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TECHNICAL PAPER

ROBUSTNESS

I. INTRODUCTION

A. Needs

The space shuttle vehicle is one of the great achievements of our times. Through the diligent

effort of a large team, its performance has been superb. Yet it has not met all goals set for it. As a

general statement, it is a performance-driven design; therefore, its robustness was not emphasized

or optimized. This does not mean that high performance cannot be robust. At the time the shuttle
was evolving, the national situation was such that, in all likelihood, only the performance-driven

concept was salable. (Development cost was constrained, therefore, weight was restricted, which is

what cost was primarily related to.) Several aspects of the system illustrate this point: (1) the

assembly and processing (including checkout) of the vehicle require extensive touch labor and a staff
of several thousand; (2) the launch constraints and problems result in many costly holds, not the

least of which are the wind loads and dynamic pressure (which has resulted in three launch delays);

(3) each launch has to be tailored, requiring detailed flight mechanics and loads analysis to be

accomplished; and (4) many systems such as the space shuttle main engine (SSME) and the orbiter

heat protection tiles are very sensitive, requiring maintenance and hardware replacement in order to

meet safety requirements.

Quoting from Aerospace America, "A Second Look at Launch Systems Reliability," by

Joseph Fragola:

"Current costs for a low Earth orbit payload are on the order of $10,000/lb, with

launch costs at about $5,000/lb. This implies that for an average 10,000-1b payload,

the launch is worth about $150 million, $100 million for payload and $50 million for

launch. The average success ratio of the current U.S. stable of launch vehicles, includ-

ing upper stages, is about 92 percent (without upper stages it is close to 95 percent).
The 8-percent failure probability implies an expected loss of $12 million per flight, not

including the lost opportunity costs.

"The new generation of launch vehicles proposed for the Advanced Launch

Development Program (ALDP) has specified payload-to-orbit capabilities in the

100,000 lb range while holding launch cost constant. (In its latest incarnation, the

launch vehicle system associated with this program is the National Launch System, or
NLS.) Thus, an order of magnitude reduction in launch costs, or $500/lb, would be

required to keep each launch in the $50 million range. Even if this ambitious goal were

achieved, it is doubtful that a corresponding reduction in payload values would ensue.

Holding payload values per pound constant would imply values approaching $1 billion.

"While significant reductions in payload value are achievable, future payload

cost will likely be a high percentage of the launch cost. Total launch values could

exceed $500 million, producing losses in excess of $40 million per flight at historical
launch success ratios. Increasing the success ratio to 99 percent would cut expected



lossesto about$5 million andcould saveas muchas$4 billion acrossevena modest
100-launchprogram--aconsiderablefractionof theoverall launchvehicledevelopment
cost, even when presentvalue considerationsare included. Reducinglaunch cost to
$500/1bcould createconsiderablyincreasedlaunchdemandand thus produce addi-
tional savings."

The operational,maintenance,and refurbishmentcostsof the spaceshuttle vehicle, as well
asthe large overrunsand problemswith manyother spaceprojects (payloads,etc.) tax the NASA
resources.It also precludesor limits starting much-needednew programs.There is, therefore,a
mandatoryrequirementto designnew productssuchthat they circumventthe problemsstatedabove
by significant or dramatic changes.To accomplishthis, new innovative approachesare needed.
Businessas usualwill not meet thegoals.Total quality management(TQM) principles applied in a
program using concurrent engineering,up-front teaming,etc., hold great promise toward solving
theseproblems,providing the innovative solution.Thesemeasureswould focus on a low-cost sys-
tem of high reliability versushigh performanceefficiency at theexpenseof a delicateproduct.A fun-
damentalpart of this processis accomplishinga total designthat has robustness.

Robustnessis not a well-understoodconcept.This lack of understandingor wrong perception
raises several key questions. What is its definition? How do you achieve it? How do you
measure/verifyit? How do you designfor it? If the designis to fulfill this goal, all thesequestions
must be understoodand answered.

The design for robustnessis further complicatedby the many typesof spacesystemswhich
requirea diversity of materials,manufacturing,assembly,processing,checkout,facilities, operations,
and so on. In a real sense,each type of system has a separateset of measurablesand design
requirements.Therefore, a specific definition of robustnessand necessarydesign requirementsis
neededfor eachprogramor project.This eliminatesor restrictsthe ability to begeneric in approach
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In "Robust Quality," Taguchi and Clausing say, "Quality is a virtue of design. The

'robustness' of products is more a function of good design than of on-line control however stringent

the manufacturing process... An inherent lack of robustness in a product design is the primary driver

of superfluous manufacturing expenses." This means that if we are to have robustness in a system,

we must define what it is, the design requirements, the achievable functions (characteristics required

to meet requirements), and measurables for verification, if the operating system has robustness.

This paper will develop an approach for designing in robustness as a means of reducing cost,

while producing high reliability and meeting requirements. The approach will form around the items

shown in figure 2, which shows the six options or their combination for achieving the desired robust-

ness, the concept selection, the trades, and the design, all measured against the indexes. Obviously,

the measurables contained in (1) cost, (2) reliability, and (3) performance are not uncorrelated even

when they are shown independently. Their correlation or interrelationship must be understood as a

part of the process. The approach starts with a definition of, or a determination of, where and to what

degree robustness is to be included in the design of the system. A determination of the criteria to be

used for the design follows along with the indexes (measurables) for evaluation of robust goodness.

Using these criteria and indexes in conjunction with the various approaches available for achieving

robustness, a series of trades is selected and conducted. After the concept is selected, the detailed
design is accomplished. Many tools are available to augment this approach. These tools will be

touched on in this paper but not discussed in depth; however, they play a key role in designing for
robustness.
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Figure 2. Robustness design approach.



A part of these trades involves concepts,materials, and fabrication approaches.Through
these trades, measuredagainst performance,cost, and reliability, the robustnessof the design is
driven. Testing to failure is a fundamentalpart of this processwherethe real margins(not analytical)
are determinedand usedas part of operationalflexibility. In addition, the paper will deal with a
simple beamexampleand will show sometypical factorsandtradesfor various spacesystemssuch
asa launchvehicle, propulsionsystems,payloads,satellites,and the like.

B. General Approach

The task of designing for robustness starts with the visions of the program, project, or

mission, and is finished only with successful operations. There are five major (top level) tasks in this

design-to-operations sequence. They are:

(1) Definition of the level of robustness required

(2) Formulation of criteria required to ensure robustness level defined

(3) Perform trade and sensitivity studies of potential concepts

(4) Concept selection and design

(5) Verification of robustness quality/level.

These steps are to some extent sequential, yet they are highly interactive, considering all

areas as the tasks proceed. The focus must, therefore, be from the system viewpoint in order to

achieve a balanced space vehicle, spacecraft, or space system. 1 4 Figure 3 shows these five steps

and also includes the major subtasks of these areas. The following paragraphs discuss each of these
tasks and subtasks.

1. Vision. Robust design starts with a vision which is translated into the original set of

requirements. The initial set is generally a philosophy, some goals, and some guidelines on cost and

schedule. As an earlier example indicates, space vehicle cost must be drastically reduced. This

reduction must be accomplished for the launch vehicle, payload, operations, and so on. The big costs

are the launch vehicle, payload, and operations. Robustness should reduce the cost associated with

facility, rework, maintenance, operations, and so on; but not necessarily significantly reduce the

development cost--particularly the up-front cost. To accomplish this, the second task must deal with
the characteristics of the system that are necessary to achieve this objective, i.e., to reduce space

vehicle cost.

2. (_haroftCristics Required/Robustness Definition. Capturing part of these characteristics is

the term, "robustness" or "robust design." This means that the second step considers the system

requirements and translates them into derived requirements (characteristics) called robustness

(system focus). These can be in the form of functional statements of how to, or what to, achieve.

Determining the characteristics or definition of robustness means that each of these areas must have
a set of measurables identified so that the level of robustness can be determined. At the top level,

this can be called the definition of robustness. All areas including design, manufacturing, and

facilities must be captured in the requirements definition tasks. A part of defining robustness and

4
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capturing the characteristicsis a listing and study of prior systemsproblems that increasedcost,
delayed operations,etc. This list will serveas a basisfor describing characteristics,formulating
definitions, and developing functional statementsof how robustnessis achieved and the require-
ments for it. Quality function deployment(QFD) works well in translating customerwants into
characteristicsleadingto the definition of robustnessfor the systemunderconsideration.

3. Robustness Criteria/Measurables. The next step derives and combines the generic criteria

(specifications) and the requirements into a document for the project. To accomplish this, docu-

mented past experience must be brought together with the specific characteristics of this project in a

way that tailors the total into a specific set for the project procedures and gives the needed control
without introducing excessive cost, etc. These criteria are the key to achieving robustness. They

must clearly define what it takes to ensure that the design is robust. Pugh calls this the product

design specifications (PDS). 4 QFD is one tool that translates customer needs into requirements.

4. (_gn_ept Selection/Trade and Sensitivity Studies. Next, concept selection is made by list-

ing the functions required to meet the vision, requirements, and criteria. Using these functional

statements, several viable options are formulated that can potentially fulfill the visions and meet the

requirements. Three tasks are now performed: (1) conduct sensitivity analyses that identify the key

areas and parameters that are important to achieving robustness; (2) conduct trade studies between

the potential concepts using the sensitivities and the measurables; and (3) select a narrow set of

concepts, and conduct a more indepth analysis of steps (1) and (2). These three tasks are repeated

until a single concept is converged upon for design (system focus again). Tools available here
include, but are not limited to, optimization programs, computer-aided designs (CAD's), and inte-

grated analysis.

5. Detail Design. The detail design is accomplished using the concept selection as a starting

point and using concurrent engineering approaches, TQM tools, etc., through sensitivity analysis,

trades, design, and verification--all against the set of measurables laid out from the requirements or

derived during the design process. Both the concept selection and design are evolutionary in nature,

requiring several iterations. In fact, in discrete areas during design, the originally selected concept

has to be changed, due to added information starting the design process over in these areas. Tools

available for design are numerous and are specific for many disciplines. The list is too long for this

paper, but is generally accessible. Most exist as commercial codes available for lease.

6. Manufacturing/Verification. The next step is to build and verify the product; testing many

times to failure to determine limits for use in operations. The product is built right using a robust

manufacturing process ensured by concurrent engineering teams upfront during concept selection and

design. The verification process must determine the goodness of robustness achieved, setting the

operational procedures and identifying areas for improvement.

7. Operations. The last step is operations. Operational procedures, constraints, etc., are

based on the information developed during development, design, and verification analysis and test-

ing. Although operations appears at the end, it also must be part and parcel of the requirements,

concept selection, and design--a true concurrent engineering approach. These procedures, assembly,

checkout, and launch and flight operations, must be designed with the same degree of robustness as

the vehicle payload.

The task then is how one deals with the parts and then rolls them up into the total system

since everything is interactive. In the sections that follow, these steps will be explored as they apply



to robustnessas one meansof increasingreliability andreducing cost. Eachof thesestepsapplies
not only to the system, but to the subsystem,elements,and components.Spacesystemsare so
complexthat muchof the designwork mustoccuratelementandcomponentlevel. How this division
is madeand then reintegratedinto the whole is a majorchallengein designingfor robustness.

II. GENERAL CHARACTERISTICS OF ROBUSTNESS (DEFINITION)

A. Definition

Establishing the desired characteristics of robustness is not an easy task, particularly

because, in space system design, there is a requirement that the system be quantified against the

design criteria and goals. The first avenue open to accomplish this is the easiest to state, but is very
difficult to quantify. For example, the classical dictionary definition reads: "The state of being strong;

having been strongly formed or constructed." Business Week/Quali_ 1991 defined robust design as

a discipline for making designs "production-proof" by building in tolerances for manufacturing
variables that are known to be unavoidable. The trick is defining the measurables of being strong. It

could be stated as the insensitivity of the product to requirements, environment, manufacturing, or

operational variabilities. In space systems where so many requirements are in conflict, this is not a
real possibility because all designs are a balancing act--a trade-off. Gordon 5 in "Structures" says it
like this, "All structures will be broken or destroyed in the end--just as all people will die in the end.

It is the purpose of medicine and engineering to postpone these occurrences for a decent interval.

The question is: what is to be regarded as a 'decent interval'?"

In trying to clarify the two previous statements, classical and insensitivity, a statement can
be formulated that reads: "A robust system is one which is designed and verified to have features

that accommodate variability (3_r) of parameters which affect performance and margins without

unacceptable degradation, and achieves the optimum combination of operating costs, reliability,

maintainability, and performance." This definition treats the total system from start to finish, but still

has the difficulty of determining measurables. The other open definition avenue is a mathematical
definition which uses deterministic and probabilistic approaches. Here, performance indexes must be

formulated for each area of concern in mathematical terms, then the system verified to those values

(fig. 2). For many of the areas, this is easy to formulate if they are treated separately; however, they

interact with others leading to the requirement for a higher level index.

A possible mathematical definition is: a design that provides a sufficient ratio between

"strength" (or capability or capacity) and "stress" (or loadstate environment or operating condi-
tion) to accommodate variability of the parameters affecting stress and strength without failure

inducing overlap.

The essence of the above two statements is required to define robustness. The final result is

a statement that is a combination of the generic statement and the multitude of mathematical

indexes. The first can be generic, as stated above. The second is specific for each space system and

requires much effort to define the sensitivities, conduct the trades, and then quantify the require-
ments indexes. Many times it is desirable to modify the statement such that robustness is defined

only in terms of one area such as launch operations (cost, processing, turnaround, checkout). In this

case, each component or subsystem is not optimized individually, but only to the extent it affects

operations. The indexes are tailored to fit this special case. As has been stated previously, the



definition of robustnessfor a spacesystemis always tailored to fit the needsand requirementsof
that particularproduct.

B. Measurables

Determining what are the measurables of robustness, how they are formulated and quanti-

fied, is a major and key task for achieving robustness in design. Bill Campbell of Aerojet provided

figure 4 and the following statements as a way of determining measurables for evaluating
robustness.

J "STRESS .... STRENGTH" I

MEAN MEAN
"STRESS" "STRENGTH"

FAILURE REGIME-HIGH SIDE STRESS
EXCEEDSLOW SIDE STRENGTH

Figure 4. Failure definition/margins or capability.

"Capability or capacity" may be defined as that characteristic of a device which accommo-

dates a given "stress" and is a function of its configuration, material, environment, manufacturing

process, and prior operational history. Stress, in this case, is a prediction of any type of response,

while strength is a quantified measurement of its capability. This should be expressed in statistical
distributions where possible.

Therefore, "environments or load" may be defined as the characteristic of a device which in-

fringes on the "strength" characteristic and is a function of the environments to which it is subjected.

Variability is a measure of the range of both "stress" and "strength" that a device experi-

ences or possesses as a function of the range of conditions, process and properties, analysis, etc.,
involved in the design, analysis, manufacture, and operation of the device.

These indexes are typified by design margins (safety factors, stability margins, redundancy

level, etc.); depletable margins (weight reserves, software reserves, etc.); performance margins

(delta v, acceleration, propellant tankage, etc.); launch capability; payload processing and change

out; assembly and checkout; launch processing; facilities; reliability; maintenance; dependability; and
touch labor. All must be quantified in some measurable manner as requirements.

8



In dealing with the performance and reliability indexes for concept selection and design, many
times mathematical or statistical formulations do not exist. Yet this is the most critical time for

making decisions that involve materials, configuration, etc. Because the decision cannot be quantified

(qualitative answer only) and is made by judgment, this judgment must be justified by developing

check-off matrices, logic charts, and rationale statements as supporting evidence and historical
records. These can include, but not be limited to:

(1) Number of welds

(2) Joints

(3) Load paths

(4) Margins

(5) Number of elements/bodies

(6) Manufacturing complexity

(7/ Technology maturity.

In some cases, these can be augmented by some statistical estimation that cannot produce
an absolute value, but can verify trends, etc. The problem that always faces one is how to develop

reliability data or statements in terms of the hardware design parameters. In avionics systems and

materials characteristics, some of this work has been accomplished. In structural systems, there is
much less data to deal with.

The bottom line is that the process under discussion works regardless of the degree of

quantification achievable. However, the more quantification, the better the decision. Later sections

will deal with the process for establishing and quantifying these indexes.

III. GENERIC/TOP LEVEL APPROACHES

A. Basic Approach

Using the generic definition as a base, the generic makeup, or top level, approach to

robustness can be formulated. Figure 2 attempts to accomplish this task. As is shown on the top of

the chart, there are many elements or ways of achieving robustness. In the case of certain compo-

nents or subsystems, it is possible to design in a measure of robustness using only one element

such as structural margins or redundancy; however, in general, some combination of the ones listed,

or others, is required. One of these elements can be chosen to be the definition of robustness. In this

case, it is move to the robustness block for example operations such as launch on time. Using this

new definition, all the other elements are judged only as they affect that special definition. In general;

however, to make a total system (such as a launch system) or an orbiting system (such as tele-

scope) robust, a combination of all will be required. In complex launch systems, spacecraft, and

orbiting instruments, a sensor failure during launch scrubs a mission, while failures in operations can

lead to mission loss (possible loss of life, if manned). A breakdown in manufacturing tolerance

9



control may also lead to many problems. The samecan be said for any part of the system,
processing,facilities, assembly,communications,operations,etc. The old saying "for the want of a
nail for shoeing the horse, the war was lost" is appropriatehere. To have robustnessin space
systems,the total systemmust be robust. Each systemmust define what is meant by robustness
for that system;an examplewould be the launchfacility. In all cases,regardlessof which areaor
definition is chosenfor robustness,the sensitivitiesof the systemto its parametervariations must
be determined (quantified, if possible) against that definition so that robustnessis built in only

where needed. The goal for robustness, by its very nature, cuts across many disciplines--from

fatigue and fracture control, to avionics hardware and software, and then manufacturing and

operations. The basic question is: what do you design in up-front to preclude downstream problems?

How far do you go? What is the balance? Otherwise, the cost and/or weight becomes prohibitive, or
the performance is degraded.

Designing in robustness proceeds down two legs simultaneously. One is designing the

product, the other is designing how to make the product (this includes manufacturing and assembly).

Operations can be separated out of the product design function, thus creating three legs. It appears
to the author that operations are such a fundamental part of the product that they must be involved in

product design. In other words, the design must be compatible with the manufacturing, operations,

and assembly capacity in order to be robust. It is of little value to design a system where

manufacturing cannot meet the tolerance requirements, thus producing yield that is too low.

Experience in manufacturing of high performance systems such as SSME has shown that these

systems are very sensitive in manufacturing to such things as weld offsets, weld beads, etc., pro-

ducing fatigue or fracture failures, and numerous reworks and material review discrepancies requiring

extra effort to maintain operations. Even with these problems, the SSME is an example of the

degree of craftsmanship that can be achieved in manufacturing a very complex, high-energy density

system. However, sophisticated manufacturing capability is of little value unless the design requires

it. The simpler the design, the simpler the manufacturing process required. Figure 5 attempts to

show that this parallel, yet highly interactive, process is required to have an operational robust

system.

HIGHLY INTERACTIVE i

SYSTEM

DESIGN

ROBUST
PRODUCT

FABRICATION
&

ASSEMBLY

Figure 5. Legs of robust design.
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Robustnessin the manufacturingand assemblyleg occursin two ways.First, it must be able

to achieve the characteristics the designer evolved within acceptable limits. Products are plagued

with problems that arise because of the lack of manufacturing robustness. Part of the time this is due

to poor communication, in that the designer asks for more than can be reasonably achieved. Then
other times, the designer does not do the design job with consideration for manufacturing limitations.

This clearly indicates the need for concurrent engineering in both legs. Second, manufacturing must
be robust in delivering quality robust hardware on time. Robust products depend on both.

Figure 2, therefore, must be applicable to each; getting the same emphasis and focusing on

the interaction. Obviously, the operational procedures, processing, and the like must have the same

robustness as these two legs, but, as stated earlier, is included in the product design leg. In the

following, it is assumed that this integration approach is followed in designing for robustness.

1. General Characteristics. In order to gain insight and understanding, it is necessary to first

understand the definition, characteristics, and functions of each proposed way of achieving

robustness (fig. 2). With this understanding of each potential candidate, the robust system can be

achieved using various combinations of these broad areas. Designing for margins (tolerant system)

is not straightforward. For example, increasing the structural safety factor adds weight that, in turn,

can increase the inertial load, hut not provide added margins. Also, if this increased safety factor

margin in the design is not reduced (limit load safety factor) for operations, then no real gain occurs

because the system cannot take advantage of this margin--except in an anomalous situation during

operations. Stability margins for dynamic systems, including control, fall into this category because

you cannot, by operational design, take advantage of extra margins unless it is specified differently

for design and operations. Avionics, software, performance reserves, etc., all fall into this same cate-

gory. However, extra margins judicially placed early in design can be used as a hedge against

environment creep--producing, in the end, an adequate system (based on the sensitivities). If this is

not done, then the environment creep leads to either a redesign or a constrained operational system.

One way of gaining margins is to take advantage of the inherent nonlinearities, not included in the

linear design, for operations. This requires more accurate quantification of the response characteris-

tics and is, therefore, more costly. One method for quantification is testing the product to failure;

determining the limit that can be used to make up robust operational procedures and constraints.

Ideally, one would like to design the system so that it does not respond to variations in the

parameters. (In the discussion that follows, the use of the word parameters is all-inclusive. It not

only implies such things as flow, thermal, acoustics, and the like, but also includes manufacturing

tolerances, processes, flaws, offsets, and so on, which affect the robust characteristics under con-
sideration.) In most cases, this is not possible; however, when it can be accomplished, the gain is

not free. For example, vibration isolation of a component (electrical, hydraulic, etc.) renders it

insensitive to the vibration, but at the introduction of larger deflections from static and quasi-static

loads. In other words, vibration absorbers can desensitize the component to the vibration by intro-

ducing large static deflections; however, complexity, including new failure modes, is added in addition

to cost increases. Load relief and ride control add complexity and new failure modes, as does active

thermal control. The same is true for controlling manufacturing tolerances, etc. However, in many

cases, this added cost and complexity is more than balanced by the gain in robustness.

Control of parameter variations is another design tool for achieving robustness. Many

examples for this approach exist: active flutter suppression of aircraft wings, POGO suppression,

modal suppression, rigid-body load relief control, thermal control systems, day of launch l-loads

update (real-time wind biasing), and statistical process control (SPC) in manufacturing, to name a
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few. Thesetechniquesareusedextensivelyand are the tools that allow a systemto operatesafely
and meet its performancegoals. Another approachto controlling the environment is to have a
predictive scheme that results in no operational use during times of higher-than-predicted
acceptableparametervariations.Prelaunchatmosphericwind monitoringfor launchvehiclesis in this
category.In this case,the vehicle is not launchedinto atmosphericdisturbancesthat aregreaterthan
its capability, or the I-Load (trajectoryshape)is updatedto reflect the effectsof the wind measured
1 or 2 h prior to launchincreasingthemarginsallowing a safelaunch(day of launch I-Load update).
Controlling the parametervariationsis not free.Complexityand failure modesare introducedaswell
as added cost, assembly, limited operations,and so on. In some of these cases,one gives up
robustnessin launchflexibility, introducingoperationalcomplexitiesandincreasingcost.

Redundancy,particularly on mannedsystems,is an acceptableway of achieving robustness.
This approachis used extensively in electrical and hydraulic components,windows, fastenersfor
joints, load paths,etc., and such things as dual thermal insulation and debris shields. Again, one
mustdeal with complexity, failure modes,cost, andweight. The design,in this case,must dealwith
how many layersof redundancyare required.The greaterthe redundancylevel, the greaterthe com-
plexity andcost.

Simplicity in design normally enhancesrobustness,as well as manufacturing, assembly,
operations,and response.This designarea for robustnessis broad in scope,number of elements,
load paths, geometrics, turnings, structural concepts,and the like. It also affects redundancy,
margins,variations,and operability.The useof simplicity in designis a well-known approach.Pugh
in "Total Design" discussesit in detail and hasformulatedsomecriteria for measuringits achieve-
ment.4 Design simplicity shouldalways be a goal. The simpler the design, the easier it is to gain
robustness.

Designing for operability leadsto robustnessin at least two ways. A complex operational
procedurecausesproblemsbecauseit opensupmorepathsfor errors.The secondpart of the defini-
tion of robustness,particularly for spacevehiclesandspacecraft,dealswith launchon time, process-
ing, checkout,etc., required for eachmission. Easeof operationsnot only hasa direct correlation
with simplicity, but also with cost.As statedearlier, operationefficiency can be used as the total
definition of robustness.Then theotherelementsareusedasmeansof achievingthis new goal.

A part of the designfor robustnessis the useof failure modesand effects analysis(FMEA)
asaugmentationto the normal designprocess.4 Minimum failure modes should be identified for each

concept and evaluated in line with the other considerations to ensure a better quality of robustness.

As mentioned previously, part of the process of the "design for robustness" is the study of

problems that have occurred in past systems. _ 2 These problems have usually led to costly redesign,
high maintenance costs, launch holds, etc. The process used in problem study must lead to an

understanding of where the lack of robustness occurs in these systems and the resulting lessons
learned. With this information, the project has the basis for deriving requirements and criteria,

selecting concepts, and making them robust. Without this information, one is doomed to repeat the

mistakes of the past.

2. Trades. So far, the six broad areas of designing for "robustness" have been discussed.

There are additional factors required to deal with these areas in achieving robustness which are

applied through engineering, trades, sensitivity studies, and design. First is the criteria that are
imposed by the product that provides the mantle for the design. The criteria must be carefully tailored

12



to capturethe characteristicsof robustness desired (see later section), and must be accomplished by
a combined Government and contractor team including all pertinent disciplines. 6 Second, a key in the

robustness trade is the concept selection, materials choice, and fabrication requirements approach.

These three elements are correlated, presenting options from which the design engineer can choose

to create robustness (fig. 6). For example, he picks a concept (ring/stringer/skin), then chooses

between several materials (aluminum, steel, etc.), and the different fabrication processes (milling,

welding, riveting, etc.). After repeating for other concepts, a set of trades is conducted to arrive at a

concept selection. He must conduct these trades using the three measurables of performance, cost,

and reliability as the judge or evaluation guide. The cost measurable is very difficult to define. Up-

front cost loading, used effectively, lowers recurring cost. Which cost is the driver? Concept

selection? Design? Recurring cost? What is the proper balance between them? Also, how does one

estimate the cost of major design problems versus indepth up-front preventative design? Proper

formulation of the balanced total cost indexes is the key to good system engineering and robust

design. Here, various indexes must be developed for these three areas to provide measurables for

evaluation. They can be probabilistic or deterministic in nature. Developing these measurables is a

major task in itself and is fundamental to the process. In later sections, some typical indexes,

concepts, materials, fabrication approaches, and trades are listed as guidelines. They must be used

only in that light. If robustness for any system is to be achieved, these must be developed

specifically for the product being designed. Intuition and innovation, as well as lessons learned, are

needed. In most cases, new paradigms must be developed. In the early part of the program, much
effort must be expended in order to determine the sensitivities and concept potentials.

In "Quality Engineering Using Robust Design," Phadke talks about exploiting the

nonlinearities inherent in the system due to the different parameter combinations even for the same

noise factors/variations used. 3 He then deals with the classification of parameters into these
classes:

(1) Signal Factors (M): The parameters set by the user to express the intended value for

the response of the product (requirements for performance, settings to produce performance).

(2) Noise Factors (X): Factors that cannot be controlled by the designer. Only the statics

(mean and variance), not specific values, can be known.

(3) Control Factors (Z): Factors that can be specified freely by the designer. He is

responsible for determining the best values of these parameters.

The relationship between these parameters can only be known through experiments. Also,

the magnitudes, costs, etc., are not well known during design, so a three-step strategy is proposed.

(1) Concept Design: The selection of architecture, from a variety, that will achieve the

desired function of the product.

(2) Parameter Design: Determine best setting of control factors that minimize quality loss.

(3) Tolerance Design: This is the tradeoff between reduction in the quality loss function due

to performance variation and increase in manufacturing cost. Tolerance design would bring in higher

tech solutions and should only be done after sensitivity to noise has been minimized through
parameter design.
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The approach presented by Phadke solves many design problems, particularly for mass-

produced systems. It does not work well for all space system problems. Many other approaches
exist such as "Total Design" by Pugh, 4 the various Taguchi approaches, 7 8 including the above from

Phadke, QFD, 3 concurrent engineering, and probabilistic design. Each must be explored and used to

aid in robust design. Figure 7 illustrates the process discussed in previous sections along with their

characteristics and a partial listing of the available tools.

STEPS CHARACTERI 5TIC5 TOOLS

Needs Established

(Vision)

Cost

Philosophy "_1
Criteria Development

Concept Selection

Design

Menur_¢turln9
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-EXp Ior etlen Gsp

-Human Expectation/ Feasibility Studies
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Technology-St enderds

Derived Requirements
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Between $evsrsl Stsnderds
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Sensitivities Analysis
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Figure 7. Steps in design.

The process is one of stepped convergence (fig. 8), initially involving several concepts which

converge through proper trades and design analysis to the concept that can meet the criteria,

performance, and reliability goals. Robustness is only one part of these measurables; many times

being in conflict with other elements of the requirements. This leads to either a requirement

redefinition or decision by the project to make certain compromises. All design involves

compromises. In design for failure, as is so clearly stated by Gordon in "Structures," the success of

the design depends on how well this "conflict of expectations" is managed and qualified. As stated

above, figure 7 delineates these steps, their characteristics, and some of the tools available to

augment the process of each step. This section has dealt with the design for robustness at a top

level. In practice, the process becomes one of applying these principles to components, elements,

systems, as well as functional areas, each involving very specific trades and criteria (requirements).
Each of these then must be traded against the element and system interaction effects during the

production of the final product. In the end, the total system must be evaluated using these subdivided

robust parts to determine if the overall robustness goal has been met. TQM principles, with up-front

teams composed of disciplines and functional areas involved, is the current approach espoused for

achieving this goal. The following sections will deal with these more detailed trades and approaches

as they apply to specific space system areas such as launch vehicles, propulsion systems,

spacecraft, and satellites. Before pursuing investigating these areas, it seems prudent to illustrate

the approach with an example.
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"_ CONCEPTS _,

TIME

Figure 8. Concept selection.

3. Example. The generic approach just discussed is illustrated in the following with a so-

called simple problem. A beam with lateral and axial forces:

The equation for the stress needed for design is:

cr =--_+ F or cr- I +%" (1)

P(x) and F are forces that are both static and dynamic, containing both external forces and

the induced inertial forces from the response.

Uncertainties exist in all parameters:

6 = a(l+e ]) = 1 _" I+Ep+EI+EF+E td , (2)

where the Ei are the variations in stress due to variations of the parameters.

This gives the basic equations for the stress of a beam performing a basic function. Now, let

us see how it fits into the scheme of designing for robustness. The first step is to determine its use.

Is it a seesaw, a lever, a simple support beam, etc.? The equations must be modified to account for

the performance requirements. Given the usage (requirements), the criteria must be determined:

strength, fatigue, ductility, buckling, thermal, moisture, deflections, vibration, corrosion, inspections,
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andso on. With requirementsandcriteria determined,the conceptsandmethodsof redundancymust
beselectedfor trades.A beamcan be a truss,a continuoussolid, laminated,etc. It can be madeof
wood, metals, plastics, or composites.The fabrication procedure also enters into the process;
extruded,welded,laid up, glued,etc.The forcesmust bedetermined.Theyare, in general,bothstatic
anddynamic, distributedand point loads,mechanical,thermal,magnetic/electromagnetic,acoustical,
etc. Some estimation of their magnitude and expected variations is needed, as well as the
manufacturingvariationsand analysiserrors.Given this type of information, a seriesof sensitivity
studies can be made for the various concepts.These are traded against cost, reliability, and
performance.This meansthat indexesmust developfor each of theseareas.Performanceindexes
include such things as dynamic response,deflection, stress,weight, and thermal. Cost includes
complexity, design,manufacturing,facilities, andoperations.Reliability coversthe useitems suchas
lifetime, failures, refurbishment,andoperations.

To illustrate this part of the process,the simple beam,cantilevered,with a point force, is
evaluatedfor threematerialsand two concepts.The two conceptsarean I-beamand a C-beam.The
materials are aluminum, titanium, and graphite/epoxy(fig. 9). The processis startedby designing
each beamconceptusing the threedifferent materials to meet the sameperformancerequirements
using minimum dimensions.Figure 10showsthosedimensionsaswell as the correspondingdesign
weight. Clearly, graphite epoxy has the lowest weight and total cost against the mean. Next, the
sensitivity of the geometric dimensions (plus and minus), based on expected manufacturing
variations, must be determined. The partials of the various performance parameters to the
dimensional variations are then determined.Figure 11 is a matrix of thesepartials. Variations of
other parameterssuchasthe force, temperature,etc.,must be included in a real decisioncase.Only
manufacturingtolerancesareusedhereto illustrate the approach.Also, thesepartials only deal with
the sensitivity due to manufacturing variations, not the differences due to concept and materials
effects on the mean value. Thesedifferenceswere discussedearlier and will be discussedagain
later. The key toleranceparameteris the web thicknessvariation. Graphite/epoxy,again, has the
lowest sensitivity to variations in terms of the performanceindicators.The matrix partials can be
combined in equation form for each performanceindicator for each system so that, in complex
interactions,a quantitativeevaluationcanbe made.For example:

5 5 t_ +5 5 ATa= _A0)+-w-:v..AH+ _--w_--kT0) _ATA+_
t 0(1) OH 010) Ol A 01.i.2 f2 •

The same can be formulated for the other performance indicators. Graphical presentations of

this performance indicator provide excellent visualization and help understanding.

A typical linear variation for one performance indicator, one material, and one concept is

shown in figure 12. The effects of combining the variations (sensitivities) and the basic

characteristics of the three materials and two configuration concepts on cost are illustrated by

assuming that all five configurations were designed to the same performance indicators (for nominal

conditions) for stress, deflection, and buckling. Assuming that this system is to fly on the space

shuttle, then there is additional cost of $10,000 per pound of payload assumed. This leads to a total

cost value shown in the last column (fig. 10). The results are shown graphically on figure 13 for the

manufacturing and materials cost, while figure 14 shows all the cost including payload. Based on

cost, the graphite/epoxy is far and away the cheapest regardless of the concept. Because cost is, in

general, not the only consideration, the deflection (stiffness) can now be evaluated in the same
manner as cost. Putting all the indexes together using the matrix of partials allows the final

evaluation. The key to the exercise is the linear partials that allow a quantified evaluation of the
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Design Case: Cantilever Beam; point load located at free end

Cross Sections; I-Beam, C-Beam

Design Constraints: i) stiffness

ii) material stress limits

iii) torsional stability

iv) frequency response

Materials Investigated: i) Jtlum/num

ii) Titanium

iii) Graphite/Epoxy

Figure 9. Design for minimum weight.

Material and Manufacturing Costs:

Material Manufacturing Total Fabrication Weight Weight Penally Payload Penalty Net Cost

Aluminum-I 140 720 860 311 159 15,900 16,760

Titaniurn-I 1,100 720 1.820 4 37 2 85 28.500 30,320
Gr/Ep-I 76 1,006 1.082 152 0 00 0 1.082
Aluminum-C 140 720 860 3 11 1.59 15.900 t 6,760

Titanium-C 1,100 720 1,820 4 37 2 85 28.500 30.320
Gr/Ep-C 88 757 845 1 76 0 24 2400 3245

"- Does not include one-time too_ing cost of 3.240
** - Does not include ont-time tooling cost of 1,620

*** - Based on $10.000 per pound of payload

Cost vs. Performance Evaluation:

• All three materials were designed to have equivalent performance characteristics

• The graphite/epoxy beams cost comparable to aluminum to fabricate (not including the one-time

tooling cost)

• The weight savings (payload penalty) for the composite beam is the most favorable

Summary:

• Graphite/epoxy (unidirectional) I-beam is the optimum configuration for the design case studied

Figure 10. Material and manufacturing costs.
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sensitivities and performance of the concepts. Notice the matrix of partials where one parameter

dominates the performance indicators, making it easy to evaluate the concepts in terms of

manufacturing tolerances. In most design cases, several parameters have sensitivities large enough
to be part of the evaluation. In most cases, several parameters can be eliminated through the

process, reducing the problem complexity. It is prudent to eliminate as many parameters as possible

to reduce analysis effort and concentrate the design effort on the highest payoff. As several

scientists have pointed out, 20 percent of the parameters create 80 percent of the responses.

In summary, in the design for robustness, two basic areas have to be traded: (1) the

variations in weight, cost, etc., due to basic concepts and material differences, and (2) sensitivities

of the performance of the system to parameter variations such as the forces, manufacturing tolerance,

and the like. These two areas must be combined to make the final selection. It should be very clear

that in conducting these evaluations, it is prudent to simplify the models to the extent possible in

order to reduce effort and gain insight. As the selection process converges, more and more details
must be included in the models.

To illustrate further design options available to the designer, the simple beam configuration

has added the concept of feedback control. As was discussed previously, the forces and, hence, the

response of the beam is not only static but is dynamic as well. The control function is composed of

both a sensing system and an actuation system, and the logic to correlate the changes in both the
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static and dynamic response. This is accomplished at the expense of complexity and the introduction

of additional failure modes. The concept can be illustrated by looking at the first bending mode

response of the beam using attitude, attitude rate, and acceleration feedback. The equation for the

first bending mode response without control is

/j+2_" ojO)0+(-02O = F(l) . (3)

Adding control for position, rate, and acceleration feedback produces

Fc = (aorl Y;+a l fl YR+a zq YA)F'c Yc . (4)

Introducing the control equation into the bending equation and renormalizing gives

q+2¢ _Nfl+NZrl = F(t) , (5)

where

2¢ 2_ ro+a,Yf_PcYc
co= l+a2YAFcYc , (6)

_2 = o)2+aoY; PcYc

l +a 2YAFc Yc '
(7)

F(t)
F(t) = (8)

l+a2YaFcYc •

In actuality, the control function must be formulated for the total response of the system that

includes rigid body as well as the complete elastic body response. The simplified mode equation

illustrates the major characteristics under consideration for robustness.

Now the beam system not only responds due to its basic material characteristics (structural

stiffness and damping), but has introduced control functions that augment the mass, damping, and

stiffness of the system, providing the designers with means of adjusting the response in any manner

he chooses by shifting the basic frequency, damping, and inertia through the choice of the control

logic, control gains, and control forces and moments. This does not (as stated previously) come free.

The control function requires application of a force or moment that is proportional to the control

signals. This can be accomplished using thrusters, momentum wheels, actuators, and so on. This

introduced force system has failure modes and uncertainties associated with it that also must be
accounted for.

In addition, control sensors (position rate and acceleration) must be designed into the system

along with the logic (software). These also introduce additional failure modes and uncertainties. All

these uncertainties and failure modes must now become a part and partial to e's given in equation
(2). The last set of terms now becomes

[ l+ep+e 1+eF+eA+gc] , (9)

where ec is composed of the uncertainties discussed above.
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Now the simple beam design is not so simple in that many options are open to achieve
robustnesswhich must be properlyevaluatedand designed.Let us seehow the processworks. Let
ussay the performanceis not adequateusingtheinitial concepts.The vibration responseis high; the
deflectionstoo large.We must now introducesomenewconcepts;differentmaterials,for example,or
the beamcan be designedusing adaptivestructural concepts(smart structures).Damping is built
into the material to reducevibration response.Using thecontrol function with sensorsand actuators
can reduce the static and dynamic deflection, etc.9 to One could change the geometry and add
material.All thesethings increasecomplexityandfailure modes,but canaddredundancyor produce
flexibility. Environmentalcontrols can be added.Thermal insulationcan be shapedto reducewind
loads and so on. Structuralmarginscanbe addedduring designand reducedduring use. Now cost
may be unacceptable,so may the reliability. The processmust be replicated for each caseuntil a
reasonablecompromise is met againstthe criteria and requirements.Manufacturing tolerancesfit
into this group. The introduction of augmentationcanattachmany of the elementsof robustness;
however, it always increasescomplexity which is usuallya negativeto achievingrobustness.This
interaction greatly complicates the task,but can be very effective in meetingrobustnessgoals. It
shouldbe pointedout that the elementsintroducedto augmentthe response(sensorsand actuators)
must be individually designedfor robustnessin order to have overall robustness.Remember,the
reliability of the systemis the product of eachelement'sreliability. Through the processshown in
figure 2, one can, therefore, step through the designof a beamthat has robustnessand meet the
performance, reliability, and cost goals. The secret to accomplishing the task lies in clearly
understandingthe needs/requirementsand criteria, performing adequatesensitivity analysesand
trades with quantified variations using a reasonableset of concepts, fabrication methods, and
materials all measuredagainst the indexes associatedwith performance, cost, and reliability.
Remember,performance,cost, and reliability areusually in conflict, requiring a compromiseto be
made. Clearly, there are no generic solutions for the simple beam design. It depends on the
requirementsand constraintsset by the customer.Remember,this is a steppedconvergenceprocess
as discussedby Pugh(fig. 8). It is a processof weedingout conceptsandaddingnew onesbasedon
more information until the bestset is selected.In short, it is an iterative processthat convergesin
stepsusing formal procedures.

In the discussionso far, the processhasbeendefinedin a very formal way, listing tradesthat
are evaluated against a set of measurablescall indexes. There is contained in any of these
formalized approachesa methodologycalled intuition andjudgment (experience)where peoplecan
measurethe rightnessof a new pattern,a new concept,or a new model,by simulating the concept's
operationin their minds.Theseintuitive judgmentscanbemadeat a big savingsin time. Somehow,
using intuition, they can test out the alternativeswithout formalizing them. When conceiving the
engineeringof robustdesign,onemustbreakout of theold paradigmsoccasionallyanduse intuition,
the leapof faith of intuition. Yet our systemsareso complex,so costly,evenwhentheintuitive jump
(judgment) is usedto form the concepts,they must, in the final analysis,buy their way formally
against the set of measurables(performance,cost, reliability). Barker discussesthis intuition along
with risk-taking as well as the need for the formalized in reference 11. He says intuition and
innovationareonly 10percentof the job. Theother90 percentare thestandardprocedures,yet they
area balancedsetif progressin thefuture is to bemade.However,if the intuition judgmentapproach
is used,it is mandatoryto providethe logic asa checkoffmatrix andsupportingstatementsfor future
referenceas the project matures.

What has been discussed using the simple beam is the same geqeric approach and
technology available in designing a launch system, satellite, etc., and their subsystemsand
components.In the caseof the simple beam, the basic tradesdominatewith the sensitivities to
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manufacturingtolerancesbeing a secondaryconsideration.In the morecomplex systems,the trades
and sensitivity functions are not simple. The sensitivitiescan be very significant compared to the
basic materials, fabrication, and conceptdifferences,requiring clearly defined weight factors. The
options available to the designerfor achievingrobustnessarevery large and challenging, bringing
out the best in all of us. The appendixwill dealwith someof thesecharacteristicsand tradesof the
variouselementsof a spacesystem.

IV. MANAGEMENT (LEADERSHIP)

Management is responsible for all aspects of the total design from communicating the vision,

controlling (allocating) the resources, to engineer design, manufacturing, and operations. Two

elements in management are fundamental to achieving robustness in design. These are: (1)

determining the criteria and (2) instituting a management structure that is compatible with the

overall mission robustness goal. Reference 6 discusses these two factors. A top-level discussion
follows.

A. Criteria

The development of a set of design criteria is one of the prime steps to achieving robustness

in design. Requirements and standards are used in two ways that are highly interrelated. First, they

serve as the framework for managing technical and project aspects of a spacecraft or space vehicle

(to be discussed later). Second, they provide formal control or direction (legal) to the concept

selection, development, verification, and operation of these systems. In addition, there exist many

good practices and lessons-learned guideline documents, including monographs, handbooks, test and

analysis approaches, and parametric data which can guide the design. These, however, are not

contractually binding. Figure 15 is a flowdown of these two criteria. The proper formulation and use

of these criteria is the real path to robustness. This means that this set of criteria must be specially

derived, based on past history (lessons learned), for the particular project using the robustness

objective as the guide. Also, they must be measurable, hence, verifiable. These measurables can and

should become part of the indexes used to determine robustness.

Further, the legal requirements must be simple, unambiguous, concise, and direct, providing

order to the engineering process; but not overpowering to where they stifle creativity and remove

responsibility. The balance between legal requirements (formal organizational structure) and
creativity (informal organizational structure/leadership) is probably the most challenging, but

important, task engineering faces. "Optimal performance needs administration for order and

consistency (formal), and leadership (informal) so as to mitigate the efforts of administration on

initiative and creativity to build team effort to give these qualities extraordinary encouragement. The

result, then, is a tension between order and consistency on the one hand, and initiative and creativity

and team effort on the other. The problem is to keep this tension at a healthy level that has an

optimizing effect," ("Servant Leadership," by Robert K. Greenleaf12). This is the challenge of the

robustness criteria development tasks.

How one achieves this goal is an interesting study. Many approaches have been successful.
There is no magic formula other than teamwork and dedication. Several have used the skunkwork

approach where all disciplines are formed into a colocated special team to design the vehicle.
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Integrating working groups and panels consisting of key representatives of each discipline, as well
as customer and contractor, has been successful. A different approach is being used by the new

space transportation system main engine (STME) to formulate these criteria. This approach is
based on a functional management approach (product and component development teams) for design.
The criteria and documentation requirements are formulated using Government (customer) and

contractor discipline-oriented teams. Maximum use is made of the contractor's documentation
bases, criteria, and so on to formulate these requirements (fig. 16). Proper development of criteria

focused on robustness as well as the physics of the systems involved. Regardless of the approach

taken, criteria formulation requires teamwork focused on development of a low-cost, robust system.

The results of the design rest on this (see "Total Design" by Pugh4).

B. Project Management Approach

Just as key to achieving robustness is the project management approach used. It is

paramount that it also be conceived and formulated with a focus to achieving robustness. Again,

there is not one approach. Skunkworks have been used successfully. Working groups and panels are

successful. Line engineering organization can work well. Nearly all systems use design reviews and

audits keyed to critical design progress points. With the current trend of applying the principles of

TQM to improve quality has arisen the use of functional design teams composed of members from
both the customer and the contractor. The aircraft industry has used this approach to develop several

planes. Currently, the STME has opted for this approach. Two levels of functional development
teams are baselined. The first level, called the product development team, focuses on the design of

engine subsystems such as nozzles, injectors, turbomachinery, avionics, and systems. Because each
of these subsystems is composed of various components, the product development team is

subdivided into component development teams (figs. 16 and 17). They are staffed by engineers (all

disciplines) from both the Government and contractor, using concurrent engineering along with all its
intended tools to ensure robustness, cost, reliability, and performance. Because the STME is being

designed and manufactured by a consortium of three contractors, the component design teams are
housed at the individual contractor responsible for the development of that hardware.

Figure 7, mentioned previously, is an attempt to show the flow of a total design focused on

robustness (flow is basically the same regardless of the focus). The arrows indicate interaction

(iteration) and awareness of the various steps. The center column lists some of the characteristics

while the right hand column provides a partial list of tools available to optimize the efforts of that

step. These steps must be applied to at least four levels of the project (fig. 16). These are:

(1) System

(2) Subsystem

(3) Element

(4) Component.

These two figures clearly show the complexity of the management tasks and the need for

integration. All interact. Also robustness must be achieved at end level, or the overall system goal of
robustness is not achieved. Thus, we have both the challenge and the dilemma of the management

effort.
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Regardless of the approach used for management, such characteristics are mandatory if
robustness is to be achieved. It must:

(1) Focus on the customers and their requirements for robustness

(2) Spend up-front money to drive out the key parameters and develop the requirements flow

clown as well as selection of a proper concept

(3) Utilize concurrent engineering through teamwork and open communications (lateral and
vertical)

(4) Have a well-laid set of formal requirements and a verification plan for achieving

(meeting) them

(5) Delegate authority to the lowest level possible (empowerment)

(6) Have well-defined formal reviews and audits at critical design points to eliminate or

reduce surprises during verification. This includes objectives and scope

(7) Properly assure total systems integration.

In the final analysis, the key factors are communication, empowerment, and up-front

concurrent engineering. To be successful, all approaches must include these and be focused on
robustness. Otherwise robustness will not occur, or when it does, it will be too costly.

V. SUMMARY

A vision, conceptualization, designing, building, and operating a space system is like a great

symphony. The symphony starts with a composer who has a vision of a great orchestra playing the

great piece of music by harmonizing the strings, brass, woodwinds, bass fiddles, percussion
instruments, French horns, tuba, trombones, clarinets, trumpets, bassoons, oboes, flutes, piccolo,

cellos, violas, first and second violins, and pianos into a series of movements emphasizing, at

various times, the various sections united by combining the elements. When heard and seen, the

general working of the parts, originating in the composition, flow into a concept from which the music

was composed; all the time being held together and harmonized. Once the music is written, it must
be arranged to fit a given orchestra and situation. This is done by the arranger and the conductor.

Practice starts with the different sections fine tuning the arrangement and the orchestra. When all is

ready (after much time in practice and preparation), the production is carried out to please the
audience.

Prior to the orchestra playing together, each instrumentalist must have spent years perfecting
his knowledge and skills in music and his instrument. Each must coordinate and blend with all the

others in concert with the music score and the conductor. What a great experience to be present for a

great symphony!

A space system also starts with a vision, moves to a concept, is designed and manufactured,

and then the great performance occurs. As with the symphony, each engineer, technician, scientist,

secretary, welder, millwright, etc., must have honed knowledge and skills that are harmonized

28



togetherto makethe whole.This first happensin termsof conceptionand design.The systemis not
built by one discipline,but all playing together,eachfitting his pieceinto thevision, the concept.This
requiresleadership,dedication,and servanthoodfor this processto happenasa team.Not only must
the musical team harmonize together to make a symphony,but so must the spacesystem. It is
composedof its many parts, avionics, structures, propulsion, materials, etc., that must all play
togetherto form the operatingsystemwhich is anothersymphonyin itself. First, the team (design
and manufacturing) must have a full vision and understandingof how the system plays together
including how to manufactureand operateit. As with the orchestraandthe musicscore, it must be
fine-tuned as it is developedto fit the constraintsthat always occur, as well as the changesthat
must be madeto produceoperatingsystems(harmony).

This processis complicated by the fact that spaceexploration requires several different
systemsthat must work together: launchvehicle (transportation);spacecraft,which is, in reality,
two systems if it is manned;payloads; orbiting systems; transfer vehicles; planetary systems;
manufacturingincluding thefacilities; andoperationalsystemscomposedof launch,communications,
checkout,real-time operations--all requiring specialfacilities andequipment.Not all of theseparts
would be presenton everyspacesystem.

In the caseof the symphony,the conductorusually makesthe decision as to when and to
what level a sectionparticipatesin the music.He may consultthe varioussections,but generally, it
is his decision. In spacesystemsdesign, the variousdisciplinesare not only the conscienceof the
project by continuouslyraising issuesandjudging the design,but area part of the decision process.
Clearly, the project can override,call the shots,but only after understandingthe issuesand risks. In
other words, someonemusthavethe final say.

"O" "'The total process is called system design, or according to Pugh, 4 "total des_,n. The major

source of problems and failures in space systems is not due to the lack of technology (individual

skills also), but the neglect of the process of system design. 1 The requirement for harmony is as

great as for the symphony--one sour note can spoil the whole performance.

As an orchestra is broken into sections, so is a space vehicle or spacecraft. The components

and subsystems must be a whole as the first violin section, but must also play with all the other

parts of the vehicle. This further breakdown or rolldown of each system into subsystems, elements,

and components complicates the problem further. Integration of all the rolled down pieces into a
whole is required to make a successful system. Someone, or several persons, must be able to see

the system. All must capture the vision, the objectives of the system. Honing the individual skills,

interplaying them together in harmony in terms of a clear vision makes great music and a great space

system. Robustness is achieved using this team process.

It should be pointed out that the systems design for space exploration has several additional

complicating factors not generally present in normal product design, manufacturing, and operations.
These are:

(1) Very complex needs and requirements

-Politically driven, must be politically viable

-Technology pushing, high performance required
-One or few of a kind

-Not generally perceived by the public as a need, more a toy or fantasy

-In general Government controlled, budget and regulations
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(2) Costly

(3) Long developmenttime,high risk

(4) Limited historical database

(5) Multioperational control
-Scientists

-Government

-Contractors

-Technical disciplines

-Manufacturing disciplines
-International.

When all the factors discussed are added together, it provides not only an overarching

challenge, but one of the great opportunities man has faced. This paper addresses how this is

accomplished starting with the vision, the marketing of the vision (requirements derivation), concept

selection, design, manufacturing, and operations. It discusses the processes, tools, and emphasizes

how TQM philosophies, principles, and tools fit into the subject.

VI. CONCLUSIONS

Robustness is the pivotal design philosophy for achieving low-cost, reliable space missions.

The earlier in the program it is incorporated, the greater is its impact; manufacturing cost will be

reduced. Costly failures during development and operations will be greatly reduced, if not eliminated.

For space systems, which is what this paper is about, operational complexities and constraints are

reduced as well as costly launch delays. Increased life is apparent along with flexibility. Companion
to these increases are lower refurbishment and maintenance, assembly, processing, and checkout

efforts and cost. Paramount also are increased reliability and safety. The following points are

conclusions that were embedded in this paper.

(1) Robustness, in general, cannot be designed in a global sense. It can and should only be

used where the biggest payoff occurs.

(2) The areas of biggest payoff can only be determined using sensitivity analysis and trades

in terms of the project's objectives, philosophy, and requirements.

(3) The degree of and definition of robustness must be defined specifically for each project.

(4) Robustness must be the guiding star throughout the whole life cycle of the project:

concept, design, development, manufacturing, verification, and operation.

(5) Designing for "robustness" is a process that utilizes established TQM techniques

starting with concurrent engineering, and incorporates Taguchi Quality Method, design of

experiments, sensitivity analysis, Taguchi tolerance versus cost, QFD, other available techniques,

and new TQM techniques as they evolve.
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(6) Designingfor robustnessimplies that one avoids, where possible, designing to the edge

of technology.

(7) Robust systems have the general characteristics of simplicity such as load paths,

symmetry, configuration, number of welds, number of parts, etc.

(8) The basic trades involve the triangular relationship between concept, materials, and

fabrication evaluated against cost, reliability, and performance.

(9) There are many options for achieving robustness. The six basic ones are: (1)

desensitization, (2) control of parameters, (3) margins, (4) redundancy, (5) simplicity, and (6)

operability. Most robust systems employ various combinations of the set.

(10) Quality is a virtue of the design rather than of the on-line control, however stringent the

manufacturing process.

(1 1) Concept selection and project definition basically determine the degree of robustness.

All else is fine-tuning. The best design engineering cannot right a poor concept selection.

(1 2) Verifiable measurables (performance indexes) are required to judge the merits of robust

concepts, etc.

(13) All concept selections and designs are a stepped convergence process, incurring more

and more details as the convergence occurs.

(14) Histories of prior programs (lessons learned) are key to identifying robustness

requirements, design approaches, etc., and should be collected and studied prior to concept selection

and design initiation.

(15) Statistical significance of the sensitivities is key to evaluating robust characteristics and

making correct trades for configuration selection and design (concept, materials, fabrication).

(16) Management/leadership is a key factor in achieving robust systems. It must focus on

the customers and their requirement for "robustness;" be willing to empower teams (concurrent

engineering) and ensure vertical and horizontal communications; and lead the development of project

tailored requirements and specifications and allocate up-front resources to drive out key parameters

where the payoff is the greatest. The key factors are leadership, communication, empowerment, and

up-front concurrent engineering.

(17) Designing space systems to be robust is complicated by complex needs and

requirements:
- Politically driven, must be politically viable

- Technology pushing, high performance required
- One or few of a kind

- Not generally perceived by the public as a need, more a toy or fantasy

- In general, Government controlled, budget and regulations

- Long development time, high risk
Limited historical database

Multicustomer controlled, scientist, Government etc.
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Designing for "robustness" is the great challenge facing the aerospace industry. Its
achievementwill makeaccessto spaceachievableand affordable.It is the task we all must accept
with dedicationto ensurethefuture of exploration.
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APPENDIX

The characteristics of robustness vary for various space systems, as do the critical trades

involved. This appendix is provided for more completeness and insight into what these trades and
characteristics are for launch vehicles, their propulsion, avionics, materials and structure

subsystems, payloads and satellites, orbiting platforms, stations, interplanetary tugs, and transfer

and reentry vehicles. Each designer should use this list as a point of departure for developing his

own complete list of the project being designed.

Launch Vehicles

There are several ways to separate the design functional areas for a launch vehicle. At the

top level, one must deal with the vehicle, manufacturing, facilities, transportation, processing, and

operations. The payload, although a part of the vehicle during operations, is a design area in itself.

Each of these major functional areas is usually broken down into subelements in order to make the

design task more manageable; for example, vehicles/facilities which includes manufacturing, storage,

processing, assembly, launch, and operations. A fundamental part of these is the ground support

equipment (GSE) or ground handling equipment. In this paper, emphasis will be placed on the
vehicle, even though its design must be totally correlated and traded with the other areas such as

facilities and manufacturing. The vehicle itself must be subdivided into subsystems, elements, and

components in order to have manageable design tasks. The following paragraphs will address the

design of a launch vehicle from the standpoint of propulsion systems (liquid and solid), avionics

system, structural system, materials, carrier component, and, for manned vehicles, crew quarters.
Before dealing with the subsystems, a discussion will take place on the integration of the subsys-

tems into the total system; in other words, on the system's robustness and design.

1. Vehi_:l_ Systems

a. Factors: What are some of the factors or characteristics of a launch vehicle that most

would agree makes it robust? Are there some general answers to this question? Probably. Before

answering this, it is prudent to look at the space shuttle and delineate those characteristics that are

undesirable. A history of the problems encountered during shuttle operations is a good starting

point. 13 The first shuttle launch was held for several days due to a glitch in the avionics system.
Sensors have failed, creating launch holds. Three launches have been delayed due to excessive

winds aloft. Hydrogen leaks have held several launches--one for several months. Other problems
can be studied in the above cited reference. In addition to these problems, there are several standard

procedures required for each launch. Each launch is unique, requiring a specially shaped trajectory
and extensive data (loads, performance, thermal) for launch operations. Day of launch I-loads update

(wind biasing), based on wind sounding balloons sent up periodically, is used on each flight. Along

with this wind biasing, a launch constraint system is in place to hold the launch if winds aloft, with

the wind biasing, create excessive loads, dynamic pressure excesses, or performance degrada-
tion.2 7 14 The orbiter heat tiles must be protected from ice forming on the external tank. After each

flight, damaged tiles must be replaced. Heaters are in place on the RSRM joints to ensure proper

sealing. The vehicle must be protected from propulsion-system-induced overpressure using a water

spray system and water troughs. Some of these approaches ensure robustness by controlling the
environment, but are costly to launch operations. The vehicle was designed using load relief in pitch

and yaw as well as the use of monthly mean wind biasing. Additional conservatism was taken out in

formulating the wind criteria. Why this was necessary is clear if it is understood how influential the

33



aerodynamicsurfaces(orbiter wing and tail), coupledwith the unsymmetricalconfiguration, areon
loads.

Therearemanycostly itemsin theassemblythatthe writer is awareof, but he doesnot have
hands-onexperience with, such as launch, processing,checkout, and launch operations.These
shouldbe identified and studiedto identify factorsor characteristicsto designout, or in, whichever
producesrobustness.The problemsassociatedwith theenginewill appearin anothersection.

The Saturn/Apollo vehicle, being a three-stageconfiguration, allowed certain conservative
approachesthat paid off in operations.It wasdesignedwithout wind biasing using nondirectional
95-percentwind speed, 99-percentwind shear, and gust RSS providing margins. As the vehicle
evolvedinto the operationalconfiguration,wind biasingcouldandwould be usedto gain launchflex-
ibility. This was of particular importancefor successfullylaunching Skylab where margins were
lower. Load relief was not used.While it (loadrelief) reducedthe rigid body loads, it increasedthe
responseof the first bendingmodeto wind gust,cancelingout therigid body load reductionson the
front third of the vehicle. Much of the rest of the vehiclewas not designedby aerodynamicloads.
Also, the vehicle hadperformancemarginor flexibility that allowedlaunching the Lunar Roverand
the Skylab vehicle.1214Being anexpendablevehicle (only launchpadand facilities werereused),it
did not have the reuseproblemsandcost of the spaceshuttle.An obvious tradebetweenreuseand
expendableswas throw-awaycost versusmaintenance,inspection,refuel, etc.

b. Candidates for Characteristics of Robustness: First, a robust launch vehicle is one

that can meet orbit on demand for the range of missions specified in the requirements. There are

many facets to this characteristic, from avionics functioning, engines functioning, margins on

temperature, winds, and performance (propellant reserves) to minimum operational procedures,

processing, checkout, assembly, and payload substitution (fig. 18, taken from an NLS study task

performed by Martin Marietta).

Second, a robust vehicle has flexibility. It is a given fact of space exploration that, in the

design phases, one cannot specify all the missions, payload, and so on that a system will be needed

to perform. The Saturn V Apollo was designed to send man to the Moon and safely return him. Early
on, it became clear that not only did he need the means of landing on the Moon and returning to

Earth, but that he also could explore the Moon's surface much more efficiently if a Moon buggy could

be carried along. Through some clever innovations in design of the Lunar Rover, this was possible

within the performance inherent in the design. At the end of the Moon voyages, the same launch

vehicle was called upon to put Skylab in orbit by replacing the CSM, LEM, and SIVB with the Skylab

(modified SIVB), ATM, and MDA. This changed the nose geometry and produced larger bending
moments in the first and second stages which could be handled without redesign. The space shuttle

has flown more than 45 various missions by modifying the ASE, life support, and operation proce-

dures (constraints). The penalty on the shuttle has been launch holds and high costs.

Third, the system is insensitive to manufacturing tolerances, among other things, which

eliminates excessive inspection and complex manufacturing procedures. History has shown that high

performance systems have a problem in meeting this goal. The SSME has experienced many prob-

lems due to weld offsets, lack of weld penetration, and stress corrosion, to name a few. This has

added to inspection complexity, redesign, numerous MR's, etc. 14
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Fourth, the system is tolerant to the unexpected. This can be in the environments, handling,

assembly, processing, and manufacturing. The detailed list of the unexpected or unpredicted is too
long for this report, but they vary from banging and dropping parts to lightning, winds, and corrosive
materials.

As mentioned previously, a study of failures and problems of current and past systems, as
well as all the processes involved in these systems, provides the information to define these desired

characteristics, select the needed trades, and determine the requirements and criteria for robustness.

Each new system should always start out from this vantage point. Lessons learned are fundamental
to achieving robustness.

The process whereby one builds in these characteristics is through performing a system of

trades weighed against the various indexes involved in performance, cost, and reliability (fig. 2).

These trades have to be performed at all levels, systems through components, then integrated
involving all disciplines to arrive at the right answer. The next section addresses some of these
trades.

c. Trad_: In order to design in these characteristics, many systems trades must be

accomplished using the process outlined in figure 2. This means writing various performance indexes
for cost, reliability, and performance, to determine the best options. Taguchi's method and Design of
Experiments are good tools to help identify the optimum number of cases to run. The first set of

studies determines the concept selection. As Pugh so adeptly said, "A poor concept selection cannot

be righted with excellent design, neither can an excellent selection produce quality products without

good design." From a total vehicle standpoint, the concept selection determines to a great extent the

degree of robustness. It should be pointed out that, in accomplishing the concept selection, things
will be missed. Also, the total integration does not, in general, take place. This results in a

configuration that requires developing some high technology in order to make up the delta and meet

the performance goals. For example, one may have to go to a higher performance/lower material

weight to reduce weight (mass fraction). Fabrication techniques may become exotic. This means

that the engine and the propulsion system are not independent of the vehicle system. The SSME,

due to lower than required vehicle performance (orbiter weight growth), operates at 104 to 109

percent of design thrust in order to make up part of this performance delta. This higher operating

performance requirement for the engine has led to numerous low- and high-cycle fatigue problems. _4

Placing the wrong requirements on the engine can lead to a high-performance, minimum robustness.
Conversely, too optimistic an engine system will drive the vehicle to low robustness. This occurs in

all areas from structures and manufacturing to avionics. It is, therefore, highly desirable to wring out

the sensitivities and issues as thoroughly as possible during the concept selection and, through
PRR, to minimize these high-tech work-arounds during design.

The following trades are some of the basic ones open for design considerations: (Optimize
these trades using "Design of Experiments," etc.)

(1) Thrust, Isp, propellant, and performance (structural weight and payload): Isp deals with

propulsive efficiency versus complexity. The higher the Isp, the less propellant and structural weight
are required, but the more complex the engine or motor and its propellant must be. Thrust can be

traded for Isp, but at the increase of propellant and structural weight. This system trade, therefore,
must have some indexes from the engine area to properly make the trade. Mixture ratio of the

propellant also enters this trade. Figure 19 shows the effect of thrust, mixture ratio, and propellant

capability on payload to orbit. Notice that, for a given thrust and mixture ratio beyond a certain point,
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Figure 19. NLS stage 1.5 tank stretch/thrust/mixture ratio study payload capability.

payload capability is lost by adding additional propellant. In figure 20, four levels of concept selection
illustrate how far down these type trades could impact. The chart is not complete in that it breaks

down only two of the many systems into their various levels.

(2) Staging: The more stages selected, the less sensitive the vehicle is to variations (higher

performance); yet it is, by nature, somewhat heavier and more complex (separations, altitude engine

start, disposal or recovery). Adequate performance, reliability, and cost indexes are required to make

this set of trades. See figure 21 for various concepts available for trades.

(3) Propulsion system liquids, solids, pressure feed, hybrids: It is not easy to decide which

type propulsion system to use. Liquids can be ground-tested before use. Solids are easier to handle
among other things. This is a trade paramount to a robust system requiring well-thought-out and

quantified indexes.

(4) Reuse versus expendable: Prior to, and during, the development of the shuttle, it was

generally thought that a reusable vehicle was the answer to the cost and reliability issues. Current

thinking says that a mixed fleet is better. This is a crucial task trade that can have major impacts on

the robustness question. How do we recover? How do you inspect and maintain for reuse? What do

we save by not reusing? What is the throwaway cost?

(5) There are several ways of producing forces to provide means of achieving guidance, navi-

gation, and control of launch systems. Figure 22 shows some of these options for both liquid and

solid propulsion systems. For the solids, thrust vector control devices, merits and demerits are

given. By being aware of the characteristics and sensitivities of the various approaches, trades can
be conducted to arrive at a best solution.
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Many other system tradesenter into the questionof robustnesswhich should be addressed
up front insteadof using themasadd-onsor fixes. It is not thepurposeof this paperto discusseach,
but merely provideexamplesanda process.However,for completeness,thefollowing is a partial list
of othersthat might apply to therobustnessquestionfrom a vehiclestandpoint.

(1) Active versuspassivevibration modal or dynamic damping.Smart structuresfall into
this area

(2) Central versusdecentralizedcontrol andto whatdegree

(3) Adaptive versusproportionalcontrol

(4) Testing versusmarginsversusanalysis

(5) Manned versusunmanned

(6) Thermalprotectionaddor integralpartof structure

(7) Active versuspassivethermalcontrol

(8) Health monitoring versusmargins

(9) Pyros versusmechanicaldevices

(10) Load paths/numberof elements

(11) Numberof enginesversusreliability andcost (givenvehicle thrust)

(12) Fracturecontrol versusfatigue design

(13) Margins versusoperationalprocedures

(14) Manufacturing versuslaunchsiteassemblyand processing.

The next sectionwill dealwith propulsionsystems.

2. Propulsion Systems. The propulsion system is composed of the propulsive elements

(solid or liquid), the propellant storage or containers (tanks), control (avionics, valving, actuators,

etc.), lines and ducts, structural load carrying elements (intertanks, links, etc.), and thermal sys-

tems. All these must be integrated into a vehicle that carries out some mission, usually delivering

some cargo (manned or unmanned) into some specific place in space. Let us examine some of these

elements in order to better understand the process and its complexity.

a. Liquid Propulsion Engines: Liquid rocket engines are composed of several parts:
Propellant pumps (rotary machinery), combustion devices, lines, valves, ducts, nozzles, and controls

(avionics, software, actuators). Each of these components is composed of parts integrated to make

the whole just as the components are integrated to make the engine.
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As wasdonefor the launchvehicle, it is prudentto look at the problemsassociatedwith the
SSME to serveasa basis for robustnesscharacteristicsdesiredfor future systems.References1, 2,
14, 15,16,and 17discussmanyof theproblems.

There havebeen36 major failuresof the SSMEin the groundtestprogram.They include lox
post failures due to vortex shedding(fatigue), propellantpump bearingfailure, whirl, turbine blade
failures, steerhorns(nozzle coolant tube tee's), valves, gimbal ducts, splitters, and so on. Many
otherproblemshave occurredbut did not leadto major failures.Today, one-thirdof the high-pres-
sure lox and fuel flight pumpsdo not passgreenrun andacceptancetestsand are returnedto the
factory for rework. Thereare approximately6,000welds on the engine,severalof which cannotbe
inspectedfor critical flaws, hence,mustbe acceptedon risk assessmentimplying strict processcon-
trol. High-pressurepump bearingsand turbinebladesare life-limited, requiringthe pumpsto be dis-
assembledand refurbished, for example: lox pump bearingsafter two flights, and bladesafter six
flights. The sheetmetal in the pumpturbinescrack andmust be inspectedand repairedif required.
Weld offsets in lines and ductsarea major problem,requiring detailedinspectioncriteria. The prob-
lems that haveoccurredcanbeclassifiedin at leastthe following categories:

(1) Fatigue (low- and high-cycle)

(2) Manufacturing
- Tolerances
- Weld offsets
- Corrosion

(3) Acoustic excitation

(4) Flow-inducedvibration

(5) Rotary dynamics
- Stability
- Vibration
- Bearinglife
- Damping

(6) Fracturecontrol (inspectability)

(7) Dynamictuning.

(Again, the writer doesnot have hands-onexperience,particularly at the launch site, with
someof the processesthat needstudy beforefinalizing robustnessfactors.)

In spiteof theseproblems,the SSMEis theepitomeof theart of designingandmanufacturing
a very high-performancemachine. It is truly a great high-energydensity machine, although it is
costly. The questionthat arisesis: How do youdesignfor robustnessin light of theseproblems?

(1) Fi_tors. There are many concepts available for design of a liquid engine. They range

from a pressure-fed system to a staged combustion cycle. Reference 18 is an excellent article on

various engine concepts (see summary from ref. 16 on figs. 23 through 25). Figures 23 through 25

show top-level trends between Isp versus chamber pressure, engine weight versus chamber
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pressure, and turbine pressure ratio versus chamber pressure. The two bracketing or extreme sys-

tems for Isp and chamber pressure are the staged combustion and the gas generator. The staged

combustion produces the highest Isp, but is limited by the power increasing turbine ratios. The gas
generator is not as efficient because of the low-energy turbine flow which hurts performance. For

example, specific impulse drops after the optimum point as chamber pressure increases.

There are two areas of consideration in choosing the combustion cycle. The first deals with

the vehicle system (performance, weight, reliability, and cost) due to the integral correlation of the

propulsion system with the vehicle. The second deals with the engine system itself, such as the
technology development required (turbines, turbomachinery, combustion devices, materials, etc.) as

well as how they drive cost, reliability, and performance. If one chooses the gas generator cycle, the

vehicle must be able to handle the gas turbine exhaust dump, the added propellant required, and so

on to produce a robust system. The engine system itself is much less complex. The staged combus-

tion drives technology pushing the margins but requires no exhaust dump and less propellant.

Choosing which system is best is based on the requirements and performance indexes in conjunction

with a set of trades. For example, a single stage to orbit drives the technology (high-performance)

indicating the need for staged combustion or some hybrid system. The sensitivity of the single stage

to orbit coupled with the payload to orbit requirements dictates a very high efficiency. A staged

launch vehicle can lower the efficiency requirements. All these things do not only affect engine
robustness, but the vehicle as well. The bottom line is that both the engine design and the vehicle
design must be well integrated.

The next section deals with some of the trades involved in engine design.

(2) Liquid Engine TraO¢_: Obviously, the first set of trades associated with a liquid propul-
sion engine is the propulsion power cycle discussed above. It should be pointed out, however, that

this power cycle selection involves some indexes for the components as well as the engine system
since they are not independent of the selection. The turbine power, pumps, pressure, temperature,
and so on are good examples.

These trades are very interesting in that they not only involve the component, but also all the

design disciplines. Again, the trade involves indexes on weight, performance, reliability, cost, oper-
ability, and so forth. The trades are formed for each of the indexes such that an improvement is noted

for a given index. Many times, the indexes are highly interactive in that an improvement in one will

be a detriment to the other. Robustness can generally be significantly improved at some cost to other

indexes. Keen judgment must be exercised in order to design and build the robust system. Matrices

designed to check off these complexities, either with quantified data or judgment factors, can be very
helpful in this process. That judgment must be applied against the performance in terms of the
robustness definition chosen. There is no universal answer.

Some other examples of technical trades might include:

(1) Chamber cyclic life increase at reduced ERE by reduced wall temperature by film cool-

ing-lower chamber Isp due to reduced core fuel flow, peripheral element mixture ration

(MR) bias, lower chamber ERE due to core MR increase beyond optimum; more wall

cooling due to higher channel velocity; lower engine Isp due to increased pressure drop
effect on pump power and GG flow
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(2) Injector typesare one setof tradesavailable to the designer.Figure 26 shows someof
the typical injectors typesthat canbe traded.

(3) The choice of nozzleconfigurationis dependentuponwhen (the atmosphericrange)the
engine functions as well as all other considerationsof weight, cost, induced environ-
ments,etc. Figures 27 and 28 areschematicsof someof theseconfigurationsand their
basic characteristics.
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(4) Turbine structural margin increased (at reduced Isp) by reduced turbine temperature,

lower engine Isp due to increased GG flow; reduced turbine tip speed (and stress);

lower engine Isp due to increased GG flow.

Note: Both of these changes may be partially offset by increased blade heights due to higher flow,
therefore, the net effect on margin may be less than expected. A side benefit of improved nozzle
cooling (increased margin) due to higher rate of lower temperature coolant gas may be available.

(5) Pump suction performance margin increase (at increased engine weight) by reduced

shaft speed; larger, heavier (perhaps lower pump efficiency) turbopumps

(6) Injector chug stability margin increase (at reduced Isp) by increased injector pressure

drop, lower Isp due to increased pump power and GG flow

(7) Injector high frequency stability margin increase (at reduced Isp) by reduced vaporiza-

tion/combustion efficiency with coarser injector pattern; lower Isp due to reduced ERE

(8) Weight reduction (at increased operations cost by welded joints etc.)

(9) Weight reduction (at increased unit cost) by wrought/welded rather than cast construc-
tion

(10) Number of turbine and size of turbine stages, also pump stages

(11 ) Blisks versus bladed discs

(12) Roller versus ball versus hydrostatic bearings

(13) Thrust chamber options, tubes, casting, welds, VPS, materials

(14) Fatigue versus fracture control design

(15) Propellant

(16) Mixture ratio

(17) Expansion ratio

(18) Actuators, electrical, hydraulic, mechanical

(19) Central versus decentralized control

(20) Programmed versus closed loop control

(2 l) Impeller stages

The merits and demerits of each are left to the reader. The list is not exhaustive. A new list

should be formed for each project.

b. Solid Propulsion Sy_l_m_. The solid propulsion system has advantages and disadvan-

tages for a vehicle propulsion system. These should be traded up front in deciding the overall vehicle
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concept.Once this choice hasbeenmade,the solid propulsionsystemis broken down into its key
elementssuch as motor (including propellants,ignitor, insulation, skirts, nozzle, proturbance,and
attachmechanisms).Using thesebreakdowns,a seriesof tradesensuesto make the systemrobust.
These include, but are not limited to: thrust vector control approach such as thrust vectoring,
secondaryinjection, and vanes;actively cooledversusablativenozzles;segmentedversuscontinu-
ousmotor, propellantmix, propellantcoreshape.The thrustvectoroptionswere shownin figure 19.
Figure 29 shows schematicsof various propellant core shapes.The factors and trades for solid
propulsivesystemsare left to the reader.
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Figure 29. Typical solid propellant grain configurations.

3. Avionics. The avionics system is responsible for the control of all vehicle systems as
well as the vehicle guidance and navigation. It is the brains of the system. In addition, it handles all

communication between the vehicle and operations (ground, etc.). Evaluation of operational prob-

lems (holds, etc.) shows that approximately 50 percent of these are due to avionics problems.

Therefore, the avionics system is a key to robustness.

a. Factors. This system can be conceived of as being sensors, actuators (integral to, but

not necessarily a part of, avionics), hardware (computers, processors, etc.), wires and harness, and

software. All must play together to produce the system. Key elements in the robustness of this

system are:

(1) Redundancy

(2) Checkout

(3) Quality and acceptance
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(4) Standards

(5) Commonality

(6) Changeout/turnaround

(7) Flexibility.

In general, redundancyis a hedgeagainst failures during operationsand is not used
until launch.Therefore,it doesnot improvethe launchon time or turnaroundtime. In fact, the added
systemsincreasecheckoutandprocessing.Clearly, it couldbeusedat launchcommit, then launching
with a failure andtaking therisks.

b. Trades. There are many trades associated with the avionics system. The first one

deals with the degree of autonomy between the colocated elements. Or to say it differently: What is

the degree of centralized versus decentralized control? What functions do you keep at central? What

do you relegate to the subsystem?

The second trade is the level of redundancy required to meet performance, reliability,

and cost. Do you build more reliability on part or make it redundant? How do you allocate redundancy

into operational procedures? This is a very key trade that has a big impact on robustness. The space

shuttle has three main computers in the redundancy mode plus a fourth as backup in order to assure
safe return of the crew from orbit.

The third trade has to do with part standardization versus part uniques. Said another

way, some loss in efficiency versus cost.

Other trades are:

(1) Digital versus analog

(2) Hardware versus software

(3) Semiconductors

(4) Superconductors

(5) Parallel processing

(6) Integrated versus nonintegrated electronics

(7) Commonality of parts

(8) Fault tolerance

(9) Fiberoptics components and sensors

(10) Artificial intelligence

49



(11) Sensorfusion

(12) Three-dimensionaldisplays

(13) Worldwide dataandvoice

(14) Fly-by-wire

(15) Remotesensing.

4. Structures. Materials. and Concepts.

a. Faft0r_. As shown in figure 2, the triangle of materials, concepts, and fabrication is a

set of the trades on design of all elements as well as for the system. This is not only true of

structures, but all other systems such as avionics as well. These trades involve all aspects of

robustness from components to systems, from structures to avionics. As mentioned earlier, one can

design from the viewpoint of high technology and exotic materials to established technology and

basic materials. In general, the characteristics of these systems involve ease of manufacturing,

minimum parts, established materials, minimum number of load paths (lines), load paths not com-
plex, adequate margins, simple processing, flexibility, minimum inspections, simplified checkout,

minimum weight, and low cost. The choice is again arrived at through a series of trades using the

indexes of performance, cost, and reliability. The next section lists some of these trades.

b. Trades. There are many choices in materials depending on the requirements for

strength, ductility, yield, fracture toughness, stiffness, and such. Also important in these choices are

the manufacturing and inspection options as well as the concepts. Some of these choices and the

trades involved, as a minimum, were those shown on figure 6.

The designer must, therefore, try different combinations between concepts, fabrication

approaches, and materials in order to achieve robustness. The key is the adequate formulation of

indexes that fully capture all the requirements as well as sensitivities. These include performance,

strength, fracture, stability, response, etc. See the simple beam example for the basic idea.

5. P_yl0ads/Satellites

a. Characteristics. Payloads can be classified as those that stay with the system, such

as the shuttle orbiter, and are returned versus those that are placed in orbit or on a planetary path.

The first type can be reusable and simple, to the complex pointing systems such as ASTRO or

tethered systems, such as tethered satellite system (TSS-1). Their lifetimes in space environments

are short. The other type has, in general, long exposure time in space as well as being complex in

requirements (pointing, docking, maintenance, health monitoring, redundancy, thermal control, etc.).

These systems are usually one of a kind with a special mission to accomplish. The characteristics of

these systems that describe robustness are: (1) adequate performance margins, (2) insensitivity to

environments, (3) processing and checkout simplicity, (4) redundancy/reliability (key to long-term,

on-orbit use), (5) low cost, and (6) flexibility.

b. Trades. All the payloads and satellite systems have the same trades listed previously

for materials, concepts, and fabrication, as well as some special trades needed to meet the unique

characteristics/requirements of these special systems. They include, but are not limited to:
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(1) Active versuspassivethermalcontrol versusCTE

(2) Smart structuresactive and passive

(3) Meteoroidprotection layers versusthermal

(4) Various control techniques(canalso bepart of samestructures)
- Momentumwheels
- Reactionjets
- Control momentgyros
- Pizoelectric

(5) Mannedversusunmanned

(6) Expendableversusclose-loopenvironmentalsystems

(7) Power approaches
- Solar
- Storable/expendable
- Chemical
- Propulsion.

6. Orbiting Platforms and Stations

a. Characteristics. Orbiting platforms and stations have many characteristics that are

unique. They also include many of those already discussed. The unique ones include: (1) long
operating time in orbit, (2) can be manned or unmanned (permanent or tended), (3) cannot be fully

verified on the ground (size, zero g, space environments), and (4) manufactured and assembled in

space.

b. Trades. These systems obviously include many of those listed in figure 6 or previously

discussed; however, some unique ones arise. These include at least the following:

(1) Manufacturing in space versus erectable versus assemblage

(2) Health monitoring

(3) Adaptive/smart structures

(4) On-orbit verification versus margins versus flexibility

(5) Active versus passive thermal control versus CTE

(6) Expendables versus close-loop

(7) Power (solar versus propulsive versus chemical)

(8) Stiffness versus strength.
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7. Interplanetary_ Tugs. Transfer and Reentry Vehicles

a. Characteristics. Vehicles of this class have most of the same characteristics as those

discussed previously; however, they have many unique differences. In general, they require low
thrust rating over all long periods of time. This means various propulsion concepts as well as docking

and capturing payloads, separation, shielding, etc. Reentry of the Earth's atmosphere from space and

what braking is required is a review question. Weight is critical on these vehicles, complicated by

the fact that they must withstand the launch vehicle environments.

b. Trades. There are many trades/options open for facilities at the top level of the "ship

and shoot" philosophy versus processing, assembly, checkout, and the like at the launch site that

influence the facilities and are a major trade for both the launch facility, manufacturing, and trans-

portation. Vertical versus horizontal assembly, on pad versus processing building assembly, etc., are

some of the other facility trades. Obviously there are many additional trades that must be put on the
list and evaluated.

(1) On-orbit maintenance and refurbishment versus expendable versus Earth
returnable

(2) Health monitoring

(3) Propellant management (electric versus nuclear versus chemical versus solar)

(4) Expandable versus close-loop life support

(5) Automatic versus manual versus robotic docking

(6) Redundancy

(7) Seals

(8) Meteoroid protection

(9) Active versus passive thermal control.
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(lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality,

robustness is much broader in scope than margins, including such factors as simplicity, redundancy,
desensitization to parameter variations, control of parameter variations (environn_nts flucation), and

operational approaches. These must be traded with concepts, materials, and fabrication approaches

against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, pro-
cessing, checkout, and operations. The design engineer or project chief is faced with finding ways and
means to inculcate robustness into an operational design. First, however, he must be sure he understands
the definition and goals of robustness. This paper will deal with these issues as well as the need for the

requirement for robustness.
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