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0. Introduction.

This project has been motivated by the study of turbulent fluid boundary layers in
the wall region (Aubry et al. [1]). Numerical investigations of models for the dynamics of
fluctuations in the boundary layer reveal the presence of intermittent solutions (“bursts”)
that are persistent over a range of parameter values in the model and that correspond
to heteroclinic cycles in the model equations. Armbruster et al. [2] concluded, using the
dynamical systems analysis, that these intermittent solutions of the model are an essential
feature and not accidental.

In earlier papers [7, 8, 10, 11, 16] Doedel and Friedman have developed an accurate,
robust, and systematic method for computing branches of homoclinic and heteroclinic
orbits. These are orbits of an infinite period connecting two fixed points of an associated
system of autonomous ordinary differential equations. Homoclinic orbits have been shown
to play a fundamental role in phenomena such as bursting in biology, chaotic vibrations of
structures, chaotic oscillations in chemical reactions, etc. Heteroclinic orbits are equally
important in the understanding of the global behavior of dynamical systems and also in
the study of wave phenomena in nonlinear parabolic partial differential equations.

The original goal of this project was to accurately compute heteroclinic cycles and
to investigate numerically how these cycles evolve as the problem parameters vary in
a model 4-dimensional system studied in [1] and [2]. This model system is a singular
perturbation problem. Since homoclinic and heteroclinic orbits often arise in the context
of singular perturbation problems, this project has evolved into the development of general
efficient algorithms for such situations. We developed our algorithms using model 2—- and
3- dimensional problems studied by Deng [12].

The organization of the paper is as follows. We first formulate the problem and describe
some algorithms for computation of branches of homoclinics and heteroclinics. Then we
describe application of these algorithms to several problems of interest.



1. Formulation of the Problem and Review of Some Earlier Results.

In earlier papers [7, 8, 10] Doedel and Friedman have considered the problem of finding
a branch of solutions of the system of autonomous ordinary differential equations

a) w'(t) = f(u(t),N) =0, u(), f(,-) €R", A € R™,
(1.1) B) lim u(t) = wo, lim u(t)= .
t——o0 t—oc

The method utilizes the linear approximation of the unstable (for t < T, —T_ > 0, large)
and stable (for ¢t > Ty, Ty > 0, large) manifolds, under the assumption that solutions
of (1.1) decay exponentially to their limits at +oo. Since every translation of a solution
of Eq. (1.1) is also a solution, to remove this “phase” indeterminacy we need to add a
constraint. The equation

o0

(12) [ (.2 = £(a0,0) - 52wt e =0
bt ]

seems to be, computationally, the most appropriate way to do this. It is obtained by

requiring that the current solution u(t) be as “close” as possible to the previously computed

solution ¢(t) (see [7] for the discussion). Our principle result, Theorem 2 in [10] can be

summarized as follows:

Let (g, A%) be a solution of (1.1), (1.2). Assume thatny = 2—(n] + n} — n) >0, where
ny and nf are dimensions of the unstable and stable manifolds of ug and u, respectively.
Under appropriate assumptions on [ and appropriate transversality conditions, in a neigh-
borhood of (g, A?) there ezists an unigue solution branch (u(s), M(s)), (u(0),A(0)) = (g, A%),
of (1.1), (1.2) and for sufficiently large —T_, Ty an unique branch (u(s),Ap(s)) of ap-
prozimate solutions. Here s is the continuation (such as pseudo-arclength, employed by

AUTO) parameter.

Moreover, we have an error estimate

(1.3) IM(6) = Ar(llns + 1u(5) = wr ()l ) < C(T-4 4+ e2Tom),

for some pg > 0 > .

Similar results were obtained in Beyn [3, 4].

In Friedman and Doedel [11}] and Friedman [16] the numerical method and its analysis
have been extended to the case of center manifolds and higher order approximation of the
unstable and stable manifolds.

Continuation algorithm 1. ( [10]). The algorithm is based on the following equations:

(1.4) u'(t) = Tf(u(t),\) =0, 0<t<l,

a)

(ug, A) =0,
(1.5) b) 0

f
f(ll], ) -



a) fulug, A)woi = poiwoi, Woi € R", poi €R,2=1,...,n0,

1.6 .
(16) b) fulur, Nwy = piwn, wi € R™, u1; €R, 1 =1,..,n1,

a) |wg| =1, 1= 1,...,n0,

(17) b) Jwyi| =1, 1=1,...,n1,
1
(1.8) /0 (Fa(0),0) = F(a(),A)) - Fulu(®), M) f(ult), A dt =0,
a) u(0) = ug + €0 Zcoiwou chi =1,
(19) i=1 in=ll

n
b) u(l) =u; +€ chiwli» chi =1
i=1

1=1

Here for z,y € R"™ z -y denotes the inner product in R", and we denote by
|| the I? norm in R™; we shall keep the same notation for the inner product and the norm
for finite dimensional Euclidian spaces of dimension other then n. The above equations
constitute a system of ordinary differential equations subject to constraints. In concrete
cases the number of constraints (and correspondingly, the number of scalar variables) can
often be significantly reduced by simple algebra and variations on the normalization equa-
tions. Equation (1.4) is the differential equation. It is obtained by truncating (1.1a) to an
interval [T-, T4], T- <0 < Ty, setting T' = |T_| 4+ T4+ and then scaling the independent
variable ¢ so that it varies from 0 to 1. The actual period T therefore appears explicitly in
(1.4), whereas T_ and T, do not appear explicitly in (1.4) - (1.9). There are ny problem
parameters, viz., A, ¢ = 1,...,n. Equation (1.5) defines two fixed points of the vector field.
In (1.6a) we assume that the Jacobian fu(uo, A) has ng distinct real positive eigenvalues
po; with eigenvectors wy;, and n — ng real nonpositive eigenvalues. Similarly, in (1.6b)
we assume that the Jacobian fy(u1,A) has ny distinct real negative eigenvalues p1; with
eigenvectors wy;, and n—n; real nonnegative eigenvalues. Under appropriate assumptions
on f, by the stable manifold theorem the fixed point g has a (strongly) unstable man-
ifold of dimensionng to which the linear subspace So = Span({wgi}gl) is tangent at ug.
The fixed point u; has a (strongly) stable manifold of dimension n; to which the linear
subspace Uy = Span({wli}?;l) is tangent at uj.

We have wq;, w1, ug,u; € R". Equation (1.92) then requires that the starting point
u(0) of the orbit u(t) lie in the tangent manifold Sp at “distance” ¢g from the fixed point
up. Similarly, equation (1.9b) requires the endpoint u(1) to lie in Uy at “distance” €; from
the fixed point u;. Finally (1.8) represents the “phase condition”.

The unknowns ug and u; can be eliminated entirely from (1.4)~(1.9) by using
(1.9). Then (1.4)-(1.8) represent n coupled differential equations subject to n. =

3



2n + (n +1)(no + n1) + 3 constraints, of which (1.9) is an integral condition. In addi-
tion to the vector function variable u(t) € R® we have scalar variables

AE RnA’ €0, €1 € Ra
(1.10) poiscoi € R, wo; € R*, 1=1,...,ng,
K13, €11 € R, wy; € Rn, 1= 1)‘“7”1'

The total number of scalar variables equals ny = ny+(n + 2){ng + n;)+2. Formally we need
ny = n—n for a single heteroclinic connection. Usually we are interested in computing an
entire branch (one dimensional continuum) of orbits, in which case n, = n, — n + 1. This
requirement is equivalent to setting the number of free problem parameters

(1.11) ny=n-—(ng+n)+ 2.

The period T is kept fixed in the continuation. For T large and ¢ and ¢; small, each
solution on the branch represents an approximate heteroclinic connection. If we want to
increase the period T, then we can replace one of the problem parameters, say Ap, by T
(see [10] for an example of such a computation).



2. New Algorithms for Computation of Homoclinic
and Heteroclinic Orbits.

We formulate the algorithms in the situation when the unstable (stable) manifold is
1-dimensional, while the stable (unstable) manifold can have dimension greater than 1.
See also Monteiro [13]. In this case the direction along the unstable (stable) manifold is
locally defined by the eigenvector corresponding to the positive (negative) eigenvalue, while
it is more difficult to determine what linear combination of eigenvectors defines locally the
direction along the stable (unstable) manifold. To be specific and without loss of generality,
we assume that the eigenvector wj defines the direction of the one-dimensional unstable
manifold W,’;c(uo) at the fixed point ug.

Starting orbits can be obtained by using either AUTO itself or some initial value solver.
In applications we used KAOS [14] and VODE [15].

Continuation algorithm 2 (floating boundary algorithm). Egs. (1.4) - (1.9) are
modified by dropping the equations which define the direction along the stable manifold.
The equations now are:

(2.1) (1) = Tf(u(t),)) =0, 0<t<1,
(22) fluo, ) =0,

(23) Fuluio, Nl = sl wh € R™, b €,
(2.4) | = 1,

1
(2.5) A (F(u(t), 1) = £(g(),A) - fule(®) N F (), N de = 0,

(2.6) w(0) = uq + €owy,

The unknown ug can be eliminated from (2.1)-(2.5) by using (2.6). Then (2.1)-(2.5)
represent n coupled differential equations subject to n. = 2n + 2 constraints. In addition
to the vector function variable u(t) € R™ we have scalar variables

A e R™, ¢ €R,

2.7
(2.7) ps € R, wy € R™.



The total number of scalar variables equals n, = ny, + n + 2. As in [7] we are interested
in computing an entire branch (one dimensional continuum) of orbits, in which case the
number of free problem parameters

(2.8) ny = 1.

Continuation algorithm 3 (steering vector algorithm). The equations for this
algorithm are:

(2.9) u'(t) = Tf(u(t),\) =0, 0<t<]l,
,A) =0,
(2.10) f(uo, A)
flur, A) =0,
(2.11) Ju(ug, Mg = pgwy, w € R®, uff €R,
dl =1,
(2.12) | I
| =1,

1
(2.13) | GO0 = 7600.00) - fula), )70, 1yt = o,

(2.14) o wl)=umtam,
b) w(1) = uy + €e1d, d € R*.

Again the unknowns ug and u; can be eliminated from (2.9)-(2.13), by using (2.14).
Then (2.9)-(2.13), represent n coupled differential equations subject to n, = 3n + 3
constraints. In addition to the vector function variable u(t) € R" we have n, = ny +2n + 3
scalar variables

(2.15) A€ R™ wy,d € R, ep,e1,u5 €R.

Again we are interested in computing an entire branch (one dimensional continuum) of
orbits, in which case we have

(2.16) ny = 1, and hence n, = 2n + 4.

DRI 0



We next give two algorithms for obtaining starting orbits, which can be used in
conjunction with Continuation algorithms 1-3.
Starting orbit algorithm 1 (IVP Solver)
Step 1 Assume that ug, wg, and A are given with |wif| = 1. Initialize the “distance” ¢ by
“small” number, such as 0.0001 and compute the initial value

(2.17) u(0) = uo + €owy.

This pfovides an initial value for an initial value solver such as KAOS [14]. Neat solve
the initial value problem: (2.17), (2.18),

(2.18) u'(t) = Tflu(t),\) =0, 0<t<l,

for “large” time T, such as 20 - 100.

Step 2 Switch to AUTO. Initialize ug, wf, p, T and X from step 1. Read the data generated
by KAOS and interpolate it. This provides an initial orbit u(t) for AUTO.

Step 3. Perform continuation by one of the Continuation algorithms 1-3. Note that in
the case of the Continuation algorithm 1, one first needs to compute the projection of u(1)
found at Step 1 onto the subspace spanned by wy;, @ = 1,...,n.

Starting orbit algorithm 2 (floating boundary).

Step 1. Initialize the period T by a “small” number, such as 0.01, and the “distance”
€0 by another “small” number, such as 0.0001. Given ug and wy, initialize the solution
by a constant:

(2.19) u (t) = up + eowy, 0 <t < 1.

Step 2 Perform continuation in the direction of increasing T, while all other parameters
are fized, using the equations

(2.20) w'(t) = Tf(u(t),\)=0, 0<t<l,

(2.21) u(0) = wy + €oug.

Starting orbit algorithm 3 (steering vector).
Step 1. Initialize the period T by a “small” number, such as 0.01, and the “distance”
€0 by another “small” number, such as 0.0001. Given uo and wg, initialize the solution
by a comstant:

(2.22) u () = wp + eowg, 0 <t < 1.
and 1nitialize d, €y from the equations:

Uy + e1d = ug + 601(?3,

(2.23) dl=1.



Step 2 Perform continuation in the direction of increasing T using the equations

(2.24) W) = Tf(u(t),)) =0, 0<t<]l,

a) u(0) = wg + eowy,

2.2

( 5) b) U(l) = uy + 61(1, d € R
dl=1

(2.26) 4 =1,
lwg] = 1.

Remark.The integral “phase” condition is removed for the Floating Boundary and the
Steering Vector algorithms because its purpose is to prevent the sharp peaks from moving.
In this method the peaks must move to approach the heteroclinic orbit from the constant
solution. AUTO allows the user to set the accuracy to which the variables and parameters
are computed in the continuation procedure, by varying the tolerances. In the beginning
of the continuation one must set high tolerances for the parameters and variables, because
the constant solution is per se a poor approximation of a heteroclinic orbit.



3. A Model 2—d Singular Perturbation Problem.

3.1 Formulation of the Problem.
The system of equations given below is a model problem which we have used to develop
our algorithms in the case of Singular Perturbation Problems,

&= (2—2)a(z —2) + (z + 2)[e(x = x0) + By — yo)]
(3.1) §=(2—2)[d(b—a)(z —2)/4 + by] + (= + 2)[-B(z — 20) + a(y — yo)]
= (

From Deng [12], it is known that for the parameter values a = 1,b = 1.5,¢ = 2,m =
1.1845,a = 0.01,3 = 5,z = —0.1,yp = —2,¢ = 0.01,d = —3.5 the solution is a twisted
homoclinic orbit, while with the same values of parameters except d = —0.2 the orbit is
nontwisted.

Singular perturbation problems are characterized by the appearance of a small param-
eter such as e = 0.01, which in this case makes the system of ordinary differential equations
a stiff system. Stiff equations are systems where the magnitude of one eigenvalue of the
Jacobian is considerably greater than the magnitude of the other eigenvalues.

In this system of equations, it is known that a hyperbolic fixed point exists at
wo = (2,0,—2). The eigenvalues of the Jacobian evaluated at (2,0,-2) are (u1,p2,p3) =
(—1847,5,3) with associated eigenvectors (w],w},w§). The cigenvalue u; = —1847 is
responsible for the stiffness of the system. The eigenvector wj gives the local direction
of the stable manifold, while some linear combination of (w!,w}) defines the direction of
the unstable manifold.

Computing the homoclinic orbit for the 3-dimensional problem is formidable for 3
reasons: (1) the system of equations in Eq. (3.1) is stiff. (2) It is known theoretically
that the direction of the unstable manifold W} (u¢) is defined only by the eigenvector wy.
However for the numerically approximate problem (which we solve) both w{ and wj will
define the direction of W (uo) and the linear combination of w{ and w} is unknown. (3)
There are several heteroclinic orbits near the homoclinic orbit, and the slightest numerical
instability will displace the homoclinic orbit to one of these heteroclinic orbits. In view
of these reasons, we decided to compute a 2-dimensional homoclinic orbit, to gain some
insight into the intricacies of computing the full 3-dimensional orbit. There was also the
possibility that we could then compute the 3-d orbit by a homotopy from the 2-d orbit.

For the 2-d problem the stable and unstable manifolds, W} (ug) and Wy (uo) are
each one- dimensional.

We attempt to compute homoclinic orbits for the two dimensional system of equations,
obtained from Eq. (3.1) by setting y = 0 and y = 3.59 X 1073 (since it is known that for
the 3-d system (z,y,2) = (1.99,3.59 X 10"3,—1.99) is a fixed pomt):

& = (2= z)a(r = 2) + (z + 2)[alx — 20) + By — po)]

(3.2) s= (128 [z 42— m(e+2)] —ecz) e



3.2 Computational Results

We use the following notation:

uo = (o1, ug2) Fixed Point

wi = (wf;, wly) Eigenvector tangent to the unstable manifold at w,

wy = (wi;, w},) Eigenvector tangent to the stable manifold at wuq

dy = (dy,d12) Normalized steering vector components connecting u(1)
and wug

€0 Distance between ug and u(0)

€1 Distance between uj and u(1)

ug, wy,wy, dy,u(0),u(1) € R?

€,€1 €R

A = (¢,d) € R?

To compute a homoclinic orbit for this system of equations we use the steering vector
algorithm and after noting that for a homoclinic orbit The homoclinic orbit is obtained
for Eq. (3.1) by a series of steps.

Step 1 (a): Obtain an initial homoclinic orbit for

(3.3) W' =Tf(u,}), u=(z,z)

subject to the boundary conditions:

(a) u(0) = uy + €owy

(3.4) (0) u(l) = wo + &1

and normalization condition,

(3.5) ] = 1

for a total of 5 boundary conditions. Note that di = (d11,d12) € R%  Initialize
T =001, ¢ = 1077, g = (1.99, —1.99), wy = (1.0,—5.‘2 X 10_4) and the tolerances

€u, €4 = 1072, Begin computation of the orbit along the unstable manifold. Perform
continuation with respect to T',d;1, d;2, €] using the steering vector algorithm for obtaining
initial orbits. We have now recached Fig. (3.1), where (d = —0.2,¢ = 0.01,¢p =

1.0 x 1078, 7 = 1.15 x 10_2,/tf = —1891), (pf = 3.99,w? = 0.99, wiy = —5.0 x 1074),
(e1=1.0 x 107%,d1y = —0.99,d12 = 5.2 x 107), (uo; = 1.99, ugy = -1.99).
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Step 1 (b): Decrease the tolerances so that e, €) = 1078, Perform continuation with
respect to T,dy1,dy2, €1 until d; has approximately the same direction as the eigenvector
w$, which defines the direction of the stable manifold Wjy (uo) near the fixed point.
The computation reaches Fig. (3.2) where ¢; = 0.078. In Fig. (3.2) (d = —0.2,¢ =
0.01,69 = 1.0 x 1075, 7 = 3.89, 5 = —1891), (p} = 3.99,w};, = 0.99,wf, = —5.0 X 1074),
(61 = 0.078,d11 = —0.42,6112 = 090), (UOI = 1.99,‘”02 = —1.99).

Step 2 (a): Switch from the steering vector algorithm to the eigenvector algorithm
on the right boundary (stable manifold). The problem is formulated as follows:

(3.6) u'=Tf(u,N), u=(z,2)

with the boundary conditions

() w(0) = ug + eqwy

(3.7) (b) u(1) = wo + e1d1

eigenvalue problem conditions

a) fOuwt = p¥w®
w W1 = [ W)

3.8
49 (b) fidi = pich

normalization conditions

(a) fwi] =1
3.9
(39 ()l =1
and the fixed point conditions
(3.10) flug,A) =0

We now have a total of 12 boundary conditions. At this point in the computation, the
direction of the steering vector is only an approximation to the eigenvector which defines
the direction of the stable manifold on the right boundary. Therefore, the tolerances for
the state variables and the parameters should be set rather high when switching from
the steering vector approximation to the eigenvector approximation. Experimentally we
found that we needed ey, ey = 1. Perform a few steps of continuation (NMX = 35) with
respect to T, ¢, €1,d11,d12, wly, wis, uf, 1§, o1, ug2 for a total of 11 parameters. Note the
presence of the singular perturbation parameter e. After this step of continuation, the
components dq1,dy2 will be aligned along the direction of the eigenvector, which defines
the direction of the stable manifold. We have now reached Fig. (3.3) where ¢; = 0.0752
and d} = (d11 =-591 x 1073,d;» = 0.99998), is now aligned along the eigenvector wy, but
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the singular perturbation parameter has changed its value to e = 0.0111645. In Fig. (3.3)
the parameter values are (d = —0.2,¢ = 0.0116,¢p = 1.0 x 107¢, T = 3.85, uj = —1693),
(p¥ = 3.99,w¥; = 0.99,w}, = —5.89 x 107%), (¢; = 0.07,d;; = —5.9 x 1073,dy2 = 0.99),
(uo1 = 1.99,up2 = —1.99).

Step 2 (b): Decrease the tolerances to ¢y, €y = 107% and proceed with continuation as
in Step 2(a). The singular perturbation parameter ¢ increased in value from 0.01 to about
1.11, whence the orbit obtained was homoclinic. At intermediate values of ¢; the orbit is
not homoclinic. For example for €; = 0.371, the orbit is not homoclinic. The orbit obtained
for €3 = 1.117774 is shown in Fig. (3.4), where it is clear that the orbit is homoclinic. The
parameter values in Fig. (3.4) are (d = —0.2,e = 1.12,¢9 = 1.0x 1078, 7' = 8.75, u3 = —11),
(p¥ = 2.85,w¥ = 0.99,w¥, = —0.079), (e = 53 x 10713, dy; = -0.59,d12 = 0.80),
(U(n = 1.20,’1102 = “1.71).

Step 3: Attempt to decrease ¢ back to the value of 0.01. Freeze the period T from
Step 2(b) and perform continuation with respect toe, g, €1, d11, d12, w0}, Wiy, ¥, 1, o1, uo2
using the same set of boundary conditions described in Step 2(a). A surprising result was
noted: (1) € returned to a value of 0.011117. (2) ¢ had started at a value ¢ = 1076

in Step 1, but on this return journcy, it reached a value of ¢¢ = —2.0 x 10~1? and
e = 1.117 x 107%. This final orbit is shown in Fig. (3.5). The parameter values
in Fig. (3.5) are (d = -0.2,¢ = 0.011,¢¢ = —2.7 x 107107 = 875, = —1693),

(p¥ =3.99,w¥ = 0.99, w¥ = ~=59x107%), (g = 1.1 x 1077, dy; = —5.9x 1073, d;5 = 0.99),
(uor = 1.99,up2 = —1.99).

Step 4: We now attempt to compute a branch of homoclinic orbits with respect to
(d,€). Add the integral phase condition and formulate the problem as follows:

(3.11) u' = Tflu,N), u=(z,2)

with the boundary conditions

(a) u(0) = ug + €pr0f

(3.12) () w(1) = wp + e1ds

eigenvalue problem conditions

(a) fow} = ulwf

3.13
(3.13) () 1% = uldy

normalization conditions

(a) )] =1

(3.14) () |da] = |



and the fixed point conditions

(3.15) flug,A) =0

(3.16) / (f(u(t),A) — f(q(t),A%)) - % (u(t),\)dt =0

Now perform continuation with respect to ¢,d, €0, €1,d11, d12, Wiy, wis, pY 5 11, Uo1, Uo2.
This is now a two parameter continuation problem with respect to the parameters (e, d).
The parameter d starts at d = —0.2 and continues on until d = —8000 without any
significant change in the orbit. The stiffness of the problem is not altered by this variation
in the parameter d.

3.3 Figures

Fig. 31. (d = —0.2,e = 0.0l,¢p = 1.0 x 1075, 7 = 1.15 x 1072, 45 = —1891),
(1} = 3.99, w}; = 0.99,w}, = =5.0x107%), (e = 1.0x 1076, dy; = —0.99,d12 = 5.2x107%),
(UOI = 1.99,1102 = —-1.99).

Fig. 3.2. (d=-02,e=10.01,¢ = 1.0 x 107, 7 = 3.89, u{ = —1891), (uy =399, w}; =
0.99, w, = —5.0 x 1074), (ef = 0.078,d1; = —0.42, dyp = 0.90), (ug; = 1.9, ugz = —1.99).

Fig. 3.3. (d = —0.2,¢ = 0.0116,¢5 = 1.0 x 1075, 7 = 3.85, pi = —1693), (uf =
3.99,w}; = 0.99,w}, = —5.89 x 10'4), (e = 0.07,dy; = —5.9 x 1073,dj, = 0.99),
(o1 = 1.99,up2 = —1.99).

Fig. 3.4. (d = =02, = 1.12,¢9 = 1.0 x 107%, 7 = 8.75, 4§ = —11), (u¥ = 2.85,w¥ =
0.99, wi, = —0.079), (e1 = 5.3 x 10713, dyy = ~0.59, d12 = 0.80), (up; = 1.20, upy = —1.71).

Fig. 35. (d = —-0.2,e = 0.011,¢0 = —2.7 x 10719, T = 8.75, 48 = —~1693), (u* =
3.99, wi; = 0.99,wf, = —5.9 x 107}, (¢; = 1.1 x 107%,dy; = =5.9 x 1073,d1; = 0.99),
(u(]l = 1.99, Ugy = —1.99).
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4. A Model 3—d Singular Perturbation Problem

4.1 Formulation of the Problem

The system of equations given below is the model problem for applying continuation
algorithms to Singular Perturbation Problems,

T=(2-2z)a(z —2)+ (2 + 2)[a(z — 20) + By — yo)]
(4.1) y=(2—-2)[d(b—a)(z ~2)/4 + byl + (s + 2)[-B(z — z0) + a(y ~ yo)]

From Deng [12], it is known that for the parameter values a = 1,b = 1.5,¢c = 2,m =
1.1845,a = 0.01,83 = 5,20 = —0.1,y9 = —2,¢ = 0.01,d = —3.5 the solution is a twisted
homoclinic orbit, while with the same values of parameters except d = —0.2 the orbit is
nontwisted. '

Singular perturbation problems are characterized by the appearance of a small param-
eter such as ¢ = 0.01, which in this case makes the system of ordinary differential equations
stiff. Stiff equations are systems where the magnitude of one eigenvalue of the Jacobian is
considerably greater than the magnitude of the other eigenvalues.

In this system of equations, it is known [12] that there exists a hyperbolic fixed point
near ug = (2,0,—2) for (¢,d) = (0.01,—0.2). A more accurate solution with the IMSL
subroutine DNEQNF yields ug = (1.99469,3.59524 x 1073, -1.997886) for Eq. (4.1). The
eigenvalues of the Jacobian evaluated at ug are (pf, p¥, %) &~ (—1891, 3.99, 5.99) with asso-
ciated eigenvectors wi = (=5.3 x 107,5.5 x 107%,0.99), w¥=(0.99, 5.2 x 1072, 5.2 x 10~4),
why = (5.2 x 1073,0.99, —2.7 x 10‘6). The eigenvalue p; = —1891 is responsible for the
stiffness of the system. The eigenvector w{ gives the local direction of the stable manifold

ipe(u0), while some linear combination of (w¥,w%) defines the direction of the unstable
manifold W} (uo).

To compute the non-twisted homoclinic orbit, we used the steering vector algo-
rithm. The boundary w(0) was displaced from the fixed point ug by ¢ along the eigen-
vector w} as outlined in [13]; this corresponded to the unstable manifold. The boundary
u(1) was attached to the steering vector d;. The results of the computation are shown
in the attached Figures.

4.2 Computational Results.

Drawing on insight obtained from the two dimensional problem, we attempted to
compute homoclinic orbits for the three dimensional system :

(4.2) ' =Tf(u,A), u=(zy,z)

which symbolically represent Eq. (4.1). To compute a homoclinic orbit for this system
of equations, we will go through a number of steps, with each step having a different set
of boundary conditions.
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We use the following notation:

ug = (uo1, Loz, U03) Fixed Point

wl = (w, wi,, wi3) First eigenvector tangent to the unstable manifold at ug

wh = (wh), why, wh3) Second eigenvector tangent to the unstable manifold at ug

wi = (w;, wi,, wi3) Eigenvector tangent to the stable manifold at up

d1 = (dn, d12,d13) Normalized steering vector components connecting u(1) and
up

€0 Distance between ug and u(0)

€1 Distance between ug and u(1)

Step 1 (a): Initialize T = 0.01, €g = 1077, (¢,d) = (0.01, -0.2) and set the tolerances
to €, €x = 1072, We attempt to start computing the homoclinic orbit along the unstable
manifold W} (uo) from the boundary u(0). Wy (uo) is defined by some linear combination
of the eigenvectors, (w¥,w¥). This linear combination is not known a priori, so following
Deng [12] we start the computation of the orbit along the eigenvector wy. We obtain an
initial orbit for Eq. (4.1) formulated as follows:

(4.3) u =Tf(u,N), v=(2,y,2)

with the 6 boundary conditions,
(4.4) (a) u(0) = ug + o {w} cos & + wy sin '}
. (b) u(l):u0+£1d1

and normalization condition,

(4.5) |di| =1

Note that d; = (dy1,d12,d13). Perform continuation with respect to T,€1,d11,d12,d13
using the steering vector algorithm for obtaining an initial orbit as described in [13].
Typically, we use NMX = 5 with NBC =7, NINT =0, NTST =25, NCOL = 5.

Remark: At Step 1(a), we assume that the solution to Eq. (4.3) remains constant
over the interval T = 0.01. The tolerances are set to the high value €y, €y = 10~2 in the
event that the assumption is not true and the solution does vary substantially

Once the solution reaches Fig. (4.1), AUTO will have computed an accurate enough
solution, so that the next step of computation can proceed with much lower tolerances. In
fact, in the next step, all we do is to lower the tolerances.

Step 1 (b): At this point AUTO has been able to find an initial orbit, so we decrease
the tolerances to €, €y = 1078, Perform continuation with respect to T, ¢€1,d11,d12,d13,
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using the same set of boundary conditions as in Step 1(a) until d; has approximately the
same direction as the eigenvector w{, which defines the direction of the stable manifold near
the fixed point. In Fig. (5.2) T = 4.3,¢; = 0.3,d; = (7.5 x 1073, -2.9 x 10_3,0.95) and
this is a fairly good approximation to the eigenvector w§ = (—5.3 x 107%,5.5 x 1072,0.99),
which defines the direction of the stable manifold, W} (up). At this point we still use
pseudo-arclength continuation with NBC = 7, NINT = 0, NTST = 25, NCOL = 5. We
now attempt to switch from the steering vector to the eigenvector approximation at the
boundary u(1).

Remark : It is important to watch the continuation process very carefully in Step
1(b) to see when dj, is approximately aligned along the eigenvector wj. Fig. (4.3a),
shows what happens when u(1) is “too close” to the fixed point for this stage of the
continuation (€; = 0.1), but d; = (0.04, —0.99, —2.2 x 107?) is a hopeless approximation to
wi = (—5.3 x 1073,5.5 x 1073,0.99). We used the 7 boundary conditions of Step 1(b), and
attempted to perform continuation with respect to T, «,dj;,dy2,d13 in the hope that the
steering vector d; would align along the eigenvector wy for some value of x. Unfortunately,
this was not the case. Once y(t) undershoots (falls below the fixed point value on the right
boundary u(1)) as shown in Fig. (4.3b), it is impossible to compute the homoclinic orbit,
no matter how close one is to the fixed point.

Step 2 (a): Switch from the steering vector algorithm to the eigenvector algorithm
on the right boundary (stable manifold). i.e. Solve the following equation:

(4.6) u="Tf(u,}), u=(z,y,2)

with the 6 boundary conditions,

(a) u(0) = uo + ep{wj cosk + wy sink}

(4.7) (6) (1) = ug + 1dy

9 eigenvalue problem conditions,

(a) fl?wﬁ‘ = pjwy
(4.8) (b)
(¢) fady = pidy

0, u u, U
Juwy = pywy

3 normalization conditions,

(@) ] = 1
(4.9) (b) |wh| =1
(c) ldr] =1

and the 3 fixed point conditions,
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(4.10) fuwo, A)

We now have a total of 21 boundary conditions. Continuation is carried out with
respect to the variables: T,e, (e1,d11,d12,dy3), (;t’l‘,w‘;‘l,w’l‘g,w}g), (u%‘,w%‘l,w’z‘z,w’g‘:{),
(uo1, 02, %03), K1,K- At this point in the computation, the steering vector has only ap-
proximately the same direction as the eigenvector which defines the direction of the stable
manifold on the right boundary. Therefore, the tolerances for the state variables and the
parameters should be set rather high when switching from the steering vector approxima-
tion to the eigenvector approximation. Experimentally we found that we needed €y, €y = 1.
Note that Eq. (4.8c) forces a change from the steering vector algorithm to the eigenvector
algorithm. After this step of continuation d; is aligned along the direction of the eigenvec-
tor w} which defines the direction of the stable manifold W} (uo). We have now reached
Fig. (4.4), where ¢; = 0.345 and dj; = —4.87 X 1073, dj2 = 5.06 10~3,d;3 = 1.0 are now
aligned along the eigenvector wj, but the singular perturbation parameter has changed its
value to € = 0.0092. The other parameter values are d = —0.2,e=92x 1073, T =43, 6 =
1077, 61 = 0.3,k = 5.7 x 1074, (u] = —2039,dnn = —4.9X 1073, dyz = 5.1 x 1073, d13 = 1.0),
(1 = 4,w¥ = 0.99,w}, = 0.05, wiz = —4.9 X 1074), (ub = 5.99,w = 4.8 x 1073, wf, =
0.99, wy; = —2.3 X 1078), (uo1 = 1.99,ug2 = 3.3 X 1073, ug3 = —1.99).

Remark: It is also possible to switch from the steering vector approximation to the
eigenvector approximation via a homotopy.

Step 3 (a): Decrease the tolerances to ey, ey = 107!, set NTST = 100, NCOL =
5, DS = —1.0 x 10~4 and use Natural Parameter Continuation to solve:

(4.11) o =Tf(u,)\), u=(z,9,2)

with the integral phase condition,

(4.12) [ Gt - 10,3 < Ju(e), Nt =0

the 6 boundary conditions,

(a) u(0) = wp + eo{w} cos k + wj sin Kk}

(4.13) (b) u(1) = uo + erdy

9 eigenvalue problem conditions,
0, u__ ,u, U
(a) fywy = 1wy

(414) (b) fgu,\:)f = /[gwg
(c) fldy = pidy

29



3 normalization conditions,

(a) feol] =1
(4.15) (b) Jwi =1
(c) ldi] =1
and the 3 fixed point conditions,
(4.16) fluo, A)

We now have a total of 21 boundary conditions plus an Integral Phase Condi-
tion. Continuation is carried out with respect to the variables: ¢, T,e, (d11,d12,d13),
(11, wi, wiy, wiy), (45, wh,wly, wss), (w1, uo2, ue3), i, x,€0. Note that continuation is
carried out with €, as the primary parameter, which in conjunction with the negative
value of DS and Natural Parameter Continuation, ensures that the length of the steering
vector continuously decreases, pulling the orbit towards the fixed point. Note also that ¢
and « are allowed to vary so that the correct linear combination of eigenvectors is found on
the two dimensional unstable manifold, W (ug) to compute an accurate homoclinic orbit.

In Fig. (4.5), the singular perturbation parameter ¢ = 9.33 x 1073, ¢ = 0.344.
The parameter values are: d = —0.2,e = 9.3 x 10737 = 4.3, ¢¢ = 1.9 x 1077, ¢; =
0.34,k = =5 x 107% (p§ = —2025,d;; = —4.9 x 1073, dj2 = 5.1 x 1073,d3 = 0.99),
(1Y = 4wl = 0.99,w}, = 0.05,wf; = —4.9 x 107%), (u¥ = 5.99,w}; = 4.9 x 1073wl =
0.99, wy; = —2.4 x 10‘6), (upr = 1.99,ugy = 3.35 x 1073, up3 = —1.99). The next step in
the computation is to decrease ¢; still more, while simultaneously attempting to increase
the accuracy of the computation, which involves decreasing the tolerances ey, €.

Remark: It was extremely crucial in this step to set NTST = 100 to carry out the
continuation procedure. From the phase space plot of Fig. (4.5), it is clear that there
are several sharp fronts, and this high value of NTST = 55 is the only way to accurately
compute the solution with these sharp fronts. For example, a value of NT ST = 55 allowed
tolerances of only €,,€y = 1 and this was not sufficiently accurate for continuation.

Step 3(b): The only change from Step (3a) is that we decrease the tolerances and set
€u, €3 = 1078, The continuation proceeds as before with Natural Parameter Continuation
with respect to the same parameters as in Step (3a). We stop the computation at the
point shown in Fig. (4.6), where €9 = 3.7 x 107%,¢; = 1.0 x 1077,¢ = 9.3 x 1073, T = 5.3.
The parameter values are: d = —0.2,¢e = 9.3 x 10737 = 5.3, ¢ = 3.7 x 107%,¢ =
LI1x1077 k= =27x 1077, (1} = —2026,d1; = —4.9 x 1073, dy2 = 5.1 x 1073, dy3 = 0.99
)s (£ = 4, wf; = 0.99,w}, = 0.05,wl; = —4.9x 107 ), (1% =5.99,wy; =4.9 x 10—3,w§‘2 =
0.99, wi3 = —2.4 x 107% ), (uo1 = 1.99, upy = 3.5 x 1073, up3 = —1.99).

Remark: The extremely small values of ¢y and ¢; indicate that the homoclinic orbit
has been computed very accurately. In practice, an accuracy of ¢y, e; = 1.0 x 10~5 should
suffice.

Step 4: We now attempt to compute a branch of homoclinic orbits with respect
to the parameters (d,¢) of Eq. (4.1). Deng [12] notes that the homoclinic orbit is
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twisted for d = —3.5 and non-twisted for d = —0.2. Consequently, we again use Natural
Parameter Continuation to decrease d from —0.2 to —3.5. We use the same set of boundary
conditions as in Step (3a) but perform continuation with respect to d, €, €, (€1,d11, d12,d13),
(1}, wiy, wiy, wiz), (1%, why, why, wiz), (ug1, 102, u03), #f,%. This is now a two parameter
continuation problem with respect to the parameters (e,d). The parameter d starts at
d = —0.2 and continues on until d = —3.5 with a significant change in the orbit as shown
in Fig. (4.7). The parameter values are: d = —3.5,¢ = 9.3 X 1073, ¢ = 4.7x 107% ¢ =
L1x10—ﬁn::—L4x10—2(u§=-—ﬂn4¢hl:-—53x104,mg==a5x10-{dm:=10
), (1 = 4, wt) = 0.75,w}, = 0.66, wly = —=3.7x 1071 ), (uy = 5.9, 0}, = 4.9 X 1073, wh, =
0.99, wy; = —2.4 X 1079 ), (ug1 = 1.99, ug2 = 1.99 x 1073, ug3 = —1.99 ). The stiffness of
the problem is not altered by this variation in the parameter d.

Step 5: Deng [12] notes that a homoclinic orbit exists for ¢ = 0.01. Accordingly,
we tried to increase ¢ from ¢ = 0.0093 (in Fig. 4.6) to ¢ = 0.01 using the boundary
conditions of Step (2a). We performed continuation with respect to ¢, €o, (€1,d11,d12,d13),
(p¥, wly, wiy, wls), (15, why, why, whs), (uo1, 02, u03), #5, £ using both Pseudo -Arclength
Continuation and Natural Parameter Continuation. The continuation process did not
converge.

We also attempted to use the boundary conditions of Step (3a) and perform con-
tinuation with respect to ¢, T, (e1,d11,d12,d13), (uf, w0y, wiy, wiz), (1, why, why, whs),
(uo1, U0z, uo3), Ki,x, again using both Natural Parameter Continuation and Pseudo-
Arclength continuation. Once more, there was no convergence.

A third attempt to perform continuation, which also met with failure was the following:
At Step (2a) switch from the steering vector approximation to the eigenvector approxima-
tion on the boundary u(1) but hold € constant at ¢ = 0.01 and solve the following problem:

(4.17) o = Tf(w,A), w=(z,y,2)

the 6 boundary conditions,

(a) u(0) = up + eg{wf cos x + wj sinx}
(b) u(l) = v + €1dy

3 eigenvalue problem conditions,

(4.18)

(4.19) fodi = pidy

and the normalization condition,

(4.20) || =1
' We attempted to perform continuation with respect to ¢, T, (e1,dy1,d12,d13), i, & but
the continuation process did not converge.

We therefore conclude that it is difficult, if not impossible to compute the homoclinic
orbit for ¢ = 0.01.
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4.3 The Methods Which Failed

1. The Homotopy From Two Dimensions

The solution of problems such as the Josephson Junction [11], have been carried out
using a homotopy from a known solution to a simpler problem. Since we had already
obtained a homoclinic orbit for the simpler two-dimensional problem defined by the system
of equations:

i=(2-2)alz —2)+ (z + ez — 20) + Ay — yo))

4.21 ,
(4.21) e = (4 —-2°)[z+2—m(x+2)] - ecz

we attempted to find a solution to the system,

¢ = (2 - z)a(z = 2) + (= + 2)[a(z — 20) + By — yo)]
(4.22) y =7{(2 - 2)d(b—a)(z = 2)/4 + by] + (= + 2)[-B(z — z0) + a(y — yo)]}
ez = (4—2")[z4+2—m(z +2)] — ecz

We initialized v = 0, when Eq. (4.22) reduces to Eq. (4.21) and having found a homoclinic
orbit for the system of ODEs in Eq. (4.21), we attempted to increase 4 from v = 0 to
v = 1, which would give a homoclinic orbit in three dimensions. The advantage of dealing
with a two-dimensional problem first, 1s that the stable and unstable manifolds are one-
dimensional, so we do not have to deal with unknown linear combinations of eigenvectors,
which is necessary to solve the three dimensional problem. However, this approach did
not meet with any success; with hindsight one can see that there is a loop in the three-
dimensional orbit shown in Fig. (4.6), which does not exist in the two-dimensional orbit
of Fig. (3.5), and this is probably why the homotopy fails.

2. Increasing the Singular Perturbation Parameter ¢

Apart from the fact, that the linear combination of eigenvectors on the two-dimensional
unstable manifold, W}? _(uo) is unknown, this problem is compounded by the fact that the
system of ODEs is stiff, which makes the problem of computing homoclinic orbits even
more difficult. For the two-dimensional system defined by Eq. (4.21), it was found that |x]]
could be reduced (thus making the system of ODEs less stiff) by increasing the singular
perturbation parameter, e. With this “insight”, we attempted to increase ¢ using the
boundary conditions of Step. (2a) and carrying out continuation with respect to ¢,7,
(e1,d11,d12,d13), (uf,wly, wiy, wls), (13, w3, why, wyy), (vo1,uoe2,u03), pi, &

This method failed and the explanation is as follows: It is known theoretically from
Deng [12] that a homoclinic orbit exists for ¢ = 0.01, which means that the orbit must
intersect the stable manifold W (o) defined by the eigenvector w{ at the right boundary
u(1). For larger values of €, there is no certainty that the orbit will intersect this
one dimensional stable manifold; in fact, in general the orbit will not intersect the one
dimensional stable manifold. To guarantee that the orbit intersects the unstable manifold,
the manifold would have to be two-dimensional which is not the case for this problem.
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3. The Initial Value Problem Solver VODE

VODE is an IVP solver designed specifically to tackle systems of stiff ODEs. We
intended to compute an initial orbit with VODE for the system in Eq. (4.1), and then
perform continuation using AUTO, with respect to the parameters (¢,d). VODE was
not able to produce the orbits, which were achieved by AUTO in Fig. (4.6). We used
the data from Fig. (4.6), namely, ¢ = 9.3 x 1073,d = —0.2, upy = 1.995, wgp =
3.55 x 1073, wgz — 1.998, w}; = 0.99, w}, = 5.21 x 1074, wiy = —4.92 x 1074, w}; =
4.92x1073, w¥, = 0.99, wl; = —2.4x 1075, g = 3.05x1078, x = —1.89x107°. The results
of the computation with VODE are shown in Fig. (4.8 al-cl), and for comparison the
results with AUTO are shown in Fig. (4.8 a2-c2). VODE is clearly not able to reproduce
the sharp fronts, which can be computed with AUTO and worse still, the computation of
y(t) is hopelessly inaccurate.

4.4 Figures.
Fig. 4.1. Initial solution showing z(¢) which is constant. y(t) and z(t) are also constant.

Fig. 4.2. T =4.3,¢; =0.3,d; = (7.5 x 107%,-2.9 x 107%,0.95)
Fig. 4.3a. A spurious solution plotted in the phase plane
Fig. 4.3b. Graph of y(¢) showing undershooting of the y component.

Fig. 4.4. The other parameter values are d = —0.2,¢ = 9.2 x 1073, 7T = 4.3, ¢¢ =
10=7, 6, = 0.3,k = 5.7 x 1074, (uf = —2039,dj; = —4.9x 1073, dj> = 5.1 x 1073, dy3 = 1.0),
(ut = 4,w¥ = 0.99,w¥ = 0.05, 0l = —4.9 x 1074, (u4 = 5.99, 0} = 4.8 x 1073w}, =
0.99, w¥ = —2.3 x 107°), (uo1 = 1.99,up2 = 3.3 x 1073, ugz = —1.99).

Fig. 4.5. The parameter values are: d = —0.2,¢ = 9.3 x 1073, 7 =43, ¢ = 1.9 x
1077, 6, = 0.34, k = =5x107°, (u§ = —2025,d); = —4.9x107%,dy2 = 5.1x1073,d;3 = 0.99),
(1} = 4,wf; = 0.99,w}, = 0.05,wf; = —4.9 X 10~4), (A,u"z‘ =599, wd¥, = 4.9 x 1073w}, =
0.99, wy; = —2.4 x 10_6), (uo1 = 1.99, up2 = 3.35 x 1073, ugs = —1.99).
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Fig. 4.6. ¢¢ =3.7x 1079, e; = 1.0x 1077, = 9.3x 1073, T = 5.3. The parameter values
are: d = —0.2,e =93 x 1073,7 =53, 6 =37x10""¢ = 1.1 x 1077,k = =2.7 x 1077,
(] = —2026,dy; = —4.9 x 1073, dye = 5.1 x 1073,dy3 = 0.99 ), (1¥ = 4,0}, = 0.99,w}, =
0.05, w¥ = —4.9 x 107* ), (u& = 5.99,0% = 4.9 x 1073, wh, = 0.99, wh; = —2.4 x 107° ),
(uor = 1.99,up2 = 3.5 x 1073, ugz = —1.99).

Fig. 4.7. The parameter values are: d = —3.5,¢ = 9.3 x 1073, g = 4.7 x 107% ¢ =
11 x 1077k = —1.4 x 1073, (p§ = —2024,dj; = =5.3 x 1073, djp = 5.5 x 107%,dj3 = 1.0
), (u¥ = 4,w? = 0.75, w0}, = 0.66,w¥ = —3.7x 107 ), (u} = 5.9, w§; = 4.9 x 1073, w}, =
0.99, wl = —2.4 x 1075 ), (wo; = 1.99,uoz = 1.99 x 1073, ug3 = —1.99 ).

Fig. 4.8 Comparison of results obtained with VODE (al-cl) and AUTO (a2-c2). The
parameter values are ¢ = 9.3 x 1073, d = —0.2, ug; = 1.995, ug2 = 3.55 x 1073, g3z — 1.998,
w = 0.99, wl =521 x 1074, wi = —4.92 x 107%, vy =4.92 x 1073, wh, = 0.99, wh; =
—24x 1075, ¢ = 3.05 x 1078, k = —1.89 x 107S.
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5. The Fluid Mechanics Problem

5.1 Parameter Assignment in AUTO

For the generic four dimensional problem, the parameter assignment is as follows:

up par(101)-par(104) left fixed point
€od, do(4) par(106)-par(110) left steering vector
Hoi, Woq par(111)-par(130) 4 left eigenvalues/vectors
€0i par(131)-par(135) 4 left eigenvector weights
uj par(151)-par(154) right fixed point
€14, d1(4) par(156)-par(160) right steering vector
K1i, W1i par(161)-par(180) 4 right eigenvalues/vectors
€1i par(181)-par(185) 4 right eigenvector weights
&1 par(1)
€11 par(2)
€12 par(3)
§2 par(4)
€21 par(5)
€22 par(6)
834 par(7) sign for Eqs. (3),(4)
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5.2 Formulation of the Problem

We study this system of equations which are discussed in Eq. (2.5) in the paper by
Armbruster et al [2]:

a) &1 = T2 +J1J7+Il(§1 +€1171 + epar 3)
)1 = T1y2 — Y122 + yl(fl + 6117'1 + eror
C).’i‘gzzf:( %—Jl)+1>(fo+60171+62_

lQ IQ lQ [S%]
P

(5.1)

(d) Yo = +2x1y; + yo (§7+e>17 + €22 l:;)
rrfz %+1/1 and 72—12-{'-‘/)

This system of equations corresponds directly to Eq.(28) of Aubry [1]:

Uy = ¢4 —2(v4v2 + wqw3) + vy ((lg + c122r§ + (1247';’))
’ng =q, _-)(vr)w4 — vqwz) + wa(az + daars + dogr?)
(5:2) 0 = c2(v3 — wd) + va(as + dord + duar)
C2 202W ‘*‘u’l( aj +(l’4')7‘:; +d44T3)
= §+lu) and 71 = v +w4

The systems in Eq. (5.1) and Eq. (5.2) are obtained from the Navier-Stokes equations [1].
The fluctuating component of the velocity is expanded as a Fourier series in the spanwise
and streamwise directions. A Galerkin projection is applied to convert the system of PDEs
into a system of ODEs. The series is then truncated to retain only the first few terms in
the Fourier expansion becuase the Galerkin approximation minimizes the error due to
truncation. The important parameters in the Armbruster system are ¢; and &;, which
correspond to the parameters a; and a4 of the Aubry system. a; and a4 are related to the
Heisenberg parameters a1 and a3 and the Reynolds’ number Rep by the equation:

ar = a + (1 + a1/ Rer)a?

(5.3) 1 2
Clt kh—k! = C’k',k—k' + CY'_?_C]\.;’L._LJ

The Heisenberg parameters a; and a3 may be adjusted upward and downward to
simulate greater and smaller energy losses to the unresolved modes, corresponding to the
presence of a greater or smaller intensity of smaller-scale turbulence in the neighborhood
of the wall. This might correspond to the environment just before or just after a bursting
event which produces a large burst of small scale turbulence which is then diffused to the
outer part of the layer.

We wish to investigate the dynamical behavior of the system defined by Eq. (5.1).
The initial value used was directed along w{ with ¢g = 1077 as follows: u(t) = ug + €gwy.
Continuation was carried out with respect to the period which was initially set at T' = 0.01
and increased till 7" = 130.
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The initial values at the left fixed point ug were the following:

0.18 0 0 0
0 -0.34 0 0
A =
Sulwo, A) 0 0 040 0
(5.4) ) 0 0 0 0
wg=(1 0 0 0)
£y = 0.18
ug = (0,0, i(“/lz/ezz)l/z,o)
5.3 Computational Results
We use the following notation:
ug = (uo1, 02, U03, Uo4) Fixed Point near left boundary
ur = (ui1,ui2, U3, U4) Fixed Pomnt near right boundary
wg Eigenvector defining unstable manifold at ug
Ko Eigenvalue corresponding to w{
d; = (d11,d12,d13,d14) Normalized steering vector components connecting
uy and u(1)
€0 Distance between ug and u(0)
€1 Distance between u; and u(1)

For the system of equations defined by Eq. (5.1) with the negative sign used in Eq.
(5.1 c-d), we attempt to generate Fig. (5¢) in the paper by Armbruster [2] for which we
used the parameter values: ey; = —4,e13 = —1,e3; = —1,¢e23 = —2,£; = —0.03,& = 0.2,
The unstable manifold W (ug) at ug is one dimensional and its direction is defined by
the eigenvector wy. The stable manifold W} (1) at «; is two dimensional and since it is
difficult to determine the linear combination of eigenvectors which determine its direction

we use the steering vector dj at this boundary.

Step 1. Instialize the period T by a “small” number, such as 0.01, and the “distance”
€0 by another “small” number, such as 1077 . Given uy and wy, with |wj| = 1 tnitialize
the solution by a constant:

(5.5) u(t) =up+euwg, 0<t <1,

and set the tolerances ¢, = ¢y = 107% and set the number of subintervals and col-
location points to NTST = 25 and NCOL = 4 respectively. Eq. (5.6) and Eq.
(5.7) represent a total of 9 boundary conditions. We perform continuation with respect
to (T,e1,d1,d12,d13,d14). We have now reached Fig. (5.1), where (T = 163,¢, =
7.5 x 107°,dy; = 0.04,dy2 = 0,dy3 = 0.99,dy4 =0 ).
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Step 2 We will now attempt to repeat the results of Fig. (5e) in Armbruster 2],
where (£; = 0.135,62 = 0.2).  For these parameter wvalues, modulated travelling waves
coezist with the heteroclinic orbit. Moreover it is precisely at these parameter wval-
ues that a bifurcation occurs from the 2-dimensional heteroclinic orbit shown in Fig.
(5.1) ( where (& = —0.03,&; = 0.2)) to a full {-dimensional heterochnic orbit. To reach
(&, = 0.135,&; = 0.2) we follow a multistep continuation procedure, where the problem 1s
formulated as follows:

(5.6) u'(t) —- Tf(u(t),\)=0, 0<t<l,

(a) flug,A) =0

5.7
&7 (0) f(ur,A) =0,
(5.8) a) u(0) = ug + €y,

) b) u(l) = + ad, d; € R*
(5.9) fulug, Nwi = powg, wg € R®, py €R,
5.10) (@) |dy] = 1

(b) [wo| =1,

1
(5.11) /0 (F(u(t),A) = F(g(t),A%)) - fulu(t), V) f(u(t), N dt = 0.

There are 22 boundary conditions plus an Integral Condition. Continuation is performed
with respect to the 20 parameters.

Step (2a): Perform continuation with respect to (1,62, T), (uo1,Uo2, %03, %04),
(w11, w12, w13, w14), (di1,diz, d13, drq ), (1, wh;, wh,, wiz, wiy ). The continuation process

fails to converge at the terminal values of (§; = -39 X 1073,¢ = 0.198),
(T =124,¢y = 10_7,61 = 10_6)), (1[01 = 0,ugy = 0,ug3 = 0.315,upq = 0), (U]l = 0,u;p =
0,u;3 = —-0.315,u14 = 0), (d]} = 0.14,(112 = —-14 x 10_8,d13 = 0.98,(114 = 0.065 ),

(e = 0.2,wl; = L,wgy = 0,wg; = 0,wgy = 0).
Step (2b): Using these terminal values, perform continuation with respect to
(€1, &2, €), (w01, W02, U03, Uod), (w11, w12, w13, w1s), (di1,di2, d13, dia ), (15, why, Wha» Whs, Wiy )-
The continuation fails to converge at the terminal values (§; = 0.1,& = 0.21),
(T= 124, ¢9 = 8.5 X 10_9,61 = 10—6)), (UOI = 0,ug2 = O,up3 = 0.323,ups = 0), (unn1 =
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uip = 0,u13 = —0.323,uy4 = 0), (d11 = 0.79,d12 = 6.7 X 10-7,dy3 = 0.019,dy4 = 0.060
(pd = 0.326,wd; = 1,wg, = 0,wy = 0,why = 0 ).

Step (2c): Using these terminal values perform continuation with respect to
(€1,€2,€1), (wo1,uoz, 103, woa), (11, u12,U13,%14), (di1,di2,dva,dia ), (18, wh1» Wha2» Wh3> Woa
). Continuation proceeds till we reach Fig. (5.2) where (§; = 0.138,§{ = 0.21),
(T=124,6=85x107%,e; = 2.3 x 107%)), (uor = O,upz = O,ups = 0.323,ups = 0),
(unp = 0,uiz = O,uz = —0.323,u1y = 0), (dn = 096,diz = 8.1 x 1077,d13 =
4.5 % 1073, d1g = 0.268 ), (u§ = 0.326,wf; = l,wg, = 0,wl; = 0,wiy = 0).

Step 3: We will also attempt to reproduce the bifurcation diagram for the branch of
heteroclinic orbits, shown in Fig. 3 in Armbruster [2]. Using the same set of boundary con-
ditions as in Step 2, increase the number of subintervals to NT5T = 55. Using the initial
values from Fig. (5.1), perform continuation with respect to (61,62, T), (uo1,uo02, uos, u04),
(u11,u12, 13, U14), (d11,d12,d13,d14 ), (8, why, wiy, wis, woy )- The bifurcation diagram of
(€1,€2) is shown in Fig. (5.3), where the initial values are (¢; = —0.03,£2 = 0.2) and the
final values are (§; = —0.036, & = 0.09). The entire bifucation diagram in Fig. (5.3) has a
number of bifurcating branches. We have traced out only one branch. This may account

0,
)

for the fact that our results do not match those of Armbruster [2].

5.4 Figures
Fig. 5.1 (T = 168,61 = 7.5 x 107°,d11 = 0.04,d12 = 0,d13 = 0.99,d14 =0 ).

Fig. 5.2 (& = 0.138,& = 0.21), (T = 124,60 = 8.5 % 107%,¢; = 2.3 x 107%)), (uo1 =
0,U02 = O,U();; = 0.323,’{104 = 0), (uu = O,Uyg = 0,1“3 = —0.323,1114 = 0), (d]] =
0.96,d;2 = —8.1 x 1077, dj3 = 4.5 x 1073, dyy = 0.268 ), (pf = 0.326,w5, = 1,wgy =
0, wg; = 0,wg, =0 ).

Fig. 5.3 The initial values are ({1 =-0.03,{ = 0.2) and the final values are
(& = —0.036, &2 = 0.09).
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6. Conclusions and Recommendations.

Homoclinic and heteroclinic orbits are orbits of an infinite period connecting two fixed
points of an associated system of autonomous ordinary differential equations. Homoclinic
orbits have been shown to play a fundamental role in phenomena such as bursting in
biology, chaotic vibrations of structures, chaotic oscillations in chemical reactions, etec.
Heteroclinic orbits are equally important in the understanding of the global behavior of
dynamical systems, turbulence, and also in the study of wave phenomena in nonlinear
parabolic partial differential equations.

In earlier papers Doedel and Friedman have developed an accurate, robust, and
systematic numerical method and derived error estimates for the computation of branches
of homoclinic and heteroclinic orbits. The idea of the method is to reduce a boundary
value problem on the real line to a boundary value problem on a finite interval by using a
local (linear or higher order) approximation of the stable and unstable manifolds and then
study the reduced problem using a continuation software package such as AUTO.

Theoretical analysis of homoclinic and heteroclinic orbits is often conducted in the con-
text of singular perturbation problems. In this paper we have refined and extended ealier
algorithms of Doedel and Friedman using 2 model singular perturbation problems and a
turbulent fluid boundary layers in the wall region problem. We have thus considerably
extended the range of applicability of our algorithms
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