that incorporates both a min-max operator and the center-of-area method (Karr,
1991). The following fuzzy terms were used, and therefore "defined” with membership functions, to describe
the significant variables in the pH system:

pH Very Acidic (VA), Acidic (A), Mildly Acidic (MA), Neutral (N), Mildly Basic (MB), Basic
(B), and Very Basic (VB);

ApH  Small (S) and Large (L);

Qucp  Zero (Z), Very Small (VS),

Qgase  Small (S), Medium (M), and Large (L).

Although the pH system is quite complex, it is basically a titration system. An effective FLC for performing
titrations can be written that contains only 14 rules. The 14 rules are necessary because there are seven fuzzy
terms describing pH and two fuzzy terms describing ApH (7*2=14 rules to describe all possible combinations
that could exist in the pH system as described by the fuzzy terms represented by the membership functions
selected). Now, the rules selected for the control element are certainly inadequate to control the full-scale pH
system; the one that includes the changing process dynamics. However, the performance of a FLC can be
dramatically altered by changing the membership functions. This is equivalent to changing the definition of the
terms used to describe the variables being considered by the controller. As will be seen shortly, GAs are
powerful tools capable of rapidly locating efficient fuzzy membership functions that allow the controller to
accommodate changes in the dynamics of the pH system.
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Fig. 3. pH membership functions.

Analysis Element

The analysis element recognizes changes in parameters associated with the problem environment not taken into
account by the rules used in the control element. In the pH system, these parameters include: (1) the
concentrations of the acid and base of the input control streams, (2) the flow rates of the acid, the base, and the
buffer that are randomly altered, and (3) the system setpoint. Changes to any of these parameters can
dramatically alter the way in which the system pH responds to additions of acid or base, thus forming a new
problem environment requiring an altered control strategy. Recall that the FLC used for the control element
presented includes none of these parameters in its 14 rules. Therefore, some mechanism for altering the
prescribed actions must be included in the control system. But before the control element can be altered, the
control system must recognize that the problem environment has changed, and compute the nature and
magnitude of the changes.

The analysis element recognizes changes in the system parameters by comparing the response of the physical
system to the response of a model of the pH system. In general, recognizing changes in the parameters
associated with the problem environment requires the control system to store information concerning the past
performance of the problem environment. This information is most effectively acquired through either a data
base or a computer model. Storing such an extensive data base can be cumbersome and requires extensive
computer memory. Fortunately, the dynamics of the pH system are well understood for buffered reactions, and
can be modeled using a single cubic equation that can be solved for [H,0*] ion concentrations, to directly yield
the pH of the solution. In the approach adopted here, a computer model predicts the response of the laboratory
pH system. This predicted response is compared to the response of the physical system. When the two
responses differ by a threshold amount over a finite period of time, the physical pH system is considered to
have been altered.

When the above approach is adopted, the problem of computing the new system parameters becomes a curve
fitting problem (Karr, Stanley, and Scheiner, 1991). The parameters associated with the computer model
produce a particular response to changes in the action variables. The parameters must be selected so that the
response of the model matches the response of the actual problem environment.

An analysis element has been forged in which a GA is used to compute the values of the parameters associated
with the pH system. When employing a GA in a search problem, there are basically two decisions that must be
made: (1) how to code the parameters as bit strings and (2) how to evaluate the merit of each string (the fitness
function must be defined). The GA used in the analysis element employs concatenated, mapped, unsigned
binary coding (Karr and Gentry, 1992). The bit-strings produced by this coding strategy were of length 200:
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the first 40 bits of the strings were used to represent the concentration of the acid on the control input stream,
the second 40 bits were used to represent the concentration of the base on the control input stream, the third 40
bits were used to represent the flow rate of the acid of the external streams, and the final 80 bits were used to
represent the flow rates of the buffer and the base of the external streams, respectively. The 40 bits associated
with each individual parameter were read as a binary number, converted to decimal numbers (000 = 0, 001 =
1, 010 = 2, 011 = 3, etc.,), and mapped between minimum and maximum values according to the following:

b
c=Cc, +——(C_, -C 1
‘min (2'_1)(m dn) ()

where C is the value of the parameter in question, b is the binary value, m is the number of bits used to
represent the particular parameter (40), and C_, and C,,, are minimum and maximum values associated with
each parameter that is being coded.

A fitness function has been employed that represents the quality of each bit-string; it provides a quantitative
evaluation of how accurately the response of a model using the new model parameters matches the response of
the actual physical system. The fitness function used in this application is:

1=100s

F= Y @Hpu - PH D @
i=0s

With this definition of the fitness function, the problem becomes a minimization problem: the GA must
minimize f, which as it has been defined, represents the difference between the response predicted by the model
and the response of the laboratory system.

Figure 4 compares the response of the physical pH system to the response of the simulated pH system that uses
the parameters determined by a GA. This figure shows that the responses of the computer model and the
physical system are virtually identical, thereby demonstrating the effectiveness of a GA in this application. The
GA was able to locate the correct parameters after only 500 function evaluations, where a function evaluation
consisted of simulating the pH system for 100 seconds. Locating the correct parameters took approximately 20
seconds on a 386 personal computer. Industrial systems may mandate that a control action be taken in less than
20 seconds. In such cases, the time the GA is allotted to update the model parameters can be restricted. Once
new parameters (and thus the new response characteristics of the problem environment) have been determined,
the adaptive element must alter the control element.
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Fig. 4. Performance of an analysis element.
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Learning Element

The learning element alters the control element in response to changes in the problem environment. It does so
by altering the membership functions employed by the FLC of the control element. Since none of the randomly
altered parameters appear in the FLC rule set, the only way to account for these conditions (outside of
completely revamping the system) is to alter the membership functions employed by the FLC. These alterations
consist of changing both the position and location of the trapezoids used to define the fuzzy terms.

Altering the membership functions (the definition of the fuzzy terms in the rule set) is consistent with the way
humans control systems. Quite often, the rules-of-thumb humans use to manipulate a problem environment
remain the same despite even dramatic changes to that environment; only the conditions under which the rules
are applied are altered. This is basically the approach that is being taken when the fuzzy membership functions
are altered.

The U.S. Bureau of Mines uses a GA to alter the membership functions associated with FLCs, and this
technique has been well documented (Karr, 1991). A learning element that utilizes a GA to locate high-
efficiency membership functions for the dynamic pH laboratory system has been designed and implemented.

The performance of a control system that uses a GA to alter the membership functions of its control element is
demonstrated for two different situations. First, Fig. 5 compares the performance of the adaptive control
system (one that changes its membership functions in response to changes in the system parameters) to a non-
adaptive control system (one that ignores the changes in the system parameters). In this figure, the pH system
has been perturbed by the addition of an acid (at 75 seconds), a base (at 125 seconds), and a buffer (at 175
seconds). In this case, the process dynamics are dramatically altered due to the addition of the buffer, and the
adaptive controller is better.

Second, the concentrations of the acid and base the FLC uses to control pH are changed (those from the control
input streams), which causes the system to respond differently. For example, if the 0.1 MHCl is the control
input, the pH falls a certain amount when this acid is added. However, all other factors being the same, the pH
will not fall as much when the same volume of the 0.05 M HCI is added. The resuits of this situation are
summarized in Fig. 6. In this simulation, the concentration of the titrants is changed at SO seconds. As above,
the adaptive control system is more efficient.
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Fig. 5. External reagent additions.
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Fig. 6. Alteration of titrant concentrations.

SUMMARY

Scientists at the U.S. Bureau of Mines have developed an Al-based strategy for adaptive process control. This
strategy uses GAs to fashion three components necessary for a robust, comprehensive adaptive process control
system: (1) a control element to manipulate the problem environment, (2) an analysis element to recognize
changes in the problem eavironment, and (3) a learning element to adjust to changes in the problem
environment. The application of this strategy to a laboratory pH system has been described.
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1. Proposal of NN-driven Fuzzy Reasoning (1988)

The issue of designing and tuning fuzzy membership functions by neural
networks (NNs) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven
Fuzzy Reasoning involves a NN embedded in the fuzzy system which
generates membership values. In conventional fuzzy system design, the
membership function are hand-crafted by trial and error for each input variable.
In contrast, NN-driven Fuzzy Reasoning considers several variables
simultaneously and can design a multidimensional, nonlinear membership
function for the entire subspace.

2. Knowledge/Skill acquisition by NN-driven Fuzzy Reasoning. (1989)

Consider the problem of balancing a pole starting with an initial swing from the
hanging-down position. NN-driven Fuzzy Reasoning can process the raw data
generated by a human adept at this task and can learn to infer the rules
necessary for executing this task. This method has shown its ability to acquire
knowledge and skill which is difficult to convey using language but is easily
demonstrated.

3. Simplified design method for membership functions (1990).

Two issues affected by NN-driven Fuzzy Reasoning emerged in 1990. One was
the design of structured NNs (Neural networks designed on Approximate
Reasoning Architecture). The other concemed shortening the design time of
membership functions so that the techniques could be used in a practical
setting.

This simplified method works with one-dimensional, triangular membership
functions instead of the fully general, multidimensional, nonlinear shapes, but
this restriction helps speed up the design phase significantly. Currently this
method is used for the design of several consumer products involving fuzzy
logic (FL) and NNs by Matsushita Electric group.

4. Application of NN and FL in consumer products (1991).
Following the application of such technology in an air-conditioner in 1990,

several consumer products using FL and NNs have appeared on the market in
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1991. Till autumn 1991, fourteen such products had appeared on the Japanese
market. In the context of consumer products, NNs have been put to use in the
following five ways : (I) development tools, (2) independently of the fuzzy
system, (3) as a correcting mechanism, (4) in cascade combination with FL, and
(5) for learning user preferences. Equipment designed with the method
mentioned in Sec. 3 falls in category (1).

5. Realization of Adaptability : Current Issues

Achieving adaptability is an important concern when fusing NNs and FL. It is too
inflexible to pre-program things that depend on the user's preferences or
environment. What is needed is some way to learn the usage patterns and
adjust the rules using the adaptive capability of NNs. Category (5) in the
previous section is intended to follow this direction.

Realization of "equipment of which handling easiness is improved as it is used
more™ corresponds to incremental learning in NNs. Suppose we wish to modify
the equipment based on data provide by the user's actions and environment. In
this case, the additional learning should have the following properties: (a) do
not use all of the past training data, (b) the changes should have local effect
only, in some sense, (c) training data which is more recent and supersedes
older data should be recognized as such and the older information forgotten, (d)
if the changes lead to violation of strict safety constraints, such data is
potentially harmful and should be ignored.

6. Realization of Adaptability : Proposed Algorithm to Extract Boundary of
Datasets.

Partitioning the input space is essential for determining the rulebase, such as in
a fuzzy controller. Adaptive rule modification corresponds to modifying the
partitioned subsets of the space. If the new data is on the boundary of the
distribution of the training set, then the problem can be solved so that the four
requirements in Sec. 5 above are obeyed.

This algorithm for extracting boundary data uses n-dimensional ellipses of
which all axes but the major axis are equal. These shapes are used to eliminate
data which lies inside the boundary, leaving the boundary points of the training
dataset.

If new data is introduced on top of a boundary as shown in Fig. 1 (a), the

algorithm will modify the old boundary and incorporate the new data as shown
in Fig. 1 (b). This is a modification of the rule partitioning.
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This paper addresses three main issues, which are somewhat interrelated.

The first issue deals with the classification or types of fuzzy controllers. Careful
examination of the fuzzy controllers designed by various engineers reveals
distinctive classes of fuzzy controllers. Classification is believed to be helpful
from different perspectives.

The second issue deals with the design according to specifications.
experiments related to the tuning of fuzzy controllers, according to the
specification, will be discussed. General design procedure, hopetully, can be
outlined in order to ease the burden of a design engineer.

The third issue deals with the simplicity an limitation of the rule-based |IF-THEN
logical statements. The methodology of fuzzy-constraint network is proposed
here as an alternative to the design practice at present. It is our belief that
predicate calculus and the first order logic possess much more expressive
power.

Throughout the talk, the integration of the fuzzy control technology with the
conventional control system design techniques will be our focus.
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