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Synthesis of Robust Controllers

At the 1990 American Controls Conference a

benchmark problem was issued as a challenge

for designing robust compensators. Many

compensators were presented in response to the

problem. In previous work Stochastic Robustness

Analysis (SRA) was used to compare these

compensators. In this work SRA metrics

are used as guides to synthesize robust

compensators, using the benchmark problem

as an example.
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The benchmark problem consists of 2 masses (ml and m2)

connected by a spring (k), with control of the first mass,
and output defined as position of the second mass.
The state, control, and output vectors have dimensions
of 4, 1, and 1. The Benchmark Problem requires

an output settling time of 15 sec after an impulsive
disturbance on m2, with limited actuator use and

closed-loop robustness in the presence of parameter
variations. Plant parameters may vary in the ranges
0.5<k<2, 0.5<ml< 1.5, and0.5<m2< 1.5.

In the present study, the settling-time limit is considered
to be violated if the displacement of m2 exceeds a +0.1-unit
envelope, 15 or more seconds after the disturbance.
The control-usage limit is violated if control displacement
exceeds one unit, and the stability requirement is violated

with one or more positive closed-loop roots. Parameters are
assumed to have uniform probability distributions within

their ranges.

Benchmark Problem

X 1 X 2

Y=X2, Z=X 2 + n

k=l N/m, ml= I kg, m 2 = 1 kg

Requirements

• Robust to Variation in Parameters

• Settling Time of 15 secs
• Minimum Actuator Use
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By using SRA we can find estimates of the probabilities of

instability (Pi), settling time violation (Pts), and actuator usage (Pu).

These can be used by a designer to guide the adjustment of design

parameters to produce a robust compensator. As a method of

trading off different design requirements the probabilities can be
combined into a scalar cost. The minimum of this cost function

can then be sought. For the benchmark problem the cost function

chosen was a weighted quadratic sum of the probabilities of

instability, settling time violation, and actuator usage.

The nature of the probabilistic metrics and variations in the
functional estimates due to the Monte Carlo Evaluation

make the cost function difficult to minimize.

Optimization of Robustness

J = aPi 2 + bPu 2 + cPt 2

Problems with Optimization

• N Dimensional

° Not Continuously Differentiable

• Plateaus where P=0 or 1

° Noise in Evaluation
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Efficient methods for minimizing this cost are still under research.
For the benchmark problem the multidimensional search was
reduced to a series of line searchesby using the standard
univariate search method which involves changing only
one design parameter at a time.

Univariate Minimization

E

t_

m

Design Parameter 1

118



Each line search was carried out by adjusting a
chosen design parameter across a range and assessing the cost
at several points along the range. If the parameter produced
a statistically significant reduction in the cost, then the parameter
was adjusted to the minimizing value. The search then went on
to the next parameter.

Optimization Procedure

Choose design parameter,
nominal value, and search range.

Sweep design range.

Carry out few MCEs per design point.

Apply Kolmogorov Smirnov test.

If significant change design parameter.

Next [
Repeat

All parameters insignificant.
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For the benchmark problem the compensator structure

chosen was the Linear Quadratic Gaussian Regulator.

The search first found a robust LQR, a robust filter was

added (the method for finding this robust filter is explained later),

then the full LQGR was fine tuned using the univariate
minimization.

The final compensator was fully analyzed with many

Monte Carlo evaluations to validate the design. For the

benchmark problem the validating analysis used 8,000
evaluations.

Synthesis for Benchmark Problem

Choose Structure of

LQR with Kalman Filter

Choose Design Parameters

Optimize LQR

Add Estimator

Produce Robust Filter

Optimize Estimator

Carry Out Full Analysis
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By using the state propagation equations

we can group the effects of parameter variations
with disturbance effects. We can simulate

the time response of the system and calculate

the disturbance residual, q. This residual includes

the effect of parameter variations with the

disturbance effects, q can be used to estimate
a disturbance covariance matrix. When a filter

is designed with this matrix it handles parameter

variations as expected disturbances and is more

robust in producing estimates of the state.

Robust Kalman Filter

Xk+ 1 = (l_x k + I-'u k + Aw k

Xk+ 1 = _)X k + l_Uk + (AOx k + AFu k + Aw k )

Xk+1 = _)Xk + l_Uk + K(Zk - HXk )

Qk = E[(AWk)(Awk)T]

Qk =

E[(ACPXk + AFUk + AWk)(ACPXk + AFUk + Aw k)T]

qk = Xk+l-- _)Xk --l_Uk

= (_l)---_))x k + (]-"- l_)Uk + Aw k

Q= 1 vN _ _T
_-_/-,k=l Hkqk
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Four compensators were designed with different cost function
weights to represent different design concerns. The first design
(LQG1) has the weight predominantly on the probability of
instability; this would be the casewhen it is very important that
even marginal instability should never occur. LQG2 puts weight
on the probability of actuator saturation; this will have the
effect of allowing a slight decreasein other robustness
variables to ensure that actuator limits are rarely violated.
For LQG 3 most of the weight is on the performance
(settling time) robustness. LQG4 is designed to have a
general blend of the robustness properties.

The weights affected the nominal performances in predictable ways
e.g., the compensator with high weighting on settling time violation
had the lowest nominal settling time.

Characteristics of Compensators

Designed for the Benchmark Problem

Weights for Cost Function J

LQG 1

LQG 2

LQG 3

LQG 4

a b c

1 0.01

0.01 1

0.01 0.01
1 0.02

0.01

0.01
1

0.06

3 Zeros, 5 Poles,

1 Non-minimum-phase zero.

Nominal Disturbance Responses

LQG 1

LQG 2

LQG 3

LQG 4

Ts0.1 tl_ X_

14.1 0.59 2.12

12.1 0.46 1.59

10.1 0.82 1.09

12.5 0.54 1.43
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The robustness of the LQGRs designed using SRA

metrics compare very well with the ten compensators

(A-J) which had been designed by other methods (these

compensators had been analyzed in previous work).

The compensators designed by SRA were better than

all the other compensators with respect to stability,

actuator saturation, and performance (settling time)
robustness.

The only exception was that design D had

better settling time robustness than any of the LQGs

but this was at the expense of having very high

actuator usage.

Comparison of Robustness
Costs

Design J1 J2 J3 J4

A 0.03 0.03 0.92 0.08
B 0.01 0.01 0.94 0.06
C 0.01 0.01 0.94 0.06
D 0.01 1.00 0.01 0.02
E 0.02 0.16 1.00 0.07
F 0.03 1.00 0.75 0.08
G 0.06 0.79 1.01 0.12
H 0.01 0.03 0.83 0.05
I 0.008 0.01 0.84 0.05
J 0.07 0.30 1.00 0.12

LQG1 0.006 0.02 0.58 0.04
LQG2 0.004 0.004 0.42 0.03
LQG3 0.09 0.13 0.22 0.10
LQG4 0.006 0.006 0.18 0.02
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Stochastic Root Loci
Compensator Optimized for Pi

Original LQG

4.a

Optimized LQG
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Sto:rtastic Root Locus
Compensator Optimized for Pu

Optimized LQG
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A careful analysis of the LQGs revealed several interesting lessons for designing

robust compensators.

Comparing the stochastic root loci (SRL) of the compensators before and after

optimization for stability robustness shows that it is quite possible to have

improved robustness but greater sensitivity in the root variation.

There is a large difference in the form of the SRL for the compensator designed

for stability robustness and the one designed to minimize actuator saturation.

The compensator designed to minimize actuator saturation has used a lot of
effort to ensure that there is very little variation in the high speed roots whereas

this is unimportant for stability robustness.
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Stochastic robustness has been shown to provide a

sound basis for designing robust control systems.

The design criteria are closely related to design

goals and to practical characterization of parametric

uncertainty. The method also recognizes that

different criteria (e.g., settling time, control usage,

and probability of instability) may have greater

relative importance in different settings, allowing
tradeoffs to be made among competing response

requirements. The final designs for the benchmark

problem compared very well with designs that had been

formulated using other modern synthesis procedures

(e.g., H infinity methods).

It appears that stochastic robustness is a powerful

design tool. Future work in the near term will be to

improve the efficiency of synthesis algorithms.

Conclusions

Q Stochastic Robustness Synthesis
is flexible and produces practical
robust compensators.

Future Work

• More efficient methods of finding
the global minimum of the cost
function should be found.
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