.

INSTITUTE FOR ASTRONOMY UNIVERSITY OF HAWAII 2680 WOODLAWN DRIVE HONOLULU HAWAII 96822

71. 0 12 1313 30 P. 50 S. MA

FINAL REPORT

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GRANT NAG 5-1823

STELLAR LYMAN ALPHA EMISSION AND THE LOCAL INTERSTELLAR MEDIUM

(NASA-CR-192635)STELLAR LYMANN93-22381ALPHA EMISSION AND THE LOCALINTERSTELLAR MEDIUM Final TechnicalReport, 15 Nov. 1991 - 14 Nov. 1992Unclas(Hawaii Univ.)50 p

G3/89 0151380

.

PRINCIPAL INVESTIGATOR: DR. THEODORE SIMON

1991 NOVEMBER 15 - 1992 NOVEMBER 14

I. Scope of Work

Under the auspices of this ADP program, a systematic study has been made of *IUE* archival images in order to extract spectra of the Lyman α region and to measure the stellar Lyman α flux for as many late-type stars as possible. The Lyman α resonance line is a powerful cooling channel for the hot chromospheres of solar-type stars, but has not been studied before in any systematic fashion across the H-R diagram. A major deterrent which has limited the use of Lyman α in the study of stellar chromospheres is the contamination of this spectral feature caused by the scattering of solar Lyman α photons in the Earth's exosphere. This scattered light is monochromatically imaged through the entrance slot of the *IUE* telescope and is superposed onto the stellar spectrum. In all but the shortest exposures with *IUE*, this "geocoronal emission" overwhelms the stellar flux and makes it impossible to directly measure the strength of the stellar chromospheric feature. The IUESIPS processing contains no provision for correcting standard G.O. output products for this contamination.

Our first task was to develop a scheme for removing the geocoronal flux, specifically from low-dispersion spectra taken with the Short-Wavelength Camera of *IUE*. The strategy we adopted was to fit a "sky model" to the spatially-resolved geocoronal emission observed through the large science aperture of the telescope, using the spectral orders on either side of the central ones where the stellar emission is concentrated. The model emission was then subtracted from the observed image, leaving behind the corrected stellar Lyman α emission. The details of this fitting procedure are described in the manuscript that accompanies this report.

Having devised a successful method for removing the unwanted geocoronal emission, we applied our correction procedure to 366 archival images which, from inspection of the "hotowrites in the *IUE* browse file, seemed especially promising. In this survey, we were eventually able to detect Lyman α emission in the spectra of 227 stars representing a wide range in age, temperature, and luminosity throughout the cool half of the H-R diagram. Previously fewer than 30 such stars had been measured, and so our study provides an order of magnitude increase in the numbers of stars having Lyman α flux measurements. We have made multiple measurements for 52 stars and also derived upper limits on chromospheric flux for another 48 stars.

II. Major Scientific Results

In our Lyman α survey, we have found more than a dozen late A and early F main sequence stars with chromospheric emission, showing that stars with very shallow convection zones can energize chromospheres much more powerful than the Sun's. This is not a result that was anticipated prior to *IUE*, that is, before we had the means of routinely exploring the far UV spectra of so many different classes of stars. It is one that has important implications for our understanding of stellar dynamos and of the physical processes believed to be responsible for outer atmospheric heating. For a subset of 149 stars in our sample, we were also able to make a further correction for the attenuation caused by the local interstellar medium and thus to derive the intrinsic stellar Lyman α flux. Based on this collection of fluxes, we have established empirical correlations between the strength of Lyman α and coronal X ray emission. Theoretical studies of these trends using stellar atmospheres and NLTE radiative transfer models should now provide a better understanding of how Lyman α is formed, of the structure of stellar chromospheres, and of the mechanisms by which chromospheres are heated for a wide range of different types of stars, including the Sun.

Our measurements -- just the detection of so many different stars -- also demonstrate that interstellar H I column densities along many lines of sight in the neighborhood of the Sun

are exceedingly low, so that many potential sources of EUV emission should be detectable by spacecraft working at wavelengths below Lyman α . The EUV region is one of the last remaining spectral windows through which astronomers have had few glimpses of the sky.

III. Papers Submitted for Publication

The following paper was submitted for publication and is now scheduled to appear in the 1993 May 1 issue of The Astrophysical Journal: "A Catalog of Stellar Lyman Alpha Fluxes," by Wayne Landsman and Theodore Simon. A copy of the manuscript accepted for publication is attached.

A Catalog of Stellar Lyman Alpha Fluxes

Wayne Landsman Hughes /STX, NASA/GSFC Code 681, Greenbelt, MD 20771

Theodore Simon¹ Institute for Astronomy, University of Hawai'i

To appear in the 1993 May 1 issue of The Astrophysical Journal

¹Guest Observer with the International Ultraviolet Explorer (IUE) satellite.

Abstract

We present a catalog of stellar Ly α emission fluxes, based on new and archival images obtained with the International Ultraviolet Explorer (IUE) spacecraft. The fluxes have been corrected for the contamination caused by diffusely scattered solar Ly α by means of an extraction procedure that utilizes spatial information perpendicular to the dispersion direction in the IUE line-by-line images. The catalog includes 227 stars with detectable Ly α emission fluxes, and upper limits on the Ly α emission flux for another 48 stars. Multiple flux measurements are given for 52 stars. We present a model for correcting the observed Ly α flux for attenuation by the local interstellar medium, and we apply this model to derive intrinsic Ly α fluxes for 149 catalog stars which are located in low H I column density directions of the local interstellar medium.

In our catalog, there are 14 late A and early F stars at $B-V \leq 0.29$ that show detectable emission at Ly α . We find a linear correlation between the intrinsic Ly α flux and C II 1335 Å flux for stars with B-V > 0.60, but the A and F stars deviate from this relation in the sense that their Ly α flux is too low. We also find a good correlation between Ly α strength and coronal X-ray emission. This correlation holds over most of the H-R diagram, even for the F stars, where an X-ray deficit has previously been found relative to the transition region lines of C II and C IV.

Subject headings: stars:chromospheres — ultraviolet:stars - ultraviolet: interstellar

1 Introduction

The Ly α line of neutral hydrogen is generally the brightest emission line in the farultraviolet spectra of late-type stars. There have been extensive studies of Ly α in the Sun (e.g., Fontenla, Reichman & Tandberg-Hanssen 1988), where its integrated flux is equivalent to the total solar emission at all wavelengths less than 1500 Å. Ly α directly or indirectly influences the way in which numerous other UV lines in the solar atmosphere are formed, and the sharp rise from chromospheric to coronal temperatures is due in large part to the loss of neutral hydrogen as an efficient cooling channel. In the case of other late-type stars, however, Ly α has been little studied, despite the fact that this line is routinely exposed during every observation with the short wavelength (SWP) camera of the IUE spacecraft.

There are two reasons for this relative neglect of the Ly α line in studies of stellar chromospheres. The first is that the observations are contaminated by diffuse emission due to solar Ly α , which is resonantly scattered by neutral hydrogen (H I) in the Earth's geocorona and in the interplanetary medium. Yet, as a number of authors have realized (Clarke *et al.* 1986; Rucinski, Vilhu, & Whelan 1985; Byrne & Doyle 1989), it is fairly straightforward to correct for this diffuse Ly α emission in IUE low-dispersion, large aperture images. The strength of the diffuse Ly α emission can be estimated by utilizing the spatial information in the IUE image perpendicular to the dispersion direction. An appropriately scaled blank sky image can be used to estimate the amount of diffuse Ly α emission which must be subtracted out to leave behind just the stellar Ly α flux.

The second, and more serious, obstacle to stellar Ly α studies is that, even for nearby stars, the intrinsic stellar emission is strongly attenuated by H I in the local interstellar medium (LISM). The LISM is a region of unusually low H I density (Bruhweiler & Vidal-Madjar 1987; Frisch & York 1991), and there appear to be few sightlines within 50 pc of the Sun where the H I column density exceeds 5×10^{18} cm⁻². Nevertheless, even a modest H I column density of 5×10^{17} cm⁻² would be enough to attenuate a Ly α profile like the Sun's by a factor of two. In principle, however, if the properties of the LISM along a line of sight are sufficiently well determined, then it should still be possible to compute an interstellar attenuation factor, and thereby recover the intrinsic Ly α flux of the star. This has been possible for a handful of stars (Neff *et al.* 1986; Linsky *et al.* 1992), where there are high dispersion Ly α observations of sufficient quality to allow modelling of the interstellar medium along the line of sight.

An alternative approach, in the absence of high dispersion spectra, is to to acquire low dispersion Ly α flux measurements of a statistically large number of stars. By comparing

stars at a variety of distances and directions, one should be able to draw conclusions about the behavior of Ly α across the HR diagram, and to obtain flux-flux relations between Ly α and other measures of stellar activity. Conversely, by comparing the Ly α flux of stars with ostensibly similar chromospheric activity levels, one should be able to derive information on the relative H I opacity of the LISM. With these goals in mind, we have undertaken a systematic study of the IUE archives for the purpose of obtaining the Ly α emission flux of as many stars as possible.

This paper presents a catalog of stellar Ly α fluxes based on our analysis of 366 IUE images. In this work, we were able to detect Ly α emission from 227 stars, a number that far exceeded our original expectations. In §2 we discuss the selection of stars in the catalog and give details of our data reduction. The observed Ly α fluxes are presented in §3, and in §4 we construct synthetic Ly α profiles and discuss the parameters that have the strongest influence on the amount of interstellar attenuation. Intrinsic Ly α fluxes are then estimated for 149 stars in the catalog which are at distances and in directions where the properties of the LISM are fairly well understood. Finally, in §5 we survey the behavior of Ly α across the cool half of the HR diagram, compare our Ly α data with other more extensively studied chromospheric and coronal diagnostics. Some results from a preliminary version of this catalog are given in Landsman and Simon (1991).

2 DATA REDUCTION

2.1 Selection of IUE Images

The IUE images used in this study were obtained from both our own programs (e.g., Simon & Landsman 1991) as well as from the IUE archives. Our goal was to identify every late-type stars which shows evidence of $Ly\alpha$ emission in at least one IUE image. We almost certainly missed a few stars, however, because of necessary shortcuts required to process the large amount of archival IUE data.

We began by searching the IUE logs for all low dispersion, large aperture SWP images of late-type stars with exposure times under 100 minutes. We did not include Herbig Ae stars or cataclysmic variables in the search, although extremely broad Ly α emission lines (presumably arising from an accretion disk) have been detected in IUE spectra of several of these stars (Blondel, Talavera, & Tjin A Djie 1992). Multiple and trailed exposures were also excluded because of the difficulty of subtracting out the diffuse Ly α emission from such images. The images with exposure times longer than 100 minutes were excluded from our search because they are nearly always saturated at Ly α by the diffuse sky emission. To minimize the amount of computer processing involved, we first visually inspected the photowrites of the candidate images that we had picked out in our search of the IUE logs. This inspection was limited to images from Goddard, since we did not have access to the photowrites of images taken at the VILSPA station. An image was selected for further processing if it showed stellar Ly α emission on the photowrite. Images which did not show Ly α emission were also selected for further processing if (1) the star was within 100 pc, and (2) other emission lines, such as C II and C IV were present on the photowrite. This second category of stars was included to identify stars that might be located behind unusually large column densities of H I.

There are 52 stars in our catalog for which we measured the Ly α flux on more than one image. These data can be used to test for variability of the Ly α flux, or to assess the repeatability of our flux measurements. However, the study of Ly α variability was not a major goal of this work, and our search of the IUE archives for multiple images was far from exhaustive. For example, Hallam, Altner, & Endal (1991) measured Ly α fluxes from 20 images of ϵ Eri, and 33 images of α Cen A, in their study of rotational modulation of chromospheric emission lines, whereas in our catalog we include just 6 flux measurements of ϵ Eri and 5 measurements of α Cen A.

The exposure times of many IUE archival SWP images were optimized for detecting weak emission in the chromospheric lines of either C II and C IV, and in these exposures the stronger Ly α feature is often saturated. There are twelve stars in our catalog in which the stellar Ly α feature is saturated on all existing IUE low-dispersion images. For seven of these stars, we have been able to estimate a Ly α flux from archival high-dispersion spectra, as described in §2.3. There remained five stars (α Phe, ζ And, α Ari, γ Phe, and μ UMa) in our catalog which showed strong stellar Ly α emission, but which were saturated all existing IUE high and low dispersion spectra. The saturated flux for these five stars was measured in the normal way but recorded as lower limit.

2.2 Subtraction of Diffuse Lya

Solar Ly α is scattered into the aperture of the IUE spectrograph by neutral hydrogen in the geocorona and in the interplanetary medium (Fricke and Ojanguren 1980). The natural linewidth of this diffuse emission is much less than the FWHM of the IUE low-dispersion spectrograph, so that its effect is to monochromatically "image" the 10" \times 21" aperture onto the SWP camera. In low dispersion, the major axis of the large aperture is oriented roughly perpendicular to the dispersion direction. The actual strength of the diffuse emission seen by IUE during any observation depends in a complicated way upon look direction, orbital height, and the time-varying intensity of the solar Ly α flux. However, the instrumental response to a *point* source is only ~ 5" FWHM (Cassatella, Barbero, & Benvenuti 1985), and so the diffuse emission recorded at the outer edges of the large aperture can be used to fit an empirical model of the diffuse emission across the entire entrance slot, including the central spectral orders where the stellar emission is concentrated. An SWP image of the sky background can then be scaled and subtracted to obtain a spectrum containing only stellar emission (see Figure 1).

We utilize the extended line-by-line (ELBL) file which consists of 110 different narrow spectra, extracted in a direction parallel to the dispersion. In the standard IUE point source extraction, lines 47-64 are integrated to obtain a stellar flux, and a background is determined from lines 29-38 and 73-82. In most cases, we determined the diffuse Ly α emission strength by a pixel by pixel least-squares fit of a sky image to the emission in lines 40-45 and 66-71. The actual line numbers used could be modified if the star had not been properly centered in the aperture. In addition to the scale factor, we include as free parameters shifts parallel and perpendicular to the dispersion, and a rotation of the sky image. These free parameters provide adjustments for thermal shifts between the stellar image and the sky background image. Each parameter (scale factor, rotation, and shift) is varied individually to minimize χ^2 , and then the process is repeated until changes in the value of χ^2 in successive iterations fall below a preset tolerance level.

Prior to a changeover in the IUESIPS reduction software on 1 October 1985, the standard line-by-line output file was sampled only half as often in the spatial direction for a total of 55 spectra (Muñoz-Piero 1986). Therefore, in our analysis, all of the raw images taken before 1 October 1985 have been reprocessed with the Dean Image Processing System (DIPS, Ahmad 1986), which emulates the standard IUE processing scheme in use in 1986.

The accuracy of the diffuse $Ly\alpha$ subtraction can be judged by the smoothness of the residual profiles both perpendicular and along the dispersion direction. In general, we find that the $Ly\alpha$ subtraction is most successful when the sky image used in the subtraction is taken within a couple of months of the stellar image. This result is consistent with the experience of Clarke *et al.* (1986) who noticed, in their study of the variability of the $Ly\alpha$ emission from Uranus, that the "fixed" noise pattern in the $Ly\alpha$ region of the camera seemed to vary on a timescale of months. Generally, during our own programs, we obtained one sky image during the same shift as the stellar exposures. However, since it proved impractical to obtain a "best" sky image for each of the many archival stellar images that we analyzed, we instead created two "average" sky profiles. The first was derived by coaddition of 10 sky images taken before SWP 29000, and a second one was obtained by coadding 4 sky images

taken after SWP 29000. Sky images taken before SWP 29000 gave poor sky subtraction results when used with more recent images; this effect may be related to the unexplained wavelength shifts which appeared in IUE images at this time (Thompson 1988). The most appropriate averaged sky profile was used to subtract the diffuse $Ly\alpha$ emission from each of our archival stellar images. In the few cases where the use of an average sky emission resulted in large residuals, we attempted to find sky images close in time to the stellar exposure.

The Ly α fluxes are corrected for the time change in the sensitivity of the SWP camera, using the factors given by Bohlin and Grillmair (1988) for large-aperture images, with an unpublished update through 1989.36. The temporal corrections at 1210, 1215 and 1220 Å were averaged together in order to smooth over the large time and wavelength variations which appear in the Bohlin and Grillmair tables near Ly α . The sensitivity at Ly α shows a 15% decrease by the year 1989.36, and we assumed no further sensitivity change for images taken after this time. The Ly α fluxes were also corrected for the small change of camera sensitivity with temperature (Imhoff 1986). The absolute calibration was obtained by spline interpolation in the table of Bohlin *et al.* (1980), which yielded an inverse sensitivity at 1215.7 Å of S⁻¹ = 3.28 × 10⁻¹⁴ erg cm⁻² Å⁻¹ s⁻¹ (FN s⁻¹)⁻¹. This factor (and our derived fluxes) would be only 2% smaller if we had instead adopted the absolute calibration of Bohlin *et al.* (1990).

After removing the diffuse Ly α emission, we integrated the line-by-line spectrum in the standard way to form a flux vs. wavelength spectrum. The Ly α fluxes were then measured by integration over a ~ 10 Å interval centered near 1215 Å; in practice, the integration limits were interactively determined for each image. Occasionally, as in the case of β Cas, emission from Si III near 1206 Å is sufficiently strong to blend with the blue wing of the Ly α emission, and cause an additional, but nevertheless minor, uncertainty in the flux determination.

2.3 High-dispersion images

Our reduction of the high-dispersion SWP images differs from the standard IUE processing in three ways: the background subtraction, the removal of the diffuse sky emission, and the absolute calibration. The background level was determined using a flux-free region away from the Ly α emission, since the interorder background can be contaminated by spillover from diffuse geocoronal Ly α . The diffuse sky emission was removed following the procedure outlined by Landsman *et al.* (1984), in which a sky-only spectrum is scaled and subtracted from the stellar spectrum. The scaling factor is determined by the requirement that zero flux remain in the interstellar core of the high-dispersion stellar profile after the subtraction. (In high-dispersion IUE images the large aperture is aligned *along* the dispersion direction, and there is very limited information on the strength of the sky emission perpendicular to the dispersion.) One difficulty with our adopted subtraction algorithm is that the high dispersion profile of the diffuse emission may vary with time, in particular, due to velocity shifts between the geocoronal and interplanetary emissions (Clarke *et al.* 1984). The most accurate subtraction of the diffuse $Ly\alpha$ emission will occur when the sky spectrum is taken under similar observing conditions and in a similar direction to the stellar spectrum (Catalano *et al.* 1991), but such ideal sky images are not generally available in the IUE archives. However, we do not expect our use of an average high-dispersion sky-only spectrum will introduce large errors in the net integrated $Ly\alpha$ stellar flux.

Considerable uncertainty still exists concerning the absolute calibration of IUE highdispersion emission-line fluxes at Ly α . The range of validity of the standard emission line calibration of Cassetella, Ponz, and Selvelli (1983) is from 1400 Å to 1975 Å. Ayres (1988a) tested whether the Cassetella *et al.* calibration could be extrapolated to Ly α by comparing high and low dispersion spectra of Capella obtained during a single IUE shift. He found the high-dispersion Ly α fluxes from the extrapolated Cassetella *et al.* calibration needed to be multiplied by 1.25 (corresponding to a sensitivity factor of S⁻¹ = 10.4 × 10⁻¹⁴ ergs cm⁻² Å⁻¹ s⁻¹ (FN min⁻¹)⁻¹) to agree with the low-dispersion fluxes. A limitation of the Ayres study is that the adopted low-dispersion Capella spectra included saturated pixels at Ly α . We adopt a high-dispersion sensitivity factor of S⁻¹ = 11.8 × 10⁻¹⁴ ergs cm⁻² Å⁻¹ s⁻¹ (FN min⁻¹)⁻¹ based primarily on our own comparison of high and low dispersion spectra of Procyon. No attempt was made to correct for any time dependence of the sensitivity of the SWP camera at high dispersion.

2.4 Comparison with other subtraction algorithms

Several other algorithms have been described in the literature for the removal of diffuse $Ly\alpha$ emission from low-dispersion IUE images. Catalano *et al.* (1986) fit an ellipsoid to the $Ly\alpha$ feature in the geometrically and photometrically corrected IUE image file. We cannot directly compare their results with ours because we do not know which images they used, and in any case there are only four stars in common. Neff *et al.* (1986) and Vilhu, Neff & Rahunen (1989) use the line-by-line image and model the sky emission with gaussian wings in the outer portion of the aperture, and linear interpolation across the center. We have used their algorithm on several of our images and find reasonable agreement with our own flux determinations.

Byrne and Doyle (1989, 1990) and Doyle, Panagi, & Byrne (1990) have recently published Ly α fluxes or upper limits for 26 M dwarf stars. They model the diffuse Ly α component by extracting a 1-d spectrum in the line by line image alongside the central star position; they then subtract this sky spectrum from the stellar spectrum. For two stars on their list (Gliese 54.1 and Gliese 900), we find no evidence of Ly α emission, with our upper limits being about equal to their claimed detection levels. There is reasonable agreement for the remaining stars in common, with up to a factor of two discrepancy for some of the fainter fluxes.

Böhm-Vitense and Woods (1983) gave Ly α fluxes for 23 F stars, of which 17 appear in the current study. Their corrections for diffuse emission were derived entirely from the shape of the wings of the 1-D Ly α profile. This procedure should not be as accurate as the methods that make explicit use of spatial information in the line-by-line file, because most of the diffuse emission occurs along the major axis of the large aperture, which lies perpendicular to the dispersion direction. There are four stars (δ Hor, 76 Tau, ξ Her, and θ Cyg) with published fluxes in their paper, for which we found no evidence of stellar emission in the line-by-line image; otherwise their fluxes are in fair (30% mean differences) agreement with ours.

3 Lyman Alpha Catalog

Table 1 lists 366 Ly α flux measurements for 275 stars. The stellar parameters given in the table were obtained from preliminary new editions of the Bright Star Catalog (Hoffleit and Warren 1991) and the Gliese catalog (Gliese and Jahreiss 1991), or the catalog of chromospherically active binary stars (Strassmeier *et al.* 1988). In the last column, we have converted the observed Ly α flux into a normalized flux, R(Ly α), by dividing by the apparent stellar bolometric luminosity. A double colon following a flux value indicates that there was significant noise present in the residuals after the diffuse Ly α emission had been subtracted, or that the flux value was measured from a high dispersion spectrum. A single colon indicates that the correction for diffuse Ly α was large but that the residuals following the subtraction were small. Only for a few of the brightest stars (e.g., Procyon, α Cen A) was the correction for diffuse Ly α emission negligible.

4 Intrinsic Lya Fluxes

High-dispersion stellar Ly α observations show a broad chromospheric Ly α emission line cut by a saturated interstellar H I absorption feature. The interstellar Ly α attenuation factor - i.e., the factor by which the intrinsic stellar Ly α flux is reduced by interstellar absorption - will depend in detail on both the stellar emission profile and the interstellar absorption profile. In this section, we estimate the Ly α attenuation factor for a subset of the stars in our catalog, relying on currently known properties of the LISM, and reasonable expectations concerning the appearance of the intrinsic stellar Ly α emission profiles.

Section 4.1 provides a brief summary of high-dispersion studies of solar and stellar Ly α profiles. In §4.2, we construct synthetic profiles, and consider how the Ly α attenuation factor depends on various stellar and interstellar parameters. This section also discusses the Ly α linewidth-luminosity (Wilson-Bappu) relation, which is critical for estimating the interstellar Ly α attenuation factor. Next, in §4.3 we consider the distribution of H I in the solar neighborhood. Based on this information, we estimate the intrinsic Ly α emission flux of 149 stars which appear to be located in directions of low H I column density.

4.1 Solar and Stellar Ly alpha

Solar observations have always been essential to an understanding of stellar chromospheres, because the Sun is the only star whose surface activity can be spatially resolved. Solar data are even more important for $Ly\alpha$ studies, because only in the Sun it is possible to observe the core of a $Ly\alpha$ profile without interference from intervening interstellar H I. Solar $Ly\alpha$ observations are contaminated by gecoronal *absorption* of the line core, but it is possible to model and correct for this absorption, (Fontenla, Reichmann, and Tandberg-Hannsen 1988).

The spatially integrated Ly α flux from the Sun can vary by a factor of two over a solar cycle (Pap, London and Rottman 1991), and from 5% to 40% over one solar rotation (Lean and Skumanich 1983). The quiet Sun Ly α profile is marked by a central self-reversal that dips to about 60% of the peak intensity, and by steep non-gaussian wings (Lemaire *et al.* 1978). Spatially resolved observations show considerable variation in both the amount of self-reversal, and ocassionally in the asymmetry and the shape of the line wings. The line self-reversal is usually, but not always, less prominent in solar active regions. The chromospheric network shows up clearly in high-resolution Ly α filtergrams of the Sun (Bonnet *et al.* 1980), while solar active regions tend to show a loop structure more characteristic of transition-region plasma. The recent solar transition regions models of Fontenla, Avrett, & Loeser (1991), which include the effects of ambipolar diffusion, place the formation of the Ly α core at 40,000 K, with the wings formed throughout the chromosphere down to the temperature minimum.

Most high-dispersion stellar Ly α studies have concentrated on deriving properties of interstellar H I and D I along the line of sight (e.g., Murthy *et al.* 1987). The main re-

sult concerning the intrinsic stellar Ly α emission has been the Wilson-Bappu or linewidthluminosity relation for Ly α , which we discuss in the next section, but some other results from high-dispersion studies can be noted. Linsky *et al.* (1992) obtained high spectral resolution $(\lambda/\Delta\lambda = 84,000)$, high signal/noise GHRS spectra of the Ly α profile of Capella (G0 III + G8 III). They found the Ly α wings of the dominant G0 star to be considerably shallower than the wings of the solar profile, and that a red asymmetry must exist in the intrinsic profile of either or both of the G star components. The only other star for which an intrinsic asymmetry is required to explain the observed Ly α profile is α Boo (McClintock *et al.* 1975). Woodgate *et al.* (1992) detected a rapid (3s) brightening in the red wing of the GHRS Ly α profile of the dMe star AU Mic, which they attribute to the effects of a proton beam during the impulsive phase of a flare. Neff *et al.* (1990) obtained IUE high-dispersion Ly α profiles of high-radial velocity stars, where the center of the Ly α emission is Doppler shifted away from the interstellar core. The observed profiles must still be corrected for absorption by the damping wings of the interstellar H I absorption, but the red wing of the intrinsic self-reversal does appear to be detected in the profile of the metal-poor G8 III giant δ Lep.

4.2 Synthetic Lya profiles

Figure 2 shows how the solar Ly α profile would appear if it were placed behind various H I column densities. For this calculation we have adopted the solar profile of Lemaire et al. (1978), which we parameterize with a gaussian self-reversal and piece-wise linear fit to the wings. We set the FWHM to 0.72 Å and the depth of the self-reversal to 80% of the peak intensity. The attenuated profiles are computed by multiplying this solar profile by the appropriate interstellar Voigt H I and D I profiles. In our nominal interstellar model, we assume a deuterium number abundance of 1.5×10^{-5} , a value supported by two recent studies (McCullough 1992, Linsky et al. 1992). Various temperature determination of the local interstellar gas are in the range 7000 - 12000 K (Frisch et al. 1990). We have selected a value of 7300 K (corresponding to a H I velocity dispersion of 11 km s⁻¹), based on the analysis of the interstellar profile observed toward Capella with GHRS by Linsky et al. (1992)

We then integrated the attenuated profiles over wavelength to derive the amount by which the intrinsic stellar flux is attenuated by interstellar absorption. Figure 3 illustrates the dependence of the Ly α attenuation upon adopted stellar and interstellar parameters. An increase in the interstellar H I velocity dispersion in our models to 14 km s⁻¹ reduces saturation effects in the absorption profile and increases the total attenuation. A similar effect should occur if the interstellar gas is characterized by multiple velocity components, as has been seen in certain directions in the LISM (Lallement, Vidal-Madjar, and Ferlet 1986). The interstellar attenuation is reduced when the intrinsic stellar profile is given a deeper self-reversal, down to 0.4 of the peak intensity, or if we impose a velocity shift of 20 km s⁻¹ between the centroid of the stellar emission and the local interstellar medium. (Note that the Ly α flux from a spectroscopic binary might show variations simply due to a periodic velocity shift with respect to the flow velocity of the LISM.) Given the close agreement of the curves drawn in Figure 3, we can say that none of these effects introduce a large uncertainty in estimating the total interstellar attenuation.

On the other hand, the total amount of interstellar attenuation does critically depend on the linewidth of the stellar emission, because the interstellar core absorbs proportionally less of a broad line than of a narrow line. This dependence of the attenuation at Ly α on the FWHM of the stellar emission line is illustrated in Figure 4. An H I column density of 5×10^{18} cm⁻², for example, attenuates the flux from a FWHM = 0.72 Å profile by a factor of ten, but that of a FWHM = 2.1 Å profile by only a factor of two. As an aid to the reader, Figure 5 provides a contour plot which allows the Ly α attenuation factor to be quickly estimated if the FWHM of the stellar emission line and the intervening interstellar H I column density are both known.

These calculations demonstrate that one has to estimate the linewidth of the stellar Ly α emission before one can estimate the interstellar attenuation. Fortunately, the Ly α line appears to obey a linewidth-luminosity relationship analogous to the Wilson-Bappu relations for Mg II and Ca II. A qualitative illustration of this effect in Ly α is shown in Figure 6, which displays high-dispersion Ly α profiles of five stars of absolute magnitude ranging from 6.1 to -0.5. The quantitative determination of the stellar Ly α linewidth is not straightforward because the peak intensity of the line is not directly observed. The interstellar core of the line must be modeled, and the observed profile mulitplied by e^{τ} to reconstruct the intrinsic stellar profile. The linewidth can then be measured on the reconstructed profile, after correcting for instrumental broadening. Neff *et al.* (1986) applied this technique to IUE high-dispersion profiles of ten stars to derive the following relationship

$$M_V = (33.2 \pm 3.7) - (12.4 \pm 1.5) \log W_0 \tag{1}$$

where M_V is the absolute visual magnitude and W_0 is the Ly α width line in km/s.

The least luminous star studied by Neff *et al.* was ϵ Eri at $M_V = 6.1$. Ambruster, Pettersen, and Sundland (1989) present evidence that the Mg II Wilson-Bappu relation is linear over a total range of 17 mag in M_V , down to the faintest star studied (AT Mic) at $M_V = 11.4$. Whether the Ly α Wilson-Bappu relation can be extrapolated to such faint magnitudes is less certain. The linewidths of both ϵ Eri and α Cen B ($M_V = 5.7$) are somewhat broader than predicted by the mean relation of Neff *et al.*, while high dispersion Ly α profiles of AU Mic (M_V = 8.6) obtained with IUE (Ayres *et al.* 1983) and with GHRS (Woodgate *et al.* 1992) appear to be at least as broad as the solar Ly α profile. A similarly broad Ly α profile is seen in the high-dispersion IUE spectrum (SWP 26672) of AT Mic. The IUE and GHRS profiles of these dMe stars are from large aperture observations which are contaminated by geocoronal Ly α , and so that it is not possible to reconstruct from these data the intrinsic stellar profile, for the purpose of extracting the Ly α linewidth. In the absence of any better option, we have, therefore, assumed a linewidth of 0.7 Å (173 km s⁻¹) for all stars with M_V > 5.5. When small-aperture GHRS Ly α profiles of the dMe stars become available, then a better determination of the linewidth can be made. Until then, however, the intrinsic Ly α flux of these stars should be considered extremely uncertain.

To compute a synthetic stellar Ly α profile of a given linewidth, we have applied a simple linear rescaling in wavelength to the solar Ly α profile. Real stellar profiles may be poorly represented by such a simple rescaling of the solar profile. Linsky *et al.* (1992) suggested that a power-law rescaling of the wavelength variable of the solar profile could better match the shallow Ly α wings of the Capella giants. The errors introduced by adopting an incorrect profile will increase at large column densities, when most of the observed flux arises from the far wings of the Ly α emission. Figure 3 illustrates this effect by comparing the attenuation of a solar-like profile with that of a gaussian profile of the same FWHM. The discrepancy in the attenuation factor between the two adopted profiles increases with N(H I), up to a factor of two discrepancy at 5×10^{18} cm⁻². Because of this uncertainty in the behavior of the Ly α wings, we attempt to recover the intrinsic Ly α flux only of stars in low column density directions of the LISM.

4.3 A Model of the LISM

Studies of the LISM show a striking anisotropy in the distribution of H I gas. For example, the H I column density estimated toward Altair (log N(H I) = 18.7 - 19.1; deBoer et al. 1986), at a distance of 5 pc, is larger than the column density determined toward β CMa (log N(H I) = 18.0 - 18.3; Gry, York, & Vidal-Madjar 1985), at a distance of 200 pc. In the low-density directions, the LISM appears to be devoid of H I beyond 2-3 pc from the Sun, with a total column density within a factor of two of 1.5×10^{18} cm⁻². Enhancements in the soft X-ray background in these directions suggest that the H I cavity is filled with a hot (T ~ 10^{6.0} K) plasma (Snowden et al. 1990).

In Table 2 we estimate the intrinsic Ly α flux of those stars which are either located in the low-density region of the LISM, or which have interstellar H I column densities available in the literature. We define the low-density region of the LISM to include those stars with distance (d, in pc) and galactic longitudes and latitudes (l, b) satisfying any of the following conditions: (1) b > 50, (2) 120 < l < 290 and d < 50, or (3) d < 5. The selected stars fall roughly within the low-density region outlined by Génova *et al.* (1990) on the basis of interstellar Mg II observations of 51 stars within 30 pc of the Sun. They also avoid all eight nearby interstellar clouds within 100 pc listed by Frisch & York-(1991), plus the nearby clouds found by Lilienthal and de Boer (1991) and Centurion & Vladilo (1991), as well as the directions found to have a multi-component ISM structure by Lallement, Vidal-Madjar, & Ferlet (1986).

The intrinsic Ly α flux for the 149 selected stars is computed as follows. First, the stellar absolute magnitude M_V is determined from either the stellar parallax, when known, or from spectral type information. This value of M_V is then used to compute an expected emission FWHM from the Ly α Wilson-Bappu relation discussed in §4.2. An emission profile is created by linearly rescaling a solar-type profile to this FWHM. The emission profile is multiplied by an ISM aborption profile with either a direct column density estimate from the literature or N(H I) = 1.5×10^{18} cm⁻². The shift between the centroid of the stellar emission and the interstellar H I absorption is computed using the stellar radial velocity, and the velocity vector of the LISM given in Frisch & York (1991). The depth of the self-reversal and remaining ISM parameters are set in accordance with the nominal model of §4.2.

The factors needed to recover the intrinsic Ly α flux for the stars listed in Table 2 range from ~ 1.4 for the nearby giants to ~ 5.3 for the dM stars. The uncertainty in the attenuation factor is probably about 20% for the giants ranging up to a factor of two for the dM stars. These uncertainties are estimated by assuming a 10% uncertainty in the stellar FWHM and a 50% uncertainty in the interstellar H I column density. When more than one Ly α flux measurement of a star is given in Table 1, we selected the highest quality measurement to derive the intrinsic Ly α flux in Table 2. The quality indicies given in Table 2 are derived by combining in quadrature the estimated measurement error and the uncertainty in the attenuation factor. An empirical determination of the uncertainty can be estimated using flux-flux plots, to be discussed in §5.1, which correlate the Ly α flux against other measures of stellar activity. The scatter in these relations can be used to provide an upper limit to the uncertainties in computing the interstellar attenuation factor, subject to the condition that the Sun should not occupy an anomalous position in the diagrams.

The H I gas which attenuates the stellar $Ly\alpha$ emission is also mainly responsible for absorption at wavelengths < 912 Å. Many of the stars in our $Ly\alpha$ catalog are likely to be also detected as EUV sources (Vedder *et al.* 1991), and it is of interest to compare the computed attenuation at $Ly\alpha$ with that expected in the EUV. Figure 4 compares the attenuation factor expected for stellar Ly α , with that expected at 300 Å, 400 Å, and 550 Å. To compute the EUV attenuation at wavelengths less than 504 Å, we have assumed a neutral helium abundance of N(H I)/N(He I) = 12 (Kimble *et al.* 1992). The EUV extinction has a steeper dependence on N(H I) because of saturation effects in the interstellar Ly α absorption line. Nevertheless, Figure 4 shows that measurements of both Ly α emission and EUV emission toward the same star can provide valuable constraints on the H I column density along the line of sight.

5 Discussion

This paper gives a catalog of "observed" Ly α fluxes for 275 stars in Table 1, and a catalog of approximate "intrinsic" Ly α fluxes in Table 2 for 149 stars for which an interstellar attenuation factor could be estimated. The intrinsic flux catalog should be used to obtain quantitative estimates of the radiative losses in Ly α , to study Ly α excitation of fluorescent lines, and to derive flux-flux relations between Ly α and other measures of stellar activity. However, there do exist some applications that require no knowledge of the model-dependent interstellar attenuation factor, and for these uses the "observed" catalog will suffice.

The simplest use of the observed flux catalog is to provide a firm lower limit on the intrinsic Ly α flux. The utility of this lower limit is demonstrated by the fact that more than half the stars in the catalog have a normalized Ly α flux that is larger than the Sun's. The mere presence of Ly α emission can also be a useful diagnostic in the late A-type stars where other, more common chromosphere diagnostics can fail because of a poor contrast with the photospheric continuum. The observed Ly α flux can also be used to monitor chromospheric variability (e.g., Vilhu, Neff and Rahunen 1989) since, for a given star, the interstellar attenuation factor remains constant. Finally, the observed flux catalog is useful for computing exposure times and selecting targets for future high dispersion Ly α observations.

5.1 Stellar Activity in the HR diagram

Figure 7 shows the observed normalized Ly α flux, R(Ly α) plotted as a function of B-V, while Figure 8 shows the same relation for the intrinsic Ly α fluxes. The general appearance of the two figures is similar, although the absolute flux levels in Figure 8 are 2-5 times larger due to the correction for interstellar absorption. In particular, Figure 8 shows that all main sequence stars have a normalized Ly α flux larger than that of the full-disk solar Ly α emission at solar minimum. The very weakest fluxes are associated with the coolest giant stars, which show only weak traces of chromspheric emission in all other UV lines accessible to IUE (Linsky & Haisch 1979) and no coronal X-ray flux to extremely low detection levels (Ayres, Fleming, & Schmitt 1991). In nearly all stars the radiation losses in Ly α are comparable to those in Mg II.

The top panels of Figure 7 and Figure 8 show that the spread in Ly α flux at a given color index is roughly a factor of 10 (1 dex) at 0.3 < B-V < 0.6 but a factor of 100 (2 dex) at B-V > 0.6 (i.e., among the late G-M stars). The brightest fluxes among the coolest stars belong to the spotted stars of the BY Dra class and of the RS CVn category. Both types of stars are extremely rare at earlier spectral types, which accounts for the narrower range in emission that we have found. Among the stars of solar-type, the spread in Ly α emission is linked to the rotation speed, and hence statistically to the age, of the star, as has been found previously for other chromospheric and coronal emissions (Simon *et al.* 1985).

A total of 14 stars with $B-V \leq 0.29$ were detected at $Ly\alpha$. However, the emission level of the detected stars is generally lower than that found for cooler stars, and numerous stars with $B-V \leq 0.29$ are not detected at $Ly\alpha$. This behavior is similar what we have previously reported for C II emission (Simon and Landsman 1991). The agreement is important because the observational selection effects are quite different for the two lines. The detection of C II in these hotter stars is limited by blending with the photospheric absorption features, while at $Ly\alpha$, where the contrast with the continuum is much larger, the detection is limited chiefly by the effects of genoral contamination and interstellar absorption.

5.2 Correlations with C II and X-ray emission

Flux-flux plots of many of the chromospheric and transition lines observed in IUE spectra show tight power-law relationships independent of spectral type or of binarity (Ayres, Marstad, and Linsky 1981, Oranje 1986). A flux-flux relationship between $Ly\alpha$ and a different emission line, unaffected by interstellar absorption, would be a powerful diagnostic for estimating interstellar H I column densities. In the Sun, variations in the solar $Ly\alpha$ flux are known to correlate well with variations in C II and C IV both in the temporal variation of full disk fluxes (Mount & Rottman 1985), and in the spatial variations of different regions across its surface (Schrijver *et al.* 1985).

The most useful spectral line to compare with $Ly\alpha$ may be C II 1335 Å which is thought to be formed in the high chromosphere at temperatures near 15,000 K. The C II doublet is uncontaminated by blending with other lines at the IUE low-dispersion resolution (Capelli et al. 1989), and the proximity of C II in wavelength to $Ly\alpha$ means that it has a similar high contrast with the photospheric continuum in the F- and later type stars. The C II flux can often be measured on the same IUE image as the Ly α flux, so that any effects of chromospheric variability are minimized. Figure 9 shows the ratio of $f(Ly\alpha) / f(C \Pi)$ for stars with good measurements in both lines, where the observed Ly α flux has been used uncorrected for interstellar absorption. A few of the C II measurements are new, but most have taken from the literature (Simon and Landsman 1991; Simon and Drake 1989; Simon and Fekel 1987). The singular position of the Sun in this figure highlights the presence of interstellar attenuation of the Ly α fluxes. This was not as evident in the plot of normalized fluxes, Figure 8, because the attenuation of the stellar Ly α fluxes is partially compensated by the fact that most of the catalog stars are more chromospherically active than the Sun. The position of the Sun does not appear anomalous when intrinsic Ly α fluxes are used (Figure 10) which provides evidence that our correction scheme for interstellar absorption is approximately right.

In Figure 10, the ratio of $f(Ly\alpha)/f(C \Pi)$ appears to increase with B-V up until B-V = 0.6 where it approximately levels off. This trend with B-V could, in principle, be due to an improper correction for interstellar absorption, because the correction tends to be smaller for the earlier type stars, which are on average more luminous, and are thus predicted to have broader Ly α lines. However, the larger line widths predicted for the A-F stars are confirmed for Procyon, β Cas, and α Aql, where high dispersion spectra are available. In addition, the same trend with color appears, although not as strong, in the plot of uncorrected Ly α fluxes (Figure 9), and so cannot be entirely an artifact of the adjustments we have made for interstellar absorption.

Because of the dependence of $f(Ly\alpha)/f(C II)$ on B-V color, there is no correlation between the strength of these two lines among stars with B-V < 0.6. However, Figure 11 shows that a good nearly, linear correlation exists for stars with B-V > 0.6. This is in agreement with the results of Schrijver *et al.* (1985) who found a linear correlation between Ly α and C II in selected solar regions.

The rapidly rotating G giant ψ^3 Psc (G0 III, $v \sin i = 95$ km s⁻¹), is conspicuous in Figure 11 by its low flux in Ly α . Both this star, at $f(Ly\alpha)/f(C \Pi) = 1.9$, and 35 Cnc (G0 III, $v \sin i = 87$ km s⁻¹) at $f(Ly\alpha)/f(C \Pi) < 2.8$, are conspicuous in Figure 9 by their very low flux ratios. Although the interstellar column density toward 35 Cnc (l = 206, b = 31, $d \sim 120$ pc) is uncertain, ψ^3 Psc (l = 129, b = -43, $d \sim 75$ pc) is located in the low density region of the LISM and so heavy interstellar attenuation is unlikely to account for the anomalous position of this star. An intruiging possibility is that the weakness of Ly α , for ψ^3 Psc at least, is related to the enormous X-ray deficit (relative to transition region line fluxes) found for this star by Simon and Drake (1989). It is interesting, although perhaps only coincidental, that the $R(Ly\alpha)$ value in ψ^3 Psc is comparable to the flux observed for much more evolved, slowly rotating red giants located to the right of the Hertzprung gap.

The low values of $f(Ly\alpha)/f(C II)$ exhibited by the F stars in our sample, as well as by the pair of rapidly rotating G giants, coupled with the X-ray deficit reported for these stars (Simon & Drake 1989), suggested to us that Ly α may correlate better with the X-ray flux than with C II. The number of stars with X-ray measurements is currently not as large as the number with C II data, but we were able to find published X-ray fluxes for 58 stars from Table 2, i.e., for stars that also have intrinsic Ly α flux determinations. As demonstrated by Figure 12, Ly α correlates very well with X-ray emission. From this log-log plot we derive a power-law relation with an exponent of 1.52 (±0.11). For comparison, Schrijver *et al.* (1985) found a power-law exponent of 1.40 when comparing the Ly α and X-ray flux of 12 different solar regions (although we could not confirm this relation using their tabulated fluxes). Exceptions to the Ly α - X-ray correlation exist only for the A stars (α Aql and α Cep), and for the cool giants, consistent with a lack of high temperature material in both groups of stars.

Additional evidence that the coronal X-ray flux correlates better with Ly α than it does with C II is provided by the detailed study of the GHRS Ly α profile of Capella binary by Linsky *et al.* (1992). These authors estimated that the Ly α luminosity of the G0 star is about 1.6 times the luminosity of the G8 star. Ayres, Schiffer, & Linsky (1983) estimated that the soft X-ray luminosities of the two components were approximately equal. In contrast, Ayres (1988b) found a flux ratio about 3 for low excitation lines like Mg II, and about 10 for the transition region lines of C II and C IV.

Finally, the correlations found between the Ly α and C II, or between Ly α and X-ray emission, can be used, in principle, to derive approximate H I column densities in the LISM. The C II or X-ray emission can be used to predict the intrinsic stellar Ly α flux, and the interstellar attenuation factor determined by comparison with the observed Ly α emission. We defer a complete discussion of this method to a subsequent paper, but give here an example that also justifies the some of the assumptions used in Section 4.3. Figure 13 shows a Ly α - C II flux-flux plot for those stars in the "high-density" region of the LISM, i.e., the stars for which we did not estimate an H I column density in Section 4.3. In this example, we assumed that N(H I) = 1.5×10^{18} cm⁻², the same column density assumed for stars in the low-density region. Figure 13 shows that this is a bad assumption for the stars in the high-density region, and that larger interstellar column densities must exist toward these stars if they are to satisfy the flux-flux relation determined in Figure 11.

6 Future Work

There are several areas of future observational work which would contribute to the study of Ly α emission in late-type stars. Many of the brightest Ly α sources in the sky, such as HR 1099 and α Tau, have poorly determined absolute Ly α fluxes because all existing IUE low-dispersion images of these stars are saturated at Ly α . Additional IUE low-dispersion observations with exposure times optimized for the Ly α feature would provide more accurate fluxes for these stars. Additional high-dispersion Ly α observations with GHRS or IUE would better constrain the Ly α Wilson-Bappu relation and test its range of validity. A more detailed H I column density map of the LISM, and thus more accurate estimates of the interstellar Ly α attenuation, should be possible using absorption line studies with GHRS and from EUV studies with the recently launched EUVE satellite. Finally, the many more X-ray observations that will ultimately be provided by the ROSAT All Sky Survey will lead to a much better test of the correlation between Ly α and X ray fluxes presented in this work.

This research was supported in part by NASA grant NAS 5-30446 to Hughes/STX, and by NASA grants NAG 5-146 and 5-1823 to the University of Hawaii.

REFERENCES

- Ahmad, I. A., 1986, DIPS Conversion Documentation (Bethesda, MD: Imad-ad-Dean, Inc.) IAD 86-1A
- Ambruster, C.W., Pettersen, B.R., & Sundland, S.R., 1989, A&A, 208, 198
- Ayres, T. 1988a, IUE Newsletter No. 35, 137
- Ayres, T. 1988b, ApJ, 331, 467
- Ayres, T.R., Eriksson, K., Linsky, J., & Stencel, R.E. 1983, ApJ, 270, L17
- Ayres, T.R., Fleming, T.A., & Schmitt, J.H.M.M. 1991, ApJ, L45
- Ayres, T.R., Marstad, N.C., & Linsky, J.L. 1981, ApJ, 247, 545
- Ayres, T.R., Schiffer, F.H., & Linsky, J.L. 1983, ApJ, 272, 223
- Basri, G.S., Linsky, J.L., Bartoe, J.-D.F., Brueckner, G., & Hoosier, M.E.V, 1979, ApJ, 230, 924
- Blondel, P.F.C., Talavera, A. & Tjin A Djie, H.R.E. 1992, A&A, in press
- Bohlin, R.C. & Grillmair, C.J. 1988, ApJS, 68, 487
- Bohlin, R.C., Harris, A.W., Holm, A.V., & Gry, C. 1990, ApJS, 73, 413
- Bohlin, R.C., Holm, A.V., Savage, B.D., Snijders, M.A.J., & Sparks, W.M. 1980, A&A, 85, 1
- Böhm-Vitense, E. & Woods, J. 1983, ApJ, 265, 331
- Bonnet, R.M., Bruner, E.C., Acton, L.W., Brown, W.A., & Decaudin, M. 1980 ApJ, 237, L47.
- Bruhweiler, F.C., & Vidal-Madjar, A. 1987, in Exploring the Universe with the IUE Satellite, ed. Y. Kondo, (Dordrecht: Reidel), 467
- Byrne, P.B., & Doyle, J.G. 1989, A&A, 208, 159
- Byrne, P.B., & Doyle, J.G. 1990, A&A, 238, 221
- Cappelli, A., Cerruti-Sola, M., Cheng, C.C., & Pallavicini 1989, A&A, 213, 226
- Cassatella A., Barbero, J. & Benvenuti, P. 1985 A&A, 144, 335
- Cassatella A., Ponz, D., & Selvelli, P.L. 1983, IUE Newsletter No. 21, 46
- Catalano, S., Bruno, M. & Marilli, E. 1986, Advances in Space Research, 6, No. 8, 207
- Catalano, S., Marilli, F., Freire Ferrero, R., & Gouttebroze, P. 1991, A&A, 250, 573
- Centurion, M., & Vladilo, G. 1991, ApJ, 372, 494

- Clarke, J., Bowyer, S., Fahr, H.J., & Lay, G., 1984 A&A, 139, 389
- Clarke, J. et al. 1986, J. Geophys. Res., 91, 8771
- deBoer, K.S., Lenhart, H., van der Hucht, K.A., Kamperman, T.M., Kondo, Y., and Bruhweiler, F.C. 1986, A&A, 157, 119
- Doyle, J.G., Panagi, P., & Byrne, P.B. 1990, A&A, 228, 443
- Fontenla, J., Reichmann, E.J., & Tandberg-Hanssen, E. 1988, ApJ, 329, 464
- Fontenla, J.M., Avrett, E.H., & Loeser, R. 1991, ApJ, 377, 712
- Fricke, K. H., & Ojanguren, O. 1980, in Proc. 2d European IUE Conf., ed. B Battrick & J. Mort (ESA SP-157), 3
- Frisch, P.C., Welty, D.E., York, D.G., & Fowler, J.R. 1990, ApJ, 357, 514
- Frisch, P.C., & York, D.G. 1991, in Extreme Ultraviolet Astronomy, ed. R. Malina, & S. Bowyer, (New York, Permagon Press), 322
- Génova, R., Molaro, P., Vladilo, G. & Beckman, J.E. 1990, ApJ, 355, 150
- Gliese, W., & Jahreiss, H. 1991, Catalogue of Nearby Stars, prelim. 3rd edition, Astronomical Data Center CDROM (NASA, National Space Science Data Center)
- Gry, C., York, D.G., Vidal-Madjar, A. 1985, ApJ, 296, 593
- Hallam, K.L., Altner, B., & Endal, A.S. 1991, ApJ, 372, 610
- Hoffleit, D. & Warren, W.H. Jr. 1991, The Bright Star Catalogue, prelim. 5th edition, Astronomical Data Center CDROM (NASA, National Space Science Data Center)
- Imhoff, C.L. 1986, IUE Newsletter No. 31, 11
- Kimble, R.A. et al., 1992, ApJ, in press
- Lallement, R., Vidal-Madjar, A., & Ferlet, R. 1986, A&A, 168, 225
- Landsman, W., & Simon, T. 1991, ApJ, 366, L79
- Landsman, W.B., Henry, R.C., Moos, H.W., & Linsky, J.L., & Russell, J.L. 1984, ApJ, 285, 801
- Landsman, W.B., Murthy, J., Henry, R.C., Moos, H.W., Linsky, J.L. & Russell, J.L. 1986, ApJ, 303, 791
- Lean, J.L. & Skumanich A., 1983, J. Geophys. Res. 88, 5751
- Lemaire, P. Charra, J., Jouchoux, A., Vidal-Madjar, A., Artzner, G.E., Vial, J.C., Bonnet, R.M., & Skumanich, A. 1978, ApJ, 223, L55

- Lilienthal D. & de Boer, K.S. 1991 A&AS, 87, 471
- Linsky, J.L., Brown, A., Gayley, K., Diplas, A., Savage, B.D., Landsman, W., Shore, S.N., & Heap, S.R. 1992, ApJ, in press
- Linsky, J.L, & Haisch, B.M. 1979, ApJ, L27
- McClintock, W., Linsky, J.L., Henry, R.C., Moos, H.W., & Gerola, H. 1975, ApJ, 202, 165.
- McCullough, P.R. 1992, ApJ, 390, 213
- Mount, G.H. & Rottman, G.J. 1985, J. Geophys. Res., 90, 13031
- Muñoz-Peiro, J.R. 1986, IUE Newsletter No. 27, 27
- Murthy, J., Henry, R.C., Moos, H.W., Landsman, W.B., Linsky, J.L., Vidal-Madjar, A., & Gry, C. 1987, ApJ, 315, 675
- Neff, J.E., Landsman, W.B., Bookbinder, J.A., & Linsky, J.L. 1990, in Evolution in Astrophysics, (ESA SP-310), 341
- Neff, J.E., Linsky, J.L., Landsman, W.B., & Carpenter, K.G., 1986, in New Insights in Astrophysics, (ESA SP-263), 669
- Oranje, B.J. 1986, A&A, 154, 185
- Pap, J.M., London, J., & Rottman, G.J. 1991, A&A, 245, 648
- Rottman, G.J. 1981, J. Geophys. Res., 86, 6697
- Rucinski, S.M., Vilhu, O., Whelan, J.A. 1985, A&A, 143, 153
- Schrijver, C.J., Zwaan, C., Maxson, C.W. & Noyes, R.W. 1985, A&A, 149, 123
- Simon, T., & Drake, S.A., 1989, ApJ, 346, 303
- Simon, T., & Fekel, F.C. 1987, ApJ, 316, 434
- Simon, T., Herbig, G., and Boesgaard, A.M. 1985, ApJ, 293, 551
- Simon, T., & Landsman, W.B., 1991, ApJ, 380, 280
- Snowden, S.L., Cox, D.P., McCammon, D., & Sanders, W.T. 1990, ApJ, 354, 211
- Strassmeier, K.G., Hall, D.S., Zelik, M., Nelson, E., Eker, Z. & Fekel, F.C. 1988, A&AS, 72, 291
- Thompson, R. 1988, IUE Newsletter No. 35, 108
- Vedder, P.W., Vallerga, J.V., Jelinsky, P., Marshall, H.L., & Bowyer, S. 1991, in Extreme Ultraviolet Astronomy, ed. R. Malina, & S. Bowyer, (New York, Permagon Press), 120

Vilhu, O., Neff, J.E. & Rahunen, T. 1989, A&A, 208, 201

Woodgate, B.E., Robinson, R.D., Carpenter, K.G., Maran, S.P., & Shore, S.N. 1992, ApJ, 397, L95

This manuscript was prepared with the AAS WGAS LATEX macros v2.2

Figure Captions:

Figure 1: Our method of removing diffuse $Ly\alpha$ emission is illustrated for the 70 minute IUE observation SWP 28544 of the FOIV star, HR 2740. Figure 1a shows the original lineby-line image. The large aperture is illuminated by diffuse $Ly\alpha$, while the (scattered light) continuum of HR 2740 is concentrated toward the center of the aperture. Figure 1b shows the same region after a sky-only image has been scaled to match the edges of the aperture, and then subtracted off. Figures 1c and 1d show the resulting 1-D spectrum before and after subtraction of the diffuse component.

Figure 2: A model solar Ly α profile is shown as it would appear if observed through H I column densities of 0, 0.5, 1, 2, and 5 ×10¹⁸ cm⁻².

Figure 3: The solid line shows that amount a solar-type Ly α profile would be attenuated as a function of N(H I), using the nominal parameters described in the text. The remaining lines show the influence of changing a single parameter in the nominal model. The dotted line shows attenuation expected when a velocity shift of 20 km s⁻¹ is imposed between the stellar and interstellar centroids. The short dashed line shows the effect of increasing the interstellar velocity dispersion to 14 km s⁻¹. The dot-dash line shows the change caused by increasing the strength of the intrinsic self-reversal, to 40% of the peak intensity. The long dashed line shows the effect of representing the stellar emission by a gaussian profile of the same FWHM as the solar-type profile

Figure 4: The solid lines show the attenuation factor of the integrated Ly α flux of a stellar emission profile as a function of N(HI), for an assumed emission FWHM of 0.72 Å, 1.5 Å, and 2.1 Å. The dotted lines denote the EUV attenuation as a function of N(H I) at 300 Å, 400 Å, and 550 Å.

Figure 5: A contour plot showing the lines of constant attenuation factor computed for synthetic Ly α profiles having the nominal stellar and interstellar parameters discussed in the text. This plot allows the interstellar Ly α attenuation factor to be estimated if the interstellar column density and the stellar emission FWHM are known.

Figure 6: IUE Ly α high dispersion profiles are shown for five stars of various absolute magnitudes. The profiles of α Cen A and α Cen B are taken from Landsman *et al.* (1986) and are co-additions of several IUE images. The profile of α CMi is taken from the IUE small aperture image SWP 26917. The profiles of β Cet and γ Cru are taken, respectively, from the IUE large-aperture images, SWP 14786 and SWP 44137, with diffuse Ly α emission removed as explained in the text. Figure 7: The observed normalized Ly α fluxes from Table 1, are shown as a function of B-V, (a) for B-V < 0.50 and (b) for B-V > 0.50. Stars of luminosity class V or IV-V are plotted as inverted triangles, those of class IV as triangles, and the more luminous stars as circles. Open symbols represent more uncertain measurements. Note much larger range of normalized Ly α fluxes found in (b) for the cooler stars. The solid error bar at B-V = 0.66 shows the range of full-disk normalized Ly α fluxes observed over a solar cycle according to Lean and Skumanich (1983). The dotted line error bar at B-V = 0.66 shows the range of Ly α intensities observed in individual solar features (e.g., dark points and plages) reported by Basri *et al.* (1979).

Figure 8: Same as Figure 7 except that the intrinsic (i.e. corrected for interstellar absorption) Ly α fluxes from Table 2 are displayed.

Figure 9: The observed $Ly\alpha/C \prod$ flux ratio is shown as a function of B-V. The meaning of the symbols is the same as in Figure 7. The range of this ratio in the Sun $(20 < f(Ly\alpha)/f(C \prod) < 38)$ is also indicated at B-V = 0.66, and is taken from the full disk measurements of Rottman (1981) and Mount and Rottman (1985) for solar minimum and maximum.

Figure 10: Same as Figure 9 except that the Ly α flux values have been corrected for interstellar absorption. The low value at B-V = 0.68 is the star ψ^3 Psc.

Figure 11: The normalized intrinsic Ly α flux is plotted against the normalized C II flux for the stars with B-V > 0.6. The meaning of the symbols is the same as in Figure 7. The dotted line shows the best-fit relation log R(Ly α) = 1.81 + 0.99(±0.04) × log R(C II). The regression excluded the upper and lower limits, the giants with B-V > 1.0, and the star ψ^3 Psc.

Figure 12: The normalized X-ray flux is plotted against the normalized Ly α flux. The meaning of the symbols is the same as in Figure 7. The dotted line shows the best-fit relation log R(Xray) = 1.79 + 1.52(±0.11) × log R(Ly α). The figure and the regression exclude the stars with B-V < 0.30 and the giants with B-V > 1.0.

Figure 13: The normalized Ly α flux of the stars with B-V > 0.6 in the "high-density" region of the LISM is plotted against their normalized C II flux. The meaning of the symbols is the same as in Figure 7. The Ly α fluxes have been corrected for an interstellar attenuation of 1.5×10^{18} cm⁻², which is the same column density assumed in this paper for the stars in the "low-density" region. The dotted line shows the best-fit regression determined in Figure 11 for the stars in the low-density region of the LISM. The Ly α fluxes of the star in the high-density region deviate systematically below the regression line, confirming our assumption that the Ly α attenuation toward these stars is indeed larger.

							111	D(1 + 1)
SLAF	HD	Spectral Type	v	8 - V	Image	rsponure (n)	(10 ⁻¹⁴)	(10 ⁻¹)
d T	97810	A7 V	4 80	0.15	4446	1020	<140	< 50
0" R4	2/019		4.01	0.16	15180	1080	<250	<42
DU UMIK	74844	A7 IV	1.01	0.10	31955	120	< 1540	< 120
L UMA	10011	A7 81	3.03	0.19	2395	1440	< 250	<17
7 1900	14(104	~	0.00	•	(3427*	6000	1500	12
					23043*	15000	1900	16
a A al	187649	47 V	0 77	0 22	28546	180	< 1000	< 33
angi	101014	A1 V	•	0.00	29566	180	< 6940	<58
					33604	120	2400	20
. (202260	47 V	7 44	0 22	28560	450	110:	4 2
a txp	3112	ATIV	6.13	0.23	31882	9000	83::	98
22 Boo	126661	FOm	5.39	0.23	31248	1200	<87	< 52
18 Ari	17093	ATV	5.18	0.24	42318	1800	<77	< 38
45 Ori	37077	F0 111	5.26	0.24	42312	2700	<100	< 55
49 UMa	95310	FO V .	5.08	0.24	4009	1500	<85	< 38
4 ^L Nor	143474	A7 1V	4.63	0.24	42310	1200	<66	<20
9 Lac	214454	A8 IV	4.63	0.24	42765	2100	<43	<13
ωΛατ	222345	F0 IV	5.00	0.24	42766	2880	< 98	<11
				0.96	42298	3600	44::	24
κ' Tau	27046	AT V	5.28	Ų.25	42764	4500	<27	<11
					9874	1200	98:	25
71 Tau	28052	F0 V	4.49	0.25	32102	720	200::	50
					32140	2100	83:	21
IIR 1507	30034	FO V	5.40	0.25	42299	4200	43::	26
HR 3350	71935	A9-F0 111-IV	5.09	0.25	31883	4320	<55	<24
HR 4017	88824	A7 V	5.28	0.25	28543	8400	<38	< 20
HR 4086	90132	A8 V	5.33	0.25	30296	4680	<46	< 26
30 LMi	90277	FO V	4.74	0.25	32151	1020	59::	19
v Tau	28024	A8 Vn	4.28	0.26	2672	1200	<140	< 30
83 Tau	28556	FO V	5.40	0.26	32101	1200	< 180	<110
HR 1480	29499	A5m	5.39	0.26	27890	3600	< 52	< 31
64 Eri	32045	FO IV	4.79	0.26	42300	2400	<64	<22
µ¹ Dra	159541	A6 V	4.88	0.26	1408	600	<61	<22
	100.70	EA IV	7 64	0.26	∫ 6181	119	<210	< 23
¢ Ser	197810	FUIV	а. С	0.20	6182	599	<200	<21
28 Aql	181333	F0 111	5.53	0.26	31957	1080	<130	< 85
η llor	16555	A6 V	5.31	0.27	29564	6000	< 37	< 20
15 UMa	78209	F0 IVm vs	4.48	0.27	31956	360	<490	<120
	100060	F0-	4.05	0.97	132103	1180	<13	< 17
14 Coin	108283	l'Up	4.93	0.27	40767	2400	< 43	<11
o Oct	177482	FU 111	0.4/	0.27	92101	2400	<50	<13
rγ Ind	197157	A/ 111-IV-A9	4.91	0.27	20040	60	<170	< 10
	10211	FO V	2.94	: 0.29	22120	00	150	84
α Πέγι	12311	FUV	2.00	0.20	22135	000	190.	7.0
		50 V	5.00	0.00	1 3 3 0 0 3	1500	<110	- 81
51 Iau	2/1/6	FUV	0.00	0 0.20	32104	1300	~10	< 27
57 โลน	27397	FUIV	3.35	9 U.20	40307	2400	170	67
51 Eri	29391	FUV	ə.2. F. D.	0.28	12301	1440	1.00.	71
8 Dra	112429	FUV	0.2	0.20	33000	2640	< 69	~13
44 Opli	15//92	AJIN	9.1	1 U.20	3047-3	600	280	<120
111 100	175938	A3 V 50 IV	0.3	0.20	23043	720	~200	< 47
	208430		4.10	0.28	32105	480	< 140	< 27
	211330		6.1	7 0.20	27891	3600	< 97	<110
111 1500	31230	6314	0.0	0.25	(29565	2040	41:	5.6
v UMa	84999	F2 IV	3.8	0.29	32104	360	<120	<17
			• •		4184	120	810:	: 45
β ገነለ	141891	F2 [1]	2.8	5 0.29	30268*	25500	640:	36
					(32999	1200	320:	: 170
53 Her	152598	F0-2 V	5.3	2 0.29	33609	1620	160:	87
					10226	1200	110:	: 29
7 And	219080	FO V	4.5	2 0.29	32147	600	110	: 36
v Dor	97990	F4 III	4 ?	5 0.30	7346	2399	110:	22
23 And	0015	FOIV	57	2 0 31	10366	4200	64	50
40 AUG	500		0.1		(28550	5400	250	110
59 Des	180777	A9 V	5.1	3 0.31	33000	1200	<160	<71
00 0/10					33607	1260	220	100

Table I Lyman Alpha Fluxes

.

					- /			
Slar	ND	Spectral Type	v	B - V	linage	Exposure (a)	f(l.yα) (10 ⁻¹⁴)	R(Lyn) (10-7)
76 Tau	28204	FO IV	5.90	0.32	10247	2160	<17	<12
HR 2740	55892	FOIV	4.49	0.32	28544	4200	180:	44
1111, 4803	109709	F1 IV	5.45	0.32	37979	4500	<01	< 39
t6 Lib	132052	FO V	4.49	0.32	28549	4200	160::	39
6 Hor	26612	A9 V	4.93	0.33	8213	240	<60	<23
n Lep	40136	F1 HI	3.71	0.33	8190	60	390:	48
23 UMA	81937	FO IV	3.67	0.33	37554	420	430:	51
S Ant	82610	A9 V	6.46	0.33	9400	7200	120::	180
11R 4191	92787	F5 HI	5.18	0.33	37553	960	190::	91
					2373	390	8GO:	28
					10227	600	970:	32
B Cas	432	F2 HI-JV	2 27	0.34	29124	300	1100:	36
,. O.L.				•.••	29125	300	1300:	41
					29126	300	1800::	57
		50.44			1 31589	660	1200:	38
16 Per	17584	F2 111	4.23	0.34	22376	2700	180:	36
r Che	29875	F2 V	4.45	0.34	2090	210	< 140	<.34
a Geni	20980	F 2 1V	3.53	0.34	18914	120	480:	50
37 UM.a	91480	FI V	5.16	0.34	1 15181	3600	2/0::	130
110 7007	100000	F0 1/	e 40	6.94	10468	1500	180:	80 - 47
1111 (887	190629	FU V FO IV	0.49	0.34	10408	3300	<12	<0/
00 B	90389	E 2 1 V	1.00	0.35	29307	120	430:	< 190
20 000	121139	FZ IV FA V	3.92	0.35	0131	1000	<140	< 130
40 INU	20102	FO V	3.12	0.30	10204	3000	1420.	89
7 11	110319	FUV	3.03	0.30	(10712	1900	1130:	67
78 UMa	113139	F2 V	4.93	0.36	15178	1000	230.	80
					(615)	1200	180	45
σ Βοο	128167	F2 V	4.46	0.36	24568	3600	260-	40
110 1354	77420	F3. V	6 17	0 37	10210	5400	82.	00
B Cae	29992	FLV	5.05	0.37	7311	3300	47::	20
IIR 4084	90089	F2 V	5.26	0.37	5134	2100	130:	67
IIR 9028	223552	F3 V	6.44	0.37	14003	1020	160::	240
63 Gein	58728	F5 V + F5 V	5.22	0.38	20030	3000	320:	154
µ Vir	129502	F2 [1]	3.88	0.38	2659	780	470:	65
IIR 6237	151613	F2 V	4.85	0.38	18915	1200	180::	64
Ø Cyg	185395	F4 V	4.48	0.38	10202	300	<81	< 20
HR 2530	49933	F2 V	5.77	0.39	8200	3000	93:	75
r Cyg	202444	F2 IV	3.72	0.39	15739 29128	2175 1200	610: 550:	75 68
78 Psc	6680	F5 IV	6.25	0.40	10469	3540	59::	81
K Rei	22001	F5 IV-V	4.72	0.40	5097	1200	190	57
48 Tau	26911	F5 V	6.32	0.40	10205	1800	61::	82
o Gem	61110	F3 111	4.90	0.40	21482	3600	210:	76
45 Oph	157919	F5 IV	4.29	0.40	36873	930	200::	42
i Leo	99028	E4 IV	3.94	0.41	1631	600	390:	58
- 6	151000	F2 UL IV-		0.41	∫ 2689	90	325:	28
9 300	135203	ra m-rvp	3.33	0.41	36875	1080	380::	32
e CrA	175813	F2 V	4.87	0.41	9371	3300	450::	150
ρ And	1671	F5 III	5.18	0.42	23748	14 10	110:	51
ω And	8799	F5 IV	4.83	0.42	14876	4200	210::	70
7° Eri	23754	F3 III	4.23	0.42	10930	2700	66::	13
					2826	60	5700:	32
-					6660	5400	6060::	34
Procyon	61421	F5 IV-V	0.38	0.42	20048	6600	6140::	34
					21198	120	5930	33
	D0 40 1 -	5			22584	180	6150	34
ω Psc	224617	F4 IV	4.01	0.42	21775	2400	420:	67
1110 3220	06430	19 A	4.76	0.43	10093	1800	130::	40
15 Com	108/22	20 III 50 IV	5.48	0.45	20031	1800	230:	142
44 / / /	102124	rjiv Ea V	0.40 4 1 4	0.43	21001	1200	143:	80
w Cap z Dog	191092	F 4 ¥ FK 117	9.14	0.43	10201	1200	010::	83
16 Cen	200201	FSV	4.13 E 07	0.93	10929	1200	290:	31
A Per	209009	F5 V	1.74	0.44	10367	1800	300:: 918-	144
						1000	410 .	41

Table 1 (continued)

-

			1904 1 (CONT				-	
Slar	нр	Spectral Type	v	B -	- v	Image	Exposure (s)	f(1.yn) (10 ⁻¹⁴)	R(Lya) (10 ⁻⁷)
						20205	720	620::	46
r ^a Ori	30652	FUV	3.19	- U.	45	2694	1800	64::	18
IIR 3684	79940	PD 111	9.04		1.	1 19737	900	310	148
n Com	114378	F5 V	5.22	0.	45	19738	720	340 :	164
10 Dec	25008	F7 V	5.51	0.	40	18650	3600	110::	70
au rer	#2722R	FGIV	3.17	0	46	21478	1200	270	19
L10 ller	173667	F6 V	4.19	0.	.46	21552	3600	220	41
		ve M	1.60	0	47	13790	3600	230	27
y Lep	38333	70 V	3.00	Ť		16624	1060	800	590
-2 (24)	146361	Go V	5.64	0	.47	11311	1800	920	680
8 (Ari)	1 10001		4 47	•	48	24502	6000	200::	48
r¹ Eri	17206	FG V	9.97	0	.10	í 6180	2999	150::	19
v Ser	142860	F6 V	3.85	0	.48	10229	4680	200::	25
	159507	FA V	4 89	0	48	19999	2100	170:	59
19 Dra	1222201			-		f 6126	89	1700	150
						24603	90	800::	72
n Tri	11443	F6 IV	3.41).4¥	29304	600	1400	130
						1 35000*	24300	1700	150
v Dra	170153	F7 V	3 57	r (0.49	10225	1800	350	- 1 1
Y Pav	203608	F6 V	4.22	2 (0.49	7308	1800	~92	<51
o Tuc	4089	F6 V	5.39		0.50	19023	1800	570	94
Ø Boo	126660	F7 V	4.05	5	0.50	20030	1500	150	26
s Pac	222368	F7 V	4.13	3 1	0.51	16333	5100	78:	61
HR 784	16673	F6 V	a.re		0.32	14034	1860	320:	: 92
(Dor	33262	F7 V	4.73	2	0.52	19784	1860	240	72
	124850	F6 111	4.0	8	0.52	9464	3600	380	62
4 V II	144984	FRIV	4.0	i.	0.52	10881	2700	370	57
00 Her	165908	F7 V	5.0	4	0.52	7767	1800	56	:: 22
33 110.		F0 1/	40	ŏ	0.53	9683	2880	290	110
111 Tau	35296	F8 V		3	0.00	(16691	2100	່ 340 ເຮັ	. 128
HR 7955	198084	F8 IV-V	4.5	1	0.54	10400	1000	270	28
₿ Vir	102870	F9 V	3.6	11	0.55	1303	2400	150	67
13 Cet	3196	F8 V	5.2	10 16	0.50	21104	1800	220	180
11R 5534	130948	G0-2 V	3.8	เว เว	0.50	26800	2400) 70):: 19
χ ller	142373	28 V	3.4	14	0.50	7433	1319	9 160):: 14
η Cas	4014		4.3	26	0.57	9465	3780) 70).: 13
p Com	1581	FOV	4.5	23	0.58	16336	2400	0 120	22
	121370	G0 IV	2.6	68	0.58	1487	198	0 330	0: 15
ų 000		C0.1/		4 1	0.59	22221	150	0 420): 91 D 07
χ Οτί	39587	GUV	•	-1	0.05	22408	84	0 404 0 14	U: 37
βCVn	109358	G0 V	4.3	26	0.59	15717	330	0 11	8 62
HR 8314	206860	GO V	5.1	94	0.59	23037	210	6 13	0 70
HR 3018	63077	G0 V	5. F	51	0.00	93040	240	0 6	0:: 52
HR 3625	78366	19 V C0 V	5. A	33 87	06.0	15765	420	0 22	0 73
8 Tri	13974	GU V F8 111		40	0.61	14001	210	0 84	0: 180
υ l'eg	220057	ra 111	٦.			7429	1 71	9 34	0: 17
βllyi	2151	G2 IV	2	.80	0.62	16324	1 120	0 35	0: 17
-1 1114-	72905	G1.5 Vb	5	.64	0.62	23039	240	00 18	130
(Her	150680	G0 IV	2	.81	0.65	573	1 71	19 32	NU: 19 IO: 140
	92050	FR-C7	7	.70	0.66	8640) 150	JU 13 NA 15	0: 580
W UMa	63330	10-04	•			(8054 770	ינט א ולינ מ	NO 14	20: 400
31 Com	111812	GO IIIp	4	.94	0.67	110	a 121	00 15	50: 1340
44 Boo	133640) F9-G1Vn	4	.10	10.U	3418	0 19	80 4	70: 140
x ¹ Cet	20630) G5.¥	•	1.0J	0.00	(3425	6 27	00 6	80:: 1700
El Eri	2633	7 G5 IV + ?	7	7.10	0.68	3427	0 27	00 5	00: 1260
	79771	0 00 111	f	5.58	0.68	879	4 30	00 <	39 <63
35 Cac	1210				0.00	1728	1 27	00 <1	00 <63
¥ ^{,3} Psc	6903	3 G0 III	:	5.55	U.69	1737	7 18	00	56:: 34
. –		-		8 20	0.60	[2472	4 24	00 4	70.: 7800
FK Com	11755	o pec		0.20	0.09	3588	14 18	8 00	100: 0 20 0

Star	IID	Sportral Type	v	8 - V	Image	Exposure (a)	f(1.yn) (10 ⁻¹⁴)	R(Lym) (10 ⁻⁷)
11 T. 1008	20704	GR V	4 27	0.71	15909	3600	170::	32
1110 1000			4.01	V	22583	1200	110:	20
					5540	119	4780	17.4
		(30 V)			13886	180	4930	179
o Cen A	128620	(12 V	-0.01	0.71	17007	160	4030	17.7
					225.00	180	40.00	2017
r Cel	10700	C8 V	1 50	0 72	17515	1800	450	40
61 UMa	101501	Gav	5.33	0 72	22005	3600	250	120
a Del	196755	G5 IV + K2 IV	5.05	0.72	13999	2400	39::	14
					23858	1800	780:	650
AR Lac	210334	G2 IV + K0 III	6.11	Q.72	31083	1800	820:	680
					9532	1800	850:::	210
C Dec A	171158	CONARAN	4 55	0.76	17525	1200	1250::	310
Ç 1100 A	131130	0017811	4.00	0.10	26508*	44100	620::	160
					28525*	30000	580::	150
µ Her	161797	GS IV	3.42	0.76	17537	1800	<210	<18
é Pav	190248	G6-8 IV	3.56	0.76	2827	2400	190	17
					22600	1200	<130	<12
24 UMA	82210	G4 III-IV	4.50	0.77	2615	1800	080.	150
r'a lei	174429	KUIVp	8.30	0.77	28503	1100	70::	1190
o Dra	100114	NU Y	4.00	0.78	11557	1199	26800	90
					13700*	1800	35000	130
					13808*	1800	30400::	112
Capella	34029	G5 Ille + G0 III	0.08	0.80	13820	24	29700	110
					28058*	2101	33300	123
					28063*	2102	31900	125
δ CrB	141714	G3.5 III-IV	4.63	0.80	14262	4380	350	88
40 Eri A	26965	K1 V	4.43	0 82	26921	900	280	54
β Lep	36079	C5 11	2.64	0.82	575 3	899	310:	14
AB Dor	36705	K2 IVp	6.90	0.83	35077	1320	890:	1500
V491 Per	25893	G8 IV	7.13	0.85	33100	6600	190:	430
70 Onh A	165341	καν	4 03	0.86	10211	431	680 :	91
					31483	1080	1020:	136
VW Cep	197433	C8	7.08	0.85	7866	3600	320:	670
(And	1546	CR IIIn	4 17	0.87	7766	1200	110.	20
118 7703	191408	K3 V	5 32	0.87	22619	1800	130	55
				4.01	(10094	720	2040	195
					17515	1200	2050:	196
. .					21192*	31800	1660	158
(En	22049	K2 V	3.13	0.88	26466	720	1840:	176
					29439	720	1960	187
					29607	720	1710	164
a Cen B	128621	K1 V	1.33	0.88	16997	160	3570	38
o Tau	21120	G6 III	3.60	0.89	24991	4800	160:	- 14
βCrV	109379	G5 II	2.65	0.89	1571	2700	150::	5.7
e UMi	153751	G5 III	4.23	0.89	31724	2400	210:	33
					21598	3600	420:	200
AY Cet	7672	G5 ille + wd	5.41	0.90	21800	3600	290:	140
					21900	2700	310:	105
TW/ 1	77947	C8 111 + 2	7.00	0.00	22220	3000	270:	130
. Val	07407	$65 10 \pm 62 V$	2.60	0.00	23001	900	1560	50
	82558	480	7.50	0.50	14632	3000	150	610
n Dra	148387	G8 111	2.74	0.91	1551	2700	260	11
é Eri	23249	K0+ IV	3.54	0.92	15019	3600	360	29
26 Agl	181391	G8 [11-1V	5.01	0.92	29553	1500	69::	22
ŋ Cep	198149	K0 IV	3.43	0.92	7435	1799	390::	29
	01040	CEV + VAIN			∫ 15211ª	25200	1600::	2000
UX AN	21242	G9.V + KU IV	0.01	0.93	15240*	24000	2000:	2500
HR 5110	118216	F2 IV + K2 IV	7.07	2 0.93	13669*	22680	2300:	4500
βller	148856	G7 IIIn	2.77	0.94	5747	899	280	12
E Iler	163993	G8 III	3.70	0.94	7768	1200	380	35
· ····			0.10		14859	960	38 0:	35

Table 1 (continued)

					•7			
SLAT	nto	Spectral Type	v	8 - V	linage	Exponure (n)	f(Lyn) (10 ⁻¹⁴)	R(l.ya) (10 ⁻⁷)
#1 Tau	28307	K0 1115	3.64	0.95	19515	1200	350	35
8 Boo	135722	G8 111	3.47	0.95	19851	2400	230:	17
VY Ari	17433	K3/4 IV	6.87	0.96	30282	2400	870:	1100
FUEL 9038	223778	K3 V	6.39	0.98	10959	3600	370::	370
HR 1099	22468	G5 IV + KI IV	6.32	0.99	15163*.*	7200	13000::	13000
é Lep	39364	G8 111	3.81	0.99	32531	2100	360 ::	35
\$ Gem	62509	KO HIb	1.14	1.00	7431	479	1300:	11
(Hyn	76294	G9-1E-11E	3.11	1.00	8806	1800	200	10
y ² Sgr	165135	K0 111	2.99	1.00	6832	1799	350	16
C Cyg	202109	G8 111-111a	3 20	1.00	8801	1800	130	74
ζ Сар	204075	G8 III + wd	3.74	1.00	5367	4200	240 ::	24
Ø Cri	4128	KO 111	2.01	1.01	14786*	47700	2600::	50
0 Cen	123139	KO HIK	2.06	1.01	5089	60 0	440::	8.3
) And	222107	G8 111-1V	3.82	1.01	18485*	180	3580	326
A Alia	••••		004		18486*	180	3590	327
					26448	000	580.:	1340
it Peg	224085	K2-3 IV-V + ?	7 35	1.01	26456	1200	640	1500
					26457	2100	720::	1670
у Сер	222404	KI III-IV	3.21	1.03	10357	1499	290	16
HD 34198	34198	K0 111	7.10	1.01	18536	4500	120	238
IL Hym	81410	K1 III	7.45	1.05	18520	3600	170.:	450
e ind	209100	K4-5 V	4 69	1.06	13891	1440	550 :	100
e mu	105100		1.00	1.00	22618	1200	640:	120
a UMa	95689	KO IIIa	1.79	1.07	10914	600	1000:	14
a Phe	2261	KO 111	2 39	1.09	8804	2280	>770	>19
1 Gem	41116	G7 HI + F6 IV	4.73	1.10	10883	4800	240:::	50
11R 5568	131977	K4 V	5.74	1.11	22598	2400	200 ::	95
(And	4502	KI Ha	4.06	1.12	26450	1200	> 260 0	>290
σGem	620-14	К1 Ш	4.28	1.12	29306	360	4470	560
HR 8703	216489	K1-2 11-88e	5.72	1.12	26507	3000	170::	76
HR 4665	106677	KO III + KO III	6.29	1.14	1565	3600	230:	200
o Ari	12929	K2 III	2.00	1.15	9868	1500	>1120	>18
e Sco	151680	K2.5 HI	2.29	1.15	10362	1669	650	10
« Oph	153210	K2 11	3.20	1.15	10359	1545	160.:	7.7
HR 1927	37434	K2 III	6 11	1.16	30734	5400	140::	96
8 Oph	161096	K2 III	2.77	1.16	6574	1800	100:	3.4
					(10360	2400	2000	0.0
n Ças	3712	KU IIIA	2.23	1.17	10358	1499	90:	2.1
a Set	140573	K2 111	2.65	1.17	8800	2041	400::	14
ξ Dra	163588	K2 III	3.75	1.18	8721	900	250::	20
					10014	1800	530:	136
61 Cyg A	201091	K5 V	5.21	1.18	10091	1800	510:	138
					10739	720	590 ::	150
HR 454	9746	gK1	5.92	1.21	29133	5100	<42	<24
BY Dra	234677	dK5e + dK7e	8.07	1.22	15157	3600	180::	590
a Boo	124897	K3 10	-0.04	1 23	4233*	7200	12200	25
u 100	124031		v	1.20	33062	140	13700	28
v liya	93813	K2 III	3 11	1.25	25876	1500	290 ::	12
8 And	3627	K3 III	3.27	1.28	26414	1500	190::	8.6
51 And	9927	K3- 111	3.57	1.28	18933	1800	120::	7.2
G1 900		dM0.5e	9.56	1 35	34664	1800	<100	<1000
GI 380	88230	dK7	6 59	1.36	35359	1800	450:	325
AX Mic	202560	MO V	6.67	1.38	29200	1800	260 ::	180
a Tue	211416	K3 111	2.86	1.39	8803	1980	460:	12
v UMa	98262	K3 III	3.48	1.40	25875	1500	290::	13
GI 784	191849	dM1	7.95	E.40	29102	7220	120:	250
α llya.	81797	K3 11-01	1.98	1.44	31126*	57000	900::	9.4
αΊτΑ	150798	K2 lib-lila	1.92	1.44	26040	900	1050:	10
DT Vir		dM1.5e	9.78	1.46	30277	1500	130	880
					6428	1800	280 ∷	1070
ATL MGe	107481	M1.6 Ve	8 60	1 47	21520	1800	520 ::	2000
AU MIL	191101	011.0 VC	0.00	1.17	28374	1800	240:	920
					l 29279	1200	570 [.]	2200
β Cnc	69267	K4 III	3 52	1.48	25877	1500	300::	12
YY Gem	• • •	dM1.5e	9.07	1.49	33053	1500	240:	1100
FK Aqt	214479	M0 Vpe	9.10	1.49	26983	3300	330	1200

Table I (continued)

Slar	np	Spectral Type	v	8 - V	Image	Exposure (s)	/(Lyn) (10 ⁻¹⁴)	R(1.yn) (10 ⁻⁷)
GI 887	217987	M2 V	7.36	1.49	32126	1800	220:	220
V1396 Cyg		dM3e	10.28	1.50	18710	3600	110::	1200
# Oph	157999	K2 11	4.34	1.50	9648	1440	<65	<5.9
o Pup	59717	K5 III	3.25	1.51	26419	1500	550:	16
GI 411	95735	M2 Vc	7.48	1.51	35337	1800	180:	150
γ Aql	186791	K3 II	2.72	1.52	7335	1500	240:	4.2
V1285 Aql		dM2e	10.11	1.53	15176	2940	120::	1100
AD Leo		dM3.5e	9.37	1.54	19172	2100 3360	160:: 360::	550 1240
o Tau	20130	K5 H1	0.85	1.54	3380"	8400	6500:	18
n Ser	167618	M3.5 III	3.11	1.56	25884	1500	570	5 B
A Ant	219215	M1.5 III	4.22	1.50	34611	3600	180:	10
a Phe	9053	MO- Illa	3.41	1.57	26418	1500	> 1600	> 15
55 Per	218329	M1 Illab	4.52	1.57	34612	3600	<31	<24
A And	6860	MO IIIa	2.06	1.58	5845	899	2120	18
á Vir	112300	M3 111	3.38	1.58	26421	1500	760	11
* Eri	25025	M0.5 III	2.95	1.59	26415	1500	680:	12
u UMa	89758	M0 111	3.05	1.59	8215	2400	>2500	>48
7 Cru	108903	M3.5 III	1.63	1.59	24892*	47700	2500::	5.0
,					r 19690	1200	300::	1400
					19691	960	320::	1500
AT Mic	196982	dM4.5e	10.83	1.59	21521	1500	410:	2000
					26672	59940	640::	2900
					14884	1800	580:	3400
EV Lac	•••	dM4.5e	10.10	1.60	21372	4800	160:	970
₿ Gru	214952	M5 111	2.10	1.60	5846	359	630:	1.4
YZ CMi		dM4.5e	11.18	1.60	68G i	2999	120:	1350
V1216 Sgr		dM4.5e	10.60	1.61	32120	1800	140:	1070
V998 Ori		dM4e	11.50	1.62	32127	1500	100.:	1500
r ⁴ Eri	20720	M3.5 III	3.69	1.62	27234	1800	240:	3.8
Wolf 630	152751	dM3.5e	9.40	1.62	9794	2160	280:	680
βPeg	217906	M2.5 [I-11]	2.42	1.67	14211	1380	470:	2.9
YZ Cet		dM5e	12.05	1.84	32333	1800	<99	<1700
UV Cat		d116a + d115 5a	12 70	1.85	18690	1800	160::	3200
UV Cet		UNICE + UNIC.DE	12.10	1.00	21233	1200	200:	4000
Beer Car		4115 54	11.05	1 97	9847 *	3600	330:	1050
L LOT Cell		UNID.JC	11.03	1.34	9848	3840	230::	740

Table 1 (continued)

High dispersion.
 Spectrum during flare outburst.

Star	HD	B-V	Atten ^a	f(Lya) ^b	Qual
δ^2 Tau	27819	0.15	0.49	<290	<u></u>
80 UMa	116842	0.16	0.44	<570	
ι UMa	76644	0.19	0.42	<3600	
γ Boo	127762	0.19	0.61	<410	
a Aql	187642	0.22	0.31 ^d	7600	с
22 Boo	126661	0.23	0.52	<170	
38 Ari	17093	0.24	0.44	<175	
45 Ori	37077	0.24	0.44	<230	
49 UMa	95310	0.24	0.57	<150	
κ² Tau	27946	0. 2 5	0.47	94	c
HR 1507	30034	0.25	0.43	100	c
30 LMi	90277	0.25	0.56	110	с
HR 3350	71935	0.25	0.49	<110	
HR 4086	90132	0.25	0.47	<100	
v Tau	28024	0.26	0.46	<300	
83 Tau	28556	0.26	0.44	<410	
HR 1480	29499	0.26	0.43	<120	
64 Eri	32045	0.26	0.51	<130	
η Hor	16555	0.27	0.44	<80	
15 UMa	78209	0.27	0.40	<180	
14 Com	108283	0.27	0.56	<80	
a Hyi	12311	0.28	0.52	240	Ъ
51 Tau	27176	0.28	0.45	<240	
57 Tau	27397	0.28	0.44	<90	
51 Eri	29391	0.28	0.33	400	Ъ
8 Dra	112429	0.28	0.41	340	c
v UMa	84999	0.29	0.48	90	с
γ Dor	27290	0.30	0.37	290	с
76 Tau	28294	0.32	0.42	<190	-
HR 2740	55892	0.32	0.39	450	b
ηLep	40136	0.33	0.41	970	Ь
23 UMa	81937	0.33	0.49	880	Ъ
HR 4191	92787	0.33	0.48	400	c
16 Per	17584	0.34	0.53	340	Ъ
a Cae	29875	0.34	0.41	<340	
δ Gem	56986	0.34	0.43	1100	b
37 UMa	91480	0.34	0.39	470	Ъ
26 Boo	127739	0.35	0.45	<310	
45 Tau	26462	0.36	0.37	310	c
γ Vir	110379	0.36	0.33	4300	Ъ

Table 2: Intrinsic Lyman Alpha Fluxes

_

Star	HD	B-V	Atten	f (Lya)	Qual
78 UMa	113139	0.36	0.42	550	b
σ Boo	128167	0.36	0.34	750	ь
βCae	29992	0.37	0.31	150	с
HR 4084	90089	0.37	0.34	390	ь
63 Gem	58728	0.38	0.36	880	ь
HR 2530	49933	0.39	0.36	260	ь
78 Psc	6680	0.40	0.39	148	с
ĸ Ret	22001	0.40	0.33	560	c
48 Tau	26911	0.40	0.38	160	с
o Gem	61110	0.40	0.50	42 0	Ъ
ι Leo	99028	0.41	0.42	920	Ъ
Ome And	8799	0.42	0.45	470	с
$ au^{6}$ Eri	23754	0.42	0.38	180	с
Procyon	61421	0.42	0.42	14800	8
HR 3220	68456	0.43	0.35	360	с
18 Com	108722	0.43	0.51	450	Ъ
π^3 Ori	30652	0.45	0.32	2000	с
HR 3684	79940	0.45	0.33	190	a
α Com	114378	0.45	0.31	1100	с
50 Per	25998	0.46	0.31	370	с
θ UMa	82328	0.46	0.48	550	Ъ
$\gamma { m Lep}$	38393	0.47	0.31	720	Ъ
$ au^1$ Eri	17206	0.48	0.33	620	с
α Tri	11443	0.49	0.45	3800	Ъ
χ Dra	170153	0.49	0.36	980	Ъ
θ Boo	126660	0.50	0.36	1600	с
HR 784	16673	0.5 2	0.30	260	с
ζ Dor	33262	0.52	0.27	890	Ъ
ιVir	124850	0.52	0.45	840	Ъ
111 Tau	35296	0.53	0.30	960	Ъ
β Vir	102870	0.55	0.33	810	Ъ
HR 5534	130948	0.56	0.24	890	с
χ Her	142373	0.56	0.37	190	c
η Cas	4614	0.57	0.26	600	c
β Com	114710	0.57	0.27	260	С
η Boo	121370	0.58	0.40	820	c
χ Ori	39587	0.59	0.29	1450	Ъ
βCVn	109358	0.59	0.27	540	b
HR 3018	63077	0.60	0.46	300	Ъ
HR 3625	78366	0.60	0.27	220	с

Table 2: Intrinsic Lyman Alpha Fluxes (Cont.)

Star	HD	B-V	Atten	f (Lya)	Qual
δ Tri	13974	0.61	0.24	910	c
π^1 UMa	72905	0.62	0.23	780	с
ζ Her	150680	0.65	0.41	950	Ъ
W UMa	83950	0.66	0.32	360	Ъ
31 Com	111812	0.67	0.57	2000	Ъ
44 Boo	133640	0.67	0.26	5900	Ъ
κ ¹ Cet	20630	0.68	0.23	2100	с
ψ^3 Psc	6903	0.69	0.37	150	с
FK Com	117555	0.69	0.53	1700	c
HR 1008	20794	0.71	0.40	280	Ь
α Cen A	128620	0.71	0.47°	10500	a
au Cet	10700	0.72	0.21	2200	с
61 UMa	101501	0.72	0.19	1300	с
ξ Boo A	131156	0.76	0.23	3700	c
μ Her	161797	0.76	0.34	<620	
24 UMa	82210	0.77	0.42	1640	Ъ
σ Dra	185144	0.79	0.28	1300	Ъ
Capella	34029	0.80	0.61 ^f	49000	Ь
δ CrB	141714	0.80	0.49	720	Ъ
40 Eri A	26965	0.82	0.34	810	Ъ
eta Lep	36079	0.82	0.65	470	Ь
AB Dor	36705	0.83	0.19	4600	c
V491 Per	25893	0.85	0.21	910	c
70 Oph A	165341	0.86	0.23	4500	с
ϵ And	3546	0.87	0.51	220	с
ε Eri	22049	0.88	0.19	10800	Ъ
α Cen B	128621	0.88	0.39 ^e	9200	b
o Tau	21120	0.89	0.59	270	Ъ
μ Vel	93497	0.90	0.65	2400	Ъ
LQ Hya	82558	0.91	0.19	810	d
δEri	23249	0.92	0.33	1100	с
HR 5110	118216	0.93	0.34	6700	с
θ^1 Tau	28307	0.95	0.49	730	c
δ Βοο	135722	0.95	0.55	410	Ъ
VY Ari	17433	0.96	0.19	4600	d
HR 1099	22468	0.99	0.35	37000	c
δ Lep	39364	0.99	0.58	620	с
m eta Gem	62509	1.00	0.54	2400	Ъ
ζ Hya	76294	1.00	0.55	370	Ъ
λ And	222107	1.01	0.26 ^g	14000	с

Table 2: Intrinsic Lyman Alpha Fluxes (Cont.)

Star	HD	B-V	Atten	f (Lya)	Qual
e Ind	209100	1.06	0.23	2400	с
α Uma	95689	1.07	0.63	1600	Ъ
1 Gem	41116	1.10	0.45	540	с
61 Cyg A	201091	1.18	0.26	2050	c
a Boo	124897	1.23	0.63	21900	a
u Hya	93813	1.25	0.59	500	с
δ And	3627	1.28	0.58	330	c
51 And	9927	1.28	0.60	200	с
GL 380	88230	1.36	0.21	2100	c
AX Mic	202560	1.38	0.27	980	с
ν Uma	98262	1.40	0.61	480	c
α Hya	81797	1.44	0.69	1300	c
DT Vir	•••	1.46	0.19	700	đ
YY Gem	•••	1.49	0.20	1200	đ
GL 887	217987	1.49	0.21	1000	d
σ Pup	59717	1.51	0.62	880	Ъ
GL 411	95735	1.51	0.44	410	c
AD Leo	•••	1.54	0.19	820	d
α Tau	29139	1.54	0.65	10000	с
β And	6860	1.58	0.58	3680	a
δVir	112300	1.58	0.60	1300	Ъ
γ Eri	25025	1.59	0.62	1080	Ъ
EV Lac	•••	1.60	0.20	2900	d
YZ CMi	•••	1.60	0.20	620	d
V1216 Sgr	•••	1.61	0.21	670	d
V998 Ori		1.62	0.19	550	d
YZ Cet	•••	1.84	0.22	<440	
UV Cet	•••	1.85	0.23	880	с
Prox Cen	•••	1.97	0.39 ^e	840	с

Table 2: Intrinsic Lyman Alpha Fluxes (Cont.)

*Factor by which $Ly\alpha$ flux is attenuated according to the LISM model discussed in the text ^bUnattenuated Ly α flux $\times 10^{-14}$ cm⁻² s⁻¹ Å⁻¹

^cQuality index a ($\pm 20\%$), b ($\pm 40\%$), c ($\pm 60\%$), d ($\pm 80\%$ or worse)

- ⁴Used N(H I) = 3×10^{18} cm⁻², b(H I) = 13 km s⁻¹ [•]Used N(H I) = 5×10^{17} cm⁻², b(H I) = 14 km s⁻¹
- 'Used N(H I) = 1.9×10^{18} cm⁻²
- 9 Used N(H I) = 4 × 10¹⁸ cm⁻²

Figure 3

Figure 4

Relative Intensity

Figure 7

≤ B-V

1.2

1.4

1.8

1.6

2.0

log R(Ly α)

-6

-7

0.6

0

0.8

1.0

log R(Ly α)

f (Ly α) / f(C II)

f (Ly α) / f(C II)

Figure 10

Figure]|

Figure 12

-

.