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Abstract

An instance-based learning system is 1)resented. SC,-net is a fllzzy hybrid connec-

tionist, symbolic learning system. It remembers some examples aim makes groups of

examples into exeml)lars. All real-valued attributes are tel)resented as fllzzy sets. The

network representation and leal'lfing method is described. To illustrate this approach

to learning in fuzzy domains, an example of segmenting magnetic resonance images of

the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or

fuzzy. Example fuzzy rules for recognition are generated. Segmentations are presented

that provide results that radiologists find useful.
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1 Introduction

This paper describes the use of a hybrid conn(,cl.ionist, symbolic machine learning system,

SC-net [4, 8], to learn rules which allow the discrimination of tissues in magnetic resonance

(MR) images of the human brain. Specifically, a 5ram lhick slice in one spatial orientation

will be used to illustrate SC-mq's capabilities. The l)rol)lem involves identifying tissues of

interest which include gray matter, white inatter, cerebro-spinal fluid (csf), tumor when

it exits, edema and/or necrosis. Essentially, a segmentation of the MR image into tissue

regions is the aim o1 this research. The training da.ta is chosen by a radiological technician

who is also familiar wilh image l)ro(('ssing and l)alt('l'll recognition.

SC-net is an iltstan(e-bas('d learning ss'sl<'ln. It ('l_('odes instances or modifications of

instances in a ('omw('tionisl architecture for use in classification after learning. Fuzzy sets

are directly represm_le(I by grollps of cells ill tile lmtwork. Membership flmctions for any

defined fuzzy sets are also h'ar)le<l (l)t)'iztg (tJ(' trail)ing pro('ess with the dynamic plateau
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modification featureof SC-net [7].

The rest of this paperwill consistof a descriptionof the relevantfeaturesof the SC-net

learning system,a descriptionof the processingof a MR imageslice, the presentationand

discussionof tile segmentationresttltsobtained wilh the SC-netsystem,a discussionof how

these results conlparewith other techniquesthat havebeenused[5] and an analysisof the

feasibility of the SC-m't approachin this domain.

2 The SC-net approach

Each cell in an SC,-net network is either a rain, max, negation or linear threshold cell. The

cell activation forlnutae are shown in Figure 1. The output structure of the network is

set up to collect positive and negative evidence for each output. For an output cell in a

classificatory domain, an outl)ut of 0 indicates no presence, 0.5 indicates unknown and 1

indicates true. We will show an example of a different us of the output values in the MR

image segmentation domain.

SC-net config,lres its conl,ecticmisl architecture based upon the training examples pre-

sented to il. The learning algorithl_l resl_onsilJh' for the creation of t},, network topology

is the Recruitment of (>lls algorithm (ll(:A) [4, 7]. I/CA is an incremental, instance-based

algorilhm that requires only a single pass through the lraining set. Every training instance is

individually presented to the network for a single I\-edforward pass. After the pass has been

completed, the actual and the expected activation for every output are compared. Three

possible conditions may result from this colllparison.

• The exa.lnple was correclly identified (error is below some epsilon). No modifications

are made to the i_etWol'k.

• The exanlph' is silltilar lo at least t_lIc l)rv\'iously seen aml slor,.'d instance (error

within 5 epsilon). For those output cells that have an activation within 5 epsilon of

the expected oulput., a bias is adjusted Io incorporale the new illstance.

• The example could not be idenlified by the nelwork. This results in the recruitment of
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CA, - cell activation for cell C,.

Oi - output for (:ell (-,', in [0,1].

Oi, .... ,,,_ and Oi,,eyo,,_ are the posilive and II(%alive colh'ctor cells for Ci respectiwdy.

CH¼,. i - weight for connection betwo(,n c_,ll ( i aim G_, ( II i,a ill R.

CBi - cell bias for cell C,, CBi in [-1..+11.

CAi =

.....(0.,, ('II',.,), !('13,1

ma.Tj=u,..,i-l,i+l,..,_(Oj * (:14;i,.;) * ICl_i[

_./_=0;.7¢, 02 * C|'V,,., * (_B,

t - (Oj • C W,,s)

06 .... ,,,,_ + 0i,,.,., .... - 1/2

('i i._ a mi_ cell

(7i is a maz cell

Ci is a ltc cell

Ci is a negate cell

Ci is either an intermediate

or final output cell.

= ,,,,,..,,(o, mi,,(t, (:A,))

Figure 1: (',ell activation formula

a new cell (referred to a.s an information collector cell, ICC). Appropriate connections

from the network inputs to the ICC are created. The ICC cell itself is connected to

either the positive (PC) or negative collector (NC) cell. The PC is used to collect

positive evidence, whereas the N(: accumulates negative evidence. The initial empty

network structure for a two iuput (one output) fuzzy exclusive-or is presented in Figure

2. Note that the uk ce[] always takes an activation of 0.5. The complete learned

network lot" the fuzzy exclusive-or is shown in Figure 3, where cells cl-c3, c5 are IC

cells and hi, n2, c4, and c6 are negation cells.

To improve on the generalization capabilities of" the R('A generated SC-net network a

form of post. training generalizal ion is employed. This method is called the min-drop feature.

Whenever a test. pattern is presented 1o the system, which cannot be identified by any of

the output (:ells, the min-drol_ feal.urv is al,pli_'(l. If a new pattern cannot be recognized

by the network, all output cells will be in an inactive state (an unknown response of 0.5

is returned). In this case the min-drol_ ['oaluro is applied to find the nearest corresponding
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Figure 3: The network for the fuzzy exclusive-or
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output for the out'rent pattern. New p_ttlc'lJls ,ll_' stoled ill the network through recruitment

of IC cells (and possibly some negation cells). These 1(2 cells are essentially rain-cells, which

return the minimum of the product formed from the incoming activation and the weight on

the corresponding connection. The rain-tirol) feature works by dropping (ignoring) the next

piece of evidence which is below some threshold. 'File process is repeated until one or more

output cells enter an active state (fire). The fiJm.1 number of connections dropped indicates

the degree of generalization required to ul_tch the newly presented pattern. In a second

mode, a bound may be placed on tile rain-drop v_due, preventing an unwarranted over-

generalization. RCA and post training gener_dization in the form of the min-drop feature

provide good generalization. However, several problems can be associated with the RCA

learning phase.

• Network growth can be linear in t lLe number of training examples.

,, As at direct consequence of the first problem storage and time (to perform a single

feedforward pass) requirements nlay ill('l'ease beyond the networks physical limitations.

• Generalization on yet unseen patterns is limited, and requires use of rain-drop feature.

To address the above problems a network pruning algorithm was developed. The GAC

(Global attribute Covering) algorithm's [7] main purpose is to determine a minimal set of

cells and links, which is equivalent to the network generated by RCA. That is, all previously

learned information should be retained in the pruned network. GAC attempts to determine

a minimal set of connections, which may act as inhibitors of the information collector cells

(ICC). Each information collector cell is introduced to the network as the result of an

example in the training set which was distinct f,om all previously seen examples. GAC is

completely described in [8].
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2.1 Dynamic Plateau Modification of fuzzy membership func-
tions

All fuzzy nmmbershi 1) fttnctions in S(_-net are represented as tral)ezoidal fuzzy sets [7, 9].

They are represented in tile network by a group of cells as shown in Figure 4 for the fuzzy

variable teenager. Teenager takes lnembership values of 1 in [13..1!)], of course. In this

implementation the membershi 1) goes linearly to 0 at the ages of 5 and 25. In the network

ages are translated into [0,1] from t lLe [0,100] year range. So the age of 22 is translated to

0.22. Figure 5 shows the actual graph of the membership functioll for the fuzzy teenager

variable.

The dynamic plateau lnodification function (DPM) is designed to bring in the arms of

the fllzzy meml_ershi 1) function. In general, we allow the range of the membership function

for unknown functions to initially be the range of the fuzzy variable. The range in which

the function obtains a value of I is a! least one point (all fuzzy sets in SC-net are normal

in the sense that they COlltai|l at least one full naqnber) and usually much smaller than the

fum'tion l,lnge. IhqLc_'. ['of the t_'clmgc cx_llll_le wil h a 100 year range the right arm of the

trapezoidal meml)el'sllip function would initially go to 0 at age 100, if we had no information

on constructing the membership function other than where it is crisp (attains a membership

value of 1). We always assume that the crisp (nornml) portion of the membership function

is known. The DPM function allows us to arbitrarily set the arms too wide and then adjust

them during the leal'niltg process. (}learly, in our example it. is impractical for someone 99

or t00 years old to have n_embership in the fuzzy set teenager.

A high-level description of the DPM method is as follows. When it is determined that

the fuzzy lnenll_ership value has caused all incorrect output, the maximal membership that

will not cause an error is determined. Tllis value for the set element given and the nearest

element at which the memlJership function takes a \'alttc, of 1 art, used to specie' the linear

arm of the function. This provides a llmv Ul_per or lower plaleau value (point at which the

flmction goes to 0) for the fuzzy membersllip function which is used to update the weights
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Figure 4: The fuzzy variable teenager.
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Figure 5: Graph of membershil_ function for fuzzy variable teenager.
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labeled a thru e ill Figure 4 [9].

2.2 Automatic partition generator

In SC-net all real-valued inputs are modeled by a set of individual fuzzy sets which cover

the range of the input. In the case that real-valued data is truly fuzzy, but domain experts

do not exist to provide indications of how to model it by fitzzy sets, the choice of the

fuzzy sets to cover the range is difficult. Since the data is fuzzy, it may not be possible to

accurately identify distinct ranges of the real-valued output associated with specific output.

However, this type of idea of associating (filzzy) ranges with actual outputs can be used. The

automatic partition generator (APG) is a method to develop a viable set of fuzzy sets for

use in the learning process in domains which have real-valued input, but no expert identified

ranges that may belong to specific filzzy sets.

The APG algorithm works as follows. For each real-valued attribute or feature it

makes a partition such that the boundary going fi'om low value to higher value includes at

least one element of a class. It will further contain as many elements of the same class as

possible. Given the strategy to have all the partitions contain only one class, the maximum

number of partitions for any given feature would be the number of classes and would indicate

it is very difficult to partition the train set based on that feature or attribute alone. It is the

case that a partition may be bounded on both sides by partitions that belong to the same

class which is a different class than the examples in the bounded partition belong to.

3 The Nature of MRI Data

Magnetic Resonance hnaging (MR I) systems lneasure the spatial distribution of several soft

tissue related parameters such as TI relaxation (spin lattice), T2 relaxation (transverse) and

proton density. By discrete variatiot,s of the radio fre(luency (R F) timing parameters, a set

of images of varying soft. tissue ('ontr_lst c_lll be obtained. The use of time varying magnetic

field gradients provide spatial intbrmation based on the frequency or phase of the precessing
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protons using both multi-slice (2DFT) o," x,olu,ne (3DFT) imaging methods [10, 11]. Hence,

a multi-spectral image data set is produced.

In our work, male volunteers (25-_15 years) and patient tumor studies were performed

on a high field MRI system (1.5 tesla) using a resollator quaduature detector head RF

coil. Transverse images of 5 toni thickness were obtained using a standard spin echo (SE)

technique for T1 weighted images (pulse repetition time TR. = 600 ms, echo time TE=20

ms) and proton density (p) and T2 weighted images (TR=3000 ms, TE=20 and 80 ms

respectively), using the 2DFT multi-slice technique [12, 13, 2]. Volunteers were imaged for

the same anatomical location.

Pixel intensity based classification methods were employed in this work as opposed to

methods based on the calculation of magnetic resonance relaxation parameters. The latter

methods require tailored RF pulse sequences [10, 11]. Image intensity based methods can be

applied to any imaging protocol and are not restricted to the number of images acquired, i.e.

it is possible to accommodate images with features other than MR relaxation parameters,

such as perfusion and diffusion imaging, metabolic imaging and the addition of images from

other diagnostic modalities [2]. The transverse images were acquired, centrally located in

the resonator R.F head coil, and hence did not require uniformity corrections for RF coil

geometry or dielectric loading characteristics a.s developed at this institute [3]. Similarly,

the subjects studied did not move significantly during the imaging procedure and hence,

corrections were not required for related registration problems.

4 Segmenting magnetic resonance images

SC-net is a supervised instance-based learning system. Hence, in order to use it to segment

an image a training set. of labeled pixels must exist. Each pixel has 3 features associated

with it a T1, T2 and proton density value. In this paper, we will focus on one normal slice

and one abnormal slice. There are 271 pixels ill the abnormal training set and 216 pixels

in the normal training set. There are 5 _las._('s iu lhe normal train set; gray matter, white
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matter, csf, fat and air. Tile abnorlnal train set also contains a class for tumor or pathology

for a total of 6 classes. Each of the train sets was chosen by a radiological technician.

Each of the input features is real-valued taking values in [0,255] and hence will be

represented as fuzzy sets within SC-net. However, it is unclear how these fuzzy sets should

be constructed. Further, ill [6] it is shown that the values associated with specific tissues

vary from subject to subject with significant overlap. Therefore, the partitions of the input

ranges for the initial fuzzy sets for each of the inputs were obtained by the use of the APG

algorithm.

The inputs in each dimension are first translated from [0,1nax_value] max_value <_ 255

to the [0,1] range. The APG algorithm is then run which, for example, in the normal

(vohmteer) training set produces II partitions in TI, 19 partitions in proton density (p) and

5 partitions in T2. It is interesting that T2 requires the least partitions as it has been the

most used single parameter ia the literature and few partitions will belong to features or

attributes that are "good" data separators. The initial range of each constructed fuzzy set

is [-0.2,1.2]. Allowing the range of the lnembershil) function to be larger than the range of

the set it models is an implementation convention which allows membership values to be 1

at the edges of the actual range.

There are two possible ways to assign examples to classes. One is to use 5 outputs

for the normal example and 6 outputs for the abnormal example. This is the most straight-

forward method. Another possibility exists, which is to use just 1 output. This output is

then broken into ,5 ranges for the aorma] exa_nl)le (i.('. [0,0.2]. (0.2.0.-t], (0.4, 0.6], (0.6, 0.8],

and (0.8,1]) which resl)ectively represent the 5 tissue types of interest. Similarly, the single

output range can be I)roken up for 6 outputs. The use of one outl)ut provides a very compact

network with just 3 inputs which fan out iuto 35 fuzzy sets in the normal example.

In all experimeuts, after trainiug all of the remaining pixels are presented to the

network for classification. The image is 256 by 256, which means that the training set is

very small in relation to the total set of (i5,53(i l)ix(,ls.
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Table 1: Synthetic Colors for MR TissueClasses.

blue
yellow
red

orange
brown

purple

air

cerebrospinal fluid (csf)

white matter

gray matter
fat

pathology

4.1 Results

In Figure 6, we show the segmentation results for a patient with pathology (6a) using 6

outputs and a normal volunteer with 5 outputs (6b). In both cases the fuzzy outputs have

been made into one crisp color. Tile chosel_ color is the one associated with the output

which has the highest membership value. A color table for the figures is listed in Table 1.

The patient with pathology has received them° a11d radiation therapy which has eliminated

obvious tumors, but left some pathology.

Tile segmentations in Figure 6 are comparable to segmentations pronounced as good by

a team of radiologists [5]. The only real (lifference ix that some fat (brown) shows up within

the brain. However, this is a minor inconsistency. Tile case with pathology is segmented

as well as any of the other fuzzy unsupervised and non-fuzzy supervised techniques used in

[5]. In the lower left-hand part of the image the pathology is clearly defined and it can be

seen that there is also pathology in the top of the image and the lower right-hand part of

the image.

In Figure 7, we show tile results using only 1 output for the abnormal case (7a) and

normal case (7b). It can be seeH that the s¢'gmeldatiotls are much the same as before. The

fat in 7b is only weakly misclassified in this illstance and barely shows up in the segmented

image. These displays are fuzzy, which means that a pixel that strongly belongs to a class

gets a bright color value, while a pixel that weakly belongs to a class is a darker shade of

the same color. This generally shows the ulworlaillty in the segmentation better and tends
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a) b)

Figure 6: An _buormaland notrealsegmentationby SC,-netwith multiple outputs.
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to highlight borders [5].

5 Summary

SC-net is able to provide good segmentations of MR images of the brain. This is a domain

in which there is significant tissue overlap and tile boundaries are fuzzy. With the use of the

APG function the real-valued inputs are autonlatically partitioned into fuzzy sets. These

fuzzy sets are further refined after the RCA learning algorithm has been applied by the use

of DPM.

The results of the segmentation are comparable to those obtained by K nearest neigh-

bor (K-nn) (K=7) and Cascade Correlation [5] in another study of supervised learning

techniques. In the normal volunteer ilnag( _ the SC-net segmentation is a little clearer than

the k-nn segmentation with the one exception of misclassified fat. The fuzzy connectionist

representation of SC-net is very effective and fast in learning and classifying the MR images.

The rules that are generated after the use of GAC for the normal case numbered 9 and

13 for the abnormal case. They call be us_,d to provide a sense of what portions of which

features are important in the recognition process. ]n Figure 8, the 9 rules for a normal case

are shown. It can be seen that for output 5, fat, the 16 th partition of the T2 parameter

is crucial. For output 2, csf, around the 2 '''l proton density partition is the an important

indicator. Output 1, which is air, is very easy to distinguish by one rule. This is a known

fact since it essentially has a 0 return. The number of rules required to distinguish a class

can also be an indication of how diificult it is to recognize. Hence, the rules can have se-

mantic meaning and may be useful in tuning the system which is an advantage of a hybrid

representation.

Acknowledgements: Thanks to Roberl V('lthuizen for helping us with the image display

and providing an exl)ert interpretation of the images. This research was partially supported

by a grant from the Whitaker Foundation.
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Figul'c _ 7: All al_llormal ;,ll<l llornl_l _'gm_'lltatioll by S(l-lle! with 1 out l)ut.

26



Rule I: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[pl2]) = 1.000,

fuzzy(If[p5]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 2: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[plT]) = 1.000,

fuzzy(I1[p7]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 3: if and(fuzzy(I3[pl6]) = 1.000, fuzzy(I2[pl9]) = 1.000,

fuzzy(II[pl6]) = 1.000 ) then 0ut5 ( 1.000 ).

Rule 4: if and(fuzzy(I3[p2]) = 1.000, fuzzy(I2[p2]) -- 1.000,

fuzzy(II[plT]) = 1.000 ) then 0ut4 ( 1.000 ).

Rule 5: if and(fuzzy(I3[p15]) = 1.000, fuzzy(I2[p3]) = 1.000,

fuzzy(II[plT]) = 1.000 ) then 0ut3 ( 1.000 ).

Rule 6: if and(fuzzy(I3[p22]) = 1.000, fuzzy(I2[p3]) = 1.000,

fuzzy(If[p5]) = 1.000 ) then 0ut2 ( 1.000 ).

Rule 7: if and(fuzzy(I3[p17]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(If[p5]) = 1.000 ) then 0ut2 ( 1.000 ).

Rule 8: if and(fuzzy(I3[p19]) = 1.000, fuzzy(I2[p2]) = 1.000,

fuzzy(If[p6]) = 1.000 ) then 0ut2 ( 1.000 ).

Rule 9: if and(fuzzy(I3[p1]) = 1.000, fuzzy(I2[p1]) = 1.000,

fuzzy(Ii[pl]) = 1.000 ) then 0utl ( 1.000 ).

Figure 8: Rules for normal volunteer
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