
NASA Technical Memorandum 104757

Risk Management in Fly-by-Wire Systems

Karyn T. Knoll

March 1993

NASA
r
(NASA-TM-104757) RISK MANAGEMENT
IN FLY-BY-WIRE SYSTEMS (NASA)
23 p

N93-22703

Unclas

G3/17 0156304

NASA Technical Memorandum 104757

Risk Management in Fly-by-Wire Systems

KarynT. Knoll
Lyndon B. Johnson Space Center
Houston, Texas

March 1993

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas

CONTENTS

Section Page

Abstract 1

Introduction . 1

Description of Fly-by-Wire Systems 1

Risks Inherent in Fly-by-Wire Systems 2

Risk Management in the Fly-by-Wire Industry 5

Configuration Control '. 5

Verification and Validation 6

Tools 7

Backup Flight Control Systems 9

Risk Management and the Space Shuttle Program 12

References 17

TABLE

Table Page

1 Right Control System Summary 15

PRECEDING PAGE BLANK NOT FILMED

Abstract

A general description of various types of fly-by-wire systems is provided. The risks
inherent in digital flight control systems, like the Space Shuttle, are identified. The
results of a literature survey examining risk management methods in use throughout
the aerospace industry are presented. The applicability of these methods to the
Space Shuttle program is discussed.

Introduction

Since the development of the Space Shuttle, many other aerospace vehicles have
incorporated fly-by-wire technologies in their flight control systems in an effort to
improve performance, efficiency, and reliability. Because the flight control system is a
critical component of any aerospace vehicle, it is especially important that the risks
inherent in using fly-by-wire technologies are thoroughly understood and carefully
managed. This paper examines the findings and techniques of other aerospace
vehicle programs that have incorporated fly-by-wire technologies in their vehicles and
discusses the implications of their experiences to the Space Shuttle program.

Description of Fly-by-Wire Systems

Conventional aircraft use mechanical (sometimes supplemented by hydraulic)
linkages to connect the pilot's controls to the aircraft control surfaces. This
arrangement provides a direct correlation between the pilot's actions and the behavior
of the control surfaces. In a fly-by-wire system, these linkages are replaced by some
form of electrical control system containing the aircraft's control laws and flight
characteristics. Using this logic, the control system combines inputs from the pilot's
controls with those from other aircraft sensory devices in order to produce commands
to the control surfaces.

Fly-by-wire systems are generally used in military fighters to make the aircraft more
maneuverable. More accurately, the fly-by-wire system enables the use of an unstable
airframe providing-greater maneuverability. Such an aircraft requires a computer to
make adjustments fast enough to counter the airframe's natural instability and keep
the aircraft flyable. In transport aircraft, fly-by-wire systems are used to improve fuel
efficiency, ride comfort, and safety. These aircraft are often flyable in the event of a
loss of the control system, though some require a backup system to provide the
connection between the pilot's controls and the aircraft control surfaces needed to
enable direct control similar to that of a conventional aircraft. In the case of the Space
Shuttle, a fly-by-wire system keeps the vehicle within the correct flight profiles to
enable it to reach predetermined targets without exceeding any vehicle limitations.

Fly-by-wire systems are either analog or digital. Analog systems combine inputs from
the pilots controls and from the vehicle's sensors in an analog (using physical, rather
than numerical, parameters to carry out its calculations) manner in order to produce
commands to the control surfaces. Analog systems tend to be limited in the complexity
of the control problems they are capable of handling as well as being inflexible in the
breadth of mission objectives they are capable of supporting. In digital fly-by-wire
systems, inputs from the pilot's controls and the vehicle's sensors are transformed into

discrete signals which are sent to a digital computer. The flight computer numerically
manipulates these signals in accordance with its programming in order to produce
output commands. These discrete outputs are transformed into analog signals
understandable to the vehicle control surfaces. Because the software in its flight
computer can be reprogrammed, a digital flight control system offers a great deal of
flexibility in meeting mission objectives. Both the primary and backup flight control
systems on the Space Shuttle are digital. For this reason, this paper focuses on
concerns pertinent to digital flight control systems.

There are two architectures of digital flight control systems in use today-synchronous
and asynchronous. Synchronous systems use a synchronization signal to trigger the
execution of specific software tasks. This feature makes it particularly easy to know
exactly when each task is running, and adds a degree of predictability to the flight
control system that makes it relatively easy to test and analyze. The major
disadvantage of synchronous control systems is that this rigid timing structure can be
unforgiving to tasks that overrun their allotted execution time or to a large influx of
unscheduled tasks, such as inputs from the crew or error handling requirements.
Such events can confuse a synchronous control system and cause it to stop
functioning. Asynchronous systems assign priorities to tasks and schedule them to run
at specific times. With "repeat every" time clauses attached to tasks that need to run
cyclically, these clauses reset the scheduled time for the next time the task needs to
run. When it is time for a task to run, a check is performed to determine whether or not
anything else is running in the CPU and, if so, whether the scheduled task or the
running task has the higher priority. The task with the higher priority is given control of
the CPU and the other task is allowed to run once it is finished (providing no task with
a higher priority comes along in the meantime). Tasks in an asynchronous system
may be interrupted by higher priority tasks. Following execution of the higher priority
task, an interrupted task picks up from where it was at the time of the interruption. In
the case of an overload, low priority tasks may not get to run, but at least their request
does not bring down the system. (Asynchronous systems know how to "just say no.")
The resiliency of asynchronous systems makes them somewhat less predictable and,
consequently, more difficult to test and analyze. (Not surprisingly, the system
designed to handle the greatest amount of unpredictability in its environment is the
one which runs most unpredictably. This is a consequence of the system's ability to
adjust to the conditions of its environment.)

Risks Inherent in Fly-by-Wire Systems

The flight control system is a highly critical component of a fly-by-wire system. To keep
the vehicle flying safely (or, in most cases, flying at all), it is crucial that both the
hardware and software composing the system keep functioning properly. The types of
malfunctions to which a digital flight control system is susceptible may be considered
as falling into two broad categories: operational failures and the infamous generic
software failures.

Operational failures refer to cases in which properly designed and coded software fails
to run correctly during operation of the vehicle either because of a hardware failure in
the flight computer or because of some type of accident corrupting the software. All
aircraft systems, whether hardware or software, are susceptible to this type of failure.

Flight control systems guard against this type of failure in a manner common to their
hardware counterparts by providing redundancy. In the case of a flight control system,
this generally means identical computer units running identical copies of the software.
The idea here is that, even if one or more unit fails, the remaining units will be able to
provide the required functionality.

Generic software errors refer to errors in the software code itself. Because this type of
error is reproduced in all redundant units, it is of special concern to fly-by-wire system
designers and much effort is spent in attempts to detect and guard against it.

In the case of a serious generic software error, the flight control system may respond
so erratically that the vehicle is driven into a state in which the system is unable to
control the vehicle (as in the case of an erroneous gain causing the system to diverge
into a loss of control state), or the flight control system may stop processing tasks
altogether (as in the case of an error that causes the operating system's timer to be
inaccurately set).

Generic software errors can have a variety of causes. One form of generic software
error is the requirements error in which the requirements defined for the system do not
adequately reflect the actual environment encountered in flight. Another form of
generic software error is the implementation error in which the software does not meet
requirements. This type of error may be caused by the choice of an incorrect algorithm
to meet the design requirements, a coding error, or a compiler error which causes the
code not to get implemented as written. Implementation errors are generally the
easiest to find, yielding most readily to analytical, auditing, and testing techniques.

Perhaps the most insidious form of generic software error is the system-level error in
which it is not so much a specific error in any single component, but rather the
interactions between the components of and/or the inputs to the flight control system
that cause a malfunction to occur. System-level errors may be considered as falling
into two broad categories:

• Timing independent errors, in which a combination of inputs and/or environmental
conditions that was not anticipated by the system designers and testers results in a
malfunction; these errors are observable whenever the specific combination of
inputs and conditions is encountered.

• Timing dependent errors, in which an anticipated combination of inputs and
conditions, occurring in a specific timing window, produces an unexpected result.
(Note: Since the Space Shuttle flight control system uses a minor cycle of 40 ms,
this system could be considered to possess 25 timing windows per second; one
begins to see the impossibility of testing all combinations of inputs in all timing
windows). Timing related errors are generally the most difficult to reproduce and,
therefore, are the most resistant to testing; the shear magnitude of possibilities for
the occurrence of timing errors makes them equally resistant to analytical
techniques. It is also possible to experience errors caused by a combination of
inputs occurring in a specific timing window which are not anticipated. Such a
case would be a subset of timing dependent errors since their detection and
analysis would be subject to the anomalies associated with this type of error.

Essentially all of the generic software errors encountered in this literature survey had
system-level causes. Examples include:

• X-29 Air Data System Single Point Failure: After more than 200 flights, a serious
design error was detected in the redundancy management logic of the X-29
Research Aircraft which had been present since its 38th flight. Simulations showed
that a single-point failure (the loss of an air probe) would have caused the system
to apply an incorrect gain resulting in the aircraft becoming unstable and departing
stable flight. Fortunately, this mishap did not occur in flight, but for over 162 flights
the aircraft was in danger of being lost if the loss of an air probe would have
occurred. The X-29 Research Aircraft was grounded until its software was fixed
(Mackall, 1989).

• HiMAT Gear Deployment Anomaly: A timing change in the ground software
supporting the HiMAT Remotely Piloted Research Vehicle, coupled with the failure
of one uplink receiver, resulted in the landing of the aircraft with its landing skids
retracted. The timing change had been thoroughly tested in simulations under
nominal conditions, but the loss of the uplink receiver was not anticipated and had
an undesirable result (Mackall, 1989).

• AFTI/F-16 Flight 44 Anomaly: According to this NASA TM, The interaction of many
design characteristics and a unique flight condition resulted in the divergence of
the three computers' output commands to the control surfaces causing the
redundancy management software to declare all three flight computers failed"
(MacKall, 1989). When the pilot engaged full rudder while slowing the aircraft
down, the system's triplex asynchronous sensor architecture caused the aircraft's
three sensors to differ enough in the values they sensed that the redundancy
management software was unable to handle the divergence. This condition
caused each flight computer to declare the other two failed and to independently
send its own outputs to the control surfaces. Additional redundancy management
in the actuators resulted in the hardware selecting Channel C, the third of three
redundant channels, for operational purposes. This allowed the pilot to land the
aircraft in a simplex mode, although without knowing the real condition of the flight
control system at the time. (In debriefing, the pilot stated that he flew in with his
finger over the backup control system's engage button, ready to engage if the
aircraft were to start to lose control.) In the post-flight investigation it was decided
that if this condition were ever encountered on another flight, the future procedure
would be to engage the backup system since the simplex mode landing had
placed the aircraft in danger of being lost if Channel C failed.

• JAS-39 Qripen Crash: In a January 1989 issue of Aviation Week and Space
Technology, a two page advertisement for the JAS-39 Gripen contains a quote by
the SAAB aircraft test pilot, "On the simulator, we have pushed the aircraft to the
edge. At the beginning we crashed the aircraft occasionally to find the limits to
which the aircraft could be taken while we were on the ground, but having found
and checked out the borderlines in the simulator has given me great confidence in
the safety of the aircraft. Personally, I felt I knew exactly what the Gripen would be
like to fl/ (Holmstrom, 1989). On February 2,1989, the Gripen flipped over on
landing and crashed with its canopy side down as the result of a control stick input

that the flight software was unable to handle. The cause of the crash was ruled to
be a software error that eventually delayed the program for eighteen months.

The next section examines some of the techniques employed to prevent, detect, and
correct errors in fly-by-wire systems. The final section then examines the applicability
of these techniques to risk management of the Space Shuttle flight control system
software.

Risk Management in the Fly-by-Wire Industry

There appears to be a universal agreement among the sources surveyed that system
complexity is the biggest driver influencing the risk associated with the development
and operation of a fly-by-wire system. Complexity increases both the amount of local
problems (i.e., problems isolated within a single component) likely to be embedded in
the system (this appears to be a linear effect) and the amount of interaction occurring
between the components composing the system (this appears to be an exponential
effect).

The complexity of a program is determined by a combination of the complexity of the
particular system for which the program is responsible and the management of the
program. To a certain extent, the requirements of the system will limit the minimum
amount of complexity achievable by the program. Program management will either
achieve or increase this complexity level as a byproduct of its own ability to focus as it
defines and implements program goals.

Some of the major techniques and tools employed in the management of the risk
(which includes the activity of determining the amount of risk acceptable to the
program based on program goals and resources) and the handling of risk-producing
factors (such as the generic software errors discussed above) associated with fly-by-
wire systems are presented below.

Configuration Control

Because of the number of variables involved in the development and operation of real-
time avionics systems, even the testing of well-designed software is a monumental
task. It is therefore no surprise that there is a widely held tenet in the fly-by-wire
industry that no amount of testing can make up for a poor design process. For this
reason, a good configuration control process appears to be essential to the production
and maintenance of quality software.

The process of developing and modifying baselined documents by means of board
decisions on change requests (CRs) and discrepancy reports (DRs) appears to be the
standard for a configuration control process. Changing the functionality of the software
and fixing discrepancies discovered in the software both involve modifying the
software in a manner that requires the performance of the same impact analyses,
implementation activities, and testing. Therefore, a single configuration control
process, managed by a single board, is used to handle both fixes and new
functionality changes to the software of a flight control system. The need to manage
flight control software as an integrated system over its entire life cycle appears to far

outweigh any considerations related to whether a particular modification is being
made to fix a discrepancy (often an operations phase function) or to add new
functionality (technically, a development phase function) to the vehicle.

Well-structured documentation, clear and consistent accountabilities associated with
the analysis, implementation, and verification responsibilities involved in making
changes to the system's software, and good (formal) communication between all of the
parties involved in the process are considered to be the essential elements of a
reliable configuration control process.

During the operational phase of a program, the configuration control process generally
takes on an additional significance since, at this time, it seems to be an almost
universal practice to have configuration management replace any system engineering
process that may have been in existence. Rather than treating system-wide analysis
and integration as a distinct function for which a designated organization, the system
engineering and integration office, is responsible, the system-level evaluation to a
proposed software modification is now accomplished by distributing copies of the
CRs/DRs to the managers responsible for each component of the system. These
managers then assess the impact of the proposed change on their individual
components. Interestingly, one memorandum found that flight system programs
sometimes substitute this component-oriented approach to system-level analysis and
integration for the distinct system engineering function even during the development
phase of the vehicle, although almost always to the detriment of the overall program.
The memorandum concludes, "A system designed as an integrated system, including
all interactions and interfaces, has a reduced level of difficulties in testing and
operation" (Regenie, 1986). Because system-level problems are the nemesis of
software maintenance, attention given to the methods employed to perform system-
level analyses seems to be beneficial at every phase of a program's life cycle.

Verification and Validation

Verification, the process of assuring that the integrated software meets specifications,
and validation, the process of assuring that the software, when integrated into the flight
system, cause the system to function as required, and are extremely important
activities used to control the risks associated with fly-by wire systems. Only flight test
itself is capable of providing a more direct indication of just how well the system will
operate and, until the system has been thoroughly verified and validated, flight testing
is too risky a venture. Additionally, verification and validation offer greater
opportunities for data gathering and software execution analysis than does an actual
flight test.

integrated software with hardware simulations, which are analogous to those per-
formed in the Space Shuttle program's Shuttle Avionics Integration Laboratory (SAIL),
are considered essential to the validation of fly-by-wire systems. Most programs use
some type of "aircraft in the loop" simulator in order to provide this capability. Although
such a facility is expensive to construct and maintain, being as one source put it, "more
like an airplane than like a simulator," it is generally felt that the fidelity provided by this
type of simulation enables the identification and resolution of problems to an extent
that justifies its expense (Szalai, 1978). This type of simulation has become so

standard in some segments of the fly-by-wire industry that the Ames Research
Center's Dryden Flight Research Facility (ARCDFRF) has constructed a generic
Integrated Test Facility which provides the core simulation capabilities and interface
functions required to turn any of the ARCDFRF's research aircraft into a simulator.

The X-29 Research Aircraft program found it useful to develop a verification chart
which provides the program with an indication of the type and amount of testing
required to support any modifications to the software. Possible types of software
modifications ranged from simply changing the value of a constant to modifying the
code to an extent that required movement of surrounding code. The X-29 program
chart attempted to identify the minimum amount of verification needed to insure
confidence in the reliability of the software system in light of the risk associated with
each type of modification.

It is widely accepted that the complete verification and validation of real-time software
systems such as those found in fly-by-wire systems is impossible. The number of
possible combinations of inputs to a system, especially when combined with the num-
ber of possible timing windows, is too numerous to be identifiable. Additionally, the
time required to verify all of the identified test cases is prohibitive. The X-29 Research
Aircraft (which has a flight control system approximately one-tenth the size of the
Space Shuttle's) has approximately 90 inputs. To verify normal, null, and extreme
failure instances of each input would require 2.49x1 Oe38 years at fifteen minutes per
test case (Sitz, 1990).

Although the impossibility of completely verifying a flight control system is well under-
stood by the fly-by-wire community, the accepted folk wisdom in the industry
prescribes testing as many instances as possible. For this reason, testing tools and
techniques designed to automate, or at least make more "user friendly," everything
from the set up of test cases to the collection and analysis of test data are growing in
popularity. This trend is also being promoted by the development of new technology
capable of supporting these new ways of doing business.

Tools

Advances in computer technology have greatly influenced fly-by-wire systems both by
increasing the functionality which the flight control system itself is capable of providing,
thereby leading to the design of more complex systems, and by increasing the number
and type of tools available to aid in the development and maintenance of these
systems. Tools to support the entire spectrum of activity associated with a fly-by-wire
program are increasingly available.

Categories of engineering tools include:

• Software development tools (code editors, compilers, link editors, and so forth),
• Quality assurance tools Oimtt checkers, data integrity tools, comparers, and so

forth) which serve to assure that the code meets specific criteria, and
• Analysis tools (debuggers, memory mappers, timing tools, and so forth) which

provide engineers/analysts with insight into the structure and execution of the
code.

Automation is often used wherever tasks of a well-defined, repetitive nature are
identified. Many of the tasks associated with the production of the software products
and with the performance and analysis of standard verification test cases are
automatable. The operational phase of any flight program, when the vehicle has been
sufficiently well-defined to enable configuration of any supporting tools, is especially
ripe with opportunities for automation.

Artificial intelligence (Al) tools, intended to provide flight control system engineers with
expert knowledge in computerized form, are also beginning to appear. Articles
describing the benefits of Al tools tended to be written by the tool developers
themselves, whereas sources describing the implementation of specific fly-by-wire
systems stressed the usefulness of analytical tools which helped provide them with
insight into the structure and operation of the flight software. Participants in the X-29A
Research Aircraft program state, "Because of the size and complexity of the
operational flight program, the tools used to help the developer organize information
about the code were the most advantageous" (Duke, 1986). This situation may be
due, at least in part, to the relative newness of Al tools. The rightful place of these
tools, based on the contributions they are capable of making in a real program
environment, will most likely be unfolding over the next several years.

Although the advantages tools offer in the development and maintenance of fly-by-
wire systems are incontestable, it must be realized that, like all software-intensive
devices, tools bring their own set of problems and concerns to the program employing
them. Some of these are discussed below.

Tools require their own development, validation, and maintenance efforts. With major
tools, such as flight simulators (which are one form of verification and validation tool),
these efforts can become programs in and of themselves requiring their own set of
management and programmatic resources. The responsibilities, resources, and
interfaces required to support the tools used by a fly-by-wire system can require almost
as much attention as the flight system itself.

Additionally, since tools are software systems, it must be remembered that they are
subject to many of the same kinds of errors as the flight software. This additional
potential source of error must be accounted for whenever troubleshooting errors in the
system. In order to realistically scope the resource requirements of a fly-by-wire
system, it is necessary to realize that a certain amount of the program's resources will
be used to deal with problems in the tools as well as in the flight system itself
(including the manpower that will be used in determining whether a particular problem
was caused by an error in the flight software or by an anomaly in the tool).

Certain tools, most notably compilers and cross-compilers, represent an additional risk
in that they manipulate the flight software and, in so doing, introduce yet another
possible source of generic software errors. One source describing safety concerns
related to the NASA Vertical Short-takeoff-landing Research Airplane program, states,
"a decision to use a high-level compiler in developing the code... created a software
safety problem; there was no known practical way to guarantee that the compiled and
installed machine-level code would be free from the one-in-million (10e-6
(catastrophic) errors/hour) chance of having a data sensitive, catastrophic bug" (Dunn,

8

1991). Applying a patch to compiled code is also somewhat riskier than patching
assembly language code since the extra transformation that the compiler applied to
the code must be accounted for in the engineering of the patch.

As software-intensive systems become more prevalent, so do the number of generic
tools available to support a variety of these systems. While the use of such
commercial off-the-shelf (COTS) technology can offer considerable cost savings to a
program over the in-house development of similar tools, these savings must be
weighed against the specific needs of the program considering their use. Two
methods exist for adapting generic tools to the specific systems they are intended to
support: standardization and configurability. A standardized tool presents a defined
interface to the systems it is intended to support. Whether or not a standardized tool
can be of use to a particular program is determined by the impact of adapting the
system to the interface provided by the tool. A configurable tool provides a user with
some means of adapting the tool to each specific system it supports. Whether or not a
configurable tool is of use to a particular program is determined by the amount of effort
required to configure the tool to a specific system compared to the amount of effort
required to develop a tool customized for the system.

Another concern that needs to be accounted for when determining the tools to be used
by a given program is the effect these tools are likely to have on the personnel using
them. This concern is especially relevant with automation and Al tools. It can be
detrimental to provide so much automation (or, in the case of an Al tool, so much
expertise) that the tool user loses valuable insight into the process being executed.
Automation can, if not properly managed, turn into a double-edged sword of sorts in
that it can allow a relatively untrained person to execute a process, such as the setup
and execution of software verification test cases, under normal circumstances while
requiring twice as much knowledge and analysis in the event of a problem (was it the
flight system or was it the tool?). The limited amount of knowledge gained in the
execution of an automated process under normal circumstances often does not
support the development of an understanding of the system that will be required for
identifying and dealing with any problems that may arise. In the case of Al tools, a
slightly different problem presents itself. If not properly designed, Al tools can interfere
with the optimum analyst/machine division of labor. The analyst may be required to
spend time dealing with computer concerns (including the fact that the computer may
want the analyst to interface with it in a manner that is disruptive to the way in which he
would naturally approach the solution to a problem in his subject area) while the
computer attempts to do the analytical job that would otherwise be performed by an
expert analyst albeit without the cognizance of the situation that a human would bring
to the solution of the problem.

Backup Flight Control Systems

In quantifying the definition of safe and reliable software for experimental manned
flight work, the Ames Research Center (ARC) budgets a maximum failure target rate of
10e-6 catastrophic errors/hour for the entire flight control system. The term
"catastrophic" is defined as meaning any event resulting in death and/or major
property loss or personnel injury and/or significant property damage as defined in MIL-
STO-882B, "System Safety Requirements." Experience with flight control systems

9

indicates that systems of the size those ARC deals with can be expected to enter initial
flight testing with a residual catastrophic error rate of 10e-3 to 10e-4 (catastrophic)
errors/hour. These estimates appear to have remained approximately constant over
the history of digital fly-by-wire systems having appeared in both one of the earliest
(Szalai, 1978) and one of the most current (Dunn, 1991) sources examined (although
the earlier source suggests trying for a rate of 10e-9 errors/hour). These figures, along
with the lack of any existing analytical method for reliably guarding against generic
software errors and the impossibility of completely verifying a flight control system,
appear to have made backup flight control systems a standard in fly-by-wire aircraft.
Table 1 provides a list of both the primary and backup flight control systems found in a
number of fly-by-wire aircraft.

The question of just how dissimilar a backup system needs to be in order to provide
adequate protection against a generic software error is a subject of much debate
among fly-by-wire aircraft designers. If one assumes that a backup system should be
at least dissimilar enough not to contain the same error itself, then an analysis of the
types of generic software errors to which the primary flight control system is most
susceptible would be useful in providing insight into the requirements for the backup.

In defining the dissimilarity requirements for a backup flight control system, there does
not appear to be any universal feeling concerning the need for the use of dissimilar
hardware although the use of redundant hardware, either triplex or quad-redundant, is
becoming a standard. This would indicate that, in the case of the hardware
components of a flight control system, operational failures, rather than generic errors,
are the larger concern. All sources agree, however, on the need for dissimilar
software for the backup system whether that software runs in its own flight computer or
is resident in the primary channels.

There does appear to be considerable agreement among all sources on the need to
keep the backup flight control system as simple as possible. The resident backup
software (REBUS), an experimental backup flight control system tested on NASA's F-8
digital fly-by-wire (DFBW) research aircraft, used less than one-tenth the memory
required by the primary flight control system (Deets, 1986). In no case was a backup
flight control system found to be required to provide a vehicle with anything other than
true backup types of functions. This emphasis on simplicity in the design of backup
systems appears to be driven by the same concern repeatedly expressed with regard
to the design of primary flight control systems-that system complexity has repeatedly
proven to be the nemesis of system reliability and maintainability. Additionally,
accomplishing the transition from the primary flight control system to the backup is
recognized to be a difficult and critical problem. Consequently, it is prudent to allow
the backup system to concentrate all of its resources on the accomplishment of
transition and backup functions in the event that its services are required. The single
exception to the simplest possible backup system rule appears to be in the event that
the backup may be called upon to provide extended flight envelope protection at the
time of transition. In attempting to determine the optimum tradeoff between degraded-
mode complexity and envelope-protection capability, the AFTI/F-16 Research Aircraft
program states, "Our experiences have illustrated increasingly high penalties
associated with failing to cover transitions to degraded-mode flight.... Aircraft control
deteriorates so rapidly with unstable airframes that the advantages of backup

10

simplicity are quickly overshadowed by risks of aircraft loss or severe operational
constraints imposed to enable safe transition to the backup" (Ishmael, 1984). The
memorandum concludes that the optimum amount of complexity allowable in the
design of a backup flight control system is enough to "provide equivalent envelope
protection during the transition to degraded flight control."

As mentioned above, the ability to successfully engage a backup flight control system
when needed to recover an aircraft from the consequences of "hitting" a generic
software error in the primary system is widely recognized to be the most difficult issue
associated with the use of these systems. A backup system's job is complicated by the
fact that it is not possible to know just when, or under what circumstances, its services
will be required. Two major concerns affecting a backup system's ability to
successfully assume control of an aircraft involve the availability of the data the backup
system needs in order to takeover and the condition of the aircraft as it is handed over
from the primary system. If, for example, a particular generic software error results in
the vehicle being driven into a region outside its flight envelope, the backup system
must possess the capability to bring the aircraft back into a stable configuration upon
its assumption of control of the vehicle.

The data availability problem is dependent on the actual data required to define the
state of the vehicle and on the architecture of the vehicle, including its flight control
system. Data availability is dealt with by identifying the specific data the backup flight
control system needs to know as it assumes control of the vehicle and by providing
some means for the backup to attain reliable values of this data upon its engagement.
The vehicle condition problem is handled by providing sufficient logic in the backup
flight control system in order to enable it to handle whatever conditions it is likely to
encounter during operational flight. This is part of the AFTI/F-16 Research Aircraft
program's "flight envelope protection requirement" discussed above. Implicit in the
solution to these engagement problem concerns is the need for the designers of a fly-
by-wire program to have a clear concept of just what they expect the backup system to
be able to accomplish. Exactly what is the program's definition of "saving the vehicle?"

In an effort to deal with the possibility that a generic software error could cause a
situation requiring action sooner than the pilot can react, the Ames Research Center's
REBUS program has experimented with the automatic engagement of a backup flight
control system (Deets, 1986). REBUS runs resident in each of its host aircraft's
primary flight control computers. The F-8 DFBW Research Aircraft has a triplex primary
flight control system which made REBUS a triplex backup system. REBUS was
automatically engaged (by introducing a generic software error into the primary flight
control system) 22 times during six test flights under a variety of flight conditions.
Since REBUS possesses a "return to primary" capability, engagement of the REBUS
system could be tested multiple times during a single flight. There were 18 returns to
the primary system during the testing of REBUS. The feasibility of an automatically
engaged backup flight control system is determined by the fly-by-wire aircraft
designer's ability to accurately identify the proper transfer criteria associated with the
encounter of a generic software error in the primary flight control system. The decision
to use an automatically engaging backup system is a trade-off between the designer's
ability to accurately identify the types and consequences of the generic software errors

11

to which the system is susceptible and the pilot's ability to accurately recognize and
react to the same.

Risk Management and the Space Shuttle Program

In comparing the Space Shuttle to the fly-by-wire systems examined in this survey,
three factors immediately stand out:

• Size: The flight control system of the Space Shuttle is approximately an order of
magnitude larger than those of the aircraft examined in this study.

• Fliaht-to-Flight Reconfiguration: The need to re configure the flight software for
each mission appears to be unique to the Space Shuttle. Other fly-by-wire
vehicles make changes to the software in the flight control system at the equivalent
of the Ol (operational increment) level, when new functionality is desired. The
resulting flight control system software then supports ail flights of the aircraft,
without further adjustment, until the next Ol. The requirement to customize the
Space Shuttle's software, with its related engineering, verification, and validation
implications, for each flight introduces an additional risk to the Space Shuttle
program, beyond that experienced by other fly-by-wire systems.

• Role of the Backup Flight Control System (BFS): Unlike the backup flight control
system of other fly-by-wire vehicles, the Space Shuttle's BFS is expected to
provide a number of functions, such as system management during ascent, abort,
and entry modes, that are primary to the operation of the spacecraft. BFS also
provides some requirements, such as a restart capability, that would otherwise be
the responsibility of the primary flight control system. Additionally, the design of the
Primary Avionics Software System (PASS) had to be modified in order to
accommodate the presence of the BFS and to provide for its data exchange needs.
Although the original program philosophy intended that the BFS was to be
removed following the flight test phase (defined as the first four flights) of the
program, the design of the flight control system was not entirely consistent with this
philosophy. That is, the PASS we have today is not the same PASS we would
have had if the BFS did not exist. Far from being a mere backup system, the BFS is
an integral part of the Space Shuttle's flight control system.

To a large extent, the Space Shuttle program uses many of the same risk
management techniques as other fly-by-wire vehicle programs. Some of the
conclusions and recommendations that suggest themselves as a result of this survey
of the experiences of others involved in the study, development, and operation of fly-
by-wire systems are discussed below.

As with any large, complex system, system-level problems are a special concern to the
Space Shuttle program. A study of the common causes of software DRs could be
made to verify this statement, although there does seem to be a general agreement
among the software community as to its accuracy. For this reason, any tools or
methodologies that provide insight into the system-wide functioning of the flight
software would appear to be a promising investment for the program. Traditionally,
system-level analyses during the operational phase of a program are performed by

12

means of the configuration control process. CRs and DRs are sent to all of those
responsible for a component of the system. Recipients evaluate the impact of the
proposed modification on the component for which they are responsible. But this
process cannot be expected to catch all of the possible interactions occurring in a
system the size of the Space Shuttle, in his article, The Bug Heard Round the World,"
Jack Garman provides an excellent example of the type of interaction that can easily
slip through the configuration control review process (Garman, 1981). In the incident
described in that article, a bus initialization calculation used the same data register to
perform its calculations that a telemetry phasing routine depended upon to perform a
timing calculation. Neither party responsible for these components could really be
expected to know that its component had an impact on the other. After all, this did not
involve an interface between the two and it would be unreasonable to expect either
party to understand the internal implementation of the other's component.
Nonetheless, this generic software error stopped the launch of STS-1 and cost the
program one launch abort plus the costs associated with analyzing the problem.
Possibly this problem could have been avoided if the data register usage had been
identified as a system function (or component) and the program had an agent
responsible for its analysis and impact evaluation. As part of a risk management
exercise, the Space Shuttle program may want to consider identifying system-wide
functions that may not be adequately evaluated as part of the component managers'
analyses alone. Agents responsible for evaluating these functions may then be
appointed or tools capable of analyzing them may be procured. A corollary to this
suggestion is that the program may want to identify any unintentional overlaps in
programmatic accountability as well as identifying the types of gaps mentioned above
since having multiple parties accountable for the same function can have the same
effect as having no one responsible.

The Space Shuttle program may benefit from a trend analysis of the data available in
its configuration control databases. Such an analysis could possibly provide insight
into interactions between software changes and discrepancies to which the Space
Shuttle software is susceptible. New insight may also be gained with respect to the
program's use of software changes to fix hardware problems. Additionally, the
program may want to examine the manner in which it has been distributing its efforts
and resources between true operational activities and new development, including
upgrades work. Such an examination may lead to a cognizance of "de facto" program
philosophies that could provide useful guidelines for those involved in the
management of Space Shuttle software. Or, possibly, areas in which there is a lack of
a consistent philosophy, leading to "wishy-washiness" in the decision-making process,
might be identified. An examination of the amount of programmatic effort that has
gone into new development work during the operational phase of the Space Shuttle
program might provide insight into the stability of the system that would be of use to
those involved in making decisions in which system maturity is a factor. The possibility
of identifying development work currently being managed as part of an operational .
effort also exists. Consideration can then be given concerning the benefit that might
be realized from moving such work into a development type of environment. Finally,
work identified as being truly operational in nature could be examined for any
automation potentials it may possess.

13

Another area that could potentially benefit from an examination and clarification of
programmatic philosophy is flight-to-flight software verification. Currently, there is
some potential for confusion between the role of the verifiers and that of the principal
function managers with respect to the accountabilities associated with the analysis of
discrepancies uncovered during testing. Are the verifiers expected to be able to
analyze discrepancies in the flight software and its l-Loads and, if so, what are the
responsibilities of the principal function managers and l-Load owners with respect to
this area? Who is responsible for identifying and analyzing discrepancies in the
simulation software? A clarification of the program's expectations from each of the
participants in this activity would reduce the risk associated with unclear responsibility
specifications. Additionally, operational verification may present opportunities for
automation.

Following the X-29 Research Aircraft program's example, the Space Shuttle program
may consider creating a verification and validation matrix containing the software
functions affected, such as timing, guidance, flight control, annunciation, and so forth,
along one axis and the type of software modification (l-Load patch, code patch, source
code change, and so forth) along the other. The relative risk associated with each type
of modification and the verification required to support the change (or fix) would be
specified for each entry in the matrix. Such a matrix could be used as a tool providing
guidance in the disposition of CRs and DRs, thereby promoting consistency in the
program's handling of the same.

A final observation is that there is no reason to believe that the Space Shuttle is any
more immune to generic software errors than is any other fly-by-wire system. In fact,
errors of this type have been uncovered during simulations. Additionally, the need for
flight-to-flight reconfiguration and the continuous upgrading of the Space Shuttle's
software (Ols) make the Space Shuttle an especially dynamic system. (We never
have, and never will fly the same software twice.) For this reason, it appears to be
advisable for the Space Shuttle to retain a backup flight control system. Additionally,
the program may want to consider the feasibility of simplifying the system in order to
enhance its reliability and reduce its maintainability requirements. Any effort spent on
enhancing the system's engagement reliability would also appear to be well spent.

14

03

^
CO*

"5

oo

.5

§
1

1
oo
£
O)
C

H
CO

6

I
CO

Ĵs

O
O
£
O)
n

P
£

75

2

1
CO

5

0

o

**

1 ''

qu
ad

-re
du

n
an

al
og

IL.

>_

5*

t

an
al

og
/m

ec
ha

ni
ca

l

*-•i•S

qu
ad

-re
du

n
di

gi
ta

l

00

ĈO

CD

1

s

1

c 75

1
^

«—
i
1

qu
ad

-re
du

n

m

O

CD

§>
DC

V
ic

to
ria

 A
.

5.73

CO

83 §
Q.7j».r=

1

« Q
II
UB

^
w
CD
D

1

/^

js
id

en
t i

n
pr

im
ar

y
FC

di
gi

ta
l

as
yn

ch
ro

no
us

»-

i

R
E

B
U

S

CD

I

$
CC

V
ic

to
ria

 A
.

tri
pl

ex
an

al
og

in
de

pe
nd

en
t

eo
g

0) 7J O

ft!
i

CD

IE

CO

DC
75
o

|

£
00

E— 1

>» c oto o c £
» ^ * •?

||j
£ 0*5

'- '̂I

00
iu_

CD

CD
O)
CD

DC

CO

1

si
m

pl
ex

 o
nb

oa
rd

di
gi

ta
l

as
yn

ch
ro

no
us

J
o

C CO1 §

un
d-

ba
se

d
rr

di
gi

ta
l

as
yn

ch
ro

m

g
O)

scc
1-

X

CO

DC

i

c

i*§li
So.- E

*o||
*IS^3 Q.E

3 'c
•5 a

5

fll

5

15

T3
0)

C
o

(0

(D

H
CO*

2
Ho
O

(0

o
CO

:k
up

 R
ig

ht
 C

on
tro

l S
ys

te
m

%
CO

I
CO

-£

o

1
nr
0.

4=

A
vi

at
io

n
 W

ee
k

an
d

S
pa

ce
 T

ec
hn

ol
og

y

¥o

•g
•§

Si
CD .2>
^T ^Q

^Q

3

I

c

1
cd

8 E

ft
Q.<5
= 2
o co
CO £

•£

•§ "

ll 1

i's
D CO
tr

CD

E

0
CO

8
£

1
1
UJ

lim
ite

d
 m

ec
ha

ni
ca

l

•̂
•D
C

i
1
IT

s.

i

CO

CO

i

an
al

og
/m

ec
ha

ni
ca

l

§*

^

B
O

E
IN

G
 7

77

J.
 M

ac
 M

cC
le

lla
n

m
ec

ha
ni

ca
l

1

C
O

N
C

O
R

D
E

D
w

ai
n

 A
. D

ee
ts

F
lig

ht
 I

nt
er

na
tio

na
l

ck
up

 s
of

tw
ar

e
re

si
de

nt
 in

ea
ch

 p
rim

ar
y

FC
2

E
>.
CD

I

•P
cB
Q.

IA
3

1
0

 A
IR

B
U

S

F
lig

ht
 I

nt
er

na
tio

na
l

Le
n

M
or

ga
n

tri
pl

ex
di

gi
ta

l
lim

ite
d

 m
ec

ha
ni

ca
l

1=5

A
3
2
0
 A

IR
B

U
S

F
lig

ht
 I

nt
er

na
tio

na
l

du
pl

ex
di

gi
ta

l
di

ss
im

ila
r

H
W

/S
W

OD.2

Q/g>

A
34

0
A

IR
B

U
S

W
al

te
r
L

 B
al

la
ue

r

If

5. '5>
5=5

§

16

References

Architecture Refinement for A340 FBW. Flight International, vol. 139.no. 4270,
June 5-11, 1991, p. 38.

Ballauer, Walter L; Leet, John R.; Mitchell, James; and Eck, David R.: Testing the
Tiltrotor Flight Control System. Aerospace Engineering, vol. 11, no. 6,
June 1991, p. 37-40.

Burgess, John; and Skrzycki, Cindy: Phone "Blackout" Started In a Single Circuit
Board. The Washington Post, June 29,1991, p. A1..

Burgess, John; and Skrzycki, Cindy: Phone Sleuths Tackle Elusive Mystery. The
Washington Post, July 3,1991, p. A1.

Burgess, John: Tiny "Bug" Caused Phone Blackouts. The Washington Post,
July 10,1991, p. A1.

Ceruzzi, Paul E.: Beyond the Limits. The MIT Press, (Cambridge, Massachusetts)
1989.

Computer Error Cause of Rocket Failure, Pentagon Says. The Houston Post,
August 27, 1991, p. A4.

Deets, Dwain A.; Lock, Wilton P.; and Megna, Vincent A.: Flight Test of a Resident
Backup Software System. NASA TM-86807, Jan. 1986.

Description of an Experimental Expert System Flight Status Monitor. NASA
TM-86791, Oct. 1985.

Disbrow, James D.; Duke, Eugene L.; and Regenie, Victoria A.: Development of a
Knowledge Acquisition Tool for an Expert System Flight Status Monitor.
NASA TM-86802, Jan. 1986.

Dornheim, Michael A.: X-31 Flight Tests to Explore Combat Agility to 70 Deg. AOA.
Aviation Week and Space Technology, vol. 134, no. 10, March 11,1991, pp. 38-
41.

Droste, Carl S.; and Walker, James E.: The General Dynamics Case Study on the F-16
Fly-By-Wire Flight Control System. AIAA Professional Study Series, vi, 1985, p.
113.

Duke, E.L; Hewett, M.D.; Brumbaugh, R.W.; Tartt, D.M.; Antoniewicz, R.F.; and
Agarwal, A.K.: The Use of an Automated Flight Test Management System In the
Development of a Rapid Prototyping Flight Research Facility. NASA TM-100435,
May, 1988.

17

Duke, Eugene L; Regenie, Victoria A.; and Deets, Dwain A.: Rapid Prototyping Facility
for Flight Research in Artificial Intelligence-Based Flight Systems Concepts.
NASA TM-88268, Oct. 1986.

Dunn, William R.; and Corliss, Uyod D.: How Safe Is Control Software? NASA Tech
Briefs ARC-12710, vol. 15, no. 6, June 1991, p. 126.

Earls, Michael R.; and Sitz, Joel R.: Initial Flight Qualification and Operational
Maintenance of X-29A Flight Software. NASA TM-101703, Sept. 1989.

Edwards Air Force Base, CA.: Second C-17 Mission Cut Short Following Flight
Control System Faults. Aviation Week and Space Technology, vol. 135, no. 12,
Sept. 23, 1991, p. 24.

Evans, Martha B.; and Schilling, Lawrence J.: The Role of Simulation in the
Development and Flight Test of the HiMAT Vehicle. NASA TM-84912,
April, 1984..

Garman, John R.: The Bug Heard Round the World. ACM Software Engineering
Notes, vol. 6, no. 5, Oct. 1981.

GNC GPC Lockup on OPS Transition (PASS). FSW DR 103049, June 12,1989.

Gripen Crash Delays Flight Test Program. Aviation Week and Space Technology,
vol. 130, Feb. 13,1989, p. 22.

Holmstrom, Stig: I felt that I knew exactly what the Gripen would be like to fly. Aviation
Week and Space Technology, January 1989. (advertisement)

Ishmael, Stephen D.; Regenie, Victoria A.; and Mackall, Dale A.: Design Implications
From AFTI/F-16 Flight Test. NASA TM-86026, Jan. 1984.

Kharj, Al: F-16As Prove Usefulness in Attack Role Against Iraqi Targets in Desert
Storm. Aviation Week and Space Technology, vol. 134, no. 16, April 22,1991,
pp. 62-63.

Mackall, Dale A.; and Allen, James G.: A Knowledge-Based System Design/
Information Tool for Aircraft Flight Control Systems. NASA TM-101704,
Oct. 1989.

Mackall, Dale; McBride, David; and Cohen, Dorothea: Overview of the NASA Ames-
Dryden Integrated Test Facility. NASA TM-101720, May 1990.

McClellan, J. Mac: Wired. Flying, vol. 117, no. 5, May 1990, pp. 48-51.

Miller, Jay: McDonnell Douglas F/A-18 Hornet. Aerofax Minigraph 25, Aerofax, Inc.,
P.O. Box 200006, Arlington, TX, 76006,1988.

Morgan, Len: New Age Airbus. Flying, vol. 117, no. 5, May 1990, pp. 42-46.

18

OPS 0 to OPS 3 Wait State (BFS). FSW Discrepancy Report 106198, April 18, 1991.

Regenie, Victoria A.; Chacon, Claude V.; and Lock, Wilton P.: Experience With
Synchronous and Asynchronous Digital Control Systems. NASA TM-88271,
Aug. 1986.

Scott, William B.: C-17 First Flight Triggers Douglas/Air Force Test Program. Aviation
Week and Space Technology, vol. 135, no. 12, Sept. 23,1991, pp. 21-22.

Scott, William B.: 777's Flight Deck Reflects Strong Operations Influence. Aviation
Week and Space Technology, vol. 134, no. 22, June 3,1991, pp. 52-58.

Sitz, Joel R.; and Vernon, Todd H.: Flight Control System Design Factors for Applying
Automated Testing Techniques. NASA TM-4242, Oct. 1990.

Skrzycki, Cindy; and Richards, Evelyn: Computer Failure Disables Pa. Phones. The
Washington Post, July 2,1991, p. D1.

Skrzycki, Cindy: Phone Outage Focuses Attention on Technology. The Washington
Posf,June30,1991, p. H1.

Stettler, M.; Dannenhoffer, J.; and Kenger, L: Grumman Aerospace Corporation,
Bethpage, New York; and Larson, J.: Honeywell, Inc., Minneapolis, Minnesota:
Architecture of the Flight Control System of the X-29 Advanced Technology
Demonstrator. April 1985. (white paper)

Sweden's First Gripen Prototype Destroyed in Crash on Landing. Aviation Week and
Space Technology, February 6, 1989, p. 25.

Szalai, Kenneth J.; Jarvis, Calvin R.; Krier, Gary E.; Megna, Vincent A.; Brock, Larry D.;
and O'Donnell, Robert N.: Digital Fly-By-Wire Flight Control Validation
Experience. NASA TM-72860, Dec. 1978.

Tomayko, James E.: Digital Fly-By-Wire: A Case of Bidirectional Technology Transfer.
NASA Tech Briefs, Nov./Dec. 1986. pp. 45-48.

Whitaker, A.; and Chin, J.: Grumman Aerospace Corporation, Bethpage, New York:
X-29 Digital Flight Control System, (white paper)

777's Flight Control System Configured For Good Handling and Ease of Pilot
Transition. Aviation Week and Space Technology, vol. 134, no. 22, June 3,1991,
p. 58.

19

r REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

searching eiistmg data iourcev jatreri.-.g ir.aPublic reporting burden for this cohesion of information is estimated to average I. "our per response, including the time for reviewing instructions. f _ .. a ^_... ^̂
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information
including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 12IS Jefferson Davis Highway. Suite 1204. Arlington. ,
22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. PC 20S03. '

1. AGENCY USE ONLY Reave blank) 2. REPORT DATE
March 1993

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4 TITLE AND SUBTITLE
Risk Management in Fly-by-Wire Systems

AUTHOR(S)
Karyn T. Knoll (NASA JSC)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lyndon B. Johnson Space Center
Houston, Texas 77058

8. PERFORMING ORGANIZATION
REPORT NUMBER
S-700

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, D.C. 20546

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
TM 104757

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified/Unlimited

Subject Category 17

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
A general description of various types of fly-by-wire systems is provided. The risks
inherent in digital flight control systems, like those used in the Space Shuttle, are
identified. The results of a literature survey examining risk management methods in use
throughout the aerospace industry are presented. The applicability of these methods to
the Space Shuttle program is discussed.

14. SUBJECT TERMS
Flight Software, Flight Control Systems, Risk Management,
Spacecraft Software

15. NUMBER OF PAGES
23

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
18. SECURITY CLASSIFICATION

OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

