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Abstract

The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped

members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for

output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the

sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller.

If N approaches 0% the global controller becomes a nonlinear controller while the local controller

disappears. If linear control rules are used, the global controller becomes a global two-

dimensional multilevel relay which approaches a global linear proportional-integral (PI)

controller as N approaches oo.

1. Introduction

Efforts have been made to clarify the fuzzy controller structures. The structure of a

nonlinear fuzzy controller was revealed using a novel method (Ying, 1987; Ying et al., 1990).

The work showed that a simplest possible nonlinear fuzzy controller was equivalent to a

nonlinear PI controller. In (Ying, 1991 ), the author analytically proved that the structure of a

typical nonlinear fuzzy controllers with linear fuzzy control rules is the sum of a global two-

dimensional multilevel relay and a local nonlinear PI controller. The author makes further

efforts in this paper to investigate the structure of fuzzy controllers using any type of fuzzy

control rules, covering a much broader range of fuzzy controllers.

2. Analytical Analysis of the Structure of the Fuzzy Controllers

2.1 Components of the Fuzzy Controllers

A fuzzy controller usually employs error and rate change of error (rate, for short) about a

setpoint as its inputs. That is

e = GE.e(nT) = GE[y(nT) - setpoint]

r* = GR-r(nT) = GR[e(nT) - e(nT-T)]
2.1)
2.2)
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where e(nT), r(nT) and y(nT) designate error, rate, and process output at sampling time nT (T is

sampling period), respectively. Error at sampling time (n-1)T is specified as e(nT-T). The

setpoint is the desired target of the process output and GE and GR are the scalars for the error
and rate.

Input fuzzy sets, "error" and "rate," are obtained by fuzzifying e* and r*. Assume there

are J (J > 1) members for positive "error" ("rate"), J members for negative "error" ("rate") and

one member for zero "error" ("rate"). Therefore, there are total

N - 2J+l (2.3)

members for the fuzzy set "error" ("rate"). Members of "error" ("rate") are represented as E i (Ri)

where -J < i < J. The membership functions corresponding to these members are denoted as

I.ti(x) which has a central value Xi. Define 2k__j=-L, X0=0, and _,j=L. Let the space between the

central values of two adjacent members be equal. Then the space, denoted as S, is:

L
S-'--

j (2.4)

and consequently the central value of I.ti(x) is Xi---i.S.

The l.ti(x) in this study is the commonly-used trapezoidal-shaped membership function.

Assume the membership functions for "error" and "rate" are identical, and specifically denote

I.ti(e*) as the membership function for E i and p.i(r*) as the membership function for R i. The

trapezoidal-shaped membership function I.ti(x) satisfies the following two conditions:

(1) For -J+l <i <J-l, (2.5)

"0,

s_lA[x-(i-1)S ],

 i(x) = 1,
1

S-A

0,

Ix - (i + 1)S],

x < (i - 1)S

(i-1)S<x<i.S-A

i-S-A<x<i.S+A

i.S+A < x<(i+l)S

x > (i + 1)S

(2) For i = J or i=-J,

t1
0,

= [x-(J-1)s],

[1,

x < (J - 1)S

(J-1)S<x<J.S-A

J.S-A <x <+o*
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lil__j(x) = S-A

9

[x-(-J+ 1)s],

An illustration of the definition is given in Fig. 1.

-_<x<-J.S+A

-J-S + A < x < (-J + 1)S

x > (-J + 1)S.

membership

1.0
i.t.j(x) 2A

jsyj ls i?s, ls l
-JS+A iS-A iS+A JS-A

l.tlCx)

v

JS x

Figure 1. Illustration of the definition of the trapezoidal-shaped membership function.

Denote U k as a member of the output fuzzy set "incremental output" ("output," for short)
and assume there are

M=2K+I (2.6)

such members where

K = Max {If(i, j)l}. (2.7)

f will be described below. The central values of the members of the fuzzy set "output" are

designated as _'k (-K < k < K) and let "/_K=-H, Y0=0 and YK=H. Further, let the space between

the central values of two adjacent members be equal. Consequently, the space, denoted as V, is

H
V-"--

K (2.8)

and the central value of a member of "output," U k, can be written as _ = k.V. The membership

functions of "output" are required to be regular, unimodal and symmetrical about its central

value "_. The shape of the membership functions of all the members is identical.
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N2fuzzy controlrulesareconstructedaccordingto thefollowing rule:

IF "error" is Ei and"rate" is Rj THEN "output" is Uk (2.9)

wherek = f(i, j). f, determined by the constructors of the fuzzy controllers, may be any

function as long as its value is always an integer with respect to the inputs, i and j, because the

index k must be an integer.

Zadeh fuzzy logic AND is used to execute the IF side of the fuzzy control rule in (2.9).

That is,

It(i, j) = Min(Iti(e*), Itj(r*)) (2.10)

where It(i, j) is the membership for the member U k obtained when E i and Rj are in the IF side.

The center of gravity of defuzzification algorithm is used. The scaled crisp incremental output,

denoted as GU.Au(nT), is calculated as

GU. Au(nT) = GU _ It(i'J)Yk
EIt(i,J) (2.11)

where GU is the scalar for the incremental output.

2.2 Main Results

Theorem 1.

The structure of the fuzzy controllers, constructed by the components defined in the

above section, is the sum of a global nonlinear controller (denoted as AUG(i, j)) and a local

nonlinear Pl-like controller (denoted as AuL(i, j)).

Proof.

Without losing generality, assume that,

iS < e* < (i+l)S (2.12)

jS _<r* _<Q+I)S.

Iti(e*), Iti+l(e*), Itj(r*) and Itj+l(r*), which are the respective memberships for the members E i,

El+ 1, Rj and Rj+ 1, are obtained by fuzzifying e* and r*. Membership for all other members of
"error" and "rate" is zero. Therefore, only the following four fuzzy control rules are executed:

If "error" is Ei+ 1 and "rate" is Rj+ 1 then "output" is Uk_

If "error" is Ei+ l and "rate" is Rj then "output" is Uk2

If "error" is E i and "rate" is Rj+ 1 then "output" is Uk3

If "error" is E i and "rate" is Rj then "output" is Uk4

(rl)

(r2)

(r3)

(r4)

where

kl=f(i+l,j+l), k2=f(i+l,j), k3=f(i,j+l ) and k4=f(i,j).
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Applying the equation (2.10) to each of the fuzzy control rules, we get

It(i+ 1, j + 1 ) = Min(iti+ 1(e*), I.tj+1(r'))

It(i+l, j) = Min(kti+l(e*), Itj(r'))

It(i, j+l) = Min(iti(e*), Itj+l(r*))

It(i, j) = Min(I.ti(e°), Itj(r*)).

(rl*)

(r2*)

(r3*)

(r4*)

In order to decide the outcomes of the Min operations in (rl °) to (r4*), the author configures a

square, which has 16 regions in it as shown in Fig. 2. In different regions, Iti(e*), Iti+l(e*),

Itj(r*) and Itj+ I (r°) have different relationships in terms of their magnitudes and consequently the

Min operations in (rl*) to (r4*) can be evaluated. For example, in region IC3, the following

inequalities can be obtained: Iti(e*) > Itj(r*), Iti+l(e*) _<Itj+l(r*), Iti(e*) < Itj+l(r*) and Itj(r*) <

lai+l(e*). As a result, It(i+l, j+l) = Iti+l(e*), It(i+l, j) = Itj(r*), It(i, j+l) = Iti(e*) and It(i, j) =

Itj(r*), based on (rl *) to (r4*). Similarly, (rl*) to (r4 °) for the rest of 15 regions can be
evaluated.

GR*r(nT)

l(J+l )S

tS

IC4 IC3

b+I)S-A

IC5 IC2

IC6 IC1

S+A

IC7 IC8

JS

Figure 2. Possible input combinations (IC) of scaled error, e* (GE-e(nT)), and scaled rate

change of error, r* (GR.r(nT)), of process output when both e* and r* are within the interval [-L,

LI.
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Substituting these outcomes into the defuzzification algorithm (2.11) and simplifying the

resulting expression, GU-Au(nT) for the 16 regions can be found. To illustrate this procedure

more clearly, let us take region IC3 again as an example.

Substituting t.t(i+l, j+l), t.t0+l, j), bt(i, j+l) and la(i, j) for the IC3 region into (2.11),

ktlxi+ 1(e") + k 21.1.j (r") + k3_t i (e") + k4l,t j (r*)
GU. Au(nT) = V. GU

_t_+l(e") + Ixj (r") + _t_ (e") + _tj (r")

(k 1 - k 3 )_ti. t (e") + (k 2 + k 4 - 2k 3)l.tj (r")
= k 3 -V'GU4 V-GU

Ixm (e") + I_i (e") + 2_tj (r")

=f(i,j+l)V.GU+{Ki[e(nT ) (i+0"5)S]+Kp[r(nT) (J+0"5)Sl+t_ }
GE _ GR

(2.13)

where

(2f(i,j + 1)- f(i + 1,j)- f(i,j))V.GR.GU- S

Kp = 2S- 2[GR •r(nT)- (j +0.5)S]

Ki--
(f(i + 1, j + 1)- f(i, j + 1))V. GE. GU- S

2S- 2[GR. r(nT)- (j + 0.5)S]

E=0.

Denote f(i, j+ 1)V-GU as AuG(i, j) and the rest of the expression as AUL(i, j). AuG(i, j) is a

global nonlinear controller because it calculates control action with respect to i and j. AUL(i, j) is

a local nonlinear PI-like controller because it calculates control action according to the relative

position of the current input state (e(nT), r(nT)) with respect to a dynamically changing point,

((i+0.5)S/GE, (j+0.5)S/GR). K v and K i are the proportional-gain and integral-gain, e is nonzero

in some IC regions.

Similar proof can be conducted for the rest of 15 regions.

Theorem 2 (General Limit Theorem for Control Rules).

(1)

When N approaches **,

AuL(i, j) = 0
(2.14)

and

(2) AuG(i, j) becomes

f(i,j).H .GU
Lira (2.15)i.j.J-.-_.. K
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Proof.

Proof is trivial.

Theorem 3.

If linear control rules are used, i.e., if.f(i, j) = -(i + j), then

(1) The global nonlinear controller becomes a global two-dimensional multilevel relay

UGH
Auc(i,j) =-(i+j+l) "---- (2.16)

N-1

(2) As N approaches ,,,,, the global two-dimensional multilevel relay becomes a global linear

PI controller:

GU- Au(nT) = -(K i -e(nT) + Kp.r(nT)) (2.17)

where

GR .GU .H
Kp = (2.18)

2L

GE. GU. H
K i =

2L

Proof.

(1) K = Max{If(i,j)l} = 2J = N- 1. f(i+l,j) =f(i,j+l) =-(i+j + 1). Therefore,

Au c (i, j) = -(i + j + 1)
H-GU

N-1
(2.19)

(2) See (Ying, 1991) for proof.

3. Conclusions

With fuzzy control rules being expressed by a function f, the author has been able to

analytically reveal the structure of the fuzzy controllers. The structure is the sum of a global
nonlinear controller and a local nonlinear Pl-like controller.

The work accomplished in this paper furthers understanding on the nature of fuzzy

controllers. Fuzzy controllers generally are nonfuzzy nonlinear controllers. Therefore,

nonlinear control theory can be utilized to solve fuzzy control problems, such as stability.
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