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Severe low-altitude wind variability represents an infrequent but sig-

nificant hazard to aircraft taking off or landing. During the period from 1964 to

1985, microburst wind shear was a contributing factor in at least 26 civil aviation

accidents involving nearly 500 fatalities and over 200 injuries. A microburst is a

strong localized downdraft that strikes the ground, creating winds that diverge

radially from the impact point. The physics of microbursts have only been

recently understood in detail, and it has been found that effective recovery from

inadvertent encounters may require piloting techniques that are counter-intuitive
to flight crews. The goal of this work was to optimize the flight path of a twin-jet

transport aircraft encountering a microburst during approach to landing. The

objective was to execute an escape maneuver that maintained safe ground

clearance and an adequate stall margin during the climb-out portion of the

trajectory.
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Trajectory Optimization in Wind Shear

The objective of trajectory optimization is to determine the state and control

histories of a system that minimize a cost function. The choice of the elements of

the cost function determines the nature of the optimizing solution. The

technique has been used to identify the limits of aircraft performance in wind
shear and to determine the control strategies required to achieve such

performance. The computation of these optimal trajectories requires global

knowledge of the flow field; in other words, the wind components at all points in

the aircraft's trajectory must be known in advance. Since this is not possible in

practice, the results of trajectory optimization are not immediately useful for real-

time control of an aircraft penetrating a wind shear. Nonetheless, the results are

valuable for identifying the limits of aircraft performance and for determining

the qualitative nature of optimal piloting.

In order to translate the stated goal of recovering from a microburst

encounter during final approach into the mathematical expression of a cost

function, the objectives of the escape maneuver must be clearly identified. The

purpose of the recovery maneuver is to execute a smooth transition from

descending to ascending or level flight without stalling the aircraft, saturating
the controls, or impacting the ground. Once the aircraft establishes a stable

(:limb, it should maintain an adequate stall margin.

Determine the state and control histories x(t) and u(t) that
minimize a cost function:

tf

J = _[x(tf)]+ [L[x(t),u(t),t)]dt
to

Choice of final state penalty_ and Lagrangian L determine
nature of optimizing solution

Goals of recovery maneuver during approach to landing must
be identified to choose a suitable cost function:

- Avoid the ground!

- Perform a stabilized transition from descending to
ascending flight

- Maintain an adequate stall margin
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Cost Functions for Aircraft Trajectory Optimization

The problem of ground avoidance can be solved by maximizing the
minimum altitude, which is a maxi-min problem of optimal control. In principle,

maximizing the minimum altitude is equivalent to minimizing the peak

deviation between some high reference altitude and the aircraft's instantaneous
altitude. However, the latter is a mini-max problem of optimal control. The

distinction is important when developing an approximate Lagrangian problem of

optimal control that can be solved using a Calculus of Variations approach. The

optimal solution to the approximate problem shapes the aircraft flight path in
such a way that the peak altitude loss of the aircraft is minimized, given the

aircraft performance limits and the microburst severity. However, the cost

function shown provides little control of the flight path beyond the point of
minimum altitude, other than causing the aircraft to climb. Once a positive climb

rate is established, it is desirable to regulate airspeed and/or rate of climb. This

could have been accomplished by including additional terms in the cost

function, but a different approach was taken. A quadratic cost function that

considered flight path directly was used. The quadratic cost function had the

advantage that it directly weighted the aircraft state variables of interest, and was

numerically easier to optimize than a cost function containing larger exponents.

Ground avoidance _ Minimize the peak altitude drop [Miele]:

max

mini= t [href-h(t)] to <t<t f

• Can be reformulated as a Lagrangian problem of optimal
control:

tf

J= f[href-h(t)]Pdt p>>2 andeven
to

• Optimal solution shapes aircraft trajectory so that peak
difference between hrerand h(t) is minimized

• Little control over flight path beyond point of minimum altitude

• Motivated use of a Lagrangian that considers flight path
directly:

L(x,u)=kl[hre f -/_(t)] 2 +k2q(t) 2 +k38E(t) 2 +k4&E(t) 2
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Aircraft Equations of Motion

A three degree-of-freedom model of a twin-jet transport aircraft is used for

this study. The aircraft's aerodynamic coefficients are complex nonlinear

functions of altitude, Mach number, incidence angles, rotation rates, control

deflections, configuration changes (such as gear or flap deflection), and ground

proximity. Thrust and elevator dynamics are modeled as first-order lags, and

wind shear effects are included in the equations of motion. The wind

components and spatial gradients used in the equations of motion are obtained

from the Oseguera-Bowles downburst model. This time-invariant analytic model

represents an axisymmetric stagnation point flow, based on wind velocity

profiles from the Terminal Area Simulation System (TASS). Simulation of

microbursts of different size and strength is possible through specification of the

radius of the downdraft column R, the maximum horizontal wind speed Umax,

and the altitude of maximum outflow Zmax.

• Three degree-of-freedom model of a twin-jet transport

Gross weight: 85,000 Ib

Maximum Takeoff Thrust: 24,000 Ib

• Aircraft states and controls:

x=[x h u w q e &E &T]

u=[ E
• Thrust and elevator dynamics modeled as first-order lags

• Wind shear effects included in equations of motion

• Oseguera-Bowles analytical downburst model used to create
wind field

• Permits simulation of different microbursts through specification
of radius of downdraft column, maximum horizontal wind speed,
and height of outflow
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Microburst Encounters During Approach to Landing

Optimal trajectories were calculated for microburst encounters during

approach to landing. The aircraft was initialized on the glide slope outside the

core region of the microburst, and it tracked the glide slope until the core was

entered. A conjugate gradient algorithm was used to minimize the chosen cost

function. This is an iterative technique that requires the existence of a nominal

state and control history, which was obtained by performing a recovery using the
FAA-recommended maneuver.

• Cost function minimized using a conjugate gradient algorithm

• Nominal state and control histories used to initiate numerical
iteration obtained from recoveries performed using FAA
technique

° Recovery initiated when aircraft enters core region

Initiate recovery
when core
region entered

---_3 /
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Computation of Optimal Trajectories

The aircraft was subject to two constraints in the recovery maneuver.
First, the elevator deflection was required to lie within a minimum and

maximum bound. Second, a minimum airspeed requirement was imposed. The

incremental cost function LV was added as a "soft constraint" to prevent

excessive violation of the constraint. This function remains zero provided that its
argument does not violate a predefined limit. Once the limit is violated, its

contribution to the Lagrangian grows quadratically with the magnitude of the

violation. The degree to which the aircraft violated the airspeed constraint

depended on the relative magnitude of kv and the other weights in the

Lagrangian.

• Aircraft subject to two constraints:

-20°< &E < 20°

V > 125 knots

• Airspeed constraint imposed using a penalty function:

L(x,u) = L(x,u) + Lv (V)

where

f 0Lv(V)= Kv[V_Vmin] 2
V > Vmi n

V _<Vrnin

• Contribution of Lv to cost grows quadratically with magnitude of
constraint violation
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Test Cases

Optimal trajectories were computed through four microbursts of equal

size and varying strength (i.e. varying maximum horizontal wind speed) to

illustrate the effect of severity on the shape of the optimal flight paths. The target

climb rate during the recovery was set at 5 ft/sec, and the airspeed penalty
function threshold was set at 125 knots (210 ft/sec).

• Illustrate effect of microburst severity on shape of optimal flight

paths

• Microburst parameter sets:

R = 3,000 ft

Zma x = 150 ft

Umax = 60, 70, 75, and 80 ft / sec

• Aircraft initialized on glide slope just outside core

• Reference rate of climb for escape maneuver set at 5 ft/sec
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Altitude vs. Time for Optimal Paths through 4 Different
Downbursts

All four optimal flight paths were transitions from descending to
ascending flight. However, the introduction of the minimum airspeed penalty
function had a significant effect on the aircraft's climb rate during the escape. In
the two weakest microbursts, the aircraft was able to maintain the reference
climb rate of 5 ft/sec (300 ft/min) without violating the penalty function

threshold. In the two strongest microbursts, the presence of the airspeed penalty
function resulted in a lower climb rate in the escape maneuver.
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Rate of Climb vs. Time for Optimal Paths through 4 Different
Downbursts

It is apparent here that in the two weaker microbursts, the aircraft was

successful in making the transition from descending flight to a 5 ft/sec ascent.

However in the two strongest downbursts, the presence of the airspeed
constraint in the cost function caused the optimization algorithm to settle on a

target climb rate less than 5 ft/sec.
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Airspeed vs. Time for Optimal Paths through 4 Different
Downbursts

It can be seen here that in the two weaker microbursts, the escape was
successfully accomplished without violating the airspeed penalty function
threshold. This was not the case in the two stronger microbursts. In those cases,
the airspeed did drop below the threshold somewhat. The degree to which the
airspeed dropped below 210 ft/sec could have been altered by changing the
relative magnitude of the climb rate and airspeed weights in the cost function
Lagrangian.
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Qualitative Features of the Optimal Flight Paths

Microburst severity has thus been found to have a significant effect on the

nature of an optimal recovery using the given cost function. The optimal
maneuver is a rapid transition from descending to level or ascending flight. In
weak-to-moderate microbursts, the aircraft easily tracks the reference climb rate
throughout the encounter. However, in a severe microburst the aircraft settles on

a reduced climb rate through much of the encounter to prevent excessive

airspeed loss. While these results are useful for providing insight into the nature

of optimal recovery techniques, they are not immediately useful for real-time

feedback control. Global knowledge of the flow field is required for
optimization. Even with the advent of forward-look sensors, such detailed

information about a microburst's structure will not be available. Furthermore,

optimization is itself an iterative time-consuming process.

• Rapid transition from descending to level or ascending flight

• Targeted rate of climb during escape depends on wind shear
severity

Weak to moderate _ Aircraft reaches 5 ft/sec climb rate

Severe to very severe _ Aircraft reaches a lower climb rate

• Lower climb rate in severe microbursts results in reduced
violation of minimum airspeed constraint

OK, but...

• Global knowledge of flow field required for optimization

• Results not immediately applicable to real-time feedback
control
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Future Work: Neural Networks for Real-Time Flight Guidance

Although the results of trajectory optimization are not immediately

applicable to feedback control, it should be possible to make use of the insights

gained through the optimization study somehow. One idea under consideration

is to train an artificial neural network with the results of trajectory optimization.

The inputs to the network would be aircraft state and wind information, and the

outputs might be throttle and flight path commands. It should be possible to

parametrize microbursts according to size and severity, and then have the neural
network generate flight path commands according to the aircraft position within

the flowfield. Forward-look information on wind intensity might assist in the

flight path planning.

• Train neural network with results of trajectory optimization

• Can parametrize microbursts according to size and severity

• Network generates flight path angle commands according to

position within flow field

• Availability of forward-look information could assist in flight-path

planning
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