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NASA/Lyndon B. Johnson Space Center, Houston, TX. Space
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9:45-10:30 Piero P. Bonnisone, General Electric, Fuzzy Logic Controllers: A

Knowledge-Based Systems Perspective.

10:30-11:15 Robert Farber, Los Alamos National Laboratory, Efficiently
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1:00-1:30 Lawrence O. Hall and Steve G. Romaniuk, University of South

Florida, Learning Fuzzy Information in a Hybrid Connectionist,

Symbolic Model.

1:30-2:00 Haluk Ogmen, University of Houston, On the Neural Substrates

Leading to the Emergence of Mental Operational Structures.

2:00-2:30 Hao Ying, University of Texas Medical Branch, A Fuzzy

Controller with Nonlinear Control Rules Is the Sum of a Global

Nonlinear Controller and a Local Nonlinear Pl-like Controller.

2:30-2:45 Break

Parallel Sessions

2:45-3:15

3:15-3:45

4:15-4:45

Ron Maor and Yashvant Jani, Togai

Infralogic, Fuzzy Control of Electric
Motors.

Andre de Korvin and Margaret F.
Shipley, University of Houston-
Downtown, Certain and Possible

Rules for Decision Making using

Rough Set Theory Extended to
Fuzzy Sets.

Yashvant Jani, Togai Infralogic, Inc.,
Houston, TX, Gilberto Sousa,

University of Tennessee, Knoxville,

TN, Wayne Turner, Research Triangle

Institute, Research Triangle Park, NC,

Ron Spiegel and Jeff Chappell, U.S.
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Fuzzy Efficiency Optimization of AC
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Representing and Learning
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Jun Zhou and G. V S Raju, The

University of Texas at San Antonio,

On Structuring the Rules of a

Fuzzy Controller.

Robert N. Pap, Mark Atkins,
Chadwick Cox, Charles Glover,

Ralph Kissel, and Richard _;aeks,

Accurate Automation Corporation,

George C. Marshall Space Flight
Center, Advanced Telerobotic

Control Using Neural Networks.

6:00-7:00 Wine and Cheese Reception
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7:00-9:00 Banquet and Keynote Speaker

Professor Bernard Widrow

Stanford University

Neural Controls

Tuesday, June 2, 1992

Plenary Speakers

8:00-8:45 Tomhiro Takagi, Laboratory for International Fuzzy Engineering

Research, Multilayered Reasoning Based by Means of Conceptual

Fuzzy Sets.

8:45-9:30 Michio Sugeno, Tokyo Institute of Technology, Fuzzy Control of

an Unmanned Helicopter.

9:30-9:45 Break

9:45-10:15 Porter Sherman, Sikorsky Aircraft, Fuzzy Logic Mode Switching in

Helicopters

10:15-10:45 James M. Urnes, Stephen E. Hoy, and Robert N. Ladage, McDonnell

Aircraft Company, A Neural Based Intelligent Flight Control System

for the NASA F-15 Flight Research Aircraft.

10:45-11:15 Capt. Gregory Walker, U.S. Army - NASA Langley Research Center, A

Teleoperated Unmanned Rotorcraft Flight Test Technique.

11:15-11:45 James Villarreal, Robert N. Lea, Yashvant Jani, and Charles Copeland,

NASA Lyndon B. Johnson Space Center, Space Time Neural Network

for Tether Operations in Space.
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11:45-1:00 Lunch

1:00-1:30 Hamid Berenji, Ames Research Center, Structure Identification in

Fuzzy Inference Using Reinforcement Learning.

1:30-2:00 J. J. Buckley, University of Alabama at Birmingham, Approximation

Paper: Part 1.

2:30-3:00 H. VanLangingham, A. Tsoukkas, V. Kreinovich, and C. Quintana,

Virginia Polytechnic Institute and State University, University of Texas at

El Paso, Nonlinear Rescaling of Control Values Simplifies Fuzzy

Control.

3:00-3:15 Break

3:15-3:45 Robert Elliot Smith, The University of Alabama, Genetic Learning in

Rule-based and Neural Systems.

3:45-4:15 Manuel Valenzuela-Rendon, Instituto Tecnologico de Estudios Superiores

de Monterrey, Evolving Fuzzy Rules in a Learning Classifier System.

4:15-4:45 Charles L. Karr, U.S. Department of the Interior- Bureau of Mines,

Adaptive Process Control Using Fuzzy Logic and Genetic

Algorithms.

4:45-5:15 Hideyuki Takagi, University of California at Berkeley, Design of Fuzzy

Systems by Neural Networks and Realization of Adaptability.

5:15-5:45 Paul P. Wang, Duke University, Improvement of Fuzzy Controller

Design Techniques.
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Fuzzy Logic Controllers: A Knowledge-Based System
Perspective

Piero P. Bonissone

Artificial Intelligence Laboratory

GE Corporate Research and Development

Bldg. K1-SC32A, PO Box 8

Schenectady, NY 12301

Bonissone@crd.ge.com

F J

Over the last few years we have seen an increasing number of applications of

Fuzzy Logic Controllers. These applications range from the development of

auto-focus cameras, to the control of subway trains, cranes, automobile sub-

systems (automatic transmissions), domestic appliances, and various consumer

electronic products.

A Fuzzy Logic Controller is a knowledge based system in which the knowledge

of process operators or product engineers has been used to synthesize a

closed loop controller for the process. We will compare the development and

deployment of Fuzzy Logic Controllers (FLC) with that of Knowledge Based

System (KBS) applications.

Traditional controllers are derived from a mathematical model of the open-loop

process to be controlled, following classical control theory techniques. FLCs

are typically derived from a knowledge acquisition process (or are automatically

synthesized from a self-organizing control architecture). In either case, the

result of the synthesis is a Knowledge Base (KB), rather than an algorithm. The

KB consists of a set of fuzzy-rules (rules and termsets), which is evaluated by an

interpreter. The interpreter is composed of a quantification (or fuzzification)
stage, an inference engine (or fuzzy matcher), and a defuzzification stage.

We will analyze FLCs according to three organizing layers typically used in

describing Knowledge Based Systems: knowledge representation, inference,

and control. In the knowledge representation layer we will describe fuzzy state

vectors, term-set of linguistic values, and fuzzy production rules. In the

inference layer we will provide a geometric interpretation (for the disjunctive

case) of the generalized modus ponens, and describe the inference process

based on fuzzy predicate evaluation, rule Left Hand Side (LHS) evaluation, rule

detachment, and rules aggregation. In the control layer we will show three
different defuzzification methods and we illustrate meta-reasoning capabilities

(supervisory mode).



FLC interpreters are used during the development phase of a FLC application
to provide inference traceability (transparency), which facilitates the KB design,
implementation, and refinement. However, the use of an interpreter requires
the evaluation of all the rules in the KB at every iteration.

Therefore, after a functional validation (stability or robustness analysis), the KB
is compiled like a programming language or a traditional knowledge base
application, and a simpler run-time engine is used for deployment. The result of
this compilation process is a look-up table that allows for a faster, more efficient
execution that can be performed by simpler processors. Not only is the
response time reduced, but the memory requirements are so drastically
decreased that it is possible to implement the FLC using very small amounts of
memory. This feature enables us to build inexpensive FLCs for cost-sensitive
applications.

In summary, we consider a Fuzzy Logic Controller to be a high level language
with its local semantics, interpreter, and compiler, which enables us to quickly
synthesize non-linear controllers for dynamic systems.
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Efficiently Modeling Neural Networks on Massively Parallel Computers

Robert M. Farber _ _oZ-(, _

Los Alamos National Laboratory N O 3 " _ ' 3
Los Alamos, N.M. //__ '-_

87544 _ O

Neural networks are a very useful tool for analyzing and modeling complex

real world systems. Applying neural network simulations to real world problems general-

ly involves large amounts of data and massive amounts of computation. To efficiently han-

dle the computational requirements of large problems, we have implemented at Los

Alamos a highly efficient neural network compiler for serial computers, vector computers,

vector parallel computers, and fine grain SIMD computers such as the CM-2 connection

machine. This paper will describe the mapping used by the compiler to implement feed-

forward backpropagation neural networks (D. Rummelhart and J. McClelland 1986) for a

SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Ma-

chines Corporation has benchmarked our code at 1.3 billion interconnects per second

(approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer

1990). This mapping is applicable to other SIMD computers and can be implemented on

MIMD computers such as the CM-5 connection machine. Our mapping has virtually no

communications overhead with the exception of the communications required for a global

summation across the processors (which has a sub-linear runtime growth on the order of

O(log(number of processors))). We can efficiently model very large neural networks

which have many neurons and interconnects and our mapping can be extend to arbitrarily

large networks (within memory limitations) by merging the memory space of separate

processors with fast adjacent processor inter-processor communications. This paper will

consider the simulation of only feed forward neural network although this method is ex-

tendible to recurrent networks.

A simple XOR network can be seen in Fig 1. This network (or any feed-

forward neural network) is "trained" as follows: First, the outputs for each example of a

"training set" of examples are calculated for a given set of network parameters (neuron

thresholds and connection weights). This can be seen for the XOR problem of fig 1 in eqn.

1.1 - 1.4. In these equations W(a,b) means the connection weight from a to b and g0 is a

user specified linear or non-linear function. The fitness of the calculated outputs (and

H = Hthreshol d + W(l I'H) * I 1 + W(I2'H) * I2

O = Othreshol d + W( I 1,O) * I 1 + W(I2,O) * 12

o += g(H) * w(H,o)
o = g(O)

F_,qn 1.1

Eqn 1.2

Eqn 1.3

Eqn 1.4

hence the network parameters) is determined by some function of the known and calculat-

ed outputs. A common fitness function is the sum of the square of the differences as

shown in eqn. 2. The parameters of the network are then adjusted by some nonlinear

num_cxlmplcs

Fitness=_ (known_output - calculated_output) 2

0

Eqn 2

minimization scheme such as powell's method or conjugant gradient (Press et. al._1988).

The network is continually adjusted and re-evaluated until a "best fit" is found. The neu-

ral network is then said to be "trained". If the number of examples is small relative to the

3



numberof network parameters,then the networkcan "memorize"the training set. In oth-
er words, thereare so many parametersin the network that it "memorizes" the training
set.Unfortunately,neural networkswhich are over parameterizedgenerallypredict poor-
ly on exampleswhich were not in the training set. Hence most neural networks are
trained with a numberof examplesfar larger than the numberof network parameters.
This "overloading"of the networkis doneto force the network to "generalize"a solution
from the training set. It is then hoped that the network will then predict well on data
which was not in the training set.The literatureaboundswith importantproblemswhere
neural networks have been shown to be good predictors.For example,neural networks
can be usedto predict time serieswith ordersof magnitudeincreasesin accuracyover
conventionalmethods (Lapedes and Farber 1987 and Lapedes and Farber 1987). Neural

networks have also been shown to be highly accurate predictors of coding regions for

short regions of DNA (Farber et. al. 1992 and Lapedes and Farber 1989). We can see

that the runtime growth for evaluating a neural network during training is on the order of

O(m*n) where m is the number of network parameters and n is the number of examples.

From our discussion we can see that n generally dominates the runtime growth.

This means that contrary to what one would first expect, the most efficient

method of mapping neural networks on to a massively parallel machine is not one neu-

ron per processor. Rather, the most efficient method is to map one example to each pro-

cessor. By using this mapping for SIMD or MIMD (Multiple Instruction Multiple Data)

parallel computers, it is possible to get number of example operations done in each in-

struction cycle of the machine by having each processor evaluate the network for it's ex-

ample. Hence, we effectively get no change in our runtime for a problem which has one ex-

ample over a problem which has 250,000 examples. In reality, there will be a small in-

crease in the runtime as the number of examples exceeds the number of processors.

However this increase is on the order O(number of examples/number of .processors)

and is very small for the large numbers of processors in current SIMD machines. Thus,

we get essentially large training sets for free. This allows neural networks to be applied

to problems of a size and complexity not possible using serial machines. Our mapping can

also be used to efficiently implement neural networks on vector computers. However, the

runtime growth is much more strongly affected by the number of examples (effectively,

the number of processors is small). Thus conventional vector machines such as a CRAY

cannot achieve the reduction in the runtime growth possible with a SIMD machine con-

taining a large number of processors. This analysis is overly simplistic since there are

complex trade-offs between cycle time, vector pipeline length, and the number of proces-

sors. The bottom line is that given access to both vector machines and highly parallel

SIMD/MIMD machines, we use vector machines for medium sized problems (generally

less than 8,000 examples) and parallel machines for larger problems (from 8,000 exam-

ples to 106 examples).

The overall computational efficiency of a parallel computer can be high only

as long as the associated communications overhead for the problem is low. Otherwise

the parallel processors will spend all their time waiting for data. Using our mapping onto

SIMD hardware, we will show that it is possible to avoid any communications overhead

by mapping neural networks onto the parallel machine via the one example per processor

approach. In our implementation on the CM-2 connection machine, the only communica-

tions required (with one minor exception) are global broadcast and local processor to

processor communications. Since both of these operations occur in one clock cycle on the



connection machine, they provide no delay over a simple memory fetch. Hence the rate

limiting step is how fast the parallel hardware of the connection machine can do floating

point operations. In other words, our mapping turns the training of neural networks into a

parallel algorithm which is limited by the computational rate of the hardware and not by
communications overhead.

The mapping onto the CM-2 for the XOR architecture of fig 1 can be seen

in fig 2-4. As can be seen in fig 2, the front-end computer contains all the network pa-

rameters and the SIMD processors contain all examples and temporary storage for the

nctwoA. Wc can scc the initial calculation of the hidden neuron (given in cqn 1.1) as it

would be executed in parallel in Fig 3 - 4. The fccdforward pass is initiated by broadcast-

ing the neuron threshold from tbe front-end computer to all processors (see fig 3). The

connection weight W(llJ-l) is then broadcast to all processors with the insuuction to

multiply it by the local mommy location containing the value of I 1 and add it to the local

memory location containing the value of the hidden neuron (scc fig 4). Since each SIMD

processor contains one example, wc get the number_of_examples in_ons done per

insmsction cycle with no communications overhead. Similarly the calculations of cqn 1.2 -

1.4 occur using only global broadcast and local processor memory. It is clear that we arc

able to calculate the outputs for all the training examples for the XOR architecture or

any arbitrary neural network, without communications delays, using only global broad-

cast communications. (The evaluation of recurrent networks is dependent upon how the

back connections arc to be evaluated. It is possible to do a purely parallel implementation

for SIMD architectures using our mapping (see Pineda 1988 for the mathematical descrip-

tion). Other recurrent implementations may require a MIMD architecture as the required

number of conditional operations would result in an extremely inefficient use of the SIMD

processors per machine cycle.) The next step is to evaluate how the calculated outputs

fit the known outputs. To do this the front-end issues an insu'uction to subtract the

known output from the calculated output and square the result Since all memory values

arc in local processor memory there is no communications ovcrbead. The front-end then

issues an instruction to calculate the summation over all processors of the squared differ-

trices. On the CM-2, the global summation instruction is provided by Thinking Machines

Corporation and is optimized for their hardware. However, the global summation instruc-

tion has a runtime growth which is approximately O(log(n)) where n is the number of pro-

cessors. Fig 5 diagrams how a O0og(n)) runtime growth could be achieved for a global

summation. Since the run-time growth of this instruction is sub-linear with respect to the

number of processors (or number of examples for our problem), it does not provide a sig-

nificant decrease in the runtime performance. All other network calculations required for

backpropagation occur in a similar manner and have no communications overhead except

for that required by the global summation over processors.

Our mapping of one example per processor also allows networks with

large numbers of parameters to be trained. We can see in Fig 6 that the worst-case

memory growth for a fully interconnected recursive neural network is on the order O(n2);

where n is the number of neurons. Since the network parameters (neuron thresholds and

connections weights) arc the same for all examples and hence for all the SIMD proces-

sors, it is makes sense to store them in one common block of memory and broadcast

them to all other processors. This makes for an ideal mapping onto the CM-2 hardware

as the O(n 2) network parameters can be stored in the large virtual memory space of the

front-end computer and broadcast to the SIMD processors. This frees the limited memo-

5



ry available to each CM processor to be used for the storage of the example input(s) and
output(s) and intermediate values of the calculations.

It is the memory available to each SIMD processor which limits the size of

the neural network, the size of individual training examples, and the amount of training

data which can be evaluated. If the SIMD hardware has fast adjacent processor communi-

cations it is possible to efficiently merge the memory of adjacent processors to allow arbi-

trarily large training examples and neural networks to be evaluated. (It is possible to use

a fast I/O memory device for the SIMD processors such as the CM-2 data vault to allow

essentially unlimited network sizes and number of examples. However, we have not

found it necessary to go to such extremes to wain complex networks with even 105 to 106

examples.) This means that the memory map of individual SIMD processors will differ.

However, we can merge the memory space of different processors by defining a special

memory location in the memory map of all the SIMD processors to be a memory data bus.

If we consider the example of fig 4 in evaluating an example of the XOR network, we

would see a mapping onto the SIMD processor as seen in fig 7. If a value is required in

the first processor which is in the memory of the second processor, it is copied to the

common memory bus location and transferred via adjacent processor communications to

the first processor. The arithmetic operation then proceeds on the first processor. Data
shifts between adjacent processors on the CM-2 connection machine occur in one ma-

chine cycle (which is as much as 103 time faster than using the router communications).

Thus we incur minimal communications overhead when using merged processors. Howev-

er, merging processors introduces inefficiencies other than in moving data between the

memory space of separate processors. In the case of merging two processors, only half of

the SIMD processors can be active per computational instruction cycle. Similarly only 1/3

of the processors would be active if three processors were merged together and so forth.

The advantage of the merged memory model is that arbitrarily large neural networks and

data sets (which normally would be impossible to evaluate due to memory limitations)

can be evaluated and in a manner transparent to the user. Since the number of proces-

sors which have to be merged to provide adequate memory storage is quite small in most

cases, the performance loss is quite acceptable.

At Los Alamos, we have been using the mappings described above within

the context of a neural network compiler since 1988. The details of the compiler are too

numerous to present here. However, the compiler implements a paradigm familiar to any

code developer as seen in fig 8. Aside from receiving the problem specification (the neu-

ral network architecture, initial parameter values, and training data) the compiler does all

the remaining steps automatically for the destination machine including "writing" of the

neural network program. Fig 9 shows how data moves through a complete neural net-

work simulation. We can see that the neural network can be specified interactively by a

graphical interface or by a machine generated file. The graphical interface allows a user

to merge sub-networks "trained" to task into a large complex network. The sub-net-

works parameters may be locked to preserve the functionality of the sub-network or they

may be "equivalenced" to force the unique sub-network parameters to maintain identical

values during training. Of course the user may "unlock" the network parameters at will to

allow "tweaking" of the parameter for the particular problem. The user may also automati-

cally generate the network architecture so that the neural network may be modified so

that various "pruning" or "growing" heuristics may be used. The training set data is pre-

sented to the compiler as either floating point or single bit boolean values. This allows



the compiler to mimmize floating point operationsfor the individual training set and can
provide significant increasesin computationalthroughput.The data manipulationprior to
the compiler can be a non-trivial task. We have had intermediateamountsof data ex-
ceeding60gigabyteswhich hadto bepre-processedprior to presentationto thecompiler.

The compiler takes the network/dataspecificationand generatesan inter-
mediate language"program".This programthengoes througha dependencyanalysisand
is presentedto a "compiler" which createsa relocatableinstruction streamwhich is then
passed to the loader linker. For the CM-2 the loader//inker creates an appropriate memo-

ry map (including merging multiple processors together) and creates a state machine in-
struction stream which is then executed once the data is loaded into the connection ma-

chine.

The compiler automatically calls the user specified optimization code as

well as user functions specifying arbitrary neuron types. The user code on the front-end

computer sees the compiler generated calculation of the forward pass, error propagation

and calculation of the gradient (if possible) for the destination machine given the specified

training set and neural network architecture. The user can then call these routines from

their optimization code. Since algorithms for nonlinear or multidimensional optimization

are quite complex and are either difficult or impossible to implement efficiently on a SIMD

processor army, they are instead executed serially on the front-end computer. This al-

lows the use of optimization algorithms such as conjugant gradient, powell's method,

steepest descents or some other algorithm written in the users favorite language. This

use of the front-end provides advantages on the connection machine. For example, the

optimization code can "twiddle" network parameters with a 100 ns clock instead of the

Its cycle time of the connection machine processors. In addition, some of the work done in

the optimization code can be gotten "for free" due to the asynchronous operation of the

front-end computer and the SIMD array of processors.

In summary, we have been able to exploit the gigaflop capabilities of the

connection machine to train arbitrary feed forward neural networks on large, complex, and

noisy data sets with examples on the order of hundreds of thousands to millions. We

have done this with a neural network compiler which implements an extremely efficient

mapping to SIMD architecture parallel computers. The mapping allows efficient use of the

computational facilities of the parallel hardware with virtually no communications over-

head. Arbitrarily large networks can be implemented by using the large virtual address

space of the front end computer and by merging the memory space of adjacent SIMD pro-

cessors together via fast local inter-processor communications. Thinking Machines Cor-

poration has acknowledged that our implementation is considerably faster than other

known implementations and that our implementation "has either constant time behavior

or linear time dependence with respect to the number of training patterns, depending on

the size of the connection machine used" (Singer 1990). Since the number of examples is

the dominating factor in the runtime growth of training, our method allows the use of the

CM-2 Connection Machine for real world problems of a complexity not possible using

other computational hardware.

This work was done under the auspices of the U. S. Department of Energy and was partially

funded by a grant from the National Institutes of Health (GM 40789-03). We express our gratitude for

the hospitality of the Santa Fe Institute where part of the work was performed. We also acknowledge

the help and suplx_rt of Alan Lapedes who has been an integral part of the design and use of this work

and without whom this work would have been iml_ssible.
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Fig 1: An XOR Neural Network
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all variables for the neural network in virtual memo-

ry. This allows essentially unlimited neural network

sizes and connectivity. The Front End also contains

the energy minimization code written in a high level

language like C. We generally use conjugant gradi-

ent although the user has complete flexibility to use
his own code.

l
Processor 2

Example 2

Temporary Variable

Calculated Output

Calculated Hidden

Known Output

Known Input 2

Known Input 1

[
Processor N

Example N

Temporary Variable

Calculated Output

Calculated Hidden

Known Output

Known Input 2

Known Input 1



Fig 3: Example of a global broadcast
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Fig 4: Ualculation ol- Hidden Neuron for XOK Network. All operations

local except for the global broadcast of connections W(I1,H) and W(I2,H).
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Fig 5: log(n) Runtime Growth of Global Summation

I
/

tlprocessor 1 ]

! * I

IProcessor21 Iprocessor3l IProcessor41

[ cycle3 [

[ cyclo1 ]

Fig 6: O(n 2) Memory Growth for a Fully Interconnected Neural Network
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Fig 7: Calculation of Hidden Neuron (eqn 1.2) for XOR Network. All

operations are local except for the global broadcast of the connections

W(ll,tt) and W(I2,H) and local inter-processor communications.

Calculate H += W(II,H) * l I + W(12,H ) * 12

_p 2: Broadcast W(I2,H) m_lfiply by 12 and add to H
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Fig 8: Compiler Paradigm

Neural

Network

Specification
and Data

DependenCYAnalvS_code
Generation

Compilation
Execute

Fig 9: Block Diagram of Neural Network System

Data Extraction

Data Manipulation

\
I • Text Form of

Neural

Network

Specification

Neural Network Compiler

1
SERIAL CRAY CM2 CM5

Results

11



References

A. S. Lapedes, R. M. Farber, "How Neural Networks Work" Proceed-

ings of the IEEE, Denver Conference on Neural Networks, 1987.

A. S. Lapedes, R. M. Farber, "Non-linear Signal Processing using Neu-

ral Networks, Prediction and System Modeling ", LANL technical re-

port LA-UR-87-2662

A. S. Lapedes, C. Barnes, C. Burks, R. M. Farber, K. Sirotkin,

"Application of Neural Networks and Other Machine Learning Algo-

rithms to DNA Sequence Analysis" published in Computers and DNA,

SFI Studies in the Sciences of Complexity, vol. VII (1989).

R. M. Farber, A. S. Lapedes, K. Sirotkin, "Determination of Eukaryotic

Protein Coding Regions Using Neural Networks and Information Theo-

ry", J. Mol. Biol. (1992) 226, 471-479.

F. J. Pineda, "Generalization of Backpropagation to Recurrent and High-

er Order Neural Networks", Neural Information Processing Systems,

Dana Z. Anderson editor, pg. 602-611.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,

"Numerical Recipes in C", Cambridge University Press, 1988.

D. Rummelhart, J. McLelland, "Parallel Distributed Processing", Vol. 1,

M.I.T. Press, Cambridge, MA. (1986)

Singer A., "Implementations of Artificial Neural Networks on the Con-

nection Machine", Parallel Computing, 14:305-315, 1990

12



Symbolic-Model

LearningFuzzyhff°rmati°ninatlybridC°nnecti°nist'N9 3 __,_ 54, -

Steve (I. Romaa,iuk and Lawrence O. Hall

Departnwut of Computer Science and Engineet'ing

University of South Florida,

Tamlm, I:L 33620

e-mail: romaniuk(_daffy.csee.usf.edu, hall@waterfall.csee.usf.edu

Abstract

An instance-based learning system is presented. SC-net is a fllzzy hybrid connec-

tionist, symbolic learning system. It remembers some examples and makes groups of

examples into exemplars. All reaJ-vMued attributes are represented as fllzzy sets. The

network representation and learning method is described. To illustrate this approach

to learning in fuzzy domains, an example of segmenting magnetic resonance images of

the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or

fuzzy. Example filzzy rules for recognition are generated. Segmentations are presented

that provide results that radiologists lind useful.

/

1 Introduction

This paper describes the use of a hybrid comwctionist., symbolic machine learning system,

SC-net [4, 8], to learn rules which allow tlw discritninal.ion of tissues in magnetic resonance

(MR) images of the human brain. Specifically, a 5ram thick slice in one spatial orientation

will be used to illustrate SC-m't's c_q)abilities. The problem involves identifying tissues of

interest which include gray matter, while _natter, cerebro-sl)inal fluid (csf), tumor when

it exits, edema and/or necrosis. Essentially, a segmental.ion of the MR image into tissue

regions is the aim of this research. The traillitlg data is chosen by a radiological technician

who is also familiar wilh image l)rocossing aml lIaltcrll recognilion.

SC-net is an illstanc(,-bascd leartfillg syslc,m. It elwodes instances or modifications of

instances izl a connectionist architeclure tbr use in classification after learning. Fuzzy sets

are directly rel)I'esenled by groups of coils ill lit(, twlwork. ,Nlembership functions for any

defined fuzzy sels are also h,ar]wd duril_g tile lrailling I)rocess with the dynamic plateau
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modification featureof SC-net [7].

The rest of this paperwill consistof a descriptionof the relevant featuresof the SC-net

learning system,a description of the processingof a MR imageslice, the presentationand

discussionof the segmentationresultsobtained wilh the SC-netsyslem,a discussionof how

theseresults comparewith other techniquestlmt havebeenused [5]and an analysisof the

feasibility of the SC-netapproachin this dom_dn.

2 The SC-net approach

Each cell in an SC-net network is either a lnin, max, negation or linear threshold cell. The

cell activation forlnulae are shown in Figure 1. The output structure of the network is

set up to collect positive and negative evidel_ce for each output. For an output cell in a

classificatory domain, an ontput of 0 indicates no presence, 0.5 indicates unknown and 1

indicates true. \¥e will show an example of a ditt'ei'ent us of the output values in the MR

image segmentation domain.

S(".-net configut'(,s its ('onitcct iotlist architect ilt_, based ttpotl tlle training examples pre-

sented to it. The learning algorithm respoilsible for the crealion of the network topology

is the Recruitment of ('ells _lgol'ithnt (I{(:A) [-1, 7]. I{(:A is an incremental, instance-based

algorithm that requires only a single pass through the trailling set. Every training instance is

individually presented to the network for a single feedforward pass. After the pass has been

completed, the actual and tile expected activation for every output are compared. Three

possible conditions lll_ty result from this comparison.

• The examl)le was correclly identified (_'rrof is below some epsilon). No modifications

are made to the network.

• The exanlph' is Silnilat lo itl, leltst o11_.' plc\'iously seen _nd stolcd instance (error

within 5 epsilon). For those OUll)Ul cells that have an activation within ,5 epsilon of

the expected out put, a bias is adjusted to incorl_orate the new instance.

• The example could not be identified by tilt. network. This rt,sll]Is ill the recruitment of

14



C,4i - c('ll activation for cell (7i.

Oi - output for (:ell Ci in [O,l].

06 .... ,,_e and O,,,_y_,,_ are the posilive an(l negalive collector cells for Ci respectively.

CWi,j - weight for connection between cell (7i atld (Tj, ('ll:i,.j in I/.

CBi - cell bias for cell Ci, CBi in [-1..+1].

CAi =

mi'z.:=u,..,i-l,i+l,..,,(O.: * ('II',,./) * J('/3,1

mazj=o,..,i-l,,+l,..,_(Oy * (:t'l:i,.,) * I(:l-_,l

_=o;._#, oa * (-:l,vi,., • ('B,

I - (Oj • CW,,j)

Oi, ........ + Oi,,_ ...... - 1/2

(,:_is a maz cell

Ci i.s a lie ceil

Ci is a negate cell

Ci is either an intermediate

or final output cell.

= ,.a.r(0, mi,,(1, C:A,))

Figure I: (:ell activation formula

a new cell (referred to as an int'olmat.ion collector cell, ICC). Appropriate connections

from the network inputs to the ICC are crealed. The ICC cell itself is connected t.o

either the positive (PC) or negative collector (N(:) cell. The PC, is used to collect

positive evidence, whereas the NC accumulates negative evidence. The initial empty

network structure for a two input (one outl)ut ) fuzzy exclusive-or is presented in Figure

2. Note that l,he uk cell always lakes an activation of 0.5. The complete learned

network for the fuzzy exclusive-or is shown in Figure 3, where cells cl-ca, c5 are IC

cells and nl, n2, c,l, and c6 are negation cells.

To improve on the generalization capabilities of the RCA generated SC-net network a

form of post training generalization is employed. This method is called the min-drop feature.

Whenever a test. pattern is plesenled to the system, which calmot be identified by any of

the output cells, the rain-drop feature is alq_lied. If a new pattern cannot be recognized

by the network, all output cells will be in an inactive state (an unknown response of 0.,5

is returned). In this case the rain-drop feature ix applied t.o find the nearest corresponding
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f-XOr

Bias ......... l_xl .Min cell

PC'" "k"_ _'lq C".......

0.5

Q Q

Figure 2: SC-net structure

IUC l,_?'e :

NC

,26

Figure 3: Tile network for the fuzzy exclusive-or
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output for the current pattern. New pal l(u_ls at_' slorc,d in the network through recruitment

of IC ceils (and possibly some negalion cells). These IC cells are essentially rain-cells, which

return the minimum of the product formed from the incolning activation and the weight on

the corresponding connection. The rain-drop feature works by dropping (ignoring) the next

piece of evidence which is below some threshohl. The process is repeated until one or more

output cells enter an active state (fire). The final number of connections dropped indicates

the degree of generalization required to match the newly presented pattern. In a second

mode, a bound may be placed on the rain-drop value, preventing an unwarranted over-

generalization. RCA and post training generalization in the form of the min-drop feature

provide good generalization. However, several problems can be associated with the RCA

learning phase.

• Network growth can be linear in tlw number of training examples.

• As a direct consequence of the tirst problem storage and time (to perform a single

feedforward pass) requiremeHts Illay ill(l(,_ls(, beyond tire nelworks physical limitations.

• Generalization on yet unseen patterns is limited, and requires use of min-drop feature.

To address the above problems a network pruning algorithm was developed. The GAC

(Global attribute Covering) algorithm's [7] main purpose is to determine a minimal set of

cells and links, which is equivah'nt to the network generated by RCA. That is, all previously

learned information should be retained in the prtmed network. GAC attempts to determine

a minimal set of connections, which may act as inhil)itors of the information collector cells

(ICC). Each information collector cell is introduced to the network as the result of an

example in the training set which was distinct fronl all previously seen examples. GAC is

completely described in [8].
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2.1 Dynamic Plateau Modification of fuzzy membership func-
tions

All fuzzy meulbership functions in SC-net are represented as trapezoidal fuzzy sets [7, 9].

They are represented ill tile network by a grottp of cells as showzl ill l"igure 4 for the fuzzy,

variable teenager. Teerlager takes membership values of 1 in [13..19], of course. In this

implementation the meillbershi t) goes linearly to 0 at the ages ot'5 and 25. In the network

ages are translated into [0,1] from the [0,100] year range. So the age of 22 is translated to

0.22. Figure 5 shows tile actual graph of the membership function for the fuzzy teenager

variable.

The dynamic plateau lnodification function (I)PM) is designed to bring in the arms of

tile fuzzy lnenlbership function. In general, we allow the range of the membership function

for unknown functiotls to inilially be the range of the fuzzy variable. The range in which

the function oblains a value of I is al least one point (all fuzzy sets in SC-net are normal

in the sense that they colltain al least one ['till member) and usually much smaller than the

function lange. IlcllC¢,. t\_r tile' ll'('llilgt j ('x_,inple wilh a 100 year lange the right arm of the

lvapezoidal membevsltip function wouhl initially go to 0 at age 100, if we had no information

on constructing the nlelnbel'shil) function other than where it, is crisp (attains a membership

value of 1). \Ve always assume that the crisp (notnlal) portion of the membership function

is known. The DPM tunctioll allows us to arbitrarily set the arms too wide and then adjust

theln during the learning process. (?learly, iJt our examl_h, it is ilnpractical for someone 99

or 100 years old to have memb,'t'ship in the' fuzzy sel teenager.

A high-level descril)t.ion of the DPM method is as follows. When it is determined that

the fuzzy mendmrshil_ value has caused az_ incorrect out put, tile, maximal membership that

will not cause an error is determined. This value for the set. element given and the nearest

element at which the lnemt)crship fum'tiotl lakes a \'alum, of 1 are used to specify the linear

arm of the fttllction. This p,'ovides a lmw Ul)p¢'r or lower p[aleau value (point at which the

function goes to 0) for the fuzzy nwlnbersllip functioll which is used to update the weights
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Figure 4: The fuzzy variable teenager.
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Figure 5: Graph of nlembershil_ t'mwtion for fuzzy variable teenager.
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labeleda thru e ill Figure 4 [9].

2.2 Automatic partition generator

In SC-net all real-valued inputs are inodeled by a set of individual fuzzy sets which cover

the range of the input. Ill the case that real-valued data is truly fuzzy, but domain experts

do not exist to provide indications of how to model it by fuzzy sets, the choice of the

fuzzy sets to cover the range is difficult. Since the data is fuzzy, it may not be possible to

accurately identify distinct ranges of the real-valued output associated with specific output.

However, this type of idea of associating (fuzzy) ranges with actual outputs can be used. The

automatic partition generator (APG) is a method to develop a viable set of fuzzy sets for

use in the learning process in domaius which have real-valued input, but no expert identified

ranges that may belong to specific fuzzy sets.

The APG algorithm works as follows. For each real-valued attribute or feature it

makes a partition such that the boundary going fl"om low value to higher value includes at

least one element of a class. It will further contain as many eleme,lts of the same class as

possible. Given the strategy to have all the partitions contain only one class, the maximum

number of partitions for any given feature would be the number of classes and would indicate

it is very difficult to partition the train set based on that feature or attribute alone. It is the

case that a partition may be bounded on both sides by partitions that belong to the same

class which is a different class than the examples in the bounded partition belong to.

3 The Nature of MRI Data

Magnetic Resonance hnaging (MR I) systems measure the spatial distribution of several soft

tissue related parameters such as TI relaxation (spin lattice), T2 relaxation (transverse) and

proton density. By discrete variatious of the ,'adio frequ('ucy (RF) timing parameters, a set

of images of varying soft. tissue contrast carl b(' obtained. The use of time varying magnetic

field gradients provide spatial illformatioti I)as(.d on the frequency or phase of the precessing
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protons using both multi-slice (2DFT) or volu,_ae (3DFT) imaging methods [10, 11]. Hence,

a multi-spectral image data set is produced.

In our work, male volunteers (25-:15 years) and patient, tumor studies were performed

on a high field MRI system (1.5 tesla) using a resonator quaduature detector head RF

coil. Transverse images of 5 mm thickness were obtained using a standard spin echo (SE)

technique for T1 weighted images (pulse repetition time TR = 600 ms, echo time TE=20

ms) and proton density (p) and T2 weighted images (TR=3000 ms, TE=20 and 80 ms

respectively), using the 2DFT multi-slice technique [12, 13, 2]. Volunteers were imaged for

the same anatomical location.

Pixel intensity based classification methods were employed in this work as opposed to

methods based on the calculation of magnetic resonance relaxation parameters. The latter

methods require tailored RF pulse sequences [10, 11]. Image intensity based methods can be

applied to any imaging protocol and are not restricted to the number of images acquired, i.e.

it is possible to accommodate images with features other than MR relaxation parameters,

such as perfusion and diffusion imaging, metabolic imaging and the addition of images from

other diagnostic modalities [2]. Tile transverse images were acquired, centrally located in

the resonator RF head coil, and hence (lid not require uniformity corrections for RF coil

geometry or dielectric loading characteristics as developed at this institute [3]. Similarly,

the subjects studied did not move significantly during the imaging procedure and hence,

corrections were not required for related registration problems.

4 Segmenting magnetic resonance images

SC-net is a supervised instance-based lear,ring system. Hence, in order to use it to segment

an image a training set of labeled pixels must exist.. Each pixel has 3 features associated

with it a T1, T2 and proton density value. In this paper, we will focus on one normal slice

and one abnormal slice. There are 271 pixCqs in the abnormal training set and 216 pixels

in the normal training s¢'t. q'h_'te are 5 _lasscs in the normal tl'aill set; gray matter, white

21



matter, csf, fat and air. The abnormal train set also contains a class for tumor or pathology

for a total of 6 classes. Each of the train sets was chosen by a radiological technician.

Each of the inptlt features is real-valued taking values in [0,255] and hence will be

represented as fuzzy sets within SC.-net. However, it is unclear how these fuzzy sets should

be constructed. Further, in [6] it is shown that the values associated with specific tissues

vary from subject to subject with significant overlap. Therefore, the partitions of the input

ranges for the initial fuzzy sets for each of the inputs were obtained by the use of the APG

algorithm.

The inputs in each dimensio,, are first translated from [0,max_yah,el max_value < 255

to the [0,1] range. The APG algorithm is Ihen run which, for example, in the normal

(volunteer) training set produces 11 partitions in _f'1, 19 partitions in proton density (p) and

5 partitions in T2. It is interesting that T2 requires the least partitions as it has been the

most used single parameter in the literature and few partitions will belong to features or

attributes that are "good" data separators. The initial range of each constructed fuzzy set

is [-0.2,1.2]. Allowing the rang(" of the me,_lbership function to be larger than the range of

the set it models is an implementation conve,_tio,l which allows membership values to be 1

at the edges of the actual range.

There are two possible ways to a.ssign examples to classes. One is to use 5 outputs

for the normal example and 6 outputs for the abnormal example. This is the most straight-

forward method. Another possibility exists, which is to use just 1 output. This output is

then broke,, i,_to ,5 ranges for the no,,,,al exa,,,ple (i.e. [0,0.2]. (0.2.0.4], (0.4, 0.6], (0.6, 0.8],

and (0.8,1]) which respectively represent the 5 tissue types of interest. Similarly, the single

output range can be brokell up for 6 out pt, ls. The use o[ one output provides a very compact

network with just 3 inputs which fan out into 3.5 fuzzy sets in the normal example.

In all experimellts, after traini,lg all of the relnaining pixels are presented to the

network for classification. The image is 256 by 256, which recalls that the training set is

very small in relation to the total set of 6.5.53(i i)ix¢.ls.
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Table 1: Synthetic Colors for MR TissueClasses.

blue
yellow

red

orange
brown

purple

air

cerebrospinal fluid (csf)
white matter

gray matter
fat

pathology

4.1 Results

In Figure 6, we show the segmentation results for a patient with pathology (6a) using 6

outputs and a normal volunteer with 5 outputs (6b). In both caseS the fuzzy outputs have

been made into one crisp color. The choseH color is the one associated with the output

which has the highest membership value. A color table for the figures is listed in Table 1.

The patient with pathology has received cliemo and radiation therapy which has eliminated

obvious tumors, but left some pathology.

The segmentations in Figure 6 are comparal_le to segmentations pronounced as good by

a team of radiologists [5]. The only real difference is that some fat (brown) shows up within

the brain. However, this is a minor inconsistency. The case with pathology is segmented

as well as any of the other fuzzy nnsupervised and non-fuzzy supervised techniques used in

[5]. In the lower left-hand part of tile image the pathology is clearly defined and it can be

seen that there is also pathology in the top of the inaage and the lower right-hand part of

the image.

In Figure 7, we show the results nsilig only 1 otltput for the abnormal case (7a) and

normal case (7b). It can be seen that the s('gmelltat.iolJs are much the same as before. The

fat in 7b is only weakly misclassified ira t lai._ iJlstance and barely shows up in the segmented

image. These displays are flmzy, which means that a pixel that strongly belongs to a class

gets a bright color value, while a pixel that weakly belongs to a class is a darker shade of

the same color. This generally sllows the ullcertailLty in the segmentation better and tends
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a) b)

Figure 6: All abqormal and normal segmentation by SC-net with multiple outputs.
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to highlight borders [5].

5 Summary

SC-net is able to provide good segmentations of MR images of the brain. This is a domain

in which there is significant tissue overlap and the boundaries are fuzzy. With the use of the

APG function the real-valued inputs are ataomatically partitioned into fuzzy sets. These

fuzzy sets are further refined after the RCA learning algorithm has been applied by the use

of DPM.

The results of the segmentation are comparable to those obtained by K nearest neigh-

bor (K-nn) (K=7) and Cascade Correlation [5] in another study of supervised learning

techniques. In the normal volunteer image the SC-net segmentation is a little clearer than

the k-nn segmentation with the one exception of misclassified fat. The fuzzy connectionist

representation of SC-net is very el[bctive and fast in learning and classifying the MR images.

The rules that are generated after the use of GAC for the normal case numbered 9 and

13 for the abnormal case. They can be used to p,ovide a sense of what portions of which

features are important in the recognition process. In Figure 8, the 9 rules for a normal case

are shown. It can be seen that for output 5, fat, the 16 th partition of the T2 parameter

is crucial. For output 2, csf, around the 2 '''_ proton deusity partition is the an important

indicator. Output 1, which is air, is very easy to distinguish by one rule. This is a known

fact since it essentially has a 0 return. The ,mmber of rules required to distinguish a class

can also be an indication of how ditficult it is to recognize. Hence, the rules can have se-

mantic meaning and may be useful in tuning the system which is an advantage of a hybrid

representation.
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Rule 1: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[pl2]) = 1.000,

fuzzy(If[p5]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 2: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[plT]) = 1.000,

fuzzy(II[p7]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 3: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[pl9]) = 1.000,

fuzzy(II[pl6]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 4: if and(fuzzy(I3[p2]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(II[pI7]) = 1.000 ) then 0ut4 ( 1.000 ).

Rule 5: if and(fuzzy(I3[pl5]) = 1.000, fuzzy(I2[p3]) = 1.000,

fuzzy(II[plT]) = 1.000 ) then 0ut3 ( 1.000 ).

Rule 6: if and(fuzzy(13[p22]) = 1.000, fuzzy(12[p3]) = 1.000,

fuzzy(II[p5]) = 1.000 ) then 0ut2 ( 1.000 ).

Rule 7: if and(fuzzy(I3[pI7]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(II[p5]) = 1.000 ) then 0ut2 ( 1.000 ).

Rule 8: if and(fuzzy(I3[p19]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(II[p6]) -- 1.000 ) then 0ut2 ( 1.000 ).

Rule 9: if and(fuzzy(I3[pl]) = 1.000, fuzzy(I2[pl]) = 1.000,

fuzzy(II[pl]) = 1.000 ) then 0utl ( 1.000 ).

Figure 8: Rules for normal volunteer
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ABSTRACT

A develollinenlal approach to the study of the emergence of llielila] operalional Sll'uClllrps

iu neural networks is presented. Neural architectures proposed to underlie the six slakes of the

sensory-nlotor period are discussed.

1 Introduction

Ilislorically. the study of intelligence has been polarized into explanalions based Olt ilellrollh.vs-

iology and those based on logic. The same dicholoiny manifests itself in currenl alil)roaches.

the former corresponding to the neural network theory and tile latter Io ihe svnll_olic reasonipg

schenles llsed in artificial intelligence (logic. fnzzy logic, etc.). At a first glance these two oxplana-

lions fail to exiend to each other, for logic does not tell us anything aboui neurophysiology and il

lOOlilS difficult to explain lhe rules of logic fl'oni the connectivity and firili K patterns of iiOlll'Oil._.

llowever, logic is housed in neurol)hysiological sul)sirales and tliere should I)e a rec_lncilialion

belween I hese two explanations t if we reject dnalisni). Since logical l'eaSOllillg ellli_l'_Os as a result

of an extensive developuient a/Id since the early phases of developmenl consist of sinlpler behav-

iors. Ihe link belween adult intelligence and the underlying neural corrolales can be eslablishod

liv relaling the early developmental stages to neurophysiological substrates and by studying the

adalliive dyilaliliCS of Ihe system thai leads to the emergence of higher lllenlai operations. The

lheory of genetic psychology (Piaget. 1967)provides its with a very delailed sludy ,if various

phases slatting fi'oin birth to the iidulthood. This paper extends various psychological COllCepls

of lhe theory of genetic psychology to the neurophysiological domain. In particular, il oullines

Ilellrltl networks proposed io give rise 1o the various stages of lhe Sellsory-niolor period.

2 A neural theory of development

Oiir Sl, u(ly of (levelopnient is closely linked to the lheor.v of genelic 1)sychology (I)iagol. If)tiT).

l)iagel (196:1) nanied the post-natal developnlentai period where language is alisenl lho sttt.Rort.l-

meier igriod and suggested the existence of six consecutive slakes lhal govern ils dynnnii(s.

These stages start from reflexes and end with mental inanillulalions of Sellsory-iiiolor schellleS l_l

iliVOlll liew intelligent structures. Menial internalization of early st_nsorv-iuolor schonios I,,ad i,,

Ihe capalfililv of applying ilieln to forlnal reasoiiiiig in Ihe adult lifo.
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2.1 The six stages of the sensory-motor level according to tile theory of genetic

psychology

Tile first stage of the sensory-motor period consists of simple reflexive sensory-motor behavior.

hi lhe second stage, tire repetitive use of these reflexes, called "primary circular reaclions", leads

to tile formation of habits. The primary circular reactions refine genetically encoded reflexes and

enable the emergence of multi-modal coordination. At: the third stage the infant slarts to draw
a distinction between the "means" and "ends" and uses "secondary circular reactions". During

the fourth stage, existing sensory-motor schemes are coordinated and extended to new situations.

In stage 5, new sensory-motor schemes are acquired through physical groping. Finally during

the sixth stage, which marks the end of the sensory-motor level, Mew sensory-motor schemes are

a.cquired by mental groping.

2.2 A model for primary sensory-motor schemes

We first start by describing the seed sensory-motor circuit with nonassociative learning properties

(()l_men 1991, O_men & Moussa., in press). The architecture, which is illustrated in Figure 1, has

three main parts: the sensory circuit, the sensory-motor gate circuit, and the motor circuit. Sinc'e

the model was originally formulated explicitly for the prototypical landing behavior of tile fly, the

sensory and motor parts are specialized for this animal. The sensory part consists of visual signals

conveyed by the compound eyes and of tactile pathways. In the fly. signals from the compo,ud

eyes are processed by three optic ganglia: lamina, medulla, and lobula complex, denoted by l,a.

Me, Lo respectively in Figure 1. The output of tile visual processing stage results from a behavior

sensitive pooling of motion detector neuron activities. In tile case of landing, stimuli i,dicaliug

the approach of a landing site, such as expanding patterns, are detected by an appropriate poolil_g

of directionally selective large field motion sensitive neurons and constitute the "agonisl" inpul

to the sensory-motor gate circuit. This input is denoted by I_,,, in Figure 1. Stimuli of opposile

character (such as coutra.cting stripes) constitute the "antagonist" input denoted by 1;,o. Agouisl

and antagonist tactile inputs are added to these visual signals. One such input is marked bv It,,

in Figure 1. The following stage, which is a gated dipole anatomy (Grossberg. 1972). constitules

the s(o, sory.motor gait network because this is tile stage where various sensory signals a.re poolc,d
to determine whether a motor command signal will be issued. The sellsory-molor gate nelwork

has agonist and antagonist outputs denoted respectively by x_a and .r_,,. These signa.ls project to
motor circuits (not shown) to control agonist-antagonist muscle pairs (indicated by .49 and .4o ).

This sensory-motor model exhibits nonassociative learning as observed in the landing reaclion of

the Ily a.s well a.s in lluman infants (Lipsitt 1990).

Figure 2 illustrates this architecture augmented with adaptive capabilities. The adaplive ver-

sion of this sensory-motor model haz also three major parts: sensory, sensory-motor gale, and

motor. These parts are augmented by inclusion of atlaptive lnechanisms similar Io lhose proposed

in the INFANT (Kuperstein & Rubinstein 1989) and AVITE (Gaudiano & Grossberg 1991) mod-

els. :r, represents an environmental variable. These environmental variables are converted inlo

ue, ral aclivities by the sensory loci. Tile activities of lhe sensory loci are denoted by .rs. The

sensory loci project to the sellsory-molor gate networks. The first layer of the sensory n|olor gale
network consists of nodes interconnected by recurren! on-center off-surround connections. Eat'h

node corresponds to the agonist-antagonist inputs of a given sensory-motor scheme. The gated

dipole of Figure I is represented in a condensed way by a single node ill this layer. An arbitrary

number of sensory-motor schenws, similar to the one shown in Figure 1, exists. The compelilion

belween these nodes selects and triggers one of the sensory-motor schemes. The second layer of
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Figllre 1: Model. for l)rimarv sensor.v-mot.or schemes iOn. men & ._[o,lssa ill press).

32



sensory
sensory-motor

motor

Figure 2: Adaptive version of the sensory-motor model shown in Figur+ t.
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tile se,isory-motor gate part is is used convert tile representation of lhe seusory sl)ace inlo the rop-

rosoutal:imls of 111o motor space. The connections couvergiug to this layer are adaptive. The in.l,_r

parl consis! s of three layers and has AVITE model's anatomy (Gaudiano & G rossberg 199l ). Tile

olllplll layer produces motor command signals while the input layer receives 1h0 desired meier

command signals. Tile layer between these "target" and "present" lnotor signals compules the

error. This organization con._litutes a basic feedback control system whorl, l lw _.,llml i_ drive,,

by an error signal during real-lime operation. Moreover. tile same "meier error" layer is used Io

adapI Io changes in the plant, making tile sysleln all adal)tive feedback c(_ldl'ol syslem. Whal is

lit)! able in this anatomy is that tile same error signals are used both for performa ace aml lea rift ng.

Another important feature of tile AVITE circuit is the "Eudogenous Random Generalor" (Ell(;)

which generates ra.ndom postures and enables the spontaneous learning of sensory-reeler coo|'di-

hale trausfornls. The filled circles depict in a condeused way the function of tile ERG. l)uriug

lhe active phase of the ERG a randonl motor signal is dictated to the output of the motor ci|'cl,il.

l)l, ring !he passive phase of tile ERG, activity of the motor layer is transferred to Ihe tirsl layer

of lhe motor circuit which is transferred to the buffer layer of the sensory-motor gate nelwork.

The arrow fi'om the bottom filled circle to the motor output layer depicts the general!on of ral,-

dora motor signals. The pathway from the motor signal level to the motor target level depicls

tile transfer of aclivity between these layers during the learning phase. A similar transfer occl, rs

belween the motor target layer and the sensory-motor gate buffer layer. Nole thai. in add!lion lo

in lernal feedback, the sensory-motor circuit constit lit es a closed loop t hrol,gh t he environ nlent al

variable de0oted by x_. The interaction between the enviromnental variables and neural variables

is essenlial and constitutes an overall organization bv the relationship of assimilalioo !l,a! ,0lies

Iheul (Piaget. 1963).

The cir('uit described above constitutes tile proposed basic neural correlate for !lie reflexive

behavior of Stage 1. The adaptive nature of the circuit requires !he use of llmse reflexes fi_r

collsolidaliou aud line tuning. "]'lie rel)etitive use of reflexes leads to the second slag,,, lhe slag!, ,)f

habils, l.'igl,re 3 shows how the beginnings of "cortexification'" occurs at Ihis singe. In Figure 3. l lw

ardlito('l ure of ]"igure 2 is depicted in a stall)lifted form as a closed loop of envit'OUlliel|lal, seilsc)r,¢.

s(,ns,)ry-lnolor gate, and motor variables denoted I)y .r,..rs. and .r,,_ respecliveJy. "]'o I his bast," Io,)p.

ad(lilitmal circuils, proposed to be of cortical origin, are added. These corlical nelworks r,,,-oiw,

sensorial in puts and have a feedback structure. They are prol)osed to be adaptive resouat,ce ( h0ory

(All'f) arch!lectures (Carl)enter & Grossberg 19R,_. Grossberg 1976) and each node rol)rosellls a

layer of All'I'. At Ihis stage, sensorial stimuli start to be recorded anti generalize(I c,_rli('all.v.

The oulputs of these ART circuits also make connections with tile sensory-motor circuits. Th,,

conneclions from ART circuits to sensory-motor loops are proposed to be Hel)l)ian synal)ses s,_

I ha t an association between !he cortical representation of sensory stimuli a nd I he at!ire s,,liso,'y-

lilOlOr circuits occurs th,'ough tile reinforcement of the s.vnaptic weight between lhe ART ('irt'l,ils

and (he senso,'.v-motor gate nodes. A second fealure of cortical (levelopmeu! _1! Ibis sl;le.,o is lho

begi,ltfings uf cortico-corlico associations. This is shown by syimplic coltneclions between ;arh_,ls

.\liT circuits. This phase of operation corresl)on(ls to StaKe 2. ill that tile sonsor.V-lll()lor scholllOS

are lie! (Iocoml)ose(I and consequently there is no different!alien I)eiweeu the "'umaus'" and lho

"(,tills". The lack of decomposition comes from the I)rol)erty that one canllo!, al this i)oiul, ac('oss

these closed loop circuits !toni an arbitrary eutry 1)oin! and the only way Io ;wlivale lh,'m is 14)

i)rovi(le the al)prol)riate environlnental signals.

i)u ri ug Stage 3. such a deconil)osition is int rod u('ed by I lie develol)ment of "'secon(ia r.v ('irc u In r

i'eacliotls". On('e the sensory-motor repertoire becomes sufficiently rich aud tm, lli-mo(lal ('()o,'di-

naliou (in particular tile coordination I)etween vision and graspiug) reaches a satisfa,'lory Iov,,I.
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Figure 3: File architecture of Figure 2 is represented in a simt)[ified ['orm as a ('[o._d h)op ,)f

_,nvironmenta.I va.riables .r,. sensory, va.riabies .r,. sensory-motor gate variables .r,,,. and mot_)r

variables .r,,. To these basic [oops a.dditional ciro_its are added to explain 1he I)e_inniu_s rd

"'cortoxificat ion".
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Figure 4: Secozldaz'y circular zeacrions

lhe iufaut slarts gra.spiug objects [>Laced in her vicinity. Assume that the in['aut is l>t'esenl_,d wil h

a toy. grasps the toy. shakes the toy. and that. the toy produces a. characteristic _ound new tn the,

infant. This sound will retrigger the sensory-motor _,cheme. i.e. will geuerate a circular rpactir,n.

l,;_t_r, when tile infant is presented with a similar toy. _he will try tile _ame senst>ry-mmor _ch_,nt_.

;imilarly. when the sound of the toy is reproduced by rite experimeutpr, she will look I'_," the, toy

I'ia_et, 196:3].

F'i_ure 4 ilhtstrates how this occurs it+, the proposed tteura[ cit'c,tits, htitiatly, a toy is im.-,s++,tla+,d

x, t) a.ud it. triggers a sensory+motor schente (grasping and shakiug) whose out put is a _urprisil_,,

sound (.r,2). The se,sorv-mot.or _,cheme is rel)eated many times until the novelty of _,tiunuli

vattishes, t During this circular reactiou, a connection front the cortical circuits to the s_ll>-c'ortic'al

<ircuits is also reinforced. [f there are cousistent stimuli pairiugs, associatiou l)etw,_,n t hess, st im,li

also occurs, ht the example of toy shaking, at least an association between the ohject (.r,n) am[

_he sound (.+',_) occurs. Later. assume that the infant is presented with a diff+retlt ,+hj,_ct .r+ : an<l

thal lhis object does uot. trigger directly the grasping sciteme l the dotted cotutecrion in [:i¢ute I).

Now. if this object has an equivalent cortical gezteralizatJoa, it will send a signal re lids _-nsorv-

uIn the h+Lgicarchitecture of Figure 2. habitttati.g sensor?," aad sensory-motor gate ,_ignals .nderlie the hM_ilnauion

l_ropetlies of the circuit.
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motor schenm via the cortical connection which was reinforced during the circular reaclions. If

this signal is strong enough to trigger th_ sensor.v-motor s('hetue without tile sensory signal, tlm

infant will shake this new object. If this object also makes a similar sound (x,2), it will re-activate

this sensory-motor scheme via a circular reaction. The repetition of the sensory-motor scheme

will reinforce the direct sub-cortical connection as shown at the bottom of Figure 4.

While the previous example considered a single sensory-motor schenle for simplicity, in pratt ice

a larger number of environmental variables (the first being the object, the last being the sound)
are involved.

Note that one can see the important distinction that Piaget drew between his notion of adap-

talion through an equilibrium between assimilation and accommodation and the associatiouistic

theory of intelligence. While. the behavioral analysis of the network described above may look like

an associalionistic paradignl, it. is important to emphasize that the associations are not passive

bu! involve existing sensory-motor schelues. Initially. :r,, and the intermediate environmental

variables are assimilated to generate this particular sensory-motor scheme. During lhis assimi-

lation process, other envirolmlental variables are also registered. This registration is primed I)y

the neural activities occurring in the sensory-motor scheme that is active. The time scales of as-

sociation (i.e. the inter-stimulus intervals) are not arbitrary but are determined by the temporal

characteristics of the active sensory-luotor scheme. Later. when x,3 is represented 1o the s.vslem,

it can activate the same sensory-motor scheme either because it is an equivalenl stimulus or be-

cause it was associated with .v_l during the previous repetitions. Consider the classical example

of food bell pairings. The presentation of an object that resembles food will trigger a complex

sensory-motor scheme in a (log. The same sensory-motor scheme can also be geHeral(.(I by a

difl'erenl food. Another possibility is that a conditioned stilnuJns, sllch as the sound of a boll. is

delivered. In a future trial, if this bell is delivered alone it will trigger the sensory-motor scheme.

llowever, following the first phase (salivation) if the appropriate environmental varial)les cannot

I)e assinfilate(I, the chain of actions will be broken and the global sensory-motor scheme will I)o

al)orled (the clogs do not continlte to chew etc..). If such a pairing ceases lo occur, it will be

extinguished, llowever, assume now that tile condilioned stimulus not only generates Ih*, initial

stages of the sensory-motor schenm I)nt also is accompanied by the appropriate intermediary en-

vironmenlal varial)les so that a coml)lete assimilation cycle can occur. The successfnl completi(m

of lhe assinfilalion will reinforce the direct path so that this stimulus will be able Io generate tl|o

whole cycle directly. This change, which consists of an adal)talion to the environ,at, u(, is called

ttt','ootloodoliol_. ( Piaget. 1963 }.

Once the sensory-motor schemes become accessible via cortical ch'cuits as outlined above, th_'y

become decomposed and the essential properly of Stage 3 emerges: the distinctio|| I)otweon means

and ends. A sensory-motor scheme is the means to achieve a goal. The goal corresponds Io the
final environmental variable or internal variables associaled with this external variable. Assume

that tile infant acquired a sensory-motor scheme consisting of ol)ening a drawer and receiving a

new toy. Initially. this sensory-motor scheme can be generated only b.v Ihe sight of lhe draw_,r.

OIJce it. becomes decoml)osed, the infant will look for a drawer with the goal of receiving a new

toy.

In stage-1, the decomposed sensory-reeler schenms are coordinated into new wholes 1o achieve

now goals. The activation of a new goal (;all generate multiple or a chain of exist ink sensory-reel _r
s('homes. In the case of multiple act ira(ion, the competilion at the sensory-n|otor gale level selects

the best alternative, ht tile case of a chain. Ihe chain gels activate(I as a whole as long as the

approl)riale environmental variables can be assimilated. This new grouping becomes reinforced if

it leads to the achievement of the goal att(I can I)e accessed more readily in the fulure.
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l"i_tr_ S: ._h,_lt_l _ropin_: Motor layers are activel.v illhibired aud tile intallr iuteut io._llv _rtivar,,,

S#ll.qOl'.V-lll|)rof achemes without lllO[_Ol' t'eactJons.

If tim exisliu_ seL_sor.v-motor schemes fail to combine with i he mwironmeu! al varia hies in ,.,r_l,.r

lqj romplele the cycle leadiug.; to the achievemeut of the ._oM. aew meaus luw,_ to I,,., iaveut_d. lhir_

_¢'cu rs ia Sta_e ._ bv use of lflly._ica.l groping. As._lme that th,_ _oal actival,s _ome ,_×i._fiJ_ s_,us4:rv-

motor._rhemes through the competitiou at tile censor v-motor _are layer. This rompefiliou will

stal-t wil h the best po._sibility aud t.he system will try different schemes. If all fails, the l:]!_¢; will

_el_*'ra.te raadom motor behavior or will bias e.x.istin._ sensor.v-motor scheme_. This rous_i_u_es

_he basis _1" ph.v._ical grop a_;. If b.v chance the re_dtiag behavior reaches _he _oal. it will h,t

r,,iuforced through circular reactions and will be iute_rated to the s_nsor>-mulor rel-.,rtoir, _ as ;_

uewJy discovered Lllealls.

The fut_ctioaal operation of Stage 6 is illustrated iu Figure 6..-kt this _a_e. rile motor layor_

are actively inhibited. This way. tile discovery of uew meaas caa be discommcted ['r_m_ ;_<-tual

i)h.v_ical action. As a result, tile su)ject cau carry out "'mental groping" and discov*.r uew lu_a,_s

wil hoist physical coatact.

3 Concluding remarks

The ,_arly developme_ltal period outlined above indicate that passive l)ercoptim_ is i_ad_rl,_at,_ fi_r

oxpla.iuiug intellige_ce a.nd the system sho_fld actively _xplore the euviroluueut to gou,,r;_)o a rid_

repertoire of sensory-motor schemes whose abstractions lead to the formal reas,,_d._ s_r,_ctu,r_

i_ adult life.
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Abstract

The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped

members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for

output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the

sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller.

If N approaches _, the global controller becomes a nonlinear controller while the local controller

disappears. If linear control rules are used, the global controller becomes a global two-

dimensional multilevel relay which approaches a global linear proportional-integral (PI)

controller as N approaches oo.

I. Introduction

Efforts have been made to clarify the fuzzy controller structures. The structure of a

nonlinear fuzzy controller was revealed using a novel method (Ying, 1987; Ying ¢t al., 1990).

The work showed that a simplest possible nonlinear fuzzy controller was equivalent to a

nonlinear PI controller. In (Ying, 1991 ), the author analytically proved that the structure of a

typical nonlinear fuzzy controllers with linear fuzzy control rules is the sum of a global two-

dimensional multilevel relay and a local nonlinear PI controller. The author makes further

efforts in this paper to investigate the structure of fuzzy controllers using any type of fuzzy

control rules, covering a much broader range of fuzzy controllers.

2. Analytical Analysis of the Structure of the Fuzzy Controllers
2.1 Components of the Fuzzy Controllers

A fuzzy controller usually employs error and rate change of error (rate, for short) about a

setpoint as its inputs. That is

e = GE-e(nT) = GE[y(nT) - setpoint]

r* = GR.r(nT) = GR[e(nT) - e(nT-T)]
2.1)
2.2)
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wheree(nT), r(nT) and y(nT) designate error, rate, and process output at sampling time nT (T is

sampling period), respectively. Error at sampling time (n-1)T is specified as e(nT-T). The

setpoint is the desired target of the process output and GE and GR are the scalars for the error
and rate.

Input fuzzy sets, "error" and "rate," are obtained by fuzzifying e* and r*. Assume there

are J (J > 1) members for positive "error" ("rate"), J members for negative "error" ("rate") and

one member for zero "error" ("rate"). Therefore, there are total

N = 2J+l (2.3)

members for the fuzzy set "error" ("rate"). Members of "error" ("rate") are represented as E i (Ri)

where -J < i < J. The membership functions corresponding to these members are denoted as

i.ti(x ) which has a central value Xi. Define k_.j=-L, 2_0--0, and 2Lj=L. Let the space between the

central values of two adjacent members be equal. Then the space, denoted as S, is:

L
S=--

j (2.4)

and consequently the central value of I.ti(x) is _=i.S.

The I.ti(x) in this study is the commonly-used trapezoidal-shaped membership function.

Assume the membership functions for "error" and "rate" are identical, and specifically denote

I.ti(e*) as the membership function for E i and _ti(r*) as the membership function for R i. The

trapezoidal-shaped membership function I.ti(x) satisfies the following two conditions:

(1) For-J+l <i <J-l, (2.5)

"0,

S_-_IA [x- (i- 1)S],

}.ti (x) = 1,

1

S-A

0,

[x - (i + 1)S],

x < (i - 1)S

(i-1)S_< x_<i.S-A

i.S-A<_x_<i.S+A

i.S+A< x_<(i+l)S

x>(i+l)S

(2) For i = J or i=-J,

0,

gj(x) = [x- (J- 1)S],

[1,

x < (J - 1)S

(J-1)S<x<J.S-A

J.S-A <x <+oo
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1'_1
Ix- (-J + 1)S],la_j(x)=-S A

0,

An illustration of the definition is given in Fig. 1.

-*o<x<-J.S+A

-J-S+ A < x < (-J + 1)S

x > (-J + 1)S.

membership

gt_j(x) 2A

00 /
-JS+A iS-A iS+A /S-A

I.tj(x)

|
! v

JS x

Figure 1. Illustration of the definition of the trapezoidal-shaped membership function.

Denote U k as a member of the output fuzzy set "incremental output" ("output," for short)
and assume there are

M = 2K + 1 (2.6)

such members where

K = Max{ If(i, j)l]. (2.7)

f will be described below. The central values of the members of the fuzzy set "output" are

designated as 7k (-K < k < K) and let 7_K=-H, 70--0 and 7K=H. Further, let the space between

the central values of two adjacent members be equal. Consequently, the space, denoted as V, is

H
V---D

K (2.8)

and the central value of a member of "output," U k, can be written as "1_= k.V. The membership

functions of "output" are required to be regular, unimodal and symmetrical about its central

value 7k. The shape of the membership functions of all the members is identical.
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N 2 fuzzy control rules are constructed according to the following rule:

IF "error" is E i and "rate" is Rj THEN "output" is U k (2.9)

where k = f(i, j). f, determined by the constructors of the fuzzy controllers, may be any

function as long as its value is always an integer with respect to the inputs, i and j, because the

index k must be an integer.

Zadeh fuzzy logic AND is used to execute the IF side of the fuzzy control rule in (2.9).

That is,

It(i, j) = Min(iti(e*), Itj(r*)) (2.10)

where It(i, j) is the membership for the member U k obtained when E i and Rj are in the IF side.

The center of gravity of defuzzification algorithm is used. The scaled crisp incremental output,

denoted as GU.Au(nT), is calculated as

GU. Au(nT) = GU _ It(i'j)Yk
5". It(i, j) (2.11)

where GU is the scalar for the incremental output.

2.2 Main Results

Theorem 1.

The structure of the fuzzy controllers, constructed by the components defined in the

above section, is the sum of a global nonlinear controller (denoted as AUG(i, j)) and a local

nonlinear PI-like controller (denoted as AUL(i, j)).

Proof.

Without losing generality, assume that,

iS < e* < (i+l)S (2.12)
jS < r* _<O+l)S.

Iti(e*), Iti+l (e*), Itj(r*) and Itj+l(r*), which are the respective memberships for the members E i,

Ei+ 1, Rj and,Rj+!,, are obtained by fuzzifying e* and r*. Membership for all other members of
error and rate is zero. Therefore, only the following four fuzzy control rules are executed:

If "error" is Ei+ 1 and "rate" is Rj+ 1 then "output" is Ukl

If "error" is Ei+ 1 and "rate" is Rj then "output" is Uk2

If "error" is E i and "rate" is Rj+ 1 then "output" is Uk3

If "error" is E i and "rate" is Rj then "output" is Uk4

(rl)

(r2)
(r3)

(r4)
where

kl=f(i+l,j+l), k2=f(i+l,j), k3=f(i,j+l) and k4=f(i,j).
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Applying the equation (2.10) to each of the fuzzy control rules, we get

It(i+ 1, j + 1) = Min(iti + 1(e*), Itj+ 1(r*))

It(i+l, j) = Min(iti+l(e*), Itj(r*))

It(i, j+l) = Min(Iti(e*), Itj+l(r*))

It(i, j) = Min(Iti(e*), Itj(r*)).

(rl*)

(r2*)

(r3*)

(r4*)

In order to decide the outcomes of the Min operations in (rl*) to (r4*), the author configures a

square, which has 16 regions in it as shown in Fig. 2. In different regions, Iti(e*), Iti+l(e*),

Itj(r*) and Itj+ 1(r*) have different relationships in terms of their magnitudes and consequently the

Min operations in (rl *) to (r4*) can be evaluated. For example, in region IC3, the following

inequalities can be obtained: Iti(e*) > Itj(r*), i.ti+l(e* ) < Itj+l(r*), i.ti(e* ) < Itj+l(r*) and Itj(r*) <

Iti+l(e*). As a result, It(i+l, j+l) = Iti+l(e*), I.t(i+l, j) = Itj(r*), It(i, j+l) = Iti(e*) and It(i, j) =

Itj(r*), based on (rl*) to (r4*). Similarly, (rl*) to (r4*) for the rest of 15 regions can be
evaluated.

GR*r(nT)

kS

+I)S

IC4 IC3

+I)S-A

IC5 IC2

______+
IS+A 1+0.5)S (i+I)S-A (l+l)S

IC6 ICI

S+A

IC7 I(38

JS

GE*e(nT)

Figure 2. Possible input combinations (IC) of scaled error, e* (GE-e(nT)), and scaled rate

change of error, r* (GR-r(nT)), of process output when both e* and r° are within the interval [-L,

LI.
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Substituting these outcomes into the defuzzification algorithm (2.11) and simplifying the

resulting expression, GU.Au(nT) for the 16 regions can be found. To illustrate this procedure

more clearly, let us take region IC3 again as an example.

Substituting It(i+l, j+l), It(i+l, j), it(i, j+ 1) and it(i, j) for the IC3 region into (2.11),

klla, i+I (e") + k2bt j (r") + k3it i (e") + k,itj (r") V. GU

GU. Au(nT) = Iti÷t (e') + Itj (r') + It_ (e') + Itj (r')

(kt - k3 )lJ, i+t (e") + (k 2 + k 4 - 2k3 )l,tj (r") V-GU
= k 3 .V.GU+

_ti÷t (e') + Iti (e') + 21xj (r")

=f(i,j+l)VGU+{Ki[e(nT) (i+0.5)S]+Kp[r(nT) (j+0.5)S]+e}
GE _ GR

(2.13)

where

(2f(i, j + 1)- f(i + 1,j)- f(i,j))V.GR.GU.S

Kp = 2S - 2[GR. r(nT)- (j + 0.5)S]

K i =
(f(i + 1, j + 1)- f(i, j + 1))V. GE. GU. S

2S- 2[GR. r(nT)- (j + 0.5)S]

E=0.

Denote f(i, j+ 1)V-GU as AUG(i, j) and the rest of the expression as AuL(i, j). AuG(i, j) is a

global nonlinear controller because it calculates control action with respect to i and j. AUL(i, j) is

a local nonlinear PI-like controller because it calculates control action according to the reladve

position of the current input state (e(nT), r(nT)) with respect to a dynamically changing point,

((i+0.5)S/GE, (j+0.5)S/GR). I_ and K i are the proportional-gain and integral-gain. E is nonzero

in some IC regions.

Similar proof can be conducted for the rest of 15 regions.

Theorem 2 (General Limit Theorem for Control Rules).

(1)

When N approaches oo,

AUL(i, j) = 0

(2.14)

and

(2) AuG(i, j) becomes

f(i,j).H.GU
Lim (2.15)
i,j,J..-*,'_ K
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Proof.

Proof is trivial.

Theorem 3.

If linear control rules are used, i.e., if Jr(i, j) = -(i + j), then

(1) The global nonlinear controller becomes a global two-dimensional multilevel relay

H.GU (2.16)
AuG(i,j) =-(i+j+l) N.-----'-_

(2) As N approaches 00, the global two-dimensional multilevel relay becomes a global linear

PI controller:

GU. Au(nT) = -(K i •e(nT) + Kp. r(nT)) (2.17)

where

GR .GU .H

Kp = 2L (2.18)

GE .GU-H
Ki=

2L

Proof.

(1)

(2)

K = Max{If(i,j)l} = 2J = N- 1.

Auc(i, j) = _(i + j + 1) H'GU
N-1

See (Ying, 1991) for proof.

f(i+l, j) = f(i, j+l) = -(i + j + 1). Therefore,

(2.19)

3. Conclusions

With fuzzy control rules being expressed by a function f, the author has been able to

analytically reveal the structure of the fuzzy controllers. The structure is the sum of a global

nonlinear controller and a local nonlinear PI-like controller.

The work accomplished in this paper furthers understanding on the nature of fuzzy

controllers. Fuzzy controllers generally are nonfuzzy nonlinear controllers. Therefore,

nonlinear control theory can be utilized to solve fuzzy control problems, such as stability.
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Fuzzy Control of Small Servo Motors

Ron Maor and Yashvant Jani _ 9

Togai InfraLogic, Inc.

3 ? <"'>O,i i , i

To explore the benefits of fuzzy logic and understand the differences between
the classical control methods and fuzzy control methods, the Togai lnfraLogic

applications engineering staff developed and implemented a motor control
system for small servo motors. The motor assembly for testing the fuzzy and
conventional controllers consist of servo motor RA13M and an encoder with a

range of 4096 counts. An interface card was designed and fabricated to
interface the motor assembly and encoder to an IBM PC. The fuzzy logic based
motor controller was developed using the TILShell and Fuzzy C Development

System on an IBM PC. A Proportional-Derivative (PD) type conventional
controller was also developed and implemented in the IBM PC to compare the

performance with the fuzzy controller. Test cases were defined to include step
inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20
hertz frequency range, as well as ramp inputs. In this paper we describe our

approach to develop a fuzzy as well as PD controller, provide details of
hardware set-up and test cases, and discuss the performance results. In

comparison, the fuzzy logic based controller handles the non-linearities of the
motor assembly very well and provides excellent control over a broad range of
parameters. Fuzzy technology, as indicated by our results, possesses inherent

adaptive features.
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In [1] Yager provides an example in which the flat representation [2] of fuzzy if-then rules
leads to unsatisfactory results. Consider a rule base consisting to two rules

ifU is 12 the V is 29 I.

IfU is [10-15] the V is [25-30] II.

If U = 12 we would get VisG where G = [25 - 30]. The application of the defuzzification process
leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed.

The problem with the technique used is that the most specific information was swamped by
the less specific information. In this paper we shall provide for a new structure for the
representation of fuzzy if-then rules. The representational form introduced here is called a
Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming
the problem illustrated in the previous example this HPS representation has an inherent capability to
emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how
human beings store information.

2. Hierarchical Prioritized Structure
Figure 1, shows in a systematic view the of representation of the function V = f(U) by this

new HPS representation. The overall function f, relating the input U to the output V, is comprised
of the whole collection of subboxes, denoted fi. Each subbox is a collection of rules relating the

system input, U, and the current iteration of the output, Vi_ 1, to a new iteration of the output. The

output of the n th subsystem, V n, becomes the overall output of the system, V. In the HPS the

higher priority boxes, for i < j we say thatj_ has a higher priority than fj, would have less general

information, consist of rules with more specific antecedents then those of lower priority. As we
envision this system working an input value for U is provided, if it matches one or more of the rules
in the first (highest priority) level then it doesn't bother to fire any of the less specific rules in the
lower priority levels.

fll
Vl,jI _ u

 -I,L ,

I nl
\k V

Figure I Hierarchical Prioritized Structure

In the following we describe the formal operation of this HPS. As we indicated Vj denotes
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the output of the jth level. We shall assume V 0 = O. In the HPS we shall use the variable Vi to

indicate the maximum membership grade associated with the output of the jth level, Vj.

In the HPS each fj (accept for the lowest level, j = n) is a collection of nj rules

When U is Ajg is certain und_lj_l is low then Vj is Bji I

The representation and aggregation of rules at each level is of the standard Mamdani type[2],

disjunction of the individual rules. If Bj is the value obtained from the aggregation of the outputs of
the collection of individual rules in I then the output of this subbox is

Vj = Vj_ 1 k..) Bj.

In I a rule fires if we are certain that the input U lies in Aji and V j-1 is low. Since ¢¢j-1 is

the maximum membership grade of Vj_ 1 it can be seen as a measure of how much matching we

have up to this point. Essentially this term is saying that if the higher priority rules are relevant,

Vj-1 is not low, then don't bother using this information. On the other hand if the higher priority

rules are not relevant, not to much matching Vj-1 is low, then try using this information.

The representation of the box fn is a collection of rules
A

When U is Ani and Vn-1 is low then V is Bni II

plus the rule V = V n = Vn_ 1 k.) B'-_. The notable difference between the lowest priority box and the

other ones is that the antecedent regarding U is certainly quality in the higher boxes. The need for
this becomes apparent when the input is not a singleton.

In the HPS structure Vj-1 is the highest membership grade in Vj_ 1 and as such the term

Vj_l i.Ls_Jp_ is used to measure the degree to which the higher prioritized information have matched
the input data. We note that low is a fuzzy subset on the unit interval. One definition for low [1] is

low (x) = 1 -x.
In [ 1] Yager looks at the formal operation of this kind of HPS we shall present the results

obtained in [1]. We shall denote _ij as the degree of firing (or relevancy) of Aij under the input, if

the input is U = x* then _ij = Aij(x*). We shall denote gi = Maxy G i (y) = Poss[Gi]. We let

ni

T i = u _ij ^ Bij, the aggregation of the rules in the ith level for input U, it is essentially the

j=l
contribution of the ith subsystem using the Mamdani type reasoning.. We shall let G i be the output

of the ith subbox, that is V i = G i. In [1] it is shown that

Gi(Y ) = (Ti(y) ^ (1 - gi-1)) v Gi_l(y). III

We notice that the term (1 - gi-1) bounds the allowable contribution of the ith subsystem to

the overall output. We see that as we get at least one element y to be, a good answer (an element in

Gi_l) we limit the contribution of the lower priority subsystems. It is this characteristic of a kind of

saturation along with the prioritization that allows us to avoid the problem described earlier.
In the following we suggest a modification of the above that leads to a more suitable

formulation to the aggregation between the levels of the HPS [1]. We can replace ^ by another t-

norm operator product * and replace v by another t-conorm, bounded sum, a _ b = Min(1,

a+b)[3]. Thus we get

Gi(Y ) = Ti(y ) • (1 - gi-1) _ Gi-I(Y).

However we note that since gi-1 = MaxyGi_l then Ti(Y) * (1 - gi-1) < Gi-I(Y) hence

Ti(Y) * (1 - gi-1) + Gi-I(Y) -< 1 thus we can replace _ by +. This gives us the formulation

Gi(Y ) = Ti(Y) * (1 - gi-1) + Gi-I(Y) (IV)

Gi(Y ) = Ti(Y) * (1 - Poss[Gi_l]) + Gi-I(Y)

What is happening in this structure is that as long as we have not found one y with
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membershipgrade1 in Gi_1,Poss[Gi_l] _ 1, weaddsomeof theoutputof thecurrentsubboxto
whatwealreadyhave.Eachelementy, gets1- Poss[Gi_l] portionof thecontributionat thatlevel,
Ti(y)

We shouldpointout thattheaggregationperformedin thehierarchicalstructure,whetherwe
useIII or IV, is not apointwiseoperation.Thismeansthatthevalueof Gi(y) doesn'tonly depend
on the membershipgradeof y in Gi_1 andTi but on membershipgradesat other points. In
particularthroughthetermgi-1 = 1 - Maxy Gi(Y) it dependsuponthe membershipgradeof all
elementsfrom Y in Gi-1.

We shouldnotethatimplicit in thisstructureis anewkind of aggregation.AssumeA andB
are two fuzzy subsetswe define the combinationof thesesetsas the fuzzy subsetD, denoted
D = ),(A, B) where

D(x) = (1 - Poss(A))* B(x) + A(x).

3. Representation and Operation of the HPS
In the previous part we have described the formal mechanism used for the reasoning and

aggregation process in the HPS. While the formal properties of the new aggregation structure are
important a key to the usefulness of the HPS in fuzzy modeling is the semantics used in the

representation of the information via this structure.
In constructing an HPS representation to model a system we envision that the knowledge of

the relationship contained in the HPS structure be stored in the following manner. At the highest

level of priority, i = 1, we would have the most specific precise knowledge. In particular we would
have point to point relationships,

When U is 3 then V is 7

When U is 9 then V is 13

This would be information we know with the greatest certainty.
At the next level of priority the specificity of the antecedent linguistic variables, the

A2j's, would decrease. Thus the second level would contain slightly more general knowledge.

Essentially what we envision is that at the highest level we have specific point information.
The next level encompass these points and in addition provides a more general and perhaps fuzzy
knowledge. We note that the lowest most level can be used to tell us what to do if we have no

knowledge up to this point. In some sense the lowest level is a default value.
Example: Assume we are using an HPS representation to model a function V = f(U), where the

base set for U is [0, 100]. A typical lIPS representation could be as follows.
LEVBL 01

Rll When U is 5 then V is 13

R 12 When U is 75 then V is 180

R13 When U is 85 then V is 100

LBVBL #2

R21 When U is "about 10" then V is "about 20"

R22 When U is "about 30" then V is "about 50"

R23 When U is "about 60" then V is "about 90"

R24 When U is "about 80" then V is "about 120"

R25 When U is "about 100" then V is "about 150"

R31

R32

R31

(we assume triangular fuzzy subsets)
LII_VBL #3

When U is "low then V is "about 40"

When U is ":meet" then V is "about 85"

When U is "high" then V is "about 130"

LEVEL #4

R41 U is anything the V is 2u.

51



Having defined our knowledge base we now look at the performance of this system for various
inputs;

{---L} hence sinceCase 1: U = 75. At level one we get T 1 = 180

GI(y) =g0 * TI(y) + G0(y)-

{.__1_} We now see that gl = 0 and hence noSince G O = (I) then gl -" 1 which give us G 1 = T 1 = - -180"

other rules will fire lower in the hierarchy. This system provides as its output for U = 75 that
V is 180.

U = 80. At level no rules fh'e, _ij = 0 for all j. Thus T 1 = • hence

G1 = go * T1 + GO = (I)

and therefore gl = 1. At level two

G2 = gl * T2 + (1) = T 2.

For U = 80 we assume that R24 fires completely, _24 = 1 and that all other rules don't fire,

g2j = 0, forj _ 2. Thus T 2 = "about 120" and G 2 -- "about 120". Since g2 = 1 then g2 = 0 and

no rules at lower priority will f'n'e thus G 2, "about 120", is the output of the system for U = 80.

Case 3: U = 20. No rule at level one will fire, hence G 1 = G O = (_. At level two we shall assume

that R21 f'u'es to degree .3 and R22 also fires to degree .3. Thus

T 2 =.3 ^ B1 a.3 ^ B 2 =.3 ^ (B1 w B 2)

T2(Y)= .3 A (Bl(y) v B2(y)).

We note B 1 and B 2 are "about 20" and "about 30" respectively. Hence

G2(Y) = (1 - gl) * T2(y) + GI(y) = T2(y)

At level three R31 fires to degree 1 while R31 and R32 don't fire at all. Hence

T 3 = "about 40"

Since Max [G2] = .3 thus 1 -g2 = .7 and therefore

G3(Y) = .7 * T3(y) + G2(y)

Since Max T3(y ) = 1 we see that the process stops here and G 3 is the output of the system.

What we see with this HPS representation is that we have our most general rule stored at the
lowest level of priority and we store exceptions to this rule at higher levels of priority. In some
cases the exceptions to general rules may themselves be rules, we would then store exceptions to
these rules at still higher levels of priority. As the previous example illustrates in the HPS system
for a given input we first look to see if the input is an exception, that is what we are essentially
doing by looking at the high priority levels.

4.Learning in the HPS
The HPS representation is a formulation that has an inherent structure for a natural human

like learning mechanism. We shall briefly describe the type of learning that is associated with this
structure.

Information comes into the system in terms of point by point knowledge, data pairs between
input and output. We store these points at the highest level of priority. Each input/output pair
corresponds to a rule at the highest level. If enough of these points cluster in a neighborhood in the
input/output space we can replace these points by a general rule (see figure 2).

Thus from the dots, input/output pairs, we get a relationship that says ifU is in A then V is
B. We can now forget about the dots and only save the new relationship. We save this at the next
lowest priority in the system, in subbox 2.

We note that the introduction of the rule essentially extends the information contained in the

dots by now providing information about spaces between the dots. We can also save storage
because we have eliminated many dots and replaced them by one circle. One downside to this

formulation is that in generalizing we have lost some of the specificity carried by the dots.
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Figure 2 Formulation of Rules for Input/Output Pairs
It may occur that there are some notable exceptions to this new general rule. We are able to

capture this exception by storing them as high level points.
We further note that new information enters the system in terms of points. Thus we see that

the points are either new information or exceptions to more general rules. Thus specific information
enters as points it filters its way up the system in rules.

We see that next that it may be possible for a group of these second level rules to be
clustered to form new rules at the third level.

In figure #3 the large bold circle is seen as a rule which encompasses the higher level rules
to provide a more general rule. The necessity to keep these more specific rules, thus in level 2,
depends upon how good the less specific rule captures the situation.

Figure 3 Aggregation of Rules into More General Rules
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1. Introduction

Uncertainty may be caused by the ambiguity in the terms

used to describe a specific situation. It may also be caused

by skepticism of rules used to describe a course of action or

by missing and/or erroneous data. [For a small sample of work

done in the area, the reader is referred to (Arciszewski &

Ziarko 1986), (Bobrow, et.al. 1986), (Wiederhold, et. al.

1986), (Yager 1984), and (Zadeh 1983).]

To deal with uncertainty, techniques other than classical

logic need to be developed. Although, statistics may be the

best tool available for handling likelihood, it is not always

adequate for dealing with knowledge acquisition under

uncertainty. [We refer the reader to Mamdani, et. al. (1985)

for a study of the limitations of traditional statistical

methods.]

Inadequacies caused by estimating probabilities in

statistical processes can be alleviated through use of the

Dempster-Shafer theory of evidence.

using the Dempster-Shafer theory

Korvin, et. al. 1990), (Kleyle &

[ For a sample of works

see (Shafer 1976), (de

de Korvin 1989), (Strat

1990), and (Yager).] Fuzzy set theory is another tool used to

deal with uncertainty where ambiguous terms are present.

[Articles in (Zadeh 1979, 1981 & 1983) illustrate the numerous

works carried out in fuzzy sets.] Other methods include rough

sets, the theory of endorsements and nonmonotonic logic. [The

work on rough sets is illustrated in (Fibak, et. al. 1986),
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(Grzymala-Busse 1988), and (Mrozek 1985 & 1987). Also, see

(Mrozek 1985) and (Pawlak 1982) for the application of rough

sets to medicine and (Arciszewski & Ziarko 1986) and (Pawlak

1981) for applications to industry.]

J. Grzymala-Busse (1988) has defined the concept of

lower and upper approximation of a (crisp) set and has used

that concept to extract rules from a set of examples. We will

define the fuzzy analogs of lower and upper approximations and

use these to obtain certain and possible rules from a set of

examples where the data is fuzzy. Central to these concepts

will be the idea of the degree to which a fuzzy set A is

contained in another fuzzy set B, and the degree of

intersection of set A with set B. These concepts will also

give meaning to the statement; A implies B. The two meanings

will be: I) if x is certainly in A then it is certainly in B,

and 2) if x is possibly in A then it is possibly in B. Next,

classification will be looked at and it will be shown that if

a classification is well externally definable then it is well

internally definable, and if it is poorly externally definable

then it is poorly internally definable, thus generalizing a

result of Grzymala-Busse (1988). Finally, some ideas of how to

define consensus and group opinions to form clusters of rules

will be given.

2. Results

We now recall some basic definitions such as lower and
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upper approximations and the concept of an information system.

Let U be the universe. Let R be an equivalence relation

on U. Let X be any subset of U. If Ix] denotes the equivalence

class of x relative to R, then we define

R(X) = (x E U/[x] c X) and

R(X) = {x c u/[x] n x o}.

B(X) is called the lower approximation of X and R (X) is

called an upper approximation of X. Then B(X) c X c R(X). If

R(X) = X = R(X), then X is called definable.

An information system is a quadruple (U,Q,V,_) where U is

the universe and Q is a subset of C u D where C A D = 0. The

set C is called the set of conditions; D is called the set of

decisions. We assume here that Q = C. The set V stands for

value and _ is a function from UxQ into V where _(u,q) denotes

the value of attribute q for element u. The set C induces

naturally an equivalence on U by partitioning U into sets over

which all attributes are constant. The set X is called roughly

C-definable if

B(X) _ o and R(X) # U.

It will be called internally C-undefinable if

B(X) = o and R(X) ¢ U.

It will be called externally C-undefinable if

E(X) # o and R(X) = U.

Fuzzy sets defined

Next, we define two functions on pairs of fuzzy sets that

will be of importance in the present work.
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I(AcB)=inf Max {i - A(x), S(x)) (i)
X

J(A#B)=Max Min (A(x), B(x) }. (2)
X

Here A and B denote fuzzy subsets of the same universe. The

function I(A c B) measures the degree to which A is included

in B and J(A # B) measures the degree to which A intersects B.

It is important to note that for the crisp case, I(AcB) =i

iff AcB and is 0 otherwise. Similarly, J(A#B)= 1 iff A nB _ e.

The goal is to define the fuzzy terms involved in the

decision as a function of the terms used in the conditions.

This is accomplished as a function of how much the decision

follows the conditions. Let (Bi} be a finite family of fuzzy

sets. Let A be a fuzzy set. By a lower approximation of A

through (Bi}, we mean the fuzzy set

R (A) = u I ( B i c A ) B i (6)
-- i

The decision making process may be simplified by disregarding

all sets B, if I ( B i c A ) is less than some threshold _.

Then,

= u I ( B i c A ) B i (7)(A) a i

over all B i for which I ( B i c A ) _ u.

Similarly, we can define the upper approximation of A

through {B i) as

= u J ( B i # A ) B i (8)R (A) a i

over all B i for which J ( B i # A ) _ u.

The operators I and J will yield two possible sets of

rules: the certain rules and the possible rules. It is

straightforward to see that if (B i) are crisp equivalency
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classes we get the lower and upper approximations as defined

by Grzymala-Busse (1988).

Determininq Fuzzy Rules

We now show how rules can be obtained from the raw data

given in Table 1 after converting this data according to the

professor's evaluation of the performance of the students,

relative to exams high, exams low, project high, project low,

and his belief with respect to each student getting an A. (See

Table 2 for the converted data.)

Table i: Production/Operations Management Grades

Student Exams (2) Project Course Grade

(Written & Oral)

1 75 85

2 94 87

3 88 89.3

4 79.5 95

5 85 97

6 56.5 88.6

7 65 91.6

8 49 76.7

9 63.5 89.1

i0 57 76.9

ii 70 98

12 93 88

75.36

89.53

89.93

78.06

90.85

60.89

76.15

59.22

69.99

55.77

80.3

90.1

It can be observed that none of the course grades was a

strong predictor of "success". In other words, the course

grades of 90 or slightly better than 90 as a "quality" measure

of the final product did not allow the professor strong belief

in the awarding of an "A" to the student. The professor's

belief in these grades being the best in the class and

therefore deserving of an "A" grade was approximately .67. The
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belief in the lower scor_s is scaled downward from .67 to .41

(the latter representing belief that 55.77 will be the top

score in the class.)

The professor recognized the high exam scores of 94 and

93, with belief of .99/EH and .98/EH, respectively (EH: Exams

High). The low exam score of .49 was designated .92/EL (EL:

Exams Low) by the professor. Since all project grades were

relatively close and relatively high, the professor saw little

differentiation between the "top" score and the other scores.

The "top" project score is .54 high and .46 low. (.54/PH and

.46/PL, respectively) This contrasts with the worse project

score being .43/EH and .59/EL, where .59 is the highest belief

that a project grade is a "low" score. This approach was

considered to be consistent since although exam grades varied

from 49 to 94, no project grade was below a 76.7. It was felt

that keeping the project grades from being too strongly biased

toward "high" would prevent the decision rules from being

overly biased toward high project grades. Enough

differentiation was considered to allow the rough set

formulation to consider both attributes in the decision rules

for awarding a "top" score of "A" to a student. Each student's

scores were translated into belief with respect to EH, EL, PH,

PL and "A".

For our example of twelve POM students, xl, x2,...,x12,

we let EH:exams high PH:project high

EL:exams low PL:project low "A": Top Grade
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Thus, for the first student, xl, the belief that the exams

were high is .79/EH, and that the exams were low is .60/EL;

that the project grade was high is .47/PH and that it was low

is .53/PL. The strength of belief for an A is .56/"A". In

addition, EH may be viewed as a fuzzy set of students, such

that EH = .79/x I + .99/x 2 +...+ .98/x12, where x 2 is an

excellent example of EH (.99) while x s is not such a good

example (.52). (See Table 2 below for all the professor's

evaluative scores.)

Table 2: Professor's Evaluative Scores

Student EH EL PH PL II "A"

1 .79 .60 .47 .53

2 .99 .48 .48 .52

3 .93 .51 .50 .50

4 .84 .57 .53 .47

5 .89 .53 .54 .46

6 .58 .81 .49 .51

7 .68 .69 .51 .49

8 .52 .92 .43 .58

9 .67 .71 .50 .51

i0 .60 .79 .43 .59

ii .74 .64 .54 .46

12 .98 .48 .49 .51

.56

.66

.67

.58

.67

.45

.56

.44

.52

.41

.59

.67

Using our rough set theory formulas as they have been

developed for fuzzy systems of attributes and decisions, we

compute:

I(EH c "A") = .41

I(EL c "A") = .41

I(PH c "A") = .51

I (PL c "A") = .42

I(EH N PH c "A") = .51

I(EH N PL c "A") = .42

I(EL N PH c "A") = .51

I(EL N PL c "A") = .42

with a lower approximation for _ = .50 defined by:

61



B =.51 PH u .51 (EH _ PH).

The extracted rules would imply that high project scores

and high exam scores both impact a high course grade with

certainty .51.

Possibility rules can be determined by computing:

J(EH #"A") = .67 J(EH n PH # "A") = .54

J(EL # A") = .59 J(EH n PL # "A") = .53

J(PH #"A") = .54 J(EL N PH # "A") = .54

J(PL #"A") = .53 J(EL _ PL # "A") = .53

with an upper approximation at a = .60 defined as:

= .67 EH.

Thus, we can see that the factors dictating the "best"

in the class are:

I) If project grades are high, an "A" score will be attained.

(Certainty = .51)

2) If project grades and exam grades are high, an "A" score

will be attained. (Certainty = .51)

3) If exam grades are high, an "A" score will be attained.

(Possibility = .67)

Indeed, these rules reflect the fact that exam grades

are more heavily weighted than the project grade toward

determining the final course grade. Additionally, these two

grades comprise the majority of the weighted scores from which

the course grade is calculated.

Belief & Possibility

We can use the functions I and J to determine two
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meanings of A implies B. The belief that if x is certainly in

A then it is certainly in B is given by:

I[ R (A) c R (B)] (9)

and the belief that if x is possibly in A then it is possibly

in B can be defined by:

J[ R (a) # R (B) ] (i0)

This interpretation follows from the fact that B(A) are

objects certainly in A and R--(A) are objects possibly in A. We

now turn to the study of classifications.

Classifications

The study of classifications is of great interest

because in learning from examples, the rules are derived from

classifications generated by simple decisions• In this

section, we turn our attention to classifications. Of course,

the traditional meaning is to partition. In our setting, we

have ill-defined boundaries, so we need to relax the concept

of partitions by requiring that the sets not overlap too much.

As earlier, consider a finite family of fuzzy sets,

{Bi}. Let _ denote a finite family of fuzzy sets

= {AI, A 2, ..., A n )

We define

£_" = (R(AI) _,

P_a = ( R(AI)_'

where the lower and upper e-approximations are generated by

the finite sequence {B_).

We can develop the following relationship:
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d °[A = B] = Min { I (A c B), I( B c A)}

using the following definitions:

d ° [P_. = _] = Min {d °[R(Ak) . = Ak])
k

d °[p_. = _] = Min{d °_R(A k) = Ak]}
k

will be called (B i} definable to the degree S with

threshold _ if

Min ( d°[P_. = z], d°_P_. = _]) > B.

If we define

d ° [P_ = P_] = Min { d °[R(_). =R(Ak).]}
k

it can be shown that if B > %, then

d °[_P_. = _] _> B and d °[P_. = _] > B imply that

d °[P_ = P_] > B.

Recall that the following result is shown in information

systems. For classifications, if PA k is the universal set for

each k, then _PAk is empty for each k. Also, if PA k is nonempty

for each k, the PA k is not the universal set for any value of

k. We would like to get the analog of this by showing if R(Ak) _

"has some substance" for some k, then R(Aj). for j # k is "not

too large", and if R(Ak) a is "fairly substantial", R(Aj) a for

j _ k cannot be "too large". In this sense, the results of

Grzymala-Busse (1988) will be generalized.

We would like {Ak} and {Bi} to somewhat approximate a

partition. We define the following two conditions:

(*) For every 0 < _ < i, there exists 0 < 6 < 1 such that if

Bi(x0) > _, then Bt(x0) < 1 - 6 for _ , i.

(**)For every pair j,k with j _ k and all x, Ak(X ) +Aj(x) < i.
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Conditions (*) and (**) both express that the overlap is not

too large and obviously hold for partitions. We note that if

(**) holds for {Bi) then it implies (*). Indeed, in this case

we pick 6 = E. Thus, the results that follow may be shown

assuming condition (**) for (Bi} and {Ak).

We first show that under conditions (*) and (**),

whenever R(Ak) _ is bounded away from 0, then R(Aj) a for j _ k

is bounded away from i. Suppose R(Ak)_(x0) > _, then for some

i, I(B i c Ak) > _ and Bi(x0) > E, so for _ _ i from condition

(*), we have B_(x0) < 1 - 6. For any _ _ i we have

J(B£ # Aj)B_(x0) < 1 - 6. Now

J(B i # Aj) = 1 - I(B i c _Aj);

I(B i c Ak) = Min Max {l-Bi(x), Ak(X)};
X

I(B i c _Aj) = Min Max {I-B i(x), l-Aj(x)).
X

Condition (**) implies I(B i c Ak) _< I(B i c-Aj) for all j _ k.

From the above it follows that J(B i # Aj) < 1 - _. Thus,

R(Aj)a(x0) < Max { i- E, i- 6).

We now show a rough converse to the above. If R(Ak) is

bounded away from 0, then for j _ k, R(Aj)_ is bounded away

from i. Suppose R(Ak)a(x0) > 1 - E for some k, then

J(B i # Ak)Bi0(x0) > 1 - _ for some i0.0

Pick j # k. Then

I(Bi0c Aj ) = 1 - J(B i 0# _Aj).

Now, J(B i # _Aj) = Max Min (Bi0(x), 1- Aj(x));0 x

J(B i # Ak) = Max Min {Bi0(x), Ak(x)).0 x

By (**) it follows that J(B i # _Aj) _> J(B i # Ak).0
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From above, I(B i0c Aj) _<1 - J(B i # Ak) _<_.

Since Be0(x0) >i - e, by (*), Bi(x0) <8 for i _ i 0 where 0<8 <i.

Therefore, R(Aj)a(x0) < Max { e,8).

Consensus

We can define consensus between two rows of a table by

Consensus [Rowi, Rowj] = Min ( I[Row i c Rowj], I[Rowj c Rowe] )

Here, Row i and Rowj are considered to be fuzzy subsets of the

set of all attributes and decisions. If 7 is some

predetermined threshold, we pick some x I and then all xj for

which Consensus [ROWl, Rowj] _ 7. If any of the x's are left

over, we start again with the first x available. We thus get

fuzzy sets $I, Sz, ..., S t where _ (_i) = 1 for some £i ( which

we might call the leader of St) and _% (x) = Consensus (li, x)

provided _ (x) exceeds 7. Within each S t we then can recompute

the symptoms/decisions for xj taking _ (xj) into account

If 1 < i < _ , then we have _ (aggregated) decisions and using

fuzzy cardinality we can compute the "firing strength" of each

block of rules. This approach has the advantage of taking

consensus of opinions into consideration in the decision. The

detailed methodology will be discussed in a later paper.
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Since the pioneering work of Zadeh[ 1] and Mamdanl and Assilian[21, fuzzy logic

control has emerged as one of the most active and fruitful research areasD][4]. The

applications of fuzzy logic control can be found in many fields such as control of steam

generators, automatic train operation systems, elevato¢ control, nuclear reactor control,

automobile wansmlsslon control, etc.

In most of existing fuzzy role-based controllers, the rules are based upon the error

and the change in ¢n'ror,where the error is ddined as the difference between the desired

output and actual output. Howev_ in a large-scale system, the signals error and change tn

enor only provide a limited amount of inforrn0tion about system status. Therefore. the

performance of the controller will be Hmhed, since only a fraction of the feedback

infonnafion will be available to the controller. To avoid this limitation, the fuzzy rules need

to be based upon more system variables, It is well known Ihat the total numbe: of rules in a

complete rule set is a exponential function of the system variables on which the rules are

ba.qed.As such when more system variables are used, the number of the rules will increa_

exponentially. This will make the fuzzy rule-based controller more complex as well as

expensive to realize.

To make the problem manageable, the concept of a 'hierarchical fuzzy rule set' was

introduced in reference [s]. In a hierarchically structured rule base. the number of rules

Q
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increases linearly (not exponendaHy) with the number of system variables. This makes it

poss/ble to apply a fuzzy rule.based controller to large-scale systems.

In this paper, two new structures of hierarchical fuzzy rule-based controller are

p_ to reduce the number of rules in a complcte rule set of a controller. In one

approach, the overall system is split into sub-systctns which are u-eared independently in

parallel. A coordinat_ is then used to take Into account the intcract/ons. This is done via an

ilerating information exchange between the lower level and the coordinator level. Figure l

schematically shows the main idea. From the point of view of information used, this

structure is very similar to central structure in that the coordinator can have at least in

principle, 811the information that the local controllers have.

A more general structure of this approach is shown in Fig. 2, where more coordinate

levels arc introduced. By using this hierarchical structure, the theoretical minimum total

number of rules will be a linear function of the system variables. The actual total is

dependent upon the number of system variables used in each local controller's rule sets and

coordinator's rule sets. Specifically, if we denote N as the total number of rules, then

i=Nu i=l_, k.Nz

N= 2 ma,t + __,?ma_t + 2 an,,+...

1=1 i=l i"l

)'1

where N.tt is the number of local controllers or coordinators in the jth level, n is the number

of variables used in the ith local controller or coordinator in the jth level, and m is the

nLurlberof the linguistic fuzzy variables used in each local controller or coordinator.

One important advantage of this approach over that in referencets] is that all the rule
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sels in the same level can be fired simultaneously. As such, lh|s approach will be more

suilable for parallel computing. However, using the structure In referencoJs}, additional

system variablel can be easny included in _e fuzzy rule set without affecting other rules. A

more versatile hierarchical structure, combining the hierarchical snructure proposed in Fig.

2 and that in reference[S], will be presented in the paper. Thls v_satil¢ structure will hav_

the Idvantages of all the structure= discussed earlier.
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Fig. 2 A general structure of a hierchical controller with several coordinate levels

and a local _)ntro|ler level.
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Robust vision capability for intelligent control systems has been an elusive goal
in image processing. The computationally intensive techniques a necessary for
conventional image processing make real-time applications, such as object
tracking and collision avoidance difficult.

In order to endow an intelligent control system with the needed vision

robustness, an adequate image enhancement subsystem capable of
compensating for the wide variety of real-world degradations, must exist

between the image capturing and the object recognition subsystems. This
enhancement stage must be adaptive and trust operate with consistency in the
present of both statistical and shape-based noise.

To deal with this problem, we have developed an innovative algebraic
approach which provides a sound mathematical framework for image
representation and manipulation.

Our image model provides a natural platform from which to pursue dynamic
scene analysis, and its incorporation into a vision system would serve as the
front-end to an intelligent control system.

We have developed a unique polynomial representation of gray level imagery
and applied this representation to develop polynomial operators on complex
gray level scenes. This approach is highly advantageous since polynomials can
be manipulated very easily, and are readily understood, thus providing a very
convenient environment for image processing. Our model presents a highly
structured and compact algebraic representation of grey-level images which
can be viewed as fuzzy sets.
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Utilizing the algebraic structure we have devised an innovative, efficient edge
detection algorithm, the Lerner Algebraic Edge Detector. This edge detector
provides a continuous, single-pixel-wide edge which is a distinct improvement
over classical convolution-based edge detectors for enhancing images for
object recognition.

Real-time implementation of these algebraic operations on massively parallel
architecture can be easily realized due to the parallel characteristics of the

polynomial structure as well as the efficient min-max nature of our algebraic
system.

Because our algebraic algorithms are highly amenable to high-speed parallel
architectures, they have been selected for implementation on a state-of-the-art
systolic array processor, the electronically roconfigurable SPLASH Board

developed by the Institute of Defense Analysis Supercomputing Research
Center (IDAJSRC). In particular, the Lerner Algebraic Edge Detector and the
Hough Transform are being ported onto the SPLASH Board to approach a
realtime linear feature extraction system.

Based upon our new edge detection scheme, we have developed an accurate
method for deriving gradient component information. Moreover, a robust

method of linear feature extraction has been derived by combining the
techniques of a Hough transform and a line follower. The major advantage of
this feature extractor is its general, object-independent nature. Target attributes,
such as line segment lengths, intersections, angles of intersection, and

endpoints are derived by the feature extraction algorithm and employed during
model matching.

74



N93-2 
Design Issues for a Reinforcement-based Self-Learning

Fuzzy Controller

John Yen, Haojin Wang and Walter Dauherity

Center for Fuzzy Logic and Intelligent Systems Research
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112

S// _2

,/

#

Fuzzy logic controllers have some often cited advantages over conventional
techniques such as PID control: easy implementation, its accommodation to

natural language, the ability to cover wider range of operating conditions and
others. One major obstacle that hinders its broader application is the lack of
systematic way to develop and modify its rules and as result the creation and
modification of fuzzy rules often depends on try-error or pure experimentation.
One of the proposed approaches to address this issue is self-learning fuzzy
logic controllers (SFLC) that use reinforcement learning techniques to learn the
desirability of states and to adjust the consequent part of fuzzy control rules
accordingly. Due to the different dynamics of the controlled processes, the
performance of self-learning fuzzy controller is highly contingent on the design.
The design issue has not received sufficient attention. The issues related to the
design of a SFLC for the application to chemical process are discussed and its
performance is compared with that of PID and self-tuning fuzzy logic controller.
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This paper describes the early states of work to implement a fuzzy logic controller to

optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems

running at less than optimal speed and torque conditions. In this paper, the process by
which the membership functions of the controller were tuned is discussed and a controller

which operates on frequency as well as voltage is proposed. The membership functions
for this dual-variable controller are sketched. Additional topics include an approach for

fuzzy logic to motor current control which can be used with vector-controlled drives.

Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC)

microchip is planned.
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FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

In research funded by the U.S. Environmental Protection Agency (EPA), the authors have

been pursuing the development of energy optimizer algorithms for ac induction motors

driven by adjustable speed drives (ASDs). Our goals are:

1) increase the efficiency of ASD/motor combinations, especially when operating off

of rated torque/speed conditions. ASDs using V/Hz control, which is the current

predominant industry standard, still do not gain maximum efficiency from motors

operating at less than rated loads and speeds;

2) develop a generic energy efficiency optimizing controller (EEOC) which can be

applied to a wide range of ac induction motors, regardless of their size and

corresponding equivalent circuit values;

3) develop an energy efficiency optimizing controller (EEOC) which can eliminate the

requirement for tachometer or encoder feedback, and still maintain the stability of

closed-loop control; and

4) develop an energy efficiency optimizing controller (EEOC) which is self-tuning, thus
eliminating the need for extensive operator/manufacturer involvement in the

installation of the energy optimizer into ASDso

Fuzzy logic approaches to these goals are attractive for two reasons:

1) the use of fuzzy logic promises to simplify the energy efficiency optimizing

controler (EEOC) control problem, which is highly nonlinear;

2) fuzzy logic offers a way to develop an energy efficiency optimizing controller

(EEOC) controller which will offer the stability of closed loop control without the
need for speed feedback, thus eliminating the cost of tachometers and encoders.

Fuzzy Efficiency Optimization for Steady State Motor Operation

Our main interest has been to solve the problems above for large horsepower motors

(>10 hp) running at steady state conditions in industrial applications (e.g. pump and fan

motors).

An induction motor simulator has been developed based on the equivalent circuit

representation of a motor. As a starting point, the simulation values which are produced
correspond to those which would be produced by a V/Hz controller. The simulator

computes the values of the motor state variables (currents, voltages, power, frequency,

etc.) in response to changes in the value of the stator voltage, Vs. The values of V, are
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provided to the simulator by a fuzzy energy optimizer. (This energy optimizer was

discussed in a previous paper delivered at FUZZ-IEEE '92 in San Diego in March.) This
energy optimizer, referred to as the Single Variable Fuzzy Logic Motor Controller, and

illustrated in the accompanying block diagram, alters the value of stator voltage (Vs) and
then measures the input power Pin to see if it has changed.

DeliaP in

DeltaV old

> DeltaV new

Figure 1. Block Diagram of the Fuzzy Logic Energy Optimizer

Dependent on the magnitude and direction of the change in Pin, a set of fuzzy rules,

represented here by the section labeled 'Perturber' in the block diagram and using AP_n
and the last change in Vs, AVs_.okJ, as inputs, computes an incremental change in the
stator voltage AV_ which is then applied to the simulator. A new set of state variables

is computed and the process is repeated until either a minimum input power is obtained,

characterized by the return of a value of 0 for AV s from the fuzzy controller, or, if
tolerance limits on the output torque or the shaft speed of the motor have been exceeded.

After some testing, the max-dot inference method and centroid defuzzification were
employed.

This technique is essentially a search scheme for the minimum input power point, which

occurs in a motor driven by a pulse-width-modulation (PWM) ASD when the copper

losses and core losses of the motor are equivalent, as shown in the following figure.
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Figure 2. Efficiency Optimization Control based on Real-time Search.
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Note that the prediction in the search scheme is that the stator voltage will decrease and

the stator current will increase. This prediction has been borne out by the simulator

results. The simulator also predicts efficiency improvements by the energy efficiency

optimizing controller (EEOC) over standard V/Hz control, as shown in Figure 3.

After the controller rules were refined from simulation of motors of various sizes, a set of

13 fuzzy rules were developed, shown in Table 1.

RULES

.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

IF APIn IS N AND AVs._ow IS N, THEN AVs_n_ w = N.

IF z_Pin IS N AND AVs_oW IS P, THEN ,'%Vs_n,w = P.

IF APIn IS N AND AVs_ol d IS NM, THEN AVs_now = NM.

IF _PIn IS N AND AVs_okj IS PM, THEN AVs_new = PM.

IF APIn IS NM AND (AVs_ol d IS NM OR AVs_.old IS N), THEN Z_Vs_ne w -- NM.

IF APIn IS NM AND (AVs_o=d IS PM OR AVs._o_dIS P), THEN AVs_no w = PM.

IF z_Pin IS PM AND (AVs_ow_ IS NM OR AVsol d IS N), THEN AVs_n, w = PM.

IF _PIn IS PM AND (AVs_owj IS PM OR AVs_ow_ IS P), THEN AVs_ne w = NM.

IF APIn IS P AND AVs_ol d IS NM, THEN AVs_new = PM.

IF APin IS P AND AVs_ol d IS PM, THEN AVs_new = NM.

IF APln IS P AND AVs_ol d IS N, THEN AVs_new = P.

IF APIn IS P AND AV,_ot d IS P, THEN AVs_new = N.

IF APin IS Z AND AV,_ol d IS ANY, THEN AVs_n, w = Z.

Table 1. Single Variable Controller Rules
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The variable values, N, NM, P, PM, and Z stand respectively for negative, negative

medium, positive, positive medium, and zero. Data gathered from the motor simulator

led tO development of limits for membership functions for the fuzzy variables voltage and

power. Figure 4 illustrates this for the linguistic variable APIn.

o5 _

APin

N P

I I I I
-400 0 400

- 0.5

W31Is

Figure 4. Final Membership Functions for the Fuzzy Variable APtn.

It was found from the simulator that the Pin can vary by as much as +400W. Surfaces

were constructed from curves relating the various changes in AVne w to changes in t_Pin

and AVok _. An example of such a surface, generated from data collected with the
simulator, is shown in Figure 5.
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These surfaces can be used to optimize the membership functions by examining the

surfaces for abrupt or discontinuous changes in the output variable AV s at various values
of the input variables APh_ and AV s ou- Based on the magnitude of the discontinuity either

the input membership functions' 6vedaps could be changed or the width of the output

membership functions could be changed.

As this initial controller was used to simulate, from equivalent circuit data, several different

motors, several features of the controller became clear as this data was analyzed. For

example, any change in stator voltage produced a drop in the output shaft speed _r,
which is generally undesirable. Also, for a given set of equivalent circuit values,

maximum efficiency is closely related to total circuit impedance, _n, regardless of the
torque/speed condition.

Because of the loss of shaft speed, it was clear that even the optimized controller would
never perform adequately working alone. Therefore attention was turned to a controller

which could both compensate for the loss in shaft speed resulting from the voltage
perturbations and still allow a minimum input power point to be reached. It was

recognized that the loss of rotor speed could be corrected by increasing the frequency
of the stator voltages and currents, while the minimum power input point can be obtained

by perturbing the voltage. Furthermore, a correlation of (or impedance suggested that if
the change in input impedance were known for a particular change in synchronous

frequency (oo and voltage V s, then approaching an optimum impedance as rapidly as

possible should achieve both the minimum input power and the correction of the drop in
0_r. This led us to develop a preliminary controller concept for a frequency perturber,

shown here in block diagram form in conjunction with the existing voltage perturber.

l ,_gWe_ol d

AM old

Fuzzy Controller

@z.
Motor Model

Z ia__,

P ilO_UCW

Figure 6. Dual Variable Fuzzy Logic Controller for AC Induction Motor
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Thus the set of rules which perturbed the voltage were augmented by another set of rules

which perturbed o_e using the previous value of A_ o, A_e.ol d, and AZin. This new fuzzy
rulebase, which has 9 rules, fires simultaneously with the 13 rules of the SVFLC. The

rule-base for inference of the synchronous frequency is shown in the following table.

RULES

1)

2)

3)

4)

5)

6)

7)

8)

9)

IF AO)e_ol d IS P AND AZin IS N THEN Aee = P

IF Ao)e_oid IS Z AND AZin IS N THEN a(J0 e = P

IF &o_e_old IS N AND AZin IS N THEN Ao_e = N

IF A0_e__d IS P AND AZin IS Z THEN Ae_e = Z

IF Ae_e_oid IS Z AND AZin IS Z THEN Ac% = Z

IF Ao_e__d IS N AND AZin IS Z THEN Ace = Z

IF Aee_ol d IS P AN D AZ in IS P THEN AfJ8 e = N

IF Ac%_oid IS Z AND AZin IS P THEN A(J) e -- N

IF AC%_oid IS N AND AZin IS P THEN Ao_e = P

Table 2. Added Rules for Control Frequency

The symbols P, N, and Z stand respectively for positive, negative and zero. Limits on the

membership functions were developed as before by analyzing output data from the
simulator and setting the limits. The preliminary output membership functions for Ao_o are

illustrated in the following figure.
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As in the previous work, a control surface was generated and could be used to tune the

membership functions. Note in the control surface graph that there are certainly abrupt

changes in Ao_e for certain values of ,_Z.in and A_oe o_d"

DELTA We

DELTA We old

Figure 8. Control Surface for Synchronous Frequency Perturber

Fuzzy Efficiency Optimization using Indirect Vector Control

A parallel effort is taking place to provide fuzzy efficiency optimization for induction motors
which use indirect vector or field-oriented control of induction motors rather than PWM.

Indirect vector control is another approach to the control of ASD/motor combinations

which controls current rather than voltage. This type of energy optimizer emphasizes the

suppression of transient phenomena in the motor, and is focused more on dynamic
process control applications (lathe motors, steel mill rolling, etc) than the steady state

controller. The controller is illustrated in Figure 9.
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I

Figure 8. Fuzzy Efficiency Optimization for Indirect Vector Control.

In indirect vector control, the motor is modeled using a change of variables which

represents the state variables of the motor in terms of two magnetically decoupled

equivalent circuits, generally referred to as the d-q representation of a motor. When

vector control is employed the currents ids and iqs control the flux and the torque of the
machine, respectively.

Fuzzy efficiency optimization for indirect vector control utilizes the same type of minimum

input power search scheme outline above, however rather than perturbing the stator
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voltage, the rotor flux _ is changed by perturbing the current ids. Then Pin is measured
to see if the input power has changed. In the event that it has, a set of fuzzy rules

computes a new value of Aids, based on APin and the previous value of Aids, referred to

as LAids. Then Pi, is measured again and the process is repeated. A table showing the
preliminary rules relating Aids to APi, and LAids is shown in the following table.

RULES

1. If LDids is N and APi is

2. If LDids is N and APi is

3. If LDids is N and APi is

4. If LDids is N and APi is

5. If LDids is N and APi is

6. If LDids is N and APi is

7. If LDids is N and APi is

8. If LDids is P and APi is

9. If LDids is P and APi is

10. If LDids is P and APi is

11. If LDids is P and APi is

12. If LDids is P and APi is

13. If LDids is P and APi is

14. If LDids is P and APi is

PB, then LDids is PB.

PM, then LDids is PM.

PS, then LDids is PS.

ZE, then LDids is ZE.

NS, then LDids is NS.

NM, then LDids is NM.

NB, then LDids is NB.

PB, then LDids

PM, then LDids

PS, then LDids

ZE, then LDids

NS, then LDids is PS.

NM, then LDids is PM.

NB, then LDids is PB.

is NB.

is NM.

is NS.

is ZE.

Table 3. Fuzzy Rules for Efficiency Optimization with Indirect Vector Control.

A total of 14 IF-THEN rules are defined for the energy optimizer utilizing indirect vector

control.

Figure 10 illustrates the preliminary membership functions derived from observation of

results obtained from computer simulations.
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The membership functions were developed using variables normalized in the interval [-

1,1], hence the magnitudes of the endpoint variables (+/- P1, +/- L1, +/- I1)across the
domain of the membership functions is 1. The values of the interior limits on the

membership functions have not at present been arrived at.

The max-min method of inference is being applied to obtain truth values of any particular

rule, hence the design of the fuzzy membership functions for LAids provides a degree of
limitation for the truth value of a rule when LAids is "negative small" or "positive small",

even though there is no membership function specifically for those fuzzy values. This

avoids using multiple membership functions in a place where fewer will perform the same

job, and thereby reduces the size of the fuzzy rulebase. The overlap between the

positive and negative membership functions assure that division by 0 will not occur in the

height defuzzification method used by UT, since even if L/kids is 0, it will have a non-zero

degree of belief in either the 'P' or 'N' region.

Reducing the flux to achieve minimum input power has an effect similar to that of

reducing voltage in the previous controller. The shaft speed will drop. We have found

that this can be compensated for by a change in the torque component of current i s

This is a function of the change in ids. After a change in the value of iqs is made (whiqh
is not a fuzzy operation) fuzzy efficiency optimization is not reapplied until the machine

has returned to steady-state condition, which is determined by comparing the sum of the

absolute values of the last three rotor speed errors (A_r) to a tolerance value of 1
rad/sec. At that time a new value of Aids iS computed by the fuzzy efficiency optimizer

and the cycle repeats. Even after optimum efficiency has been reached, this steady-state

condition is checked for periodically in order to determine that no process disturbance has
taken place which would require the controller to act in order to produce the required

torque output or required speed.

All rules and membership functions are being tuned using computer simulation and by

testing the controller in a laboratory setting. The following diagram shows the overall
scheme of the laboratory setup.
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Figure 11. Motor Laboratory System

The fuzzy rules are executed in a 486/33 MHz from code compiled with other C routines,
which also monitor system information via a data acquisition board, and communicate
with the ASD to alter the ASD voltage and frequency output. The same code also directs
an analog output on the data acquisition board to vary the strength of the field in the DC
brake via the dynamometer controller, thus simulating various degrees of load on the
motor.

Summary

Computer simulations have shown that a fuzzy controller which optimizes the use of
energy by a motor/ASD combination can be developed. To be truly effective, the
controller should alter both the stator voltage and stator frequency while maintaining the

output power required of the motor/ASD system for the drive at hand. Energy efficiency
optimization can be applied not only to drives which produce sinusoidal PWM output, but
to indirect-vector controlled drives as well.
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Accurate Automation is designing and developing an adaptive

decentralized Joint controllers using neural networks. We are
then Implementing these in hardware for the Marshall Space Flight
Cente_ PFMA ae well as to be usable for the Remote Manipulator

System (RMS) robot arm. Our design is being realized in hardware
after aompletion of _he software simulation. This is implemented

using a Funotional-LinX neural network.

We have completed the theoretical analysis and design of the
neural network based Decentralized Adaptive Joint Controller

(DAJC) for use in • telerobotlo system including, evaluatlng
appropriate neural network architectures and learning rules, as
well as a mathematlcal and empirical robustness analysis.

We are huildlnq an neural net based controller to model the

arm dynamics and generate the necessary Joint torques. This
neural network receives position and velocity information from
the Joint anted.r, and provides a mapping from this space to the
Jolnt-torque space of the arm. our neuro-Jolnt controller pro-
duces a trajectory in Jolnt-torque space. This trajectory repre-
sents the sequence of torques values as a function of time that

are necessary to perform a given task.

Oar tests to date have on a simulated Puma 560 robot arm and

a NASA RM8 robot arm run on a Silicon Graphics 4D340VGX Super-
WorkStation. The slmulatlon modeled inertia, interJoint cou-

plings, centrifugal torque, gravity loading, and viscous and

Coulomb friction.. Thl8 is a three Joint simulation. This is now
belng interfaced to the Extendable Stiff Arm Manipulator (ESAM)
robot arm from NASA Marshall to valldate the slmulation before

the neuro Joint controller is _anslatsd to a hardware implemen-
tation. In the future we will test our neurocontroller on the
PFMA or RMS.

In the simulation testing that we have done so far, we have

controlled three Joints and moved the arm from various starting
positions to varlou, ending positions in different amounts of
time. We Lave also subjected the controller to variable amounts
of ',,,_ss on the end-effeotcr, including masses dropped on the arm
during the move and taken off the arm before the move was com-

plete. Oscillations tend to damp out quickly as the controller
compensates for error. The controller has proven to be very
stable and robust. End effeotor _ae8 changes of 90kg can be
handled during a two second move from (-180,0) to (0,90) in 1 g.
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I. Introduction

Real world consists of a very large number of instances of events and continuous numeric values.

On the other hand, people represent and process their knowledge in terms of abstracted concepts

derived from generalization of these instances and numeric values. Logic based paradigms for

knowledge representation use symbolic processing both for concept representation and inference.

Their underlying assumption is that a concept can be defined precisely. However, as this assumption

hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts.

Thus symbolic processing has essential problems from a practical point of view of applications in the

real world. In contrast,fuzzy set theory can viewed as a stronger and more practical notation than

formal, logic based theories because it supports both symbolic processing and numeric processing,

connecting the logic based world and the real world.

For example, in the case of an intelligent control system, control actions are determined not only by

numeric processing but also integrated with the result of intellectual decision making at a more

abstract level based on meaning understanding of numeric data. Using only numeric processing or

describing simple correspondences of instances produces a black box effect and is difficult to

integrate with symbolic, logic based information processing. For this reason, multi-layer structured

frameworks have been proposed, where intellectual information processing based on meaning

understanding and state recognition in upper layer supervises the data processing in lower layer [2]-

[3]. The duality abstract/concrete of the real world is reflected in the intelligent/lack of intelligence

duality at the intellectual level (Increasing Precision with Decreasing Intelligence principle, IPDI, [4] -

[5]) To cope with this duality a knowledge representation paradigm must be able to hierarchically

represent both aspects. Thus we are led to consider multi-layered structures representation.

A concept such as an operator's know-how in the upper abstracted layer is essentially vague.

Moreover, it is difficult to eliminate this vagueness during the generalization process from control

experiences. For this reason, fuzzy set theory can be expected to provide us with a strong notation

for concept representation at different levels of granularity: lower, concrete concepts describe an

upper, vague concept constructing thus a multi-layered structure and a capability connecting

information processing in different layers.of abstraction.

However, simple notion using ordinary fuzzy sets cannot solve all the problems of (concept)

knowledge representation because of the following:

* Currently at Systems & Software Engineering Laboratory, Toshiba Corp.
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1. Lack of context dependency

2. Impossibility of explicit formulation of a concept.

These problems arise because the meaning of a concept changes depending on various situations and

concrete events cannot always be generalized into logical notation explicitly. For example, a fuzzy

controller of a car aims to realize intelligent control in terms of modeling the driver's know-how such

as : "If the distance between cars is big, then the change of acceleration is big". Nevertheless, since

the concepts such as "big" or "small" describing control rules are defined on a numeric axis

absolutely using a simple formulation, the definition indicates only a simply unique meaning of a

concept and cannot cover the variety of meanings (depending on the size of a car and road

conditions). The fuzzy control does not achieve the intellectual information processing in the upper

level nor the aims of intelligent control.

All these problems relate to the representation of the meaning of a concept. According to

Wittgenstein [1], the meaning of a concept is represented by the totality of its uses. In this spirit we

proposed [2] the notion of Conceptual Fuzzy Sets:( henceforth referred to as CFS). In the CFS the

meaning of a concept is represented by the distribution of activation of labels naming concepts. Since

the distribution changes depending on the activated labels to indicate a situation, CFS can represent

context dependent meanings. CFS are realized using bidirectional associative memories implemented

as neural networks. Since the propagation of activation realizes logical operations and inference as

well as the representation of meanings, many advantageous features are obtained which are not

realized by logic based representation alone.

Further, since the distribution of activation determined by the propagation of activation in CFS

represents the meaning of a concept, the propagation of activations corresponds to reasoning. In

particular, a multi-layer structured CFS represents the meaning of a concept in various expressions in

each layer. Therefore, it follows that due to the capability of naturally realizing information

processing in multi-layered structures, the CFS have the following features:

1. Because CFSs are realized and connected using a bi-directional associative memory, CFS can carry

out information processing both in the upper layer and lower layer simultaneously exchanging

information. Thus they provide us easily with a framework where the processing in the upper layer

supervises the processing in the lower layer.

2. Since CFS are realized as a bi-directional associative memory, it can carry out both bottom-up

processing from the lower layer to the upper layer, and top-down processing from the upper layer to

the lower layer simultaneously.

In this paper, we propose Multi-layered Reasoning realized by using CFS and we discuss the above

two features. In section 2, we show the general characteristics of CFS. In section 3, we discuss the

structure where the upper layer supervises the lower layer and we illustrate it with examples. In

section 4, we discuss the context dependent processing carried out by the simultaneous bottom-up

processing and top-down processing.

2. Conceptual Fuzzy Sets

2.1. Conceptual Fuzzy Sets for Concept Representation

A label of a fuzzy set represents the name of a concept and a fuzzy set represents the meaning of the

concept. Therefore, the shape of a fuzzy set should be determined from the meaning of the label

depending on various situations. According to the theory of meaning representation from use

proposed by Wittgenstein [7], the various meanings of a label (word) may be represented by other
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labels (words) and we can assign grades of activation showing compatibility degrees between

different labels.

The Conceptual Fuzzy Set proposed in [8], achieves this by the distributions of activations. Since the

distribution changes depending on the activated labels which indicate conditions, the activations

resulted through CFS show a context dependent meaning. When more than two labels are activated

CFS is realized by the overlapping propagations of activations. In CFS notations, operations and

their controls are all realized by the distributions of activation and their propagations in associative

memories.

We can say that the distribution determined by the activation of a label agrees with the region of

thought corresponding to the word expressing its meaning. Since situations are also indicated by

activations, the meaning is expressed by overlapping the regions of thought determined by these

activations. Fig 2.1 illustrates the different meanings of the same label, L1, in different situations, S 1

and $2.

,__ of Thought by

Regio._of Thought by'_'__ the meaning of L1 in _e Situation $1

Label t_ ,_._. the meaning o! L1 in the Situation $2

\ I --J
Regiq_ of Thought by

u$on S2

Fig.2.1 Different meanings in different situations

A CFS is realized as an associative memory, in which a node represents a concept and a link

represents a strength of the relation between two (connected) concepts. Activations of nodes produce

a reverberation and the system energy is stabilized to a local minimum where corresponding concepts

are recollected as a result. The recollections are carried out through a weight matrix encoded from

stimulus-response paired data.

In this paper we use Bidirectional Associative Memories (BAMs) [9] because of the clarity of
constraints for their utilization. At the association in BAMs reverberations are carried out according

tO"

Yt = _ (M'Xt), Xt+1 = _ (MT'Yt) • (I)

where, Xt--[xl, x2 ..... xm] T Yt=[yl, y2 ..... yn] T are activation vectors on x and y layers at the

reverberation step t, and $(') is a sigmoid function of each neuron. BAMs memorize

corresponding pairs of elements at each layer in terms of a synaptic weight matrix, M, to memorize

CFS, and calculated from corresponding input/output pairs of Ai/Bi with coefficient a i:

M = Ei a iAi'Bi' (2)

Example 2.1. CFS representing a composed concept which has multiple meanings

depending on situations

Let us consider the concept "tall", and its meaning according to whether it is applied to an American

or Japanese person. The meaning of concept "tall" changes in these two situations. The distribution

97



of activation of other labels explains the meaning of "tall" depending on these contexts, Fig. 2.2

shows the concept "tall American" which agrees with the meaning of "tall" in case of an American

person. In this figure and throughout the remainder of this paper, "American" and "Japanese" refer

to "American height" and "Japanese height" respectively. The activations of nodes which express

"American" and "tall" make the distribution of activation in the middle layer which consists of
numerical values.

Japanese American

Fig.2.2 CFS representing "tall" American

In contrast, activating only "American", the different distribution from above in middle layer

expresses its general meaning in the numeric support set. The propagated activation of "tall" in

lowest layer indicates the perception of the height of an American, and it means "(an) American is

tall". As we see in this latter example, the meaning of a label in CFS is expressed in multi-layers

simultaneously and it is interpreted by each expression.

2.2. Construction of CFS by Learning

We proposed the method to inductively construct CFS as a representation of concepts using neural

network learning [ 10]. It means that the construction is carried out in terms of instances.

Inductive Construction of CFS

CFS are constructed inductively using Hebbian learning. CFS is realized using associative

memories in which a link represents a strength of the relation between two concepts. Hebbian

learning modifies the strength mij of links by the product of the activations of two nodes xi and yj

according to:

rriij= -rnij + xiyj (3)

In this case the correlation matrix is obtained directly from instances such as

"The height of Mark is 175cm. He is tall with a grade 0.8"

"The height of George is 160cm. He is tall with a grade 0.2"

On the other hand CFS are also constructed by the previously proposed algorithm [2] from the fuzzy

set.

"tall" = { 0.2/160cm, 0.8/175cm .... }

generalized from the instances above.

Structural Learning of Concepts

The proposed construction method also covers the structural learning. Since the proposed learning

method makes negative correlation for the pairs of elements which are not relating to the concept in

question, the obtained CFS does not make unnecessary elements activated. For this reason the

proposed method can provide us with a desirable CFS even in support sets which contain verbose
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elements.

Composition of Subdivided Knowledge

A complex CFS is realized by composing several pieces of associative memory structured

individually. Further composition of pieces of knowledge makes the representation of the concept

context dependent. In this procedure the constraints of associative memories are very important.

If C 1, C 2 ..... C n, denote individual CFSs and M 1, M 2 ..... M n are their corresponding correlation

matrices then we can combine them to obtain a CFS, C, whose correlation matrix, M, is given by:

M = M) +-.- + M_ (4)

The following features of CFS allow for solving the shortcomings of purely symbolic knowledge

representation paradigms:

1. CFS can represent the context dependent meaning of a concept. At the same time being built

through simple combinations it avoids combinatorial explosion.

2. CFS can explicitly represent the concept whose logically explicit representation is impossible.

3. Since CFS can employ a multi-layered distributed structure, many kinds of expressions such as

denotative and connotative can be mixed. Inference is performed by passing through layers and

propagating activations.

4. As indicated in [11] propagations of activations realize approximate reasoning. Thus, associative

memories lend CFS's the characteristics of intellectual information processing such as decrease of

fuzziness, bidirectional inference, context dependent reasoning, etc..

3. Fusion of symbolic processing and numerical processing

3.1. Fuzzy Reasoning by means of CFS

As we see above, CFS represent the meaning of a concept in multiple layers. The meaning of the

concept is translated into the expression indicated by the distribution of activation in each layer.

Since the representation of the meaning in the input layer is translated into a representation in the

output layer, the propagation of activation corresponds to reasoning. CFS can realize many kinds of

reasoning which behave consistently with other reasoning methods (slight differences are due to

different notation).

In particular, rule based approximate reasoning is realized as follows. Consider a rule of the form IF

x is A then y is B. A layer consists of nodes representing premises A1,A2 ..... Am, describing x.

Another layer consists of nodes representing the consequences B 1,B2 ..... Bn, describing y. These

layers are connected by a weight matrix M calculated from correspondences of premise Ai and

consequence Bj. If the input is x=x*, the concepts A1,A2 ..... Am are activated with the activations

being equal to the corresponding membership values of x*. The propagation of activation determined

by the activation of the premise layer produces the distribution of activations in the consequence

layer, that is B1,B2 ..... Bn. As each activation corresponds to the truth value of each concept,

approximate reasoning is realized [ 12].

As CFS behave beyond the limitation of logic based notation, the following reasoning can be realized

using CFS:

1. Propagations which arise from the activation of an abstracted concept show its meaning in the

concrete layer. This corresponds to answering the question asking the meaning of the concept.

2. In contrast, the activation of a lower concept determines the activations of an upper concept and it
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correspondsto recognitionor understanding.

Further,due to its bidirectional features,thereasoningin CFS hasvariouscharacteristicswhich
cannotbeachievedby thelogicbasedparadigm[11].

3.2. Multi-layered Reasoning

Consider a simple example of predicting the currency exchange rate. In the case of a war happening,

we use concrete examples from past experience, such as the Gulf War, to predict a precise value. At

the same time, we refer the macroscopic knowledge such as "dollar rises in case of emergency" and

make rough prediction such that dollar rises up. We can say that the abstracted knowledge described

in the upper layer supervises the generous reasoning path and corrects the result of reasoning in the

lower layer in terms of concrete knowledge such as numeric data and event data.

In general, quantitative processing or neural network deal with numeric data and are not capable of

integrating symbolic semantics. In contrast, symbolic processing suits intellectual information

processing, but does not suit numeric processing. Since both processing methods take completely

different approaches to knowledge processing and knowledge acquisition, the effective integration of

these methods, while desirable, is difficult to achieve in a way of which combines their best features.

A reasoning in a multi-layer structured CFS realizes, to some extent, the integration of these two

paradigms. The upper layer is meant to carry out symbolic processing using abstracted concepts

while the lower layer to process numeric data and instances. If only the reasoning in the lower layer

is used, it gives us precise results, but possibly a wrong reasoning path from macroscopic view

point. On the other hand, the reasoning in upper layer alone cannot provide a precise result.

Bidirectional association connecting two layers enable us to fuse the simultaneous processing in

upper and lower layers to obtain a semantic guide supported by the upper layer and the precise

processing supported by lower layer. The correspondences of concepts in upper layer represent the

abstracted knowledge and the correspondences of examples or numeric data in the lower layer

represent concrete knowledge. Since the concepts in the upper layer are connected with examples in

lower layer, these connections result in the fusion of two differently abstracted layers. In the case

when more than two layers exist various abstracted processes are carried out at the same time.

The reasoning in a multi-layer structured CFS is carded out according to the following procedure:

The activation of the node in premises activates the corresponding several nodes in consequences in

the lower layer. At the same time, the result of the semantic information processing in the upper layer

propagated by the activation of the node in the premises in lower layer affects the consequences in the

lower layer. As a result, the nodes affected by both the direct propagation in the lower layer and the

semantic propagation in the upper layer remains to be activated. Finally, a concrete result is obtained

in the lower layer and abstracted results are obtained in the upper layer simultaneously. We call

Semantic Guide Line the supervision of the processing in lower layer by the intellectual

information processing in upper layer.

Example 3.1. Decision regarding the amount to steering

When driving a car the amount to steering changes depending on situations. In the case that parking

spaces are indicated by a painted line, we usually park the car passing the line. If the spaces are

surrounded by borders or walls (as in a garage), another trajectory is considered (to avoid the

collision with the wall as in Fig.3.1).
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--_ if white paint (no wall) _ go straightif wall --_ turn left

Fig.3.1 Parking Conditions

Consider the case that we decide the amount to steering besides parking space and the direction of the

car is placed at 30 degree with the direction of parking space as indicated in Fig 3.2.

We decide the amount to steering using generous rule such as "steer to right to make right turn". The

"right" is a concept generalized from various driving experiences and:

1. This kind of symbolic representation is effective to describe explicit and semantic knowledge.

2. However, its indications are vague and can not determine the amount to steering precisely.

3. Its meaning changes depending on the situations such as the position of a car.

On the other hand, cases such as "when the car makes x degree, we steered y degree" are described

by concrete numeric values and:

1. The concrete experience indicates the precise amount to steering.

2. However, purely quantitative correspondence of conditions and actions does not suit logical

information arising from varieties of conditions.

The CFS fuse both representations consisting of two layers. The lower layer memorizes the

correspondences of the numerically described direction of the car and decided amount of steering.

Since the lower layer consists of superficial numeric correspondences, it does not recognize the

difference between the cases "with wall" and "without wall". In the upper layer, the conditions

described by the symbolic notation such as "direction of the car" correspond to the actions such as

"with wall" or "without wall". The correspondences of symbols are equivalent to the semantic

control rules generalized from experiences. The nodes in the lower layer represent: direction of the

car (left nodes) and decided amount of steering (right nodes). The nodes in the upper layer

represent: the concept associating with the degree of the car such as "about 45 degree" and "about 90

degree (parallel to the front wall), two nodes on the left, and the conditions "wall" and "no wall", the

remaining two nodes on the left. The nodes on the right side of the upper layer represent the resulted

actions such as "Turn left","Go Straight" and "Turn Right". Further, the concepts of the upper layer

are connected to the concrete nodes of the lower layer, thus realizing meaning representation.
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Fig. 3.2 Decision of the amount to steering by two-layered reasoning

Fig.3.2 also shows the conditions and the decided action when the car is placed in 30 degrees with a

parking space having a wall. The condition "30 degrees" results in two kinds of actions depending

on the cases "with wall" and "without wall". Because the lower layer simply memorizes both actions

"15 degree to left" and "45 degree to right" corresponding to the conditions 30 degrees, the correct

result cannot be recollected by using only the lower layer.

In the upper layer the recognition of a close wall activates "Turn Right" and it produces the activation

of "turn right by 45 degrees" in the lower layer. The results of this multi-layered reasoning are "Turn

right" in the upper layer and "turn right by 45 degrees" in the lower layer. This process of

determining the actions indicates the successful supervision by the macroscopic views in the upper

layer of the lower layer. Moreover, the results of the reasoning are equivalent to the meaning of

"right" depending on different conditions.

4. Fusion of top-down and bottom-up processing

Usually natural language processing consists of two steps: (1) parsing and (2) semantic analysis. A

lot of meaningless results are obtained by parsing alone. If semantic information could be used

simultaneously in the step of parsing it would lead to a more efficient parsing. In image processing,

recognition is carried out using characteristic values which are already obtained by low image

processing. The fusion of referring a model of an object or the context with the image processing

makes the image recognition more efficient. We can say that people simultaneously realize both

image processing and recognition.

For the reasons indicated above substantial work has been focused on replacing serial processing by

parallel processing [2]. However, this work fails to achieve a real fusion of bottom-up and top-down

processing supported by simultaneous information exchange and parallel processing, as it makes use

of external procedures (such as for deciding the priority of layers or looping algorithms).

CFS can realize the parallel processing to support the fusion of bottom-up and top-down processing

in terms of combining the semantic information processing in upper layer and local processing in

lower layer. For example, in image recognition, the upper layer describes the knowledge on a context
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while the lower layer describes primitive concepts. The concepts in the upper layer are explained by

the primitives in the lower layer. The characteristic values activate the primitives in the lower layer.

This results in the activation of the concept in the upper layer At that time the context described in the

upper layer depresses the meaningless patterns of distribution of activation and promotes the

meaningful patterns of activations in lower layer Thus the primitives activated are those affected by

the characteristic values and also satisfying the context. This context sensitive processing

provides us with an accurate result. It uses the context to eliminate vagueness which may come from

noisy and vague data and which could otherwise cause misunderstandings.

Example 4.1. Recognition of "THE CAT"

We recognize the words "THE CAT" in Fig. 4.1. Actually the characters in the middle of THE and

CAT have exactly the same shape, and the shape can be recognized as either A or H. Therefore if the

recognition of the characters is carried out before the recognition of words, it cannot be decided what

the character is: A or H. Our actual response recognizing THE CAT indicates the simultaneous

processing of character recognition and word recognition (context). CFS can realize this recognition

supported by the fusion of bottom-up recognition process and top-down context sensitive processing

as in Fig.4.2.

TRE C_,RT

Fig.4.1 THE CAT

A and H

T T

THE

CAT

A and H

THZ

CAT

Fig.4.2 The recognition of THE CAT using CFS

The CFS in Fig.4.2 consists of the nodes indicating each character in the lowest layer, alphabets as

results of character recognition in the middle layer, and correct words as a context in the upper layer.

The lower half of CFS indicates how each character looks like and the upper half indicates the

alphabets constructing word. Although the character T, E and C are recognized without vagueness

and are connected to corresponding places in the alphabets in the middle layer, the characters of

interest which have the shape between A and H are connected to both alphabets to indicate the

possibility to be recognized as A or H.

The activation of T, E and the ambiguous character in the lowest layer carry out the recognition. As a

result of the propagation of activations, T, H and E are activated in the middle layer and node "THE"

is activated in upper layer. The simultaneous recognition indicates that the character in the middle of
the word is H and the word is "THE". It should be noticed that context sensitive recognition

supported by the upper layer and bottom-up recognition from the lower layer are processed

simultaneously.
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Example 4.2. Recognition of facial expressions

A facial expression is a vague concept: it is difficult of explicitly describing a facial expression: any

descriptions have vague boundaries. In this example, the recognition of facial expression is

discussed using multi-layered reasoning by means of CFS. The CFS for facial expressions consists

of three layers: the upper layer contains facial expressions, the middle layer contains characteristics of

the components of a face and the lower layer contains attributive characteristic values. The facial

expressions are described in terms of the following characteristics:the condition of both eyes

(UP:upward, HZ:horizontal, DW:downward), and of the mouth (UP, HZ, DW). The above

characteristics are described by the following characteristic values: the angle of the edge of both eyes

(RA, LA) and the angle of mouth (M) in Fig.4.3. Fig 4.4 shows the object face. The recognition of

facial expressions is carried out by activating the node in the lowest layer describing characteristic
values.

M

Fig. 4.3 Face characteristic value Fig. 4.4 Object image

We can say that humans recognize objects using generous (global) characteristics instead of detecting

precise numerical characteristic values. Also, the context constructed by several patterns of facial

expressions improves the efficiency and accuracy of recognition. In this section we illustrate the

context sensitive image processing by describing general patterns of facial expressions in the middle

and upper layers. Fig.4.5 shows the constructed CFS to recognize facial expressions. The general

patterns of facial expressions are described by promoting links connecting the characteristics to

represent the facial expressions in the middle layer. These patterns are connected to the node in the

upper layer standing for facial expressions. The patterns in the middle layer are connected by

depressing links. We investigated the recognition using vague characteristic values, which are

described by fuzzy sets, to simulate the recognition process by humans without using accurate

characteristic values. The object face is recognized as "Angry" and the result is in agreement with our

recognition.

Angry
Sad

-I0 -8 -6-4 -2 0 2 4 6 8 -i0 -8-6 -4-2 0 2 4 6 8 -4 -2 0 2 4 6 8 I0

Angle of Right Eye Angle of Left Eye Angle of Mouth

Fig. 4.5 Recognition of facial expressions by means of multi-layered reasoning
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In contrast, the recognition using simple logical notation was "Happy" as shown in the following

example: facial expression are determined by:

Angry = (Angle of right eye is big) and (Angle of left eye is big) and (Angle of mouth is big)

Happy = (Angle of right eye is small) and (Angle of left eye is small) and (Angle of mouth is small)

Sad.= (Angle of right eye is medium) and (Angle of left eye is medium) and (Angle of mouth is big)

Each truth value is calculated as:

Tv(Angry)=

Tv(Happy)=

Tv(Sad) =

rain(1.00, 1.00, 0.62) = 0.62

min(0.73, 0.82, 1.00) = 0.73

min(0.92, 0.82, 0.62) = 0.62

Taking the facial expression which has maximum truth value produces the result "Happy".

We also investigated the face recognition of 28 people as shown below and the results show the

advantage of context sensitive recognition using CFS.

CFS: 14.3 % fail

logic based: 21.4 % fail

The results show the advantage of context sensitive recognition which is supported by the fusion of

bottom-up and top-down processing, in particular, when the recognition starts with error containing

vague characteristic values. It also implies the possibility of CFS for image understanding to

eliminate the need for precise image processing

5. Conclusion

Fuzzy set theory can be viewed as a stronger and more practical notation than purely symbolic

information processing paradigms, connecting the logic based world and the real world. The duality

abstract/concrete of the real world is reflected in the intelligent/lack of intelligence duality at the

intellectual level. To cope with this duality a knowledge representation paradigm must be able to

hierarchically represent both aspects.

Previously we proposed Conceptual Fuzzy sets (CFS) based on the meaning representation of a

concept: the meaning of a concept is represented by the distribution of activations of labels naming

concepts. In particular, a multi-layer structured CFS represents the meaning of a concept in various

expressions in each layer.

In this paper, we proposed Multi-layered Reasoning in CFS. Since the propagation of activations

corresponds to reasoning, multi-layer structured CFS can realize multi-layered reasoning which has

following features:

1. capable of simultaneous symbolic and quantitative processing (semantic guide line)

2. capable of simultaneous top-down and bottom-up processing (context sensitive processing)

We also showed its effectiveness through illustrative examples.
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This paper discusses an application of fuzzy control to an unmanned helicopter.

The authors design a fuzzy controller to achieve semi-autonomous flight of a

helicopter by giving macroscopic flight commands from the ground.

The fuzzy controller proposed in this study consists of two layers: the upper

layer for navigation supervising the lower layer and the lower layer for ordinary
rule based control. The performance of the fuzzy controller is evaluated in

experiments where an industrial helicopter YAMAHA R-50 is used.

At present an operator can wirelessly control the helicopter through a flight

computer with eight commands such as "hover", "fly forward", "turn left", "stop",

etc. The results are shown by video.
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Fuzzy Logic Mode Switching in Helicopters

Porter D. Sherman and Frank W. Warburton

Advanced Research & Design
Sikorsky Aircraft

The application of fuzzy logic to a wide range of control problems has been
gaining momentum internationally, fueled by a concentrated Japanese effort.
Advanced Research & Development within the Engineering Department at

Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate
how effective fuzzy logic research effort designed to evaluate how effective
fuzzy logic control might be in relation to helicopter operations. The mode
switching module in the advanced flight control portion of Sikorsky's motion
based simulator was identified as a good candidate problem because it was
simple to understand and contained imprecise (fuzzy) decision criteria. The

purpose of the switching module is to aid a helicopter pilot in entering and
leaving coordinated turns while in flight. The criteria that determine the
transitions between modes are imprecise and depend on the varied ranges of
three flight conditions (i.e. simulated parameters): Commanded Rate, Duration,
and Roll Attitude. The parameters were given fuzzy ranges and used as input
variables to a fuzzy rulebase containing the knowledge of mode switching. The
fuzzy control program was integrated into a real time interactive helicopter
simulation tool. Optimization of the heading hold and turn coordination was
accomplished by interactive pilot simulation testing of the handling quality
performance of the helicopter dynamic model. The fuzzy logic code satisfied all
the requirements of this candidate control problem.

- ¢
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A flight control concept that can identify aircraft stability properties and
continually optimize the aircraft flying qualities has been developed by McDonnell
Aircraft Company under a contract with the NASA-Dryden Flight Research Facility.
This flight concept, termed the Intelligent Flight Control System, utilizes Neural
Network technology to identify the host aircraft stability and control properties during
flight, and use this information to design on-line the control system feedback gains to
provide continuous optimum flight response. This self-repairing capability (Figure 1)
can provide high performance flight maneuvering response throughout large flight
envelopes, such as needed for the National Aerospace Plane. Moreover, achieving
this response early in the vehicle's development schedule will save cost.
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The Intelligent Flight Control System (Figure 2) incorporates an Aircraft
Performance Model to provide the ideal system response. On-time measurements of
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Figure 2. Intelligent Flight Control System

the aircraft state parameters are determined by neural network models that relate
aircraft stability coefficients (Figure 3), utilizing aircraft sensors such as Angle of Attack
(AOA) as inputs to the networks. Thus, aircraft stability and control coefficients are
continuously updated, and used in the control process to achieve the ideal desired
response to pilot steering commands. The concept was designed to the NASA F-15
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flight vehicle characteristics.

system to a pilot stick command is shown in Figure 4.
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As a test of the concept, aircraft conditions representing a damaged wing was
introduced into the problem, using the F-15 wind tunnel data for a 50% missing right
wing (Figure 5). Neural Networks were developed to measure the damage, and tested
using simulated time histories of the control system sensors as inputs to the networks.

iFactors: (1) Determine Extent of Damage
(2) Determine Aircraft Stability

and Control Properties
(3) Revise Control Law
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I In-Right '1Damage Detection

Control J_=Reconfiguretlon

Figure 5. An Example Problem: Control of a Damaged Aircraft
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Figure 6 illustrates the aircraft response time history when the wing damage occurs.
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The information from the Neural Networks will be used to quickly reconfigure the
aircraft control surfaces and regain stable, controlled flight.

The Neural-based Self Designing Control Concept that is the basis of the
Intelligent Flight Control system can be applied to future fighter and transport vehicles
(Figure 7) to optimize engine and flight control performance.
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Abstract

NASA and the U.S. Army are jointly developing a teleoperated unmanned rotorcraft
research platform at the National Aeronautics and Space Administration (NASA) Langley Research
Center. This effort is intended to provide the rotorcraft research community an intermediate step
between wind tunnel rotorcraft studies and full scale flight testing. The research vehicle is scaled

such that it can be operated in the NASA Langley 14- by 22-Foot Subsonic Tunnel or be flown
freely at an outside test range. This paper briefly describes the system's requirements and the
techniques used to marry the various technologies present in the system to meet these
requirements. The paper also discusses the status of the development effort.

Background and Introduction

Several recent analyses and simulated aerial combat flight tests have demonstrated that

agility is a very powerful element of rotorcraft combat survivability. Dynamic stability,
maneuverability, and agility are not presently addressed in helicopter wind tunnel testing for both
economic and technical reasons, and the investigation of these dynamic issues must therefore be

conducted on free-flight vehicles of some type, whether full scale or model scale. Unfortunately,
the cost of conducting full-scale flight tests has become so high that it can only be considered for
the most important elements of research and development where any other method of test is wholly
inadequate. Considerable work is now underway to supplement flight testing with simulation to
the maximum extent possible. Simulation, however, can only be exploited when there is a model
of the system. Recently developed techniques to validate simulation models require some form of
high fidelity flight testing for confirmation. A joint U.S. Army and NASA program is currently
underway to evaluate the suitability of using a teleoperated, instrumented, free-flight, reduced-
scale powered rotorcraft model equipped with Mach-scaled wind tunnel model rotor systems to
refine these validation techniques. This paper provides an overview of the approach and the
current status of this free-flight program with an indepth focus on the model's control system.

Free-Flight Research Technique

The free-fight research technique using a model for conducting simulation research is
illustrated in figure 1. A specialized flight dynamics research model known as the Free-Flight
Rotorcraft Research Vehicle (FFRRV) is flown by a research pilot located in a ground control

station. Flight data is telemetered to the ground and recorded in a data acquisition station. The

technique of placing the research pilot in the model by means of telepresence technologies rather

*Paper reprinted from IEEE 1992 National Telesystems Conference Proceedings
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FIGURE 1:

The Proposed Free-Flight Test Technique.

than having him fly by line of sight should ease some of the FFRRV's control systems autonomy
requirements because the pilot's perceptions about what is occurring will be keener and his
reactions faster. Having the research pilot as an integral part of the aircraft should also allow the
pilot to fly more aggressive maneuvers often encountered in nap-of-the-earth (NOE) flight than
would be possible with an external pilot. The research pilot's sensory inputs are provided by
images from three miniature television cameras and two microphones mounted in the vehicle's
nose. The video images are projected onto three, color 26- inch television monitors, and the audio
signals are fed into a headset. The video link provides the research pilot sitting in a ground station
with a 150 x 35 degree field of view (figure 2). The research pilot's control commands are
interrogated by a computer in the ground station and broadcast to the flight vehicle. In addition to
the research pilot radio links with the aircraft, there is an external safety pilot who has overall
authority over the model in an emergency situation and flies the craft by line of sight like a
conventional radio controlled model helicopter.

The Flight Vehicle

The FFRRV is a minimum 225 pound gross weight, aerodynamically scaled model that
was designed specifically for conducting flight dynamics research. Almost all of the primary
parameters that one would desire to study in rotorcraft research are easily varied. For example, the
control system could command excursions in the main rotor RPM to study the resulting variation in
dynamics without having to conduct major system redesign and validation as is the case with full
scale flight vehicles being flown at an off-design point.

In-house studies indicate that it becomes unfeasible to achieve aeroelastic scaling of a
rotorcraft flying in air when the rotor gets any smaller than about 2 meters in diameter. A 2 meter
diameter rotor when loaded like a full scale rotorcraft, with 3 to 7 pounds per square foot of disk
load, corresponds to a model weight of 200 plus pounds. This rotor size is also scaled similarly to
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FIGURE 2:

Ground Control Station Cockpit.

other wind tunnel models that the U.S. Army Aerostructures Directorate operates in the NASA
Langley 14- by 22-Foot Subsonic Tunnel.

To maintain the desired flexibility of the test platform there is a core vehicle within the
model to which the other essential modules are attached. This core vehicle consists of:

- A steel frame

- 40-horsepower rotary engine and its accessories
- 1.6 KW alternator

- Variable speed ratio belt drive system
- Fixed ratio main rotor transmission

- High speed (greater than 10 inches per second) swashplate actuators
- Flexible shaft and tail rotor drive gearbox

The core vehicle is designed to carry all the loads generated in the system. Tests involving
different rotor speeds can be conducted by sizing different diameter pulleys in the belt drive
system. Modifying the design rotor speed at this point in the power train greatly reduces costs and
the time to modify the system when compared to modifying the rotor speed by using different gear
ratios in the transmission. Since the tail rotor is driven off the main drive gearbox with a flexible
shaft its location can be moved without requiring a drive system redesign. Attached to this basic
core are the additional modules which can be added or modified as the mission requires. The
aeroshell itself is one of these additional modules and therefore must only carry the aerodynamic
loads that are imposed directly on it. With such an easily modifiable shape some basic phenomena
related to detectability or the effects of fuselage shape on agility can be studied quickly and at a
very low cost. Some typical configuration studies such as research to obtain a better understanding
of unconventional anti-torque systems, like those depicted in figures 3 through 6 could also be
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conducted on the FFRRV. The overall effect of this approach is to provide a unique capability to
explore new ideas in rotorcraft design in a timely and cost effective way.

FIGURE 5:

FIGURE 3: SIKORSKY Swing-Tail Roeor Veclorcd Anli-'l'orquc Sy._lcm(;cneric l:ene_tmn Unconventional Anti-Torque System

FIGURE 4:
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The Control System

Modularity and flexibility are emphasized in the design of the control system architecture as
with all other pieces of the complete system. Subsystem component sets as well as discrete
capabilities of the integrated system are broken into separate objects. The objective of breaking the
system into submodules facilitates rapid prototyping and testing of new modules and capabilities
with minimal impact on existing modules.

The overall goal of the control system is to allow maximum utility to the FFRRV as a
research tool by not hampering a test schedule or limiting the scope of a test because of a deficient

or inadequate controller for the task. For example, if the researcher requires a certain aggressive
flight trajectory to be flown at a certain location over the test range, the desired trajectory could be
loaded into the flight computer to fly the vehicle much the same as a human pilot could if he were
able to monitor all the parameters of interest quickly enough to maintain them within their test
limits. Another desired feature of the control system is to provide a highly stable platform upon
which pilot commands can be overlaid. This requirement of the controller is a greater issue with a
vehicle of this small scale than it is with a full sized helicopter because the scale factors are different
for aerodynamics than for mass and inertia. This difference in scale factors allows the FFRRV to

naturally respond quicker to control movements than a full sized helicopter. This "overly
sensitive" control responsiveness requires some measure of stability augmentation for piloted
flight.

The present control system architecture allows the research pilot to vary the stability and
control augmentation system (SCAS) to the specific piloting requirements during flight. The
SCAS will operate in various modes in order to achieve this variability. The basic mode is where
the control inputs are coupled and an input on one axis has responses on other axes. Another

mode is where the controls are uncoupled to a tunable degree where the pilot can vary how much
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of an input on one axis affects the off-axes aircraft responses. The most augmented mode is
where the vehicle is fully autonomous and the maneuver flown is preplanned. In order to (1) meet
these specifications, (2) provide an easily modifiable controller essential for a research tool, and (3)
enable some form of vehicle recovery in case of a loss of communication, portions of the control
system axe located both in the manned ground control station and on the air vehicle. The control

systems data analysis and response processing cannot occur entirely on the ground if there is to be
any way for the vehicle to sense a loss of communication with the ground station and/or the safety
pilot and attempt self-recovery. There are various ways this self-recovery could happen since
some of the vehicle's machine intelligence is located on the flight platform and is not entirely on the
ground.

A secondary but highly relevant advantage of splitting the control system between the
ground and the airvehicle is the potential for reducing the speed and volume of the telemetered data.

One computer talking to another in a predefined language can perform at a given level with a lower
communication rate than having to encode and decode raw sensor and actuator data at each end of
the communication link 1.

The Ground Station Control System: Within the ground station, pilot and
researcher commands are processed and broadcast to the flight vehicle for execution. Autonomous
flight modes, where the vehicle flies a preprogrammed course on its own, will utilize the ground
control station as a source from which to execute the commands. The only autonomous flight
planning mode located on the air vehicle is the mode where the vehicle senses a loss of
communication and performs a self recovery.

The problem of providing the tunable multilevel controller described above is addressed
from both ends of the control authority spectrum. At one extreme the human pilot is in full control

without any computer augmentation, and on the other extreme lies an autonomous autopilot capable
of flying preprogrammed maneuvers. The middle set of flight modes, where the human augments
the autonomous system, is achieved by a blending of the two extremes. In all three modes the
resulting commands from the ground station broadcast to the flight vehicle remain the same.
Keeping this continuity simplifies design of the airborne controller and places the burden of
developing such capabilities on ground based computers where size is not of primary concern.
Having this higher level problem solving on the ground eliminates the burden of packing such a
capable control system into a volume that will fit into the small airframe of FFRRV.

The Airborne Control System: While looking at the various scenarios which the
FFRRV must perform, it quickly becomes apparent that some means of embedding machine
intelligence into the flight vehicle would be advantageous. Putting a digital controller on the flight
vehicle allows for much faster processing throughput than if all data processing occurred on the
ground. Some specific benefits of having a digital controller on the flight vehicle are: (1) Servo
control loops require only telemetry to drive a set point. (2) Sensor data can be preprocessed
before telemetering it to the high level controller on the ground. (3) It provides the model with
some from of machine intelligence that can react to deteriorated communications from the ground.

Being a research tool, where all future uses are not known, it is logical to provide control
processing capability on the airvehicle beyond that required in the initial development. This
additional capability and speed can be used in two ways:

1. Providing room for growth with new research missions.
2. Allowing rapid testing of unoptimized algorithms without having computational

speed become a major limiting factor.
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The airborne controller will receive commands from either the safety pilot or the ground
station. If the safety pilot commands the vehicle then the airborne controller will ignore any
information coming from the ground station and will respond to the safety pilot in a manner similar
to a hobby radio controlled helicopter model. If however, the safety pilot has relinquished control
to the ground station, as in normal operation, then the airborne controller executes orders from the
ground station following a predefined format. This format will be developed to simplify testing the
logic of both the airborne and ground station controllers.

The airborne controller will also preprocess the analog signals from the sensor suite and

broadcast to the ground control station the following processed sensory information:

- Conditioned sensor data from each sensor.
- A mathematical estimate of the vehicle attitude based on combining the various sensors.

This sensor fusion occurring in the airborne controller relieves the telemetry system from

accommodating sensitive analog signals and only requires it to transmit pre-conditioned digital
data. This fusion also provides the self recovery capability resident entirely in the airborne
controller with accurate knowledge about the vehicle state.

Research Data Recording

The aerodynamic and rotor performance data of interest are collected and transmitted to the

ground as a separate entity with minimal interference with other systems on the vehicle. The scope
and accuracy of the parameters measured by the data acquisition system mimic that of a wind
tunnel Mach scaled rotorcraft model.

The recording of research data occurs independently of the flight data required for the

control system. There are two reasons for this:

First, the data of research interest will vary widely depending on the tests being

conducted. If the control system data is not a subset of the research data being taken then the
additional burden placed on the research data system to acquire the control data will hamper its
flexibility. The control systems requirements for data will generally not change whereas the
research data collected will vary widely. By separating the two data systems the necessary changes
are restricted to one module only.

Second, the control system must be tested and validated irrespectively of the

research data or research specific sensors. This allows the vehicle to be developed and flown
without any research data collection facility in place. Having this capability facilitates development
and makes the system more portable, so it could perform research on various flight test ranges, not

just the one it is being developed on.

When a measured parameter necessary for research is the same as one required for the
control system, only one instrument which satisfies the more stringent of the two requirements is
used to save space. There will, if possible, be two independent pickoff's for the single sensor and
all other efforts will be made to isolate any disturbances on one system caused from interrogating
the sensor with the other.

If however, the subject of research is related to flight controls, like blade state feedback
control, then the control system will require access to the research data recorder. This loop

closure, occurring only when necessary, will be on the ground between the Research Data
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Acquisition System and the Digital Flight Control System Ground Station to simplify processing
and avoid potential contamination of the Airborne Control System.

Status and Plans

We are following a four phase development plan:

1. Proof of concept tests and prototyping of systems.
2. Design and fabrication of a research model.
3. Validation of systems in wind tunnel.
4. Research flight tests.

Currently we are deeply involved in the first two phases of this plan. We are conducting proof of
concept flights and control system development with smaller commercial "hobby" helicopters
equipped with video cameras, inertial sensors and the associated telemetry (figures 7 and 8). The
actual research vehicle is approximately 80 percent complete and has already entered the NASA
Langley 14- by 22-Foot Subsonic Tunnel in an unpowered configuration (figure 9). A powerful
custom flight computer capable of providing the machine intelligence required on the air vehicle has
been designed, built, and is being tested. FFRRV's first flights are scheduled late in the fall of
1992. Prior to these flights the vehicle will again enter the wind tunnel, but this time powered to
verify an accurate implementation of the control system. The vehicle will also enter NASA
Langley's anechoic chamber for tests to ensure that the assorted telemetry systems supporting the
project do not have any transmission dropouts due to antenna blind spots.

The following two sections discuss our current status on the first two phases.
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FIGURE 7: BLACK AND WHITE PHOTOORAPH

Proof Of Concept Flight Testing Of A Large Commercial Model.
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FIGURE 8:

The Large Commercial Model Equipped With Three Video Cameras.

Proof of Concept Tests and Prototvoing Efforts

To speed development and reduce the risk of prematurely damaging the research vehicle,
we are using commercial hobby-type radio controlled helicopters to resolve issues about systems
integration. These RC helicopters are out-of-scale when you look at their aerodynamic surfaces
and power systems. However, these models are very useful because we can port much of the
integrated systems, debugged on these vehicles, unchanged onto the FFRRV.

Presently we have one model flying at a 200 percent gross weight increase from its original
design. Normally the model would have a flying weight of 9.5 pounds, however, the addition of
proof of concept equipment, brings the gross weight up to 30 lbs. The benefits of using this
model are:

1. The availability of an inexpensive prototype testbed that can fly a large portion of our
subsystems for development work.

2. The training of safety pilots on how to recover heavier models. Heavy models respond
at different rates than the stock lighter models.

The first use of this heavy out-of-scale vehicle is to clean up the video transmission and
receiving system. This work has been going on through the fall of 1991 and is nearing
completion.

Following video development, the next task these vehicles will undertake is to fly missions
to develop the control system. Initially this effort involves building a mathematical model of the
aircraft by performing a system identification of the models and collecting flight data to validate this
simulation model. This will be conducted by telemetering sensor data from the aircraft to the
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ground. This simulation model of the aircraft will be used to initially tune the control system prior
to flight. Once modules of the control system are verified against this simulation model they will
be flown and will build upon existing modules that have already gone through this checkout phase,
adding incrementally more capability to the model control system. To reduce risk to the research
vehicle the control system will only be flown on FFRRV after testing it as much as reasonable on
the smaller models.

Design and Fabrication

FIGURE 9:
The Scaled Research Vehicle (FFRRV)

In The NASA 14- by 22-Foot Tunnel.

BLACK AND WHITE

of a Research Model
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The Research Fli_,ht Vehicle: The initial wind tunnel test of the FFRRV was
completed on November 14, ]991. The goals of this test were:

1. Obtain aerodynamic data for baseline studies of the initial fuselage shape.
2. Ensure the tail is adequately sized and placed so it will provide the stability required.

3. Study the effects that forward flight has on the radiator used for engine cooling and
ensure there is enough energy being dissipated by the radiator.
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The results of this tunnel entry drove slight changes to the initial tail configuration which increased
longitudinal and directional stability and provided a capability for in-flight adjustment of pitching
moment due to the tail. These changes which involved the addition of vertical tip fins to the ends
of the horizontal tail and the incorporation of a short-chord elevator into the horizontal tail surface
were verified during the wind tunnel test. The wind tunnel test also identified the need for

approximately 30 percent more heat exchange capability to cool the powerplant.

Currently the drive train is being integrated and tuned. We will initially tune the drive train

with an electric motor and then later introduce the internal combustion rotary engine. Separating
the integration of the drive train and the engine simplifies the tuning required.

A model support system for the wind tunnel has been designed and built which will allow
the FFRRV model a limited amount of travel about all three rotational axes and along the vertical
axis. This new support system provides a methodological approach to testing the control system in
a controlled environment, one motion at a time, prior to flight, and will make possible a new focus
in powered rotor tesdng where body dynamics are the major factor of interest.

The Control System: The distinct tasks that this control system must perform have
been logically broken down into separate modules, each with a specific objective (figure 10). The
resources necessary to achieve each distinct objective are assigned to the respective module. With
this breakdown, parallel development of the separate systems arc occurring and will culminate with
the final integration and complete system testing.
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FIGURE 10:

Control System Breakdown.
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Two methodologies are presently being compared to determine how best to achieve the three
distinct modes of control already discussed: (1) the basic mode, where unfiltered inputs are

directly applied to the aircraft (2) the filtered mode, where there is a tunable control augmentation
system (3) the autonomous mode, where the aircraft flies a preplanned course. The first
methodology under evaluation is based on an accurate model of the aircraft where a nonlinear exact

model-following control system, using a model inversion technique, is applied 2. The second
methodology is based on a hybrid of a fuzzy logic controller and a neural network model

identifier 3. At this stage it appears that integrating the human pilot back into the control system will
be easier to accomplish using the second approach. Two basic questions presently require
resolution: (1) Given the limited information possessed about the model, can a hybrid fuzzy neural

controller provide the same precision that an exact model-following controller can? (2) Can an
exact model-following controller actually be built with the limited knowledge we have about the
model?

The following sections describe the current status of the ground control station and the

hardware designed for flight vehicle control system.

Ground Control Station: A working ground station capable of interrogating the research

pilot, displaying transmitted video images, and relinquishing control when necessary to the safety
pilot is complete (figure 2). Currently a highly modified FUTABA model 1024 9-channel PCM
transmitter is operated from the research pilot's seat. In the future, when the ground station is
operational with a tunable control system, the FUTABA radio will be replaced with a single high
speed telemetry link from a ground computer to an airborne computer. The connection between the
safety pilot's radio and the ground station is complete and allows the safety pilot to override control
of the model. The video images are each transmitted on their own frequency. The three video
receivers are integrated into the ground station enclosure such that the research pilot can tune the

video prior to takeoff. Sensory data for the control system is also sent down on a video
transmitter.

Initial flights of the heavy weight model helicop, ter from the ground station are awaiting
installation of a stability augmentation system for the aircraft. The RC model, even in its heavy
condition, requires stability augmentation prior to flying with cockpit cues without excessive
training since it responds so much quicker than full scale rotorcraft.

Airborne Control System: We decided to assi.gn computers with an identical architecture to
each submodule in the airborne control system since all the flying modules have identical

reliability, weight, and volume restrictions. This decision provides a single development
environment and will greatly simplify the final stages of system integration. A market survey of

small, powerful computers designed for embedded control application capable of accommodating
these specifications was conducted in December 1990. This survey showed that several new 32-
bit processors designed for embedded control had just been released. Two microprocessor
families of specific interest, the Motorola 683XX and the Intel 80960, had not yet been made into

an integrated system small enough to fit into the FFRRV's limited space.

We decided the flight computer must be designed specifically for the mission at hand to
maximize its usefulness as a research tool and capitalize on recent microelectronics advances. As a
result a control computer based on the Motorola 68332 was developed. The decision to use the
68332 was based on the available software to support it, its advanced internal time processing unit,

and because board design is simplified when working with its integrated architecture [4]. The

resulting airborne computer system is based on a loosely coupled network of 68332's enhanced
with a user selectable amount of:
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-Analog input and output for sensor processing
-Additional digital input and output for sensor processing
-Linear Variable Differential Transformer (LVDT) readers for actuator controls

-Flash memory for non-volatile program storage without having to extract the computer
from its embedded location in the flight vehicle.

-Large static RAM banks to ease program development, execution, and data collection.

The computer hardware package is very compact measuring 1.5 inches by 4 inches and varies in
height from 1 to 5 inches. The height depends on the amount of additional features that a
particular module in the multiprocessor control system requires in addition to the basic system.

A multi-tasking real time operating system has been successfully ported to this custom
control computer. Low level driver routines, interprocessor communication, and some of the basic
I/O functions required in the flight control system have been programmed and tested.

An initial sensor suite was specified and is presently being integrated into the model. The
sensor suite is best characterized by its small size and the individual measurements of attitude

positions, rates, and accelerations along all 6 axes. Table 1 lists the states being measured and the
particular sensor used for observing them [5].

Concluding Remarks

• This is a small scale program which requires a high degree of multi-disciplinary research for its
Success.

• The program's main goal is to develop a research tool. As the program matures it has a
promising future for providing low cost research flight testing where parametric studies can be
rapidly executed.

• Successful development of this novel control system will provide a test bed capable of bridging
basic artificial intelligence research with systems integration.

• Relatively inexpensive rotor aerodynamic studies will be able to be conducted on hardware in
both the wind tunnel and flight completely independent of scale factor corrections.
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MEASURED STATES FOR DYNAMIC CONTROL

Ouantity Symbol
Range Location X
Range Location Y
Altitude Z
Altitude Z
Near Ground Altitude Z
Pitch O
Roll ,_

Heading _t'
Vertical Rate w

Pitch Rate q
Roll Rate p
Yaw Rate r
Fwd Acceleration u'
Side Acceleration v'
Vertical Acceleration w'

Pitch Acceleration q'
Roll Acceleration p'
Yaw Acceleration r'

Air Speed V
Velocity Fwd Angle a
Velocity Side Angle 13

Main Rotor Speed
Ground Contact Switches Gc

Flapping Angle 13

Sensor

Differential GPS
|||l Illl IIll

|Ill IIII Illl

15psia Transducer
Polaroid Transducer

Vertical Gyroscope

Magnetometer
Variorneter
Reed Rate Sensor
Pitt IIll II|l

I| II II It II II

3 Axis Accelerometer
llll Jill IIII

tt_ IIft lttl

3 Axis Accelerometer
IIII l||I |Ill

lit| Iltl II_ll

ell3 Bird
II I1 II II I I I|

IIII fill IllI

Rotary Encoder
(4) Micro Switches
1 Blade Potentiometer

MEASURED STATES FOR ACTUATOR SERVO CONTROL

Quantity_ Symbol Sensor
Main Rotor Collective Qc LVDT and Encoder

Longitudinal Cyclic A1 ............

Lateral Cyclic B 1 ............

Tail Rotor Collective Qtr Rotary Potentiometer
Throttle Position S Rotary Potentiometer

MEASURED STATES FOR MODEL

Oo_ntih, Syml_l
Engine Speed NE

Engine Temperature

Ambient Temperature TAmb

Transmission Temp 1 TT1

Transmission Temp 2 TT2

Exhaust Temperature TEx

Clutch Temperature TCI
Water Pressure PWater
Clutch Actuator Switches CAct

Fuel Quantity F
Lubricant Oil Quantity L
Alternator Current I

Alternator Voltage V

MONITORING

Sensor

Rotary Encoder

Thermocouple
till Illl Illl

HI| Illl Illl

till fill till

IIII fill |Ill

Itll I1|| IIII

30 psig Transducer
(2) Micro Switches
Float Potentiometer
Float Potentiometer
Ammeter
Voltmeter

TABLE 1:
Measured States For Control And Associated Sensors
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Abstract

A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating
tethered payloads in earth orbit. Due to the interaction between the Earth's magnetic field
and current pulsing through the tether, the tethered system may exhibit a circular transverse
oscillation referred to as the "skiprope" phenomenon. Effective damping of skiprope
motion depends on rapid and accurate detection of skiprope magnitude and phase. Because
of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations
during the skiprope motion. Since the satellite attitude motion has many other
perturbations, the relationship between the skiprope parameters and attitude time history is
very involved and non-linear. We propose a Space-Time Neural Network implementation
for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and
phase. Training and testing of the skiprope detection system will be performed using a
validated Orbital Operations Simulator and Space-Time Neural Network software
developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space
Center.

1.0 Introduction

NASA and the Italian Space Agency plan to fly the Tethered Satellite System (TSS) aboard
the Space Shuttle Atlantis in July, 1992. The mission, lasting approximately 40 hours, will
deploy a 500 kg satellite upward (away from the earth) [ 1,2] to a length of 20 kin, perform
scientific experiments while on-station, and retrieve the satellite safely. Throughout the
deployment, experimentation, and retrieval, the satellite will remain attached to Atlantis by a
thin tether through which current passes, providing power to experiments on-board the
satellite. In addition to the scientific experiments on-board the satellite, the dynamics of the
tethered satellite will be studied. The TSS dynamics are complex and non-linear due to the
mass of the tethered system and the spring-like characteristics of the tether. A high fidelity
finite element model of the TSS, in which the tether is modelled as a series of beads

connected via springs (Fig. 1), realistically represents the dynamics of the TSS, including
the longitudinal, librational, and transverse circular oscillations referred to as "skiprope"

motion. Since the satellite is a 6 degree of freedom vehicle, it also properly exhibits the
satellite attitude oscillations. The skiprope motion is generally induced when current

pulsing through the tether interacts with the Earth's magnetic field [3, 4]. The center bead
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typically displaces the most from the center line. Thus, the "skiprope" can be viewed by
plotting a trajectory of the mid-point of the tether as it is retrieved slowly from the on-
station-2 phase in high fidelity simulation test cases. As shown in Fig. 2-a, the circular
skiprope motion is very simple when there are no perturbing forces. However, when the
current is partially flowing, or the current is pulsing with the satellite spin, the skiprope
motion is very non-linear as shown in Fig. 2-b and 2-c. Detection and control of the
various tether modes, including the "skiprope" effect, is essential for a successful mission.
Since there are no sensors that can directly provide a measure of skiprope oscillations,
indirect methods such as the Time Domain Skiprope Observer [4] and Frequency.Domain
Skiprope Observer [3] are being developed for the TSS-1 mission. We are investtgating a
Space-Time Neural Network (STNN) based skiprope observer.

The Software Technology Branch (STB) is evaluating technologies such as fuzzy logic [5],
neural networks [6,7], and genetic algorithms for possible application to various control
and decision making processes [8,9,10] for use in NASA's engineering environments.

This paper describes the feasibility of applying neural networks, in particular Space Time
Neural Network (STNN), to detect and possibly control the skiprope phenomenon using
training data from real-time man-in-the,--loop simulations. The first phase, detection of
skiprope effect (in terms of magnitude and phase angle with respect to the tether line), is
vital for tether dynamics control. An STNN architecture has been developed which
provides the capability to correlate the time behavior and generate the appropriate output
parameters to identify and control skip rope behavior. In this paper, a brief description of
the STNN architecture is provided (section 2) along with a scenario of the TSS mission
with a focus on the 'skiprope' effect (section 3). The STNN configuration used in our
initial test cases and preliminary results are described in section 4. Advantages of utilizing
STNN over conventional methods for the detection of skiprope parameters are discussed in

section 5. A summary including future activities is provided in section 6.

2.0 Space Time Neural Networks

The Space-Time Neural Network [11] is basically an extension to a standard
backpropagation network in which the single interconnection weight between two
processing elements is replaced with a number of Finite Impulse Response (FIR) filters.
The use of adaptable, adjustable f'tlters as interconnection weights provides a distributed
temporal memory that facilitates the recognition of temporal sequences inherent in a
complex dynamic system such as the TSS. As shown in Fig. 3a, the inputs are processed
through the fitters before they are summed at the summing junction.

Instead of a single synaptic weight with which the standard backpropagation neural
network represents the association between two individual processing elements, there are
now several weights representing not only spatial association, but also temporal
dependencies. In this case, the synaptic weights are the coefficients to adaptable digital
f'Llters:

N M

y(n)= _ bkx (n - k )+ _ amy(n-m)
k=0 m=l (i)

Here the x and y sequences are the input and output of the filter and the am'S and bk'S are

the coefficients of the filter.
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Figure 3 a .... A pictorial representation of the Space-Time processing element.
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Figure 3b - A depiction of a STNN architecture showing the

distribution of complex signals in the input space.
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A space-time neural network includes at least two layers of filter elements fully
interconnected and buffered by sigmoid transfer nodes at the intermediate and output
layers. A sigmoid transfer function is not used at the input. Forward propagation involves
presenting a separate sequence dependent vector to each input, and propagating those
signals throughout the intermediate layers until the signal reaches the output processing
elements. In adjusting the weighting structure to minimize the error for static networks,
such as the standard backpropagation, the solution is straightforward. However, adjusting
the weighting structure in a recurrent network is more complex because not only must
present contributions be accounted for but contributions from past history must also be
considered. Therefore, the problem is that of specifying the appropriate error signal at each
time and thereby the appropriate weight adjustment of each coefficient governing past
histories to influence the present set of responses. A detailed discussion of the algorithm
can be found in the provided reference [11]. For the tether skiprope detection, the
parameters like satellite spin in terms of roll, pitch and yaw body rates, angles which are
derived from these rates, and length and tension will be input, while, the skiprope
magnitude and phase will be the output of the net as shown in Fig. 3b.

3.0 Tether Skiprope Phenomenon in Space Operations

The TSS mission is divided into five phases: Deployment, On-station I (OST1), Retrieval
to a 2.4 km. length, On-station 2 (OST2), and Final Retrieval. The tether motion exhibits
longitudinal as well as librational modes as shown in Fig. 1 due to the interaction between
gravity gradient forces and spring like characteristics of the tether. These natural modes are
damped by controlling the deployed length and length rate using the reel motor drive. A
conventional controller is baselined to utilize the sensed length and length rate
measurements from sensors. Performance of this baseline controller is adequate in
controlling these modes during all phases.

During the OST1 phase, scientific experiments planned include pulsing large electric
currents through the conducting tether. Because of interaction between the Earth's
geomagnetic field and the pulsing current, transverse circular oscillations known as the
'skiprope' effect as shown in Fig.2 are induced in the tether motion. Simulation results
with a 19 bead model of the tether showed the skiprope magnitude between 20 and 70
meters at 20 kin. tether length during the OST1 phase of the mission. The skiprope motion
is slightly elliptical, i.e. asymmetric around the axis defined by orbiter-satellite line and thus
the determination of phase angle becomes involved. To visualize the skiprope motion, we
have plotted the z-y motion of the central bead as shown in Fig. 2-a. This motion is the
departure from the line that connects the satellite and orbiter. The skiprope motion is very
regular for a simple case with no satellite spin, and no current pulsing. When the satellite
has spinning motion and the scientific experiments pulse the current through the tether, the
skiprope motion is very non-linear as shown in Fig. 2-c. Various combinations of current
flow and satellite spin can result in a motion similar to Fig. 2-b. For our initial study, we
have utilized the skiprope motion from a simple case. In later test we progressed to more
complicated skiprope motions.

Simulation results have shown that the librational amplitude increases about 6 times if there
is a skiprope motion present during the retrieval. If librational amplitude is above a critical
value, then, the librational oscillations must be damped to a safe value using the Orbiter
pitch jets before any further retrieval can be performed. The skiprope amplitude remains
between 10-20 meters during the OST2 phase. If the skiprope motion is not properly
damped at 2.4 km. then two issues arise during the final retrieval: 1) The satellite pendulus
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motion increases significantly (about 6 degrees per meter of skiprope amplitude) such that
the attitude control for the satellite fails. 2) The departure angle of the tether from the boom
tip may go beyond 60 degrees, thus causing concerns about the tether hitting the Orbiter tail
and getting tangled. This may result in a mission failure due to a situation known as "wrap-
around" where the safety of the crew and the orbiter is questionable. Therefore the control

of skiprope magnitude is very important during the final retrieval phase.

The satellite attitude motion depends on the orbital environment (e.g. perturbations from
aero torques) as well as the tension resulting from tether modes. The longitudinal and
librational modes affect the satellite rates because of tension coupling at the attach point.
However, simulation results indicated that the skiprope effect induces highly characteristic
oscillations in the satellite attitude motion (Fig. 1). Due to the dynamical coupling, the
skiprope energy seems to be transferred to satellite attitude oscillations. Currendy there is
no direct measurement available that can provide information regarding the skiprope
motion, particularly, the magnitude and phase of the skiprope. Since the satellite attitude
behavior is coupled with skiprope, it is possible to utilize the satellite rate (and angles
derived from them) information to detect the skiprope parameters.

Controlling the skiprope effect requires knowledge of the magnitude and phase angle of the
tether. The amount of pitch torque applied using the Orbiter pitch jets is proportional to the
skip rope magnitude. To decrease the skiprope magnitude, the pitch jets are used when the
phase angle is 0 or 180 degrees. A pitch pulse increases the skiprope magnitude, if the
phase is 90 or 270 degrees. Thus, the phase angle provides the timing of pitch pulse, while
the magnitude establishes the amount of pitch torque to be applied.

Performance of the Neural Network Skiprope Observer (NNSO) will be evaluated in terms
of the following top level requirements for the Time Domain Skiprope Observer (TDSO).

1.) Operate during
2.) Operate during
3.) Operate during
4.) Operate during

all mission phases, where length < 1000 m.
satellite spin.
current flow.

satellite spin and current flow.

In addition to these general requirements, the following goals should be met.

1.) During periods in which the skiprope motion is circular, and there exists no current

flow and no satellite spin, the observer must predict skiprope amplitude to within 10% of
actual amplitude or 5.0 m, whichever is greater, and predict phase to within 10 degrees

2.) During periods in which the skiprope is circular or non-circular, and there exists current
flow and satellite spin, and after 20 minutes settling time, the observer must predict

amplitude to within 20%, and phase to within 45 degrees.

3.) The observer must predict in-plane and out-of-plane libration to within 1 degree of
actual values.

4.0 STNN configurations and Test Results

To provide data for the STNN training and testing, we have logged data from a high
fidelity simulation of the TSS- 1 mission, including the OST2 phase. The purpose of OST2
is to halt the retrieval phase at 2.4 kilometers so that skiprope motions and librational
oscillations can be reduced to safe magnitudes to allow for final retrieval. Several different
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simulation runs were used to gather data for STNN training. The simulation runs are
consistent with the requirement that the skiprope observer must be capable of performing
during various combinations of current flow through the tether, and satellite spin. For
example, our fhst set of test cases arc based on data from a simulation in which there is no
current flow or satellite spin which results in a circular skiprope motion. Another
simulation represents the case in which current flows through the tether only during the on-
station phase, and the satellite is in yaw-hold. A third simulation represents continuous
current flow, and satellite spin at 4.2 degrees/second. These three scenarios will form the
basis for STNN skiprope observer training and testing, and are consistent with simulations
used for testing the Time-Domain Skiprope Observer (TDSO)[4] which will be used for
skiprope recognition during TSS-1.

In each simulation run, we have logged 3,000 to 4,000 data points just prior to and during
OST2 phase for neural network training. In our initial test cases we use roll rate, pitch rate,
roll and pitch position, tether tension, and tether length as inputs to the neural network.
Based on these inputs, we hope to find a neural network configuration which will predict
skiprope amplitude and phase. The assumption that satellite rates are coupled with
skiprope motion is consistent with the baseline Time Domain Skiprope Observer (TDSO)
which will be utilized during the TSS-1 mission. The following sections discuss the results
of four major test cases.

4.1 Identifying Skiprope Amplitude

To determine the feasibility of using STNN for skiprope detection, we initially trained on
data from a simple, circular skiprope case with no satellite spin or current flow through the
tether, which is consistent with the first requirement listed above. The data used for training
and testing in preliminary tests reflect a near circular skiprope, as depicted in Fig. 2-a.
Future test cases will concentrate on more difficult skiprope conditions, such as that
pictured in Fig. 2-c, which results from satellite spin and current flow through the tether.
The test cases described in this section attempt to evaluate the STNN's ability to identify
skiprope amplitude only. We will present the results of test cases involving other skiprope
parameters in subsequent sections.

The STNN configuration used in our initial test cases has six inputs, one output, 30 hidden
units and 40 zeros for the filters. The choice of the inputs is based on the coupling between
the satellite attitude and rates. We have used the roll and pitch angles, roll and pitch rates,
tension and deployed length as input to the STNN, and skiprope amplitude as the output.
Yaw angles and rates were not used on the inputs in this case because the satellite remains
in yaw hold throughout the simulation. To determine if the network is capable of learning
the training data, we first train and test on all available (4,001 in this run) I/O pairs. Fig. 4-
a shows that the STNN reaches a MAX error of 0.07, and an RMS error of 0.02 within
150 cycles of training. As shown in Fig. 4-b, the STNN predicts skiprope amplitude to
within about 3 meters of actual amplitude. For clarity, we have shown STNN performance
on I/O pairs 1501-2000. This is fairly representative of the STNN's performance on all
4,001 I/O pairs.

In the next test case, in order to evaluate the network's ability to recognize previously
unseen data based on limited exposure to training data, we train on only the f'mst and last
200 I/O pairs, and test on the middle 3,600. Neural network practitioners typically test a
network by training until the network reaches some minimum error, and then presenting the
test data to the network. In our tests we alternate training and testing throughout a number
of training cycles so we can see the correlation between training cycles and test errors. For
this reason, our test error plots indicate errors over several presentations of the test data,
rather a single presentation. Fig. 4-c shows the errors produced upon presentation of the
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test data. The lowest errors were reached after 240 cycles when the maximum error reached

0.2 and the RMS error reached 0.02. Fig. 4-d shows the STNN prediction of sldprope
amplitude compared to actual amplitude. Again, performance seems to be within 2-to-3
meters of actual skiprope amplitude. The previous two test cases indicate that the STNN
identifies circular skiprope motion within the required 5.0 meters or 10% of actual
amplitude, as specified in the Sldprope Observer requirements.

Next, we train and test the STNN on skiprope data corresponding to the motion shown in
Fig. 2-b. This motion results from current flowing through the tether during the On-
Station-1 portion of the mission. In this test case, we use roll, pitch, and yaw rates, roll,
pitch, and yaw angles, sensed length, and sensed tension as inputs, and skiprope amplitude
as output. Fig. 4-e shows the MAX and RMS errors reached during training and testing on
all 3501 I/O pairs. After 360 cycles, the STNN reached a MAX error of 0.17, and an RMS

error of 0.04. Fig. 4-f shows that the STNN seems to have learned the training data after
360 cycles of training.

In our next experiment, we split the data into a training set and a test set by training on the
first and last 200 I/O pairs and testing on the middle 2000. Fig. 4-g shows that the errors
decrease for only about 50 cycles, and then begin to increase. Fig. 4-h shows that
performance after 100 cycles of training is not as good as what was achieved above on
circular skiprope data.

In our next experiment, we train and test on data corresponding to the skiprope motion
depicted in figure 2-c. This very complex motion results from combinations of current flow

and satellite spin throughout satellite deployment and retrieval. In this experiment, we train
and test on all I/O pairs (3,502). Fig. 4-i shows that after 40 cycles, the network reached a
MAX error of 0.29, and RMS error of 0.05. Fig. 4-j reveals that the network identifies the
skiprope amplitude to within 2 meters. Again, for clarity, we only show a portion of the
mapping of the entire data set. A plot of the entire data set reveals that the network can be
off by as much as 6 meters in some areas.

4.2 Identifying Phase

In this section we examine test cases in which the STNN has been asked to identify
skiprope phase in addition to amplitude. As in the previous section, we start with a circular
skiprope motion and progress to more difficult situations. In our fast experiment, we use
roll and pitch rates, roll and pitch angles, sensed length, and sensed tension as input, and
produce amplitude and phase on the outputs. In addition to the 6 inputs, and two outputs,
the network consists of thirty hidden units, and forty filters between input and hidden, and
hidden and output layers. Fig. 5-a shows the MAX and RMS errors achieved as the

network trained on the fast and last 200 I/O pairs, and tested on the middle 3,600 I/O pairs
from the full set of 4,001 I/O pairs. Fig. 5-b shows a portion of the network's estimation
of skiprope amplitude. The performance of the network is generally within 6 meters over
the entire test data set. Fig. 5-c shows that the network identifies skiprope phase to within
50 degrees, which is not within the required 10 degrees.

Subsequent efforts to identify skiprope phase also fall short of the requirements. Fig. 5-d
shows the training errors resulting from an attempt to train on data corresponding to a
skiprope motion resulting from satellite spin and current flow through the tether. In this test
case, the network trained and tested on a complete set of 3,501 I/O pairs. Although Fig. 5-e
shows that the network identifies amplitude to within 4 meters, the network may incorrectly
identify amplitude by as much as 8 meters. Fig. 5-f shows that the network performs
poorly in identifying skiprope phase.
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4.3 Identifying X, Y Components of Skiprope Amplitude

The biggest challenge to network training so far has been to learn the phase mapping.
Several different network configurations have yielded good results in predicting skiprope
amplitude, but we have not been as lucky with skiprope phase. Since the ultimate goal is to
provide the crew with a reasonable estimate of skiprope amplitude and phase to support the

yaw maneuver, the skiprope observer should learn not only to identify but also to predict
amplitude and phase based on the available inputs. For predicting the skiprope motion, one
can use the past estimates of the amplitude and phase and thus the network will have a
feedback of its output as shown in Fig. 6-a. In other words, the characteristics of the

skiprope motion can be identified based on several parameters that include the past x and y
coordinates of the mid-point of the tether during skiprope motion.

The networks in the following test cases use satellite rates (roll, pitch, and yaw), sensed
tension, and current x and y coordinates of the mid-point of the tether as inputs, and
produce the next x and y position, x(t + 1), y(t + 1). Fig. 6-b shows the MAX and RMS
errors achieved while training and testing on all 3,500 I/O pairs. As Fig. 6-b shows, the
network reaches a low RMS error of 0.01, and a low MAX error of 0.05 within 500

training cycles. Figs. 6-c, and 6-d show that the network produces an accurate estimation
of x and y components of the skiprope motion. Next, we divide the data into a training set
and a test set and test for network generalization. Fig. 6-e shows the MAX and RMS test
errors achieved after training on the fwst and last 400 I/O pairs, and testing on the middle
2,700 I/O pairs. Figs. 6-f and 6-g show that the network performed well on the test set. In
reality, it may be impractical to use current x and y on the inputs to the network, so in
subsequent test cases, we have used only satellite rates (roll, pitch, and yaw), satellite
angles (roll, pitch, and yaw), sensed length, and sensed tension as inputs and trained the
network to output x and y.

4.4 Combined Test Cases

So far we have focussed our efforts on training an STNN based skiprope observer to
perform based on inputs representing one type of skiprope motion at a time. However, in
order to place a neural network based skiprope observer in an operational environment, we
must ensure that the network can be trained on data representing many different scenarios
and perform adequately on conditions that it may have never seen. In the test cases
described above we divided data sets into training sets and test sets to test for
generalization. However, these experiments only tested the networks ability to generalize
on data that was consistent with the training data. In the following test case, we train on
part of the data from a simulation containing current flow and satellite spin, and data from a
simulation with partial current flow and no satellite spin. The network is then tested on data
that it has not seen from a simulation containing satellite spin and current flow. This
method of testing ensures that the test data is consistent with some, but not all of the
training data. As Fig. 7-a shows, the network reaches a low test set MAX error of 0.48 and
RMS error of 0.12 after 150 cycles. Figs. 7-b and 7-c show that the network performs
poorly in identifying skiprope X and Y components in this experiment.

5.0 Advantages and disadvantages of STNN over other methods

The primary skiprope detection system developed for the TSS-1 flight uses a ground-based
Kalman filter coupled with a one-bead finite element model of the tethered system. The
filter estimates amplitude, phase, and frequency of the skiprope motion based on the
downlinked telemetry data. The simulation uses the downlinked satellite rate gym data to
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compare its predictions based on one bead model. The filter's gains are adjusted until the
difference between simulated and actual rate gyro data is minimized. At this time the filter
can be used to provide the crew with an estimation of skiprope motion parameters so that
appropriate orbital maneuvers can be carried out to damp the skiprope motion.

The time-domain Kalman filter technique runs at real time on an HP 9000 computer and is
expected to run faster than real time on the "back-room" computers at the Johnson Space
Center. However, depending on the tether length, skiprope frequency, and actual phase
angle during the mission, this single bead simulation could take from several seconds to
several minutes to reasonably estimate the skiprope motion. During various phases of the
mission, including satellite spin and current pulsing activities, the filter requires the
maximum amount of time synchronized data to arrive at a prediction. In addition, the filter

uses only a one bead simulation of the tethered system, and therefore, the predictions may
not be as accurate as a multi bead simulation. Verification of the time-domain skiprope

observer must be performed on Multi Purpose Support Room (MPSR) hardware to verify
that the observer will perform within the required limits. As of this writing, the overall
level of confidence that the time-domain skiprope observer will perform adequately in real
time situations is not high. However, the technique is very well-known, well-studied and
frequently used in space operations and thus there are no questions about the validity of the
technique.

A frequency based method for skiprope observation has also been studied. This technique
requires three full cycles, or up to 1500 seconds, of downlinked data that relates skiprope
activity to arrive at a prediction. This method works well during steady state conditions but
is less effective with perturbations such as satellite spinning or current pulsing. The
frequency based method is also susceptible to data dropout and rate gyro saturation. The
frequency domain filter is designed specifically to support the yaw maneuver scheduled
during On-station 2 and does not perform well at On-stationl. Results indicate that the
frequency domain filter performs well for a 50 m skiprope, but not for skiprope in the 10 m
to 15 m range. Again, the method is well-known, well-studied and has a history of
utilization in many applications.

The STNN method that we have proposed offers the advantage that it is trained using a
high fidelity simulation where from 10 to 50 beads are modelled, and the orbital
environment is also modelled with high fidelity and accuracy. In addition, the network can
be trained to account for a changing orbital environment due to crew inputs. The Orbital
Operations Simulator (OOS) used to evaluate the STNN skiprope observer is also used for
actual crew training during tethered satellite deployment and retrieval. Crew inputs to
maintain attitude and damp skiprope motion may be logged and included in STNN training
data. STNN is based on the promise that it can be trained for nonlinear behavior and it will
perform proper interpolation for this non-linearity. Our objective is to demonstrate that the
STNN skiprope observer can accurately predict skiprope parameters more accurately and
with fewer data cycles than either the time-domain or frequency-domain methods.

Disadvantages of STNN based skiprope observer are many, especially in light of well-
known methods. First of all, this a new method, and therefore, is not well-known. It has

not been applied earlier in any other application and therefore it does not have a history like
frequency domain method. There is no rigorous mathematical proof that neural networks
map one set of parameters to another set of parameters uniquely. Thus, the method may not
provide a confidence required for space operations. Further, the verification and validation
of this method has to be carried out in detail. This task will be resource consuming and may

prohibit the application of the method to real operations.
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6.0 Future Work

Since the time-domain method has been baselined as the skiprope observer for TSS-1, the
STNN skiprope observer will probably not be used operationally during the mission.
However, we plan to utilize the STL's capability to receive telemetry data to test the STNN
skiprope observer during the TSS-1 mission to evaluate it's performance. If the STNN
observer meets the requirements, then it may be used on follow-up missions that are

currently being proposed.

We plan to generate training data sets using the OOS that has a very high fidelity bead
model for the tether dynamics and high fidelity space shuttle and Italian Satellite models
with respective control systems. We can simulate up to 50 beads for the tether behavior and
generate required data for the satellite attitude and skiprope parameters. Training and test
data sets have already been prepared using the OST2 segment simulation.

Our next step is to configure STNN and train it using the data set. Once the training is
completed, we will test the performance of the STNN using part of the data. Based on the
results we will enhance the STNN configuration and perform retraining ff necessary. Using
the TSS-1 mission profile, we will generate the skip rope data for the On station 1, retrieval
up to 2.4 km. and Onstation-2 and final retrieval phases so that we can train the STNN for
full retrieval phase. We will test the performance of STNN using simulated telemetry data
(while connecting the simulation with STNN ) and see if the STNN can perform real time.
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In our previous work on the GARIC architecture, we have shown that the system
can start with the surface structure of the knowledge base (i.e., the linguistic

expression of the rules) and learn the deep structure (i.e., the fuzzy membership
functions of the labels used in the rules) by using reinforcement learning.
Assuming the surface structure, GARIC refines the fuzzy membership functions

used in the consequents of the rules using a gradient descent procedure. This
hybrid fuzzy logic and reinforcement learning approach can leam to balance a

cart-pole system and to backup a truck to its docking location after a few trials.

In this paper, we discuss how to do structure identification using reinforcement
learning in fuzzy inference systems. This involves identifying both surface as
well as deep structure of the knowledge base. The term set of fuzzy linguistic
labels used in describing the values of each control variable must be derived.
In this process, splitting a label refers to creating new labels which are more

granular than the original label and merging two labels creates a more general
label. Splitting and merging of labels directly transform the structure of the

action selection network used in GARIC by increasing or decreasing the
number of hidden layer nodes.

After each splitting or merging of a label, the learning resumes by refining the

fuzzy membership functions used in the consequent of the rules. Depending on
the performance of the learning algorithm after a change in the structure of the
system, our algorithm selects the next node(s) to be split or to be merged and
the process is then iterated. The proposed method provides a more flexible
structure for encoding the prior control knowledge where both the structure of
the rules and the fuzzy membership functions used in the labels can be learned
automatically.

169



l , i

3 2-' ,./.v O

Approximation Paper: Part l
J. J. Buckley

Mathematics Department

University of Alabama at Birmingham

Birmingham, AL 35294

Abstract: In this paper we discuss approximations between

neural nets, fuzzy expert systems, fuzzy controllers, and con-

tinuous processes.

1. Introduction.

In this section we will first present the definition of a continuous process

(system). The following sections discuss neural networks, fuzzy expert systems,

the fuzzy controller, and approximations between all four objects. The last section

has a brief summary and suggestions for future research.

A system (process) S has m inputs :ci and n outputs yj. Let x = (x],..., x,n)

and y = (yl,'", yn). The inputs are all bounded so assume that each input is

scaled to belong to [0, 1]. This means that S will be a mapping from [0, 1] m into

R '_ written as y = S(x). We assume that S is continuous and let S denote the

set of all continuous mappings from [0, 1] m into R 'z. By a continuous process

(system) we will mean any S in S.

2. Neural Nets.

The neural network will be a layered, feedforward, net with m input neurons

and n output neurons. The net can have any number of hidden layers. Input to

the net will be a vector x = (xl,--. ,Xm), xi in [0, 1] all i, and the output is also

a vector y = (Yl,"" yn). We assume that the activation function I within a neuron

is continuous. Therefore, the neural net is a continuous mapping from input x in

[0, 1] 'n to output y in R 'z denoted as y = F(x). We note that F belongs to S.

The following result comes from recent publications in the neural network

literature ([ 1], [9], [ 14], [ 15], [ 16]) where it was shown that muhilayer feedforward

nets are universal approximators. Given S in S and e > 0 there is a neural net

F so that IS(x) - F(x)[ < e for all x in [0,1]'", see [8].
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3. Fuzzy Expert Systems.

The fuzzy expert system will contain one block of rules written as 2

_i : If X = fi-i, then Z = t_i,

1 < i < N. Jii and C'i represent fuzzy subsets of the real numbers. If ft. denotes

any fuzzy subset of the reals, then ft.(x) is its membership function evaluated at z.

Let X = ft,' be the input to the fuzzy expert system. The rules are

evaluated using some method of approximate reasoning (fuzzy logic) producing

final conclusion (output) Z = C". Let .,4 denote the type of approximate reasoning

employed by the fuzzy expert system.

We now discretize all the fuzzy sets. Let :r0,- • ', xNI be numbers covering the

support of all the fi-i and fiJ and let z0,-- •, ZN._ be numbers covering the support

of all the C'i and C". Let x = (A'(z0),... ,fi.'(ZN_)) in [0,1] m if m = N1 + 1

and let V = (C"(z0),-.., C'(ZN._)) in R n if n = N2 + 1. Then z is the input

to the fuzzy expert system and V is its output. So, the fuzzy expert system is a

mapping from z in [0, 1] m to V in R n which we write as V = G(x). We assume

that we have selected an A so that this mapping is continuous. Hence, G also

belongs to S.

The first papers discussing the approximation of a neural net by a fuzzy expert

system were ([7], [10]) but the main result was proven in [8]. Given a neural net

F and e > 0 there exists a fuzzy expert system (block of rules and .,4) so that

IF(z) - G(z)I <, for all x in [0, 1] m. In [8] we found only one .,4 that will do the

job. From the second section we may conclude that given any S in S and e > 0

there is a fuzzy expert system G so that IS(x) - G(z)I < _ for all x in [0, 1] m.

4. Fuzzy Controller.

It will be easier now if we restrict m -- 2 and n = 1, however we can

generalize to other values of rn and n. Let us assume that the fuzzy controller

has only two inputs error = e and change in error = Ae, and only one defuzzified

output 6. We assume that the inputs have been scaled to lie in [0, 1]. The fuzzy

control rules are of the form

7"Z : If Error = ei,i and Change in Error = /3./,

then Control = C'k-
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Once a method of evaluating the rules has been chosen and a procedure for

defuzzification is adopted, the fuzzy controller is a mapping H from (e, Ae) in

[0, 1] 2 to di in R. We assume that the internal operations within the controller are

continuous so that H belongs to S for m = 2, n = 1. In general, we can have

H in S for any m and n.

Different types of fuzzy controllers are discussed in ([2], [3]). In [5] and

[6] we identified two types of fuzzy controller, now labeled 7"1 and 7"2, that

can approximate any 5' in S to any degree of accuracy. A different type of

approximation result of S in S, by fuzzy controllers, is presented in [4]. Let this

third type of controller be called T._. So, given S in S 3, _ > 0 and i in { 1,2, 3 t,
there is a fuzzy controller H in 7_ so that IS(x) - H(x)I < _ for all x in [0, 1] _.

Hence, from the previous two sections, we may approximate fuzzy expert systems

and neural nets, to any degree of accuracy, by fuzzy controllers.

5. Conclusions.

The results discussed in this paper may be summarized as follows: given any

two objects E1 and E2 from the set {continuous process, neural net, fuzzy expert

system, fuzzy controller}, we can use an E1 to approximate an E2 to any degree of

accuracy. Assumptions needed to obtain this result are discussed within the paper.

Future research is needed to extend these results in many directions including:

(1) fuzzy neural nets ([11], [12]); (2) neural nets that employ t-norms and t-

conorms to process information [13]; (3) finding more fuzzy expert systems (.A's)

that can be used to approximate neural nets; and (4) discovering other types of

fuzzy controllers that approximate continuous systems.
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7. Notes

1 In general, we assume that the mapping from input to output, for any neuron

in the net, is a continuous operation.

2 We could consider more complicated rules and/or more blocks of rules.

3
m = 2 and _ = 1. Can generalize.
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Abstract. Traditional control theory is well-developed mainly for linear control situations. In

non-linear cases there is no general method of generating a good control, so we have to rely on the

ability of the experts (operators) to control them. If we want to automate their control, we must

acquire their knowledge and translate it into a precise control strategy.

The experts' knowledge is usually represented in non-numeric terms, namely, in terms of

uncertain statements of the type "if the obstacle is straight ahead, the distance to it is small, and

the velocity of the car is medium, press the brakes hard". Fuzzy control is a methodology that

translates such statements into precise formulas for control. The necessary first step of this strategy

consists of assigning membership functions to all the terms that the expert uses in his rules (in our
sample phrase these words are "small", "medium", and "hard").

The appropriate choice of a membership function can drastically improve the quahty of a

fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced

endpoints. Because of that, many software packages for fuzzy control are based on this choice

of membership functions. This choice is not very efficient in more complicated cases. Therefore,

methods have been developed that use neural networks or genetic algorithms to "tune" membership

functions. But this tuning takes lots of time (for example, several thousands iterations are typical

for neural networks).

In some cases there are evident physical reasons why equally spaced domains do not work:

e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then
negative values (that are generated by equal spacing) simply make no sense. In this case it sounds

reasonable to choose another scale u _ = f(u) to represent u, so that equal spacing will work fine
for u'.

In the present paper we formulate the problem of finding the best rescaling function, solve

this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzz)'

control can be as good as the best state-of-art traditional non-linear controls.

1. INTRODUCTION TO THE PROBLEM

Traditional control theory is not always applicable, so we have to use fuzzy control.

Traditional control theory is well-developed mainly for linear control situations. In non-linear cases,

although for many cases there are good recipes, there is still no general method of generating a

good control (see, e.g., [M91]).

Therefore, we have to rely on the ability of the experts (operators) to control these systems.

If we want to automate their control, we must acquire transform lheir knowledge iI inlo a Im'('ise

control strategy.

The experts' knowledge is usually represented in non-numeric terms, namely, in terms of
uncertain statements of the type "if the obstacle is straight ahead, the distance to it is small, and

the velocity of the car is medium, press the brakes hard". Fuzzy control is a methodology that
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translates such statements into precise formulas for control. Fuzzy control was started by L. Zadeh

and E. H. Mamdani [Z71], [CZ72], [Z73], [M74] in the framework of fuzzy set theory [Z65]. For the

current state of fuzzy control the reader is referred to the surveys [$85], [L90] and [B91].

Choice of membership functions: an important first step of fuzzy control methodology.

The necessary first step of this methodology consists of assigning membership functions to all the

terms that the expert uses in his rules (in our sample phrase these words are "small", "medium",

and "hard"). The appropriate choice of a membership function can drastically improve the quality

of a fuzzy control.

Simplest case: equally spaced functions. In the simplest cases, we can take the functions

whose domains have equally spaced endpoints: e.g., we can fix a neutral value N (usually, N = 0),

and a number A, and take "negligible" with the domain [N - A, N + A], "small positive" with the

domain [N, N + 2A], "medium positive" with the domain [N + A, N + 3A], etc. Correspondingly,

"small negative has the domain [N - 2A, N], "medium negative corresponds to the domain [N -

3A, N - A], etc. If an interval [a - A, a + A] is given, then we can take a membership function p(x)

that is equal to 0 outside this interval, equal to 1 for x = a, and is linear on the intervals [a - A]

and [a, a + A]. Many software packages for fuzzy control are based on this choice of membership
functions.

What is usually done in more complicated cases. This choice of equally spaced functions is

not always very efficient in more complicated cases. Therefore, methods have been developed that

use neural networks or genetic algorithms to "tune" membership functions (see, e.g., numerous

papers in [RSW92]). But this tuning takes lots of time (for example, several thousands iterations

are typical for neural networks).

The idea of a rescaling. In some cases there are evident physical reasons why equally spaced

domains do not work. For example, if the control variable u is always positive (i.e., if we control

the flow of some substance into a reactor), then negative values (that will be eventually generated

by an equal spacing method) simply make no sense.

A natural idea is to choose another scale u' = f(u) to represent the control variable u, so

that equal spacing will work fine for u _. This idea is in good accordance with our common-sense

description of physical processes. For example, from the physical viewpoint it is quite possible to

describe the strength of an earthquake by its energy, but, when we talk about its consequences,

it is much more convenient to use a logarithmic scale (called Richter scale). Non-linear scales are

used to describe amplifiers and noise (decibels, in electrical engineering), to describe hardness of

different minerals in geosciences, etc. (for a general survey of different scales and rescMings see

[SKLT71, 89]).

In our case we want to design such a scale that for f(u) the equally spaced endpoints N - kA

and N + kA would make sense for all integers k. Therefore, we are looking for a function f(u),

whose domain is the set of all positive values, and whose range is all possible real numbers. In

mathematical notations, f must map (0, co) onto (-co, co). There are lots of such functions, and

evidently not all of them will improve the control. So we arrive at the following problem:

The main problem. What rescaling to choose?

What we are planning to do. We formulate the problem of choosing the best rescaling function

f(u) as a mathematical optimization problem, and then we solve this problem under some reason-
able optimality criteria. As a result, we get an optimal function f(u). We show that its application

to non-linear systems really improves fuzzy control.
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2. MOTIVATIONS OF THE PROPOSED MATHEMATICAL DEFINITIONS

Why is this problem difficult? We want to find a scaling function f(u) that is the best in some

reasonable sense, that is, for which some characteristic I attains the value that corresponds to the
best performance of the resulting fuzzy control. As examples of such characteristics, we can take

an average running time of an algorithm, or some characteristics of smoothness or stability of the

resulting control, etc. The problem is that even for the simplest linear plants (controlled systems), •
we do not know how to compute any of these possible characteristics. How can we find f(u) for

which l(f(u)) is optima] if we cannot compute I(f(u)) even for a single function f(u)? There does
not seem to be a likely answer.

However, we will show that this problem is solvable (and give the solution).

The basic idea for solving these kind of problems is described in [K90]; for its application to

fuzzy logic see [KS90], to neural networks see [KQ91], to genetic algorithms see [KQF92], and to

different problems of fuzzy control see [KQLFLKBR92].

We must choose a family of functions, not a single function. Suppose that for some physical

quantity u (e.g., for x coordinate) equal spacing leads to a reasonably good control strategy.

In order to get numerical values of z coordinate, we must fix some starting point and some

measuring unit (e.g., a meter). In principle we could as well choose feet to describe length. Then

the numerical values of all the coordinates will be different (x meters are equal to Ax feet, where

A is the number of feet in 1 meter). However, the intervals that were equally spaced when we used
one unit, are still equally spaced, if we use another unit to measure this coordinate.

In a similar way, we could choose a different starting point for the x coordinate. If we take as

a starting point a point that had a coordinate z0 (so that now its coordinate is 0), then all other

coordinates will be shifted: x --, x - x0. Again intervals that were equal in the old scale (x) will
still be equal if we measure then in the new scale (x - x0).

We can also change both the measuring unit and the starting point. This way we arrive at a
transformation z --* Ax + x0.

Summarizing: if x is a reasonable scale, in the sense that equally spaced membership functions

lead to a reasonably good control, then the same is true for any scale Ax + x0, where A > 0,

and x0 is any real number. The reason is that if we have a sequence of equally spaced intervals

[N + kA, N + (k + 1)A], then these intervals will remain equally spaces after these linear rescalings

x --* Ax + x0: namely, these intervals will turn into intervals [N' + kA',N' + (k + 1)A'], where
N'=AN+z0 andA'--AA.

Let us now consider a scale u, for which equal spacing does not work. Assume that u --. f(u)

is a transformation, after which equal spacing becomes applicable. This means that if we use f(u)

as a new scale, then equal spacings work fine. But as we have just shown, for any A > 0 and x0
equal spacing will also work fine for the scale Af(u) + x0.

Therefore, if f(u) is a function that transforms the initial scale into a scale, for which (_(lual

spacing works fine, then for every A > 0 and x0 the function f'(u) = Af(_l) + x0 has the same
desired property.

This means that there is no way to pick one function f(u), because with any function f(u),

the whole family of functions Af(u) + x0 has the same property. Therefore, desired functions form
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a family {_kf(u) -t- x0)_>0,zo. Hence, instead of choosing a single function, we must formulate a

problem of choosing a family.

Which family is the best? Among all such families, we want to choose the best one. In

formalizing what "the best" means, we follow the general idea outlined in [Kg0] and applied to
neural networks in [KQ91]. The criteria to choose may be computational simplicity, stability or

smoothness of the resulting control, etc. In mathematical optimization problems, numeric criteria

are most frequently used, where to every family we assign some value expressing its performance,

and choose a family for which this value is maximal. However, it is not necessary to restrict

ourselves to such numeric criteria only. For example, if we have several different families that lead

to the same average stability characteristics T, we can choose between them the one that leads to

the maximal smoothness characteristics P. In this case, the actual criterion that we use to compare

two families is not numeric, but more complicated: a family _1 is better than the family _ if and

only if either T(_I) < T(@2), or T(_I) = T(@2) and P(_s) < P(_2). A criterion can be even

more complicated. What a criterion must do is to allow us for every pair of families to tell whether

the first family is better with respect to this criterion (we'll denote it by _2 < _1), or the second is

better (_1 < @2) or these families have the same quality in the sense of this criterion (we'll denote

it by _1 "_ _2).

The criterion for choosing the best family must be consistent. Of course, it is necessary

to demand that these choices be consistent, e.g., if @1 < _2 and _2 < @3 then _1 < _3.

The criterion must be final. Another natural demand is that this criterion must be final in the

sense that it must choose a unique optimal family (i.e., a family that is better with respect to this

criterion than any other family).

The reason for this demand is very simple. If a criterion does not choose any family at all, then

it is of no use. If several different families are "the best" according to this criterion, then we still

have a problem choosing the absolute "best" family. Therefore, we need some additional criterion

for that choice. For example, if several families turn out to have the same stability characteristics,

we can choose among them a family with maximal smoothness. So what we actually do in this
case is abandon that criterion for which there were several "best" families, and consider a new

"composite" criterion instead: _1 is better than _2 according to this new criterion if either it was

better according to the old criterion, or according to the old criterion they had the same quality,

and @1 is better than _ according to the additional criterion. In other words, if a criterion does

not allow us to choose a unique best family, it means that this criterion is not ultimate; we have

to modify it until we come to a final criterion that will have that property.

The criterion must be reasonably invariant. We have already discussed the effect of changing

units in a new scale f(u). But it is also possible to change units in the original scale, in which
the control u is described. If we use a unit that is c times smaller, then a control whose numeric

value in the original scale was u, will now have the numeric value cu. For example, if we initially

measured the flux of a substance (e.g., rocket fuel) into the reactor by kg/sec, we can now switch

to lb/sec.

Comment. There is no physical sense in changing the starting point for u, because we consider

the control variable that takes only positive values, and so 0 is a fixed value, corresponding to the

minimal possible control.

We are looking for the universal rescaling method, that will be applicable to any reasonable

situation (we do not want it to be adjustable to the situation, because the whole purpose of

this rescaling is to avoid time-consuming adjustments). Suppose now that we first used kg/sec,
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compared two different scaling functions f(u) and/(u), and it turned out that _f(u) is better (or,

to be more precise, that the family @ - {Af(u) + z0} is better than the fam!ly @ -- {A](u) + x0}).
It sounds reasonable to expect that the relative quality of the two scaling functions should not

depend on what units we used for u. So we expect that when we apply the same methods, but with

the values of control expressed in ]b/sec, then the results of applying f(u) will still be better than
the results of applying f(u). But the result of applying the function f(u) to the control in lb/sec

can be expressed in old units (kg/sec) as f(cu), where c is a ratio of these two units. So the result

of applying the rescaling function f(u) to the data in new units (lb/sec) coincides with the result of

applying a new scaling function re(u) = f(cu) to the control in old units (kg/sec). So we conclude

that if f(u) is better than ](n), then fc(u) must be better than )_(u), where fc(u) = f(cu) and

L(u) = f(cu). This must be true for every c because we coulduse not only kg/sec or lb/sec, but
arbitrary units as well.

Now we are ready for the formal definitions.

3. DEFINITIONS AND THE MAIN RESULT

Definitions. By a rescah'ng function (or a rescaling for short), we mean a strictly monotonic

function that maps the set of all positive real numbers (0, c_) onto the set of all real numbers

(-_,+cx_). We say that two rescalings f(u) and f'(u) are equivalent if f'(u) = Cf(u) + .Co for

some positive constant C and for some real number z0.

Comment. As we have already mentioned, if we apply two equivalent rescaLings, we will get two

scales that are either both leading to a good control, or are both inadequate.

By a family we mean the set of functions {Cf(u)+ z0}, where f(u) is a fixed rescaling, C runs

over all positive real numbers, and z0 runs over all real numbers. The set of all families will be

denoted by S.

A pair of relations (<, _) is called consistent [K90], [KKg0], [KQ91] if it satisfies the following
conditions:

(1) ifF<GandG<H thenF<H;

(2) r ~ r;
(3) ifF-_GthenG~F;

(4) if F,-_ G and G ,_ H then F,_ H;
(5) ifF<GandG_H thenF<H;

(6) ifF_GandG<HthenF<H;

(7) if F < G then it is not true that G < F or F ~ G.

Assume a set A is given. Its elements will be called alternatives. By an optimality criterion

we mean a consistent pair (<, _) of relations on the set A of all alternatives. If G < F, we say that

F is better than G; if F ,_ G, we say that the alternatives F and G are equivalent with respect to

this criterion. We say that an alternative F is optimal (or best) with respect to a criterion (<, _)

if for every other alternative G either G < F or F ,-_ G.

We say that a criterion is _nal if there exists an optimal alternative, and this optimal alternative

is unique.

Comment. In the present paper we consider optimality criteria on the set S of all families.

Definitions. By a result of a unit change in a function f(u) to a unit that is c > 0 times smaUer

we mean a function fc(u) = f(cu). By the result of a unit change in a family • by c > 0 we mean

the set of all the functions that are obtained by this unit change from f E _. This result will be
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denotedby c#. We say that an optimality criterion on F is unit-invariant if for every two families
and _) and for every number c > 0 the following two conditions are true:

i) if • is better than (_ in the sense of this criterion (i.e., _ < #), then c(_ < c#.

ii) if # is equivalent to (_ in the sense of this criterion (i.e., # ,,, #), then c# ,_ c_.

THEOREM. If a family • is optimal in the sense of some optimality criterion that is final and

unit-invariant, then every rescaling f(u) from • is equivalent to f(u) = log (u).

(Proof is given in Section 5).

Comment. This means that the optimal rescalings are of the type 7log(u) + a for some real
numbers 7 > 0 and a.

4. CASE STUDY: APPLICATION OF LOGARITHMIC RESCALING

TO FUZZY CONTROL (BRIEF DESCRIPTION)

Description of a plant. We design a control for chemical reaction within a constant volume,

non-adiabatic, continuously stirred tank reactor (CSTR). The model that describes the CSTR is

[M90]:

31 = --X 1 "4- De(1 - xl)exp(x2/(1 + x:/7))

x2 = -x: + BDa(1 - xi)exp(x2/(1 + x2/7)) - u(x2 - xc),

where Xl is the conversion rate, x: is the dimensionless temperature, and u is the dimensionless

heat transfer coefficient. The objective of the control is to stabilize the system (i.e., bring it closer

to the equilibrium point).

What we did. We applied a logarithmic rescaling x2 ---* X = log x2, and used membership

functions with equal spacing for X. No further adjustment of membership functions was made.

Results. Even without any further adjustment the results of this control were comparable to the

results of applying the intelligent "gain scheduled" (non-linear) PID controller ([HK85], [M90]). In

other words, we got the control that was as good as the one generated by the state-of-art traditional

control theory with respect to stability and controllability of the plant.

With respect to the computational complexity our fuzzy controller is much simpler.

Rescaling is necessary. Without the rescaling, we got a fuzzy control whose quality was much
worse than that of a PID controller.

Details. The details of this case study were published in [VT92].

5. PROOF OF THE MAIN RESULT

The idea of this proof is as follows: first we prove that the optimal family is unit-invariant (in

part 1), and from that, in part 2, we conclude that any function f from (I) satisfies a functional

equation, whose solutions are known.

1. Let us first prove that the optimal family _opt exists and is unit-invariant in the sense that

¢opt = c_opt for all c > 0. Indeed, we assumed that the optimality criterion is final, therefore there

exists a unique optimal family ¢opt. Let's now prove that this optimal family is unit-invariant (this

proof is practically the same as in [K90], [KQ91], or [KQF92]). The fact that (I)opt is optimal means

that for every other ¢, either • < _bopt or _opt " _. If (I)opt "-"• for some • _ tbopt, then from the
definition of the optimality criterion we can easily deduce that ¢ is also optimal, which contradicts

the fact that there is only one optimal family. So for every (I) either (I) < _opt or (I)opt = (I).
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Take an arbitrary c a_d apply this conclusion to _ = c@opt. If c_opt = • < _opt, then from

the invariance of the optimality criterion (condition ii)) we conclude that _opt < c -1 ¢_opt, and that

conclusion contradicts the choice of _opt as the optimal family. So • = C@opt < _opt is impossible,
and therefore t_opt = _, i.e., _ovt = C@opt, and the optimal family is really unit-invariant.

2. Let us now deduce the actual form of the functions f(u) from the optimal family (I)opt.
If f(u) is such a function, then the result f(cu) of changing the unit of u to a c times smaller

unit belongs to C_opt, and so, due to 1., it belongs to _opt. But by the definition of a family all

its functions can be obtained from each other by a linear transformation Cf(u) + xo, therefore,

f(cu) = Cf(u) + xo for some C and x0. These values C and x0 depend on c. So we arrive at

the following functional equation for f(u): f(cu) = C(c)f(u) + Xo(C). In the survey oil functional

equations [A66] the solutions of this equation are not explicitly given, but a for a similar functional

equation f(x + y) = f(x)h(y) + k(y) all solutions are enumerated in Corollary 1 to Theorem l,

Section 3.1.2 of [A66]: they are f(x) = 7x + a and f(x) = 7exp(cx) + a, where 7 _ 0, c _ 0 and
are arbitrary constants. So, let us reduce our equation to the one with known solutions.

The only difference between these two equations is that we have a product, and we need

a sum. There is a well known way to reduce product to a sum: turn to logarithms, because
Iog(ab) = log(a) + log(b). For simplicity let us use natural logatithms In. So let us introduce

new variables X = in(u) and Y = ln(c). In terms of these new variables x = exp(X), c =

exp (C). Substituting these values into our functional equation, and taking into consideration that

exp(X)exp(Y) = exp(X + Y), we conclude that F(X + Y) = H(Y)F(X) + K(Y), where we

denoted F(X) = f(exp(X)), H(Y) = C(exp(Y)), and K(Y) = xo(exp(Y)). So according to the

above-cited result, either F( X ) = "TX + a, or F( X ) = "7exp( cX ) + a.

From F(X) = f(exp(X)), we conclude that f(u) = F(In (u)), therefore either f(u) = 7 In (u)+

a, or f (u ) = "7exp( c In ( u ) ) + a = 7u c + a. In the second case the function f (u ) maps (0, _) onto

the interval (a, oo), and we defined a rescaling as a function whose values run over all possible

real numbers. So the second case is impossible, and f(x) = 7In (u)+ a, which means that f(u) is
equivalent to a logarithm. Q.E.D.

6. CONCLUSIONS

One of the important steps in designing a fuzzy control is the choice of the membership

functions for all the terms that the experts use. This choice strongly influences the quality of the

resulting control.

For simple controlled systems, it is sufficient to have equally spaced membership functions,

i.e., functions that have similar shape (usually triangular or trapezoid), and are located in intervals

of equal length ..., [N - A, g + A], [g, N + 2A], [g + A, N + 3A],...

For complicated systems this choice does not lead to a good fuzzy control, so it is necessary to

tune the membership functions by applying neural networks or genetic algorithms. This is a very

time-consuming procedure, and therefore, it is desirable to avoid it as much as possible.

We consider the case, when the equally spaced membership functions are inadequate because

the control variable u can take only positive values. Such situations occur, for example, when we

control the flux of the substances into a chemical reactor (e.g., the flux of fuel into an engine). ()_lr

idea is to "rescale" this variable, i.e., to use a new variable u' = f(u), and to choose a funclion

f(u) in such a way that we can apply membership functions, that are equally spaced in u'.

We give a mathematical proof that the optimal rescaling is logarithmic (f(u) = a log (u)+ b).

We also show on a real-life example of a non-finear chemical reactor that the resulting fuzzy control,

180



without any further tuning of membership functions, can be comparable in quality with the best

state-of-art non-linear controls of traditional control theory.
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The design of neural networks and fuzzy systems can involve complex,
nonlinear, and ill-conditioned optimization problems. Often, traditional
optimization schemes are inadequate or inapplicable for such tasks. Genetic
Algorithms (GAs) are a class of optimization procedures whose mechanics are
based on those of natural genetics. Mathematical arguments show how GAs

bring substantial computational leverage to search problems, without requiring
the mathematical characteristics often necessary for traditional optimization

schemes (e.g. modality, continuity, availability of derivative information, etc.).
GAs have proven effective in a variety of search tasks that arise in neural
networks and fuzzy systems. This presentation begins by introducing the
mechanism and theoretical underpinnings of GAs. GAs are then related to a
class of rule-based machine learning systems called learning classifier

systems (LCSs). An LCS implements a low-level production-system that uses
a GA as its primary rule discovery mechanism. This presentation illustrates how,
despite its rule-based framework, an LCS can be thought of as a competitive
neural network. Neural network simulator code for an LCS is presented. In this

context, the GA is doing more than optimizing an objective function. It is
searching for an ecology of hidden nodes with limited connectivity. The GA
attempts to evolve this ecology such that effective neural network performance
results.

The GA is particularly well adapted to this task, given its naturally-inspired
basis. The LCS/neural network analogy extends itself to other, more traditional
neural networks. Conclusions to the presentation discuss the implications of

using GAs in ecological search problems that arise in neural and fuzzy systems.

183



S__/_ G -_- _.,,,

Evolving Fuzzy Rules in a Learning Classifier System

Manuel Valenzuela-Rendon N 9 3 " 2. i::i:! _:; "_Y

mvalenzu@mtecv2.mty.itesm.mx

ITESM, Center for Artificial Intelligence
Sucursal de Correos "J" C.P. 64849

Monterrey, N.L., Mexico

The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers

(FLCs) and learning classifier systems (LCSs). It brings together the expressive

powers of fuzzy logic as it has been applied in fuzzy controllers to express
relations between continuous variables, and the ability of LCSs to evolve co-

adapted sets of rules. The goal of the FCS is to develop a rule-based system

capable of learning in a reinforcement regime, and that can potentially be used

for process control.

Learning classifier systems are rule based machine-learning systems that can

evolve rules in a reinforcement learning environment. In a LCS, automatic

mechanisms adjust the strengths of rules according to their ability to receive

payoff from the environment. A genetic algorithm runs over the population of

rules, creating new rules by recombining those that have been successful in the

past. The syntax commonly used in LCSs is designed for binary message

matching, and therefore has great difficulty when dealing with continuous
variables.

Fuzzy logic controllers have shown how fuzzy logic can be successfully applied
to express in a few rules mappings between continuous variables. Their

success is backed by a long list of applications. Nevertheless, in most of these

applications, the designer of the FLC has developed the rules by hand, from
interviews with the operator, from knowledge of the process, or from an

operator's manual. No automatic way to develop sets of fuzzy rules for a FLC

has gained recognition. In a FLC rules sets are stimulus-response, they do not
take into account variables not directly supplied to the controller. The control of

dynamic systems has usually been achieved by not only giving the reference

and the error as inputs to the FLC, but also giving the derivative and integral of

the error. Very complex processes might require the controller to take into

account higher order derivatives or functions of variables that the designer

might not be aware of. The FCS attempts to take advantage of LCSs ability to

develop chains of rules automatically, and thus offer to the field of fuzzy control,
characteristics not found in common FLCs.

Initial results show that the FCS can effectively create fuzzy rules that imitate the

behavior of simple static systems. The current research work is directed towards

increasing the learning rate of the FCS while retaining stability of that which has
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been learned, and the imitation of more complex static systems. The next steps
will be odented towards the control of simple dynamic systems.
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ABSTRACT

Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic

algorithms (GAs) are used to augment fuzzy logic controllers (FLCs). GAs are search algorithms that rapidly

locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural

genetics. FLCs are rule based systems that efficiently manipulate a problem environment by modeling the
"rule-of-thumb" strategy used in human decision making. Together, GAs and FLCs possess the capabilities

necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such

control systems require a control element to manipulate the problem environment, an atta/ys/s element to

recognize changes in the problem environment, and a learning element to adjust to the changes in the problem
environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH

system is used to demonstrate the ideas presented.

INTRODUCTION

The need for efficient process control has never been more important than it is today because of economic

stresses forced on industry by processes of increased complexity and by intense competition in a world market.

No industry is immune to the cost savings necessary to remain competitive; even traditional industries such as

mineral processing (Kelly and Spottiswood, 1982), chemical engineering (Fogler, 1986), and wastewater

treatment (Gottinger, 1991) have been forced to implement cost-cutting measures. Cost-cutting generally

requires the implementation of emerging techniques that are often more complex than established procedures.

The new processes that result are often characterized by rapidly changing process dynamics. Such systems

prove difficult to control with conventional strategies, because these strategies lack an effective means of

adapting to change. Furthermore, the mathematical tools employed for process control can be unduly complex

even for simple systems.

In order to accommodate changing process dynamics yet avoid sluggish response times, adaptive control systems

must alter their control strategies according to the current state of the process. Modern technology in the form

of high-speed computers and artificial intelligence (AI) has opened the door for the development of control

systems that adopt the approach to adaptive control used by humans, and perform more efficiently and with
more flexibility than conventional control systems. Two powerful tools for adaptive control that have emerged

from the field of AI are fuzzy logic (Zadeh, 1973) and genetic algorithms (GAs) (Goldberg, 1989).

The U.S. Bureau of Mines has developed an approach to the design of adaptive control systems, based on GAs

and FLCs, that is effective in problem environments with rapidly changing dynamics. Additionally, the

resulting controllers include a mechanism for handling inadequate feedback about the state or condition of the

problem environment. Such controllers are more suitable than past control systems for recognizing,

quantifying, and adapting to changes in the problem environment.

The adaptive control systems developed at the Bureau of Mines consist of a control element to manipulate the

problem environment, an analysis element to recognize changes in the problem environment, and a learning

element to adjust to the changes in the problem environment. Each component employs a GA, a FLC, or both,
and each is described in this paper. A particular problem environment, a laboratory acid-base pH system,
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serves as a forum for presenting the details of a Bureau-developed, adaptive controller. Preliminary results are

presented to demonstrate the effectiveness of a GA-based FLC for each of the three individual elements. Details

of the system will appear in a report by Karr and Gentry (1992).

PROBLEM ENVIRONlVlENT

In this section, a pH system is introduced to serve as a forum for presenting the details of a stand-alone,

comprehensive, adaptive controller developed at the U.S. Bureau of Mines; emphasis is on the method not the

application. The goal of the control system is to drive the pH to a setpoint. This is a non-trivial task since the

pH system contains both nonlinearities and changing process dynamics. The nonlinearities occur because the

output of pH sensors is proportional to the logarithm of hydrogen ion concentration. The source of the

changing process dynamics will be described shortly.

A schematic of the pH system under consideration is shown in Fig. 1. The system consists of a beaker and

five, valved input streams. The beaker initially contains a given volume of a solution having some known pH.

The five, valved input streams into the beaker are divided into the two control input streams and the three

external input streams. Only the valves associated with the two control input streams can be adjusted by the

controller. Additionally, as a constraint on the problem, these valves can only be adjusted a limited amount

(0.5 mL/s/s, which is 20 pct of the maximum flow rate of 2.5 mL/s) to restrict pressure transients in the

associated pumping systems.

The goal of the control problem is to drive the system pH to the desired setpoint in the shortest time possible by

adjusting the valves on the two control input streams. Achieving this goal is made considerably more difficult

by incorporating the potential for changing the process dynamics. These changing process dynamics come from

three random changes that can be made to the pH system. First, the concentrations of the acid and base of the

two control input streams can be changed randomly to be either 0.1 M HCI or 0.05 M HCI and 0.1 M NaOH
or 0.05 M NaOH. Second, the valves on the external input streams can be randomly altered. This allows for

the external addition of acid (0.05 M HCI), base (0.05 M CH3COONa), and buffer (a combination of 0.1 M

CH3COOH and 0.1 M CH3COONa) to the pH system. Note that the addition of a buffer is analogous to adding
inertia to a mechanical system. Third, random changes are made to the setpoint to which the system pH is to be

driven. These three random alterations in the system parameters dramatically alter the way in which the

problem environment reacts to adjustments made by the controller to the valves on the control input streams.
Furthermore, the controller receives no feedback concerning these random changes.

.1 u

.OGg NoOH_
.1 g N_3H

Control
input
streorns

Externol _ Acid

input |

_ Buffer
Bose

Fig. 1. Basic structure of the pH system.

The pH system was designed on a small scale so that experiments could be performed in limited laboratory

space. Titrations were performed in a 1,O00-mL beaker using a magnetic bar to stir the solution. Peristaltic

pumps were used for the five input streams. An industrial pH electrode and transmitter sent signals through an

analog-to-digital board to a 33-MHz 386 personal computer which implemented the control system.
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STRUCTURE OF THE ADAPTIVE CONTROLLER

Figure 2 shows a schematic of the Bureau's adaptive control system. The heart of this control system is the

loop consisting of the control element and the problem environment. The control element receives information

from sensors in the problem environment concerning the status of the condition variables, i.e., pH and ApH. It

then computes a desirable state for a set of action variables, i.e., flow rate of acid (QAcn_) and flow rate of base

(QaAs_- These changes in the action variables force the problem environment toward the setpoint. This is the

basic approach adopted for the design of virtually any closed loop control system, and in and of itself includes

no mechanism for adaptive control.

The adaptive capabilities of the system shown in Fig. 2 are due to the analysis and learning elements. In

general, the analysis element must recognize when a change in the problem environment has occurred. A

"change," as it is used here, consists of any of the three random alterations to a parameter possible in the

problem environment. (Of importance is the fact that all of these changes affect the response of the problem

environment, otherwise it has no effect on the way in which the control element must act to efficiently

manipulate the problem environment.) The analysis element uses information concerning the condition and
action variables over some finite time period to recognize changes in the environment and to compute the new

performance characteristics associated with these changes.

The new environment (the problem environment with the altered parameters) can pose many difficulties for the

control element, because the control element is no longer manipulating the environment for which it was

designed. Therefore, the algorithm that drives the control element must be altered. As shown in the schematic

of Fig. 2, this task is accomplished by the learning element. The most efficient approach for the learning
element to use to alter the control element is to utilize information concerning the past performance of the

control system. The strategy used by the control, analysis, and learning elements of the stand-alone,

comprehensive adaptive controller being developed by the U.S. Bureau of Mines is provided in the following
sections.

ProblemEnvironment

Fig. 2.

ControlElement

[ upd, tad
controli,r
l_remet4re

Learning JElement

new vshtm or

environmqmtml
pat'Lm_t_-'u

Anolysis-- Element

Structure of the adaptive control system.

Control Element

The control element receives feedback from the pH system, and based on the current state of pH and ApH, must

prescribe appropriate values of Q^cm and Qe^sE. Any of a number of closed-loop controllers could be used for
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this element. However, because of the flexibility needed in the control system as a whole, a FLC is employed.
Like conventional rule-based systems (expert systems), FLCs use a set of production rules which are of the
form:

IF {cmutition} THEN {action}

to arrive at appropriate control actions. The left-hand-side of the rules (the condition side) consists of

combinations of the controlled variables (pH and ApH); the right-hand-side of the rules (the action side) consists

of combinations of the manipulated variables (Q^clo and QaAsE). Unlike conventional expert systems, FLCs use

rules that utilize fuzzy terms like those appearing in human rules-of-thumb. For example, a valid rule for a
FLC used to manipulate the pH system is:

IF {ph is VERY ACIDIC and ApH is SMALL} THEN {QnAsE is LARGE and QAC_Dis ZERO}.

This rule says that if the solution is very acidic and is not changing rapidly, the flow rate of the base should be
made to be large and the flow rate of the acid should be made to be zero.

The fuzzy terms are subjective; they mean different things to different "experts," and can mean different things
in varying situations. Fuzzy terms are assigned concrete meaning via fuzzy membership functions (Zadeh,

1973). The membership functions used in the control element to describe pH appear in Fig. 3. (As will be

seen shortly, the learning element is capable of changing these membership functions in response to changes in

the problem environment.) These membership functions are used in conjunction with the rule set to prescribe

single, crisp values of the action variables (Q^cto and Qs_). Unlike conventional expert systems, FLCs allow

for the enactment of more than one rule at any given time. The single crisp action is computed using a

weighted averaging technique that incorporates both a rain-max operator and the center-of-area method (Karr,

1991). The following fuzzy terms were used, and therefore "defined" with membership functions, to describe
the significant variables in the pH system:

pH

ApH

Q^cm

QS_E

Very Acidic (VA), Acidic (A), Mildly Acidic (MA), Neutral (N), Mildly Basic (MB), Basic
(B), and Very Basic (VB);

Small (S) and Large (L);

Zero (Z), Very Small (VS),

Small (S), Medium (M), and Large CL).

Although the pH system is quite complex, it is basically a titration system. An effective FLC for performing

titrations can be written that contains only 14 rules. The 14 rules are necessary because there are seven fuzzy
terms describing pH and two fuzzy terms describing ApH (7*2= 14 rules to describe all possible combinations

that could exist in the pH system as described by the fuzzy terms represented by the membership functions

selected). Now, the rules selected for the control element are certainly inadequate to control the full-scale pH
system; the one that includes the changing process dynamics. However, the performance of a FLC can be

dramatically altered by changing the membership functions. This is equivalent to changing the definition of the

terms used to describe the variables being considered by the controller. As will be seen shortly, GAs are

powerful tools capable of rapidly locating efficient fuzzy membership functions that allow the controller to

accommodate changes in the dynamics of the pH system.

j
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Fig. 3. pH membership functions.

Analysis Element

The analysis element recognizes changes in parameters associated with the problem environment not taken into

account by the rules used in the control element. In the pH system, these parameters include: (l) the
concentrations of the acid and base of the input control streams, (2) the flow rates of the acid, the base, and the

buffer that are randomly altered, and (3) the system setpoint. Changes to any of these parameters can

dramatically alter the way in which the system pH responds to additions of acid or base, thus forming a new

problem environment requiring an altered control strategy. Recall that the FLC used for the control element

presented includes none of these parameters in its 14 rules. Therefore, some mechanism for altering the

prescribed actions must be included in the control system. But before the control element can be altered, the

control system must recognize that the problem environment has changed, and compute the nature and

magnitude of the changes.

The analysis element recognizes changes in the system parameters by comparing the response of the physical

system to the response of a model of the pH system. In general, recognizing changes in the parameters
associated with the problem environment requires the control system to store information concerning the past

performance of the problem environment. This information is most effectively acquired through either a data

base or a computer model. Storing such an extensive data base can be cumbersome and requires extensive

computer memory. Fortunately, the dynamics of the pH system are well understood for buffered reactions, and
can be modeled using a single cubic equation that can be solved for [H3 O+] ion concentrations, to directly yield

the pH of the solution. In the approach adopted here, a computer model predicts the response of the laboratory

pH system. This predicted response is compared to the response of the physical system. When the two

responses differ by a threshold amount over a finite period of time, the physical pH system is considered to
have been altered.

When the above approach is adopted, the problem of computing the new system parameters becomes a curve

fitting problem (Karr, Stanley, and Scheiner, 1991). The parameters associated with the computer model

produce a particular response to changes in the action variables. The parameters must be selected so that the

response of the model matches the response of the actual problem environment.

An analysis element has been forged in which a GA is used to compute the values of the parameters associated

with the pH system. When employing a GA in a search problem, there are basically two decisions that must be
made: (I) how to code the parameters as bit strings and (2) how to evaluate the merit of each string (the fitness

function must be defined). The GA used in the analysis element employs concatenated, mapped, unsigned

binary coding (Karr and Gentry, 1992). The bit-strings produced by this coding strategy were of length 200:
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the first 40 bits of the strings were used to represent the concentration of the acid on the control input stream,

the second 40 bits were used to represent the concentration of the base on the control input stream, the third 40

bits were used to represent the flow rate of the acid of the external streams, and the final 80 bits were used to

represent the flow rates of the buffer and the base of the external streams, respectively. The 40 bits associated

with each individual parameter were read as a binary number, converted to decimal numbers (000 = 0, 001 =

1,010 -- 2, 011 = 3, etc.,), and mapped between minimum and maximum values according to the following:

c -- + b (C_.- c..) (0
(2= - 1)

where C is the value of the parameter in question, b is the binary value, m is the number of bits used to

represent the particular parameter (40), and Ci and CE are minimum and maximum values associated with

each parameter that is being coded.

A fitness function has been employed that represents the quality of each bit-string; it provides a quantitative

evaluation of how accurately the response of a model using the new model parameters matches the response of

the actual physical system. The fitness function used in this application is:

l=100r

f - - (2)
t,.OB

With this definition of the fitness function, the problem becomes a minimization problem: the GA must

minimize f, which as it has been defined, represents the difference between the response predicted by the model

and the response of the laboratory system.

Figure 4 compares the response of the physical pH system to the response of the simulated pH system that uses

the parameters determined by a GA. This figure shows that the responses of the computer model and the

physical system are virtually identical, thereby demonstrating the effectiveness of a GA in this application. The
GA was able to locate the correct parameters after only 500 function evaluations, where a function evaluation

consisted of simulating the pH system for I00 seconds. Locating the correct parameters took approximately 20

seconds on a 386 personal computer. Industrial systems may mandate that a control action be taken in less than
20 seconds. In such cases, the time the GA is allotted to update the model parameters can be restricted. Once

new parameters (and thus the new response characteristics of the problem environment) have been determined,

the adaptive element must alter the control element.
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Learning Element

The learning element alters the control element in response to changes in the problem environment. It does so

by altering the membership functions employed by the FLC of the control element. Since none of the randomly

altered parameters appear in the FLC rule set, the only way to account for these conditions (outside of

completely revamping the system) is to alter the membership functions employed by the FLC. These alterations

consist of changing both the position and location of the trapezoids used to define the fuzzy terms.

Altering the membership functions (the definition of the fuzzy terms in the rule set) is consistent with the way
humans control systems. Quite often, the rules-of-thumb humans use to manipulate a problem environment

remain the same despite even dramatic changes to that environment; only the conditions under which the rules

are applied are altered. This is basically the approach that is being taken when the fuzzy membership functions
are altered.

The U.S. Bureau of Mines uses a GA to alter the membership functions associated with FLCs, and this

technique has been well documented (Karr, 1991). A learning element that utilizes a GA to locate high-

efficiency membership functions for the dynamic pH laboratory system has been designed and implemented.

The performance of a control system that uses a GA to alter the membership functions of its control element is
demonstrated for two different situations. First, Fig. 5 compares the performance of the adaptive control

system (one that changes its membership functions in response to changes in the system parameters) to a non-

adaptive control system (one that ignores the changes in the system parameters). In this figure, the pH system

has been perturbed by the addition of an acid (at 75 seconds), a base (at 125 seconds), and a buffer (at 175
seconds). In this case, the process dynamics are dramatically altered due to the addition of the buffer, and the

adaptive controller is better.

Second, the concentrations of the acid and base the FLC uses to control pH are changed (those from the control

input streams), which canses the system to respond differently. For example, if the 0.1 MHCI is the control

input, the pH falls a certain amount when this acid is added. However, all other factors being the same, the pH
will not fall as much when the same volume of the 0.05 M HCI is added. The results of this situation are

summarized in Fig. 6. In this simulation, the concentration of the titrants is changed at 50 seconds. As above,

the adaptive control system is more efficient.
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SUMMARY

Scientists at the U.S. Bureau of Mines have developed an ?d-based strategy for adaptive process control. This

strategy uses GAs to fashion three components necessary for a robust, comprehensive adaptive process control

system: (1) a control element to manipulate the problem environment, (2) an analysis element to recognize

changes in the problem environment, and (3) a learning element to adjust to changes in the problem
environment. The application of this strategy to a laboratory pH system has been described.
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1. Proposal of NN-ddven Fuzzy Reasoning (1988)

The issue of designing and tuning fuzzy membership functions by neural
networks (NNs) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven
Fuzzy Reasoning involves a NN embedded in the fuzzy system which
generates membership values, in conventional fuzzy system design, the

membership function are handcrafted by trial and error for each input variable.
In contrast, NN-driven Fuzzy Reasoning considers several variables

simultaneously and can design a multidimensional, nonlinear membership
function for the entire subspace.

2. Knowledge/Skill acquisition by NN-driven Fuzzy Reasoning. (1989)

Consider the problem of balancing a pole starting with an initial swing from the
hanging-down position. NN-driven Fuzzy Reasoning can process the raw data
generated by a human adept at this task and can learn to infer the rules

necessary for executing this task. This method has shown its ability to acquire
knowledge and skill which is difficult to convey using language but is easily
demonstrated.

3. Simplified design method for membership functions (1990).

Two issues affected by NN-driven Fuzzy Reasoning emerged in 1990. One was
the design of structured NNs (Neural networks designed on Approximate
Reasoning Architecture). The other concerned shortening the design time of
membership functions so that the techniques could be used in a practical
setting.

This simplified method works with one-dimensional, triangular membership
functions instead of the fully general, multidimensional, nonlinear shapes, but
this restriction helps speed up the design phase significantly. Currently this
method is used for the design of several consumer products involving fuzzy
logic (FL) and NNs by Matsushita Electric group.

4. Application of NN and FL in consumer products (1991).

Following the application of such technology in an air-conditioner in 1990,
several consumer products using FL and NNs have appeared on the market in
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1991. Till autumn 1991, fourteen such products had appeared on the Japanese
market. In the context of consumer products, NNs have been put to use in the
following five ways : (I) development tools, (2) independently of the fuzzy
system, (3) as a correcting mechanism, (4) in cascade combination with FL, and
(5) for learning user preferences. Equipment designed with the method
mentioned in Sec. 3 falls in category (1).

5. Realization of Adaptability : Current Issues

Achieving adaptability is an important concem when fusing NNs and FL. It is too
inflexible to pre-program things that depend on the user's preferences or

environment. What is needed is some way to learn the usage pattems and
adjust the rules using the adaptive capability of NNs. Category (5) in the

previous section is intended to follow this direction.

Realization of "equipment of which handling easiness is improved as it is used
more" corresponds to incremental learning in NNs. Suppose we wish to modify

the equipment based on data provide by the user's actions and environment. In
this case, the additional learning should have the following properties: (a) do
not use all of the past training data, (b) the changes should have local effect
only, in some sense, (c) training data which is more recent and supersedes
older data should be recognized as such and the older information forgotten, (d)
if the changes lead to violation of strict safety constraints, such data is
potentially harmful and should be ignored.

6. Realization of Adaptability : Proposed Algorithm to Extract Boundary of
Datasets.

Partitioning the input space is essential for determining the rulebase, such as in
a fuzzy controller. Adaptive rule modification corresponds to modifying the
partitioned subsets of the space. If the new data is on the boundary of the
distribution of the training set, then the problem can be solved so that the four

requirements in Sec. 5 above are obeyed.

This algorithm for extracting boundary data uses n-dimensional ellipses of

which all axes but the major axis are equal. These shapes are used to eliminate
data which lies inside the boundary, leaving the boundary points of the training
dataset.

If new data is introduced on top of a boundary as shown in Fig. 1 (a), the
algorithm will modify the old boundary and incorporate the new data as shown
in Fig. 1 (b). This is a modification of the rule partitioning.
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Improvement on Fuzzy Controller Design Techniques

i

Professor Paul P. Wang
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This paper addresses three main issues, which are somewhat interrelated.

The first issue deals with the classification or types of fuzzy controllers. Careful
examination of the fuzzy controllers designed by various engineers reveals
distinctive classes of fuzzy controllers. Classification is believed to be helpful
from different perspectives.

The second issue deals with the design according to specifications.
experiments related to the tuning of fuzzy controllers, according to the

specification, will be discussed. General design procedure, hopefully, can be
outlined in order to ease the burden of a design engineer.

The third issue deals with the simplicity an limitation of the rule-based IF-THEN
logical statements. The methodology of fuzzy-constraint network is proposed
here as an alternative to the design practice at present. It is our belief that
predicate calculus and the first order logic possess much more expressive
power.

Throughout the talk, the integration of the fuzzy control technology with the
conventional control system design techniques will be our focus.
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