

Space Transfer Concepts and Analyses for Exploration Missions

NASA Contract NAS8-37857

Cryogenic/Aerobrake Vehicle Implementation Plan and Element Description Document

Boeing Aerospace and Electronics Huntsville, Alabama

$$
\frac{3 / 11 / 91}{\text { Date }}
$$

1

Space Transfer Concepts and Analyses for Exploration Missions

NASA Contract NAS8-37857

Cryogenic/Aerobrake Implementation Plan and Element Description Document

Boeing Aerospace and Electronics
Huntsville, Alabama

Documentation Set:
D615-10026-1 IP and ED Volume 1: Major Trades, Books land 2 D615-10026-2 IP and ED Volume 2: Cryogenic/ Aerobrake Vehicle D615-10026-3 IP and ED Volume 3: Nuclear Thermal Rocket Vehicle D615-10026-4 IP and ED Volume 4: Solar Electric Propulsion Vehicle D615-10026-5 IP and ED Volume 5: Nuclear Electric Propulsion Vehicle D615-10026-6 IP and ED Volume 6: Lunar Systems
|

Implementation Plan and Element Description
 Document
 Cryogenic/Aerobrake Table of Contents

Section Page
Cover Sheet. 1
Title Page 2
Table of Contents 3
Symbols, Abbreviations and Acronyms 4
I. Evolution of the Concept. 11
A. Concept Development. 13 13
B. Architecture Matrix 61
II. Requirements, Guidelines and Assumptions 149
A. Reference and Alternate Missions 151
B. Performance Parametrics. 187
C. Levied Requirements. 297
D. Derived Requirements. 303 303
E. Guidelines and Assumptions 319
III. Operating Modes and Options 323
A. Reference. 325 325
B. Other 337
IV. System Description of the Vehicle 343
A. Parts Description. 345 345
B. Weights Statement. 381
C. Artificial Gravity 393
V. Support Systems. 423
A. Space. 427 427
B. Ground. 539
VI. Implementation Plan 577
A. Technology Needs and Advanced Plans 579
B. Schedules. 607
C. Facilities. 617
F. Costs 623

Symbols. Abbreviations and Acronyms

ACRV	Advanced crew recovery vehicie
ACS	Atimde control system
AFE	Aerobrake Flight Experiment
A\&I	Atrachment and integration
AI	Aluminum
ALARA	As low as reasonably achievable
ALS	Advanced Launch System
ALSPE	Anomalousiy large solar proton event
am	Atomic mass (unit)
AR	Arearatio
ARGPER	Argument of perigee
ARS	Atmospheric reviralization system
ar-g	Arificial graviry
asc	Ascem
ASE	Advanced space engine
AU	Asronomical Unit (=149.6 milition km$)$

BIT	Built-in test
BITE	Built-in test equipment
BLAP	Boundary Layer Analysis Program
BFO	Blood-forming organs

C	Degrees Celsius
CAB	Cryogenic/aerobrake
CAD/CAM	Compter-aided design/computer-aided manufacturing
CAP	Cryogenic all-propuisive

CAP Cryogenic all-propulsive
$\mathrm{C}_{d} \quad$ Drag coefficient

CELSS Closed Environmental Life Support System
CHC . Crew health care
CG Center of gravity
$C_{L} \quad$ Lift coefficient
$\mathrm{cm} \quad$ Centimeter $=0.01$ meter
$\mathrm{cm} \quad$ Crew module
CM Center of mass
c/o Check out
C of $F \quad$ Cost of facilities
conj Conjunction
COSPAR Commimee on Space Research of the International Council of Scientific Unions
CO2
Carbon dioxide
Cryo Cryogenic
C3 Hyperbolic excess velocity squared (in $\mathrm{km}^{2} / \mathrm{s}^{2}$)
d days
DDT\&E Design, development, testing, and evaluation
DE
Dose equivalent
deg Degrees
desc
Descent
DMS
Data management system
$\mathrm{dV} \quad$ Velocity change $(\Delta \mathrm{V})$

EA	Earth arrival
E arr	Earth arrival
Ec	Modulus of elasticiry in compression
ECCV	Earch crew capore vehicle
ECWS	Element control work station
ECLSS	Environment control and life support system
EP	Electric propuision
ESA	European Space Agency
e.s.o.	Engine start oppormunity
ET	External Tank
ETO	Earch-to-orbit
EVA	Extra-vehicular acrivity
F_{c}	Circulation efficiency factor
FD\&D	Fire Detection and Differentiation
F_{ew}	Life support weight factor
F_{f}	Specific floor count factor
F_{fa}	Specific floor area factor
F_{i}	Aerobrake integration factor
F_{1}	Specific length factor
F_{n}	Normalized sparial unit count factor
F_{0}	Path options factor
F_{p}	Useful perimeter factor
F_{pc}	Parts count factor
$\mathrm{Fpr}_{\mathrm{pr}}$	Proximiry convenience factor
F_{p}	Plan aspect ratio factor
Frs	Section aspect ratio factor
FSE	Flight support equipment
$\mathrm{F}_{\text {S }}$	Vault factor
Fss	Safe-haven split factor
Fu	Sparial unit number factor
Fv	Volume range factor
FY88	Fiscal Year 1988 (=October 1, 1987 to September 30, 1988. Similarly for ocher years)
g	Acceleration in Earch gravities (=acceleration/9.80665m/ ${ }^{\text {2 }}$)
GCNR	Gas core nuclear rocket
GCR	Galactic cosmic rays
GEO	Geosynchronous Earch Orbir
GN2	Gaseous nimogen
GN\&C	Guidance, navigation, and control
GPS	Global Positioning System
Gy	Gray (SI unit of absorbed radiation energy $=10^{4} \mathrm{erg} / \mathrm{gm}$)
hab	Habitation
HD	High Densiry
HEI	Human Exploration Initiative (obsolete for SEI)
HLILV	Heavy lift launch vehicle
ars	Hours
hyg w	Hygeine water
HZE	High atomic number and energy parricie
H2	Hydrogen
$\mathrm{H}_{2} \mathrm{O}$	Water

ICRP	Intemarional Commission on Radiation Protection
IMLEO	Initial mass in low Earth orbir
in.	Inches
inb	Inbound
IP\&ED	Implementation Plan and Element Descriprion
IR\&D	Independant research and development
Isp	Specific impulse (=thrust/mass flow rate)
ISRU	In-sim resource utilization
JEM	Japan Experiment Module (of SSF)
JSC	Johnson Space Center
k	kib
keV	Thousand electron volt
kg	Kilograms
klb	Kilopounds (thousands of pounds. Conversion to SI units=4448 N/klb)
kibf	Kilopound force
km	Kilometers
KM	Kilometers
KM/Sec	Kilometers per second
KM/SEC	Kilometers per second
ksi	Kilopounds per square inch
LD	Lift-to-drag ratio
LD	Low density
LDM	Long duration mission
LEO	Low Earth orbit
LET	Linear energy transfer
LEV	Lunar excursion vehicle
LEVCM	Lunar excursion vehicle crew module
Level II	Space Exploration Iniriarive project office, Johnson Space Center
LH2	Liquid hydrogen
LiOH	Lithium hydroxide
LLO	Low Lunar orbit
LM	Lunar Module
LOR	Lunar orbit rendezvous
LOX	Liquid oxygen
LS	Lunar surface
LTV	Lunar transfer vehicle
LTVCM	Lunar transfer vehicle crew module
2	Lagrange point 2. A point behind the Moon as seen from the Earth which has the same orbital period as the moon.
n	Meters
MarsGram	Western Union interplanetary telegram]
MARSIN	Marrian pornography]
MASE	Mission analysis and systems engineering (same as Level II q.v.)
MAV	Mars ascent vehicle
MCDA	Ballistic coefficient (mass / drag coefficient imes area)
MCRV	Modified crew recovery vehicle
n^{2}	Mass of eiectron
MEOP	Maximum expected operaing pressure
MeV	Million electron volt

MEV	Mars excursion vehicle
MLI	Mulit-layer insulation
mm	Millimeter ($=0.001$ meter)
MMH	Monomerhylhydrazine
MMV	Manned Mars vehicle
MOC	Mars orbit capure
MOI	Mars orbit inservion
mod	Module
M\&P	Materials and processes
MPS	Main propulsion system
MR	Mixame ratio
$\mathrm{m} / \mathrm{sec}$	Meters per second
MSFC	Marshall Space Flight Center
Msi	Million pounds per square inch
mim	Merric tons (thousands of kilograms)
mT	Merric tons
MTBF	Mean time berween failures
MTV	Mars transfer vehicle
MWe	Megawants electric
m^{3}	Cubic Meters
N	Newton. Kilogram-meters per second squared
n/a	Not applicable
NASA	Narional Aeronaurics and Space Administration
NCRP	National Council on Radiation Protecrion
NEP	Nuclear-electric propulsion
NERVA	Nuclear engine for rocket vehicle application
NSO	Nuclear safe orbit
NTR	Nuclear thermal rocket
N2O4	Nitrogen teroxide
OSE	Orbital support equipment
OTIS	Optimal Trajectories by Implicit Simulation program
outb	Outbound
02	Oxygen
PBR	Parricle bed reactor
Pc	Chamber pressure
PEEK	Polyether-ether kerone
PEGA	Powered Earh graviry assist
P/L	Payload
POTV	Personnel orbital transfer vehicle
pot w	Pocable water
PPU	Power processing unit
prop	Propellant
psi	Pounds per square inch
PV	Photovoltaic
Q	Heat flux (Joules per square centimeter)
Q	Radiaion quality factor
RAAN	Right ascension of ascending node
RCS	Reacrion control system

Re	Reynoids number
RF	Radio frequency
RMILEO	Resupply mass in low Earch orbit
RPM	Revolutions per minute
RWA	Relative wind angle
R\&D	Research and Deveiopment Rendezvous and dock
SAA	South Atlantic Anomaly
SAIC	Science Applications International Corporation
SEI	Space Exploration Initiative
SEP	Solar-eiectric propulsion
SI	International system of units (merric system)
SiC	Silicon carbide
SMA	Semimajor axis
sol	Solar day (24.6 hours for Mars)
SPE	Soalr proton events
SRB	Solid Rocket Booster
SSF	Space Station Freedom
SSME	Space Shumie Main Engine
STCAEM	Space Transfer Concepts and Analysis for Exploration Missions
stg	Stage
Surf	Surface
Sv	Sieviert (SI unit of dose equivalent $=\mathrm{Gy} \times \mathrm{Q}$)
S1	Distance along aerobrake surface forward of the stagnation point
S2	Distance along aerobrake surface aft of the stagnation point
S3	Distance along aerobrake surface starboard of the stagnation point
t.	Merric tons (1000 kg)
TBD	To be determined
Tc	Chamber temperanure
TCS	Thermal control system
TEI	Trans-Earth injection
TEIS	Trans-Earch injection stage
t.f.	Tank weight factor
THC	Temperanre and humidity control
TMI	Trans-Mars injection
TMIS	Trans-Mars injection stage
TPS	Thermal protection system
TT\&C	Tracking, telemery, and control
T/W	Thrust to weight rato
UN-W/25Re	Uranium nitride - Tungsten/25\% Rhenium reactor fuel
VAB	Vehicle Assembly Building
VCS	Vapor coolled shield
Vinf	Velocity at infinity
$\mathrm{NBe}_{2} \mathrm{C} / \mathrm{B}_{4} \mathrm{C}$	Tungsten beryllium cabide/Boron cabide composite
WMS	Waste management system
W/O	Without
WP-01	Work package 1 (of SSF)
/sq cm	Watts per square centimeter (should be Wcm^{-2})

Z	Atomic number
zerog	An unaccelerated frame of reference, free-fall
[order: numbers followed by greek letters]	
100K	$\leq 100,000$ parricles per cubic meter larger than 0.5 micton in diameter
$7 n 7$	Where $n=(0,2-6)$: Bocing Company jet transport model numbers
9	Kelvin (K)
+	Positive charge equal to charge on electron
e	Charge on electron
$\Delta \mathrm{V}$	Change in velocity
5	Standard deviarion
$\mu \mathrm{g}$	Microgravity

D615-10026-2

I. Evolution of Concept

This page intentionally left blank

Concept Development

This page intentionally left blank

EVOLUTION OF THE CRYOGENIC PROPULSION VEHICLES

TECHNICAL ARCHITECTURE PRESUMED LEVEL I REQUIREMENTS During the course of the STCAEM study, and particularly during the 90 Day Study, many SEI

 (then HEI) transportation requirements were generated by Office of Exploration Level II. These are reported as appropriate and necessary in various sections of this report, as well as in the STCAEM Implementation Plan \& Element Description Document technical volumes. Here, space only permits a summary discussion of the Level I requirements adopted by STCAEM as they evolved during the course of the study. The concepts developed and analyzed ultimately were to accommodate the in-space transportation functions required to support the buildup of a permanent presence on the Moon and initial human exploration of Mars. Thus, our Level I requirement was simply to deliver cargo reliably to the surfaces of the Moon and Mars, and to get people to those places and back safely. Vehicles in support of missions to other destinations are not part of SEI per se, and were not addressed by STCAEM. Planet surface system characteristics and Earth-to-orbit (ETO) launch vehicle characteristics were adopted as needed for manifesting purposes, largely intact from other sources. No design work was performed for these two categories. In addition, the mission planning horizon was limited to the year 2025 , about 35 years from now.The chief Level $I I$ requirement governing the dimensions of the vehicle concepts we developed came to us during the 90 Day Study, and was a crew size of 4 for Mars missions. Subsequently, STCAEM performed a simple skill mix analysis or these long-duration missions. Our result was that doubling up on critical skills (for redundancy), given reasonable expectations of how many skills each crew member could become expert in, requires in fact a minimum of 6 7 crew members for Mars missions. For the sake of consistency, our vehicie concepts are shown comparable to the 90 Day Study results, sized for four crew. Impacts accruing from larger crew sizes are discussed in the Major Trades IP\&ED book.

CONCEPT DEVELOPMENT METHODOLOGY - A vehicle concept emerges gradually through the iterative combination of requirements analysis, subsystems analysis, mass synthesis, performance analysis and configuration design. Because of the cascading, cause-and-effect nature of specific technical decisions in this cyclic process, the ability for a particular concept to remain fully parametric is incrementally lost, sacrificed for depth of detailing. The need to penetrate deeply even at the conceptual stage is twofold: (1) to uncover subtie integration interactions whose ramifications fundamentally revise the concept as they reflect back up the information

PREEEDING PAGE BLANK NOT PILMED

hierarchy; and (2) to enable the production of graphical images of the concepts capable of being communicated widely but grounded firmly in engineering detail. If circumstances allow the concept development process to engage many cycles of reflexive adjustment, from requirements all the way down through subsystem detailing, the design oscillations subside eventually and the product that emerges is a robust and defensible concept. Basic differences in problems posed and solutions engineered lead concept developments in different directions. "Like" problems and solutions gravitate together; their recombination and resolution results in distinct, identifiable vehicle concepts which constitute vehicle archetypes. A concept is archetypal if it spawns concept progeny whose ancestry is clear, and if in so doing its salient features recognizably survive subsequent refinement, development and scaling. The ulimate purpose of the STCAEM Concepts and Evolution tasks was to generate, analyze, evaluate and describe such vehicle archetypes, and the role they could play in human space exploration missions.

The STCAEM architecture analysis identified seven major classes of transportation architecture for SEI lunar and Mars missions. Some are derived from different propulsion technology candidates; some are derived from distinct mission philosophies independent of propulsion method; most have many sub-options. Vehicle archetypes are keyed more closely to propulsion method than to mission mode, however, so we found that all seven SEI transportation architectures can be accomplished by derivative combinations of just five archetypal Mars transfer vehicle (MTV) concepts, two archetypal Mars excursion vehicle (MEV) concepts, and one archetypal lunar transportation family (LTF) concept. The concept evolution of these archetypes is outlined in Section x.2.

DESIGN AND NECKDOWN CRITERIA - STCAEM concept development was punctuated by four "neckdowns", which winnowed down the option candidates generated at each successive level of detail throughout the study. The four neckdowns were intended to result in: (1) feasible options, based on promising propulsion technologies capable of performing SEI-class missions; (2) preferred options, representing the handful of candidates whose performance and technological readiness were judged to warrant detailed study; (3) integrated concepts, vehicle archetypes developed sufficiently to uncover their major integration concerns and architectural context ; and (4) detailed concepts, based on the reconciled integration of traded subsystems. The 90 Day Study occurred such that the first two neckdowns were effectively reversed; cryogenically propelled, aerobraking technology was necessarily preferred at that time, due to depth of understanding. However, STCAEM later rounded out the picture by completing all four neckdown activities, in an ongoing manner throughout the study.

Studying the program architecture implications of various technology options for SEI missions led to the conclusion that the most generally accessible discriminators, cost and risk, are driven by more subtle technical discriminators than, for instance, initial mass in low Earth orbit (IMLEO). These can be grouped into three broad categories: feasibility, flexibility, and multi-use design. As indicated above, feasibility was the first filter for all concepts considered by STCAEM. Flexibility has three components: (1) robustness, which is the ability to perform nominally despite variable or unanticipated conditions; (2) resiliency, which is the ability to recover from accidental delays or mishaps; and (3) evolution, which is an adaptation over time to changing requirements. Flexibility is thus a measure of a program's technical strength and safety in the face of variable extrinsic factors. Multi-use design has two components: (1) re-usability, which means using the same hardware item more than once; and (2) commonality, which means using the same hardware design in more than one setting. Multi-use design is thus a measure of a program's cost-effectiveness and intrinsic longevity. These two key architecture drivers were paramount in interpreting the results of STCAEM's technical trade studies, and figured prominently in the development of element concepts.

MARS TRANSPORTATION - Four Mars transfer propulsion candidates survived all STCAEM neckdowns: cryogenic chemical, nuclear thermal, nuclear electric, and solar electric. Analysis of aerobraking resulted in two performance ranges of interest for Mars entry (hypersonic $L / D=0.5$, and $L / D=1.0$), as well as the use of high-energy aerobraking (HEAB) for capture at Mars. Consequently, the five archetypal MTV concepts are based respectively on: cryogenic/aerobraking (CAB), cryogenic all-propulsive (CAP), nuclear thermal rocket (NTR), nuclear electric (NEP), and solar electric (SEP) propulsion technologies. The two archetypal MEV concepts are based on the "low" and "high" L/D performance ranges analyzed.

Cryogenic/Aerobraked Mars Transfer Vehicle (CAB) - NASA selected cryogenic chemical propulsion, augmented by aerobraking for capture and landing at Mars, as the opposition-profile baseline for the 90 Day Study. The archetype which first resolved the dominant configuration complications for CAB Mars missions already existed (Boeing, 89). With this foundation the 90 Day Study was able to progress rapidly into performance, subsystem, operations and programmatics analyses. The 90 Day Study exercise in turn enabled refinement and validation of the $C A B$ archetype. The major drivers for the $C A B$ archetype are:

1) High-thrust chemical propulsion: engine-out design to accommodate shifting vehicle mass center as the mission progresses, given the fact of engine clustering and limited gimbal angle; propulsion system geometry for in-flight testing before critical mission maneuvers; and avoidance when possible of aerobrake penetrations.
2) High-energy aerobraking: current understanding of aftbody wake closure geometry, and aerodynamic simulation-based constraints on mass center location; mutual independence of MEV and MTV during final approach to Mars space, since each is captured separately; packaging of the entire MTV system in as small a capture aerobrake as possible; potential requirement for MTV brake retention and re-use for Earth capture upon return.
3) Rotating artificial gravity: physiological constrains drive the CAB archetype toward deployable tether schemes because of the effor to make the aerocaptured vehicles as compact as possible. This makes the physical arrangement of the MTV systems difficult, given both a requirement to maintain all habitable volumes (both the MTV habitat and the MEV crew cab and surface module) contiguous during transfer, and the fact that the only rotation countermass available on the return leg is the empty MTV TEI propulsion system.
4) Modular vehicle design, in an effort to maximize system commonality, to standardize integration and operations protocols, and especially to accommodate the widely varying energy (propulsive) requirements of opposition-class missions. In STCAEM, opposition missions were designed to collect most of the energy difference in the TMI $\Delta \mathrm{V}$. This burden was more easily accommodated by the TMIS, which became a highly modular vehicle system.
5) Robotic-mediated operations: faciiitating machine access into the densely packaged systems of the CAB vehicle, and designing provision for robotic EVA maintenance during the mission, is a tough but essential requirement. We baselined an operations concept in which manipulator systems could travel around the rims of the rigid aerobrake structures, both to assist in assembling the vehicles at Earth and to service them en route.

A concept called the "Shutte-Z 3rd Stage" was detailed in response to a Level II trade. This is a modular version of the TMIS, in which each section uses its engine twice (once for ETO orbit insertion and again for the Mars departure burn). The fundamental problem with the scheme is that, with engines located on each TMIS section instead of clustered in the center, mass-balanced
engine-out on TMI is not possible without the addition of an extremely long (120 m) truss to separate the TMIS from the payload mission vehicles.

A configuration trade analysis revealed that avoiding the need for Mars orbit rendezvous upon arrival between a separate MEV and MTV by configuring one large, aerocaptured vehicle was not practicable (either a very large aerobrake, or a reconfigurable cryogenic propulsion system, appeared necessary).

An Earth-Mars cycler vehicle capable of providing periodic transfers between the two planets is one potential mission mode addressed by our architecture assessment. Such a vehicle could take a variety of forms, but for SEI-class missions, the basic function could be accomplished with a variation on the CAB vehicle. For the conventional cycler profile, aerocapture energies for the "taxi" craft needing to get into parking orbits at Mars are quite high. Re-usable vehicles for this job would probably require heavy and/or complex thermal protection systems.

OTHER SYSTEMS:

Cryogenic_All-Propulsive Mars Transfer Vehicle (CAP) - The CAP archetype is fundamentally a variation of the $C A B$ archetype, but is reported here as a separate archetype because its mission philosophy is quite distinct. The CAP concept was developed in response to two drivers:

1) Exploration of alternative purposes for SEI Mars missions led, after the 90 Day Study, to more in-depth discussions of the merits of conjunction vs. opposition profiles. Initial presumptions favored short total mission durations; this approach remained typical after the FY88 and FY89 OEXP study cycles, in which very short, compressed opposition or "split-sprint" mission modes figured prominently. However, given the 30-60 d Mars staytime realistically permitted by their asrrodynamics, the ratio of usable surface time to total mission time for opposition profiles is about 10%. After the 90 Day Stucty, this was recognized more widely as a relatively disappointing science return on a large engineering investment, exacerbated by the possibility of extrinsic events (like Martian dust storms) precluding landing altogether. By comparison, the same ratio for a typical conjunction mission is about 30%. The top-level costs associated with exploiting the greater opportunity to do in-depth science proffered by conjunction missions are two: (1) the requirement for more elaborate surface payload manifests to support both that science and the crews to conduct it for year-long stays; and (2) the greater risk to mission completion incurred by having the crews and hardware spending almost 3 yr in deep space instead of about 1.5 yr .

The conjunction profile offers other benefits recognized much later. First, the opportunity variation in mission energy requirements is much reduced for the conjunction case, so that mission hardware can be more consistent from one opportunity to the next. This would minimize the actual program upset resulting from a missed opportunity. Second, having of order 300 d available at Mars would permit more flexible mission design. For example, rather than spending the entire staytime on the surface, the mission might carry multiple landers each destined for short visits to widely separated surface sites (or crew rescue at a given site). And finally, although conjunction missions are roughly twice the length of opposition missions, the bulk of that difference can consist of time spent on the surface of Mars, under the radiation shielding afforded by the martian atmosphere. The actual in-space transfers are about equal in length outbound and inbound, and their total is less than the total in-space transit time for typical opposition missions. Thus in scenarios required to minimize astronaut exposure to in-space galactic cosmic radiation (GCR), well-designed conjunction missions are of great interest. (Trip imes can be shortened further still, until the so-called "conjunction fast transfer" mission energy requirements approach those for opposition missions.)

Conjunction low-energy missions do not benefit from HEAB, so these missions need only carry aerobrakes for entry and landing. Performing Mars capture with cryogenic chemical propulsion leads to three fundamental distinctions between CAP and CAB concepts:

1) The MTV and MEV(s) are captured together, precluding the possibility of failure to rendezvous and consequent scrub of landing attempts.
2) The Earth-departure (TMI) stage grows into a multi-staged propulsion stack, with TMIS, deep-space burn (DSB) stage, and Mars arrival (MOC) stage. This changes the overall aspect ratio of the all-up vehicle, making it longer, which has implications for attitude control and debris shielding in LEO.
3) Relaxing the requirement for the MTV to be an aerobraked vehicle means that the systems constrained in the CAB case to be packaged behind an aerobrake can be distributed differently. Thus the Mars-departure (TEI) propulsion system can be combined with the MOC system and placed at the opposite end of the vehicle from the MTV habitation system and payload. This in turn means that rotating artificial gravity can be accomplished as simply as for the NTR vehicle, by configuring a long, lightweight truss between the propulsion end and the payload end, and spinning this rigid assembly end-over-end. Tethered solutions are not required because aerobrake
packaging is no longer a problem. This last set of CAP consequences departs from the $C A B$ concept sufficiently for their resolution to constitute a distinct vehicle archetype.

ARTIFICIAL GRAVITY (CAB) - The need for artificial gravity on long-duration interplanetary transfers has not been established. Neither has the lack of such a need, however, so STCAEM was obligated to examine the penalties incurred by requiring continuous artificial gravity en route between Earth and Mars. Various approaches to rotating artificial gravity have been proposed; STCAEM assessed all of them, and invented some new ones. The fundamental design problems associated with artificial gravity derive from: (1) the need for a countermass for rotation; and (2) the high mass cost of precessing the angular momentum vector of a system having large rotational energy. Elegant solutions to both are elusive, and vary widely with propulsion option. Secondary complications are communications and navigation pointing, flight structures sized to hang heavy vehicles, and possibly material fatigue. The fundamental operations problems associated with artificial gravity involve crew EVAs during rotation, robotic maintenance in the vehicle's gravity field, crew physiological and psychological responses to a rotating environment, performing minor course-correction propulsive maneuvers and testing the capability prior to departure. Our work has verified that artificial gravity appears feasible for Mars-class missions, for all propulsion options, at fairly modest mass penalties.

The CAB archetype involves more complexity. The MTV habitat must be contiguous with the MEV crew modules, and yet for the return trip the (empty) MTV propulsion system is the only available countermass to the MTV habitat. Thus the MTV hab and the MTV propulsion system must be separated by a few hundred meters; however, the entire MTV must also package behind an aerobrakefor capture at Mars. One solution we rejected for mass and habitability reasons splits the transfer habitat system in two halves, held when not aerobraking at opposite ends of a deployable tunnel. A more sensible approach is to use tethers, configuring the MTV systems such that they are properly mass-balanced for propulsive burns and aerocapture, but can slip apart as the tethers are unreeled for artificial gravity. The center of rotation provides a convenient location for a despun power/navigation/communications utility.

ARTIFICIAL GRAVITY (CAP) - .The CAP and NTR archetypes accommodate artificial gravity easily. Both are high-thrust systems, so their burn times are extremely short (minutes to hours) compared to coasting transfer time (months). Critical propulsion maneuvers can occur during nonrotating periods of microgravity, at the cost only of spinup/spindown propellant. In general, the propulsion system remaining through the end of the mission can serve as countermass
to the contiguously connected habitation systems. When separated by a lightweight truss, they can just spin end-over-end during coast phases to provide sufficient gravity at a comfortable spin rate with acceptable vestibular disturbance (we baselined 1 g to insure full conditioning for surface activity upon arrival at Mars, and 4 rpm maximum spin rate, which together lead to a 56 m separation between the hab and the center of mass). The additional mass of the truss and propellant for a few budgeted spinup/spindown cycles is of order 10% of IMLEO.

Low-L/D Mars Excursion Vehicle (MEV) - The MEV archetype development began during, and was resolved just following, the NASA 90 Day Stuty. It was originally conceived as a means of delivering $25 t$ of undefined payload to the surface of Mars. However, the specification of crew cab provisions, the analysis of vehicle mass balance, and consequently the configuration design of the vehicle all depend on specifics of the payload manifest. We assumed a 20 t reference surface module as an integral part of the MEV. This led to a "Mars campsite" design intended to support a crew of four for 30-60 d and became or standard lander design. Chief departures from the lunar campsite mode of operation were:

1) The MEV arrives with the crew already onboard, and so is capable of a really selfcontained mission.
2) The MEV also brings with it an ascent vehicle (MAV) with a separate propulsion system, configured optimally for the ascent phase (or ascent after breakaway from the descent stage during a descent abort). The crew cab for the MAV is the operations bridge for the MEV during all its mission phases.
3) The MEV is configured for packaging within an $\mathrm{L} / \mathrm{D}=0.5$ aerobrake. For CAB missions, this brake captures the as-yet unmanned MEV into Mars orbit autonomously, before rendezvous with the MTV, and is used again for the descent. For CAP and other types of missions with propulsive Mars orbit capture, this brake is used only for descent. In all design cases, terminal descent engines are extended through ports in the windward surface of the brake at low Mach number, and the brake is jettisoned subsequently, prior to touchdown.

The MEV configuration was developed to permit later removal and relocation of the surface habitat module, with the aid of surface construction equipment. A variant of the MEV, without either surface module or MAV, was analyzed for delivery of heavy cargo on unmanned missions. A quick assessment was made of the feasibility of re-using an MEV, presuming in situ production of oxygen and retention of the aerobrake until touchdown. The outcome was positive, although: (1) additional brake hatches appeared necessary for landing gear deployment, crew egress, and cargo offloading, and (2) a lightweight top-shroud appeared advisable due to aerodynamic drag on ascent, and to permit the crew bridge to protrude beyond the presumed wake-protection limit for direct surface viewing during terminal approach. Configuration options for a "split-stage" MEV,
in which the same, or a portion of the same, propulsion system is used for ascent as for terminal descent, were also investigated, and shown to be simple variations of the archetype.

Our baseline aerobrake assembly concept presumed robotic-mediated final assembly of prefinished, rigid aerobrake segments at Freedom. Packaging such segments efficiently by nesting them in an ETO launch shroud is made challenging because of: (1) the aerobrake's asymmetrical, deep-bowl shape, in which the maximum depth of a typical "slice" is comparable to reasonable shroud diameters; and (2) the aerobrake's lip, required for both aerodynamic performance and structural stiffening around the free brake edge. Subsequent manifesting analysis, in which segments were configured according to an initial rib-and-spar structure concept, indicated that two ETO flights would be required to launch a single aerobrake in several pieces. Such extremely volume-limited and volume-inefficient manifesting is an unacceptably poor use of the expensively developed capability that a heavy-lift ETO system represents.

In response to this manifesting problem, STCAEM proposed the "integral launch" concept, in which a fully assembled, integrated aerobrake is launched externally, mounted on the side of the launch vehicle exactly analogous to current STS operations. The low-L/D brake is comparable to the STS orbiter in linear dimensions, and is light enough to launch two at once, with capacity to spare for other, shrouded payload as well. Ascent performance of such a flight configuration requires study; the critical question is whether ascent loads would size the aerobrake structure out of the comperitive mass range for the mission itself.

Our structural analysis indicates that since the deep bowl-shaped aerobrake loads like a doubly-curved shell, it may be possible to construct an actual "aeroshell" without resorting to ribs and spars or some other articulated skeletal structure system. The shell would be made of a relatively thin honeycomb-type material system with integral TPS. However, lip buckling would still require a stiff rim, probably faciitated by a closed-tube-section structure. Such a brake may be lighter, and certainly simpler, but the thickened rim would still cause packaging problems due to nesting interference.

High-L/D Reusable Mars Excursion Vehicle (RMEV) - The RMEV archetype development

 occurred in response to three drivers:(1) Analysis so far indicates that $L / D=0.5$ is sufficient at Mars for controlling an aerovehicle at Mars. However, the existence of some mission design studies in the literature which advocate L/D > 1.5 for Mars, combined with our preliminary understanding of controllability under Mars conditions, make it important to know in detail how different the configuration constraints imposed by higher L/D would be from those imposed by the lower L/D (which by 1989 had come to be regarded generally as appropriate).
2) As the 90 Day Study stimulated thinking about what the purpose of SEI Mars surface missions should be, concern developed that global, or at least wide, access to the surface of Mars was potentially important. High-thrust Mars transfer propulsion systems (chemical or NTR) tend to be mass-constrained by arrival and departure vector geometry to certain parking orbit conditions. Although there is no lack of interesting (scientifically important) landing sites accessible from the periapsis of any orbit at Mars, the fact that performance-optimized parking orbits are unique for each high-thrust opportunity causes a site-access problem if returning to the same surface site is required (for base buildup). Thus for high-thrust transfer propulsion options particularly, an ability to achieve cross-range on lander entry may be important. High L/D enables greater crossrange capability.
3) Certain Mars lander issues not imposed as requirements during the 90 Day Stucty required analysis and design validation. Developing a new MEV concept, substantially different from the baseline MEV, allowed us to investigate those issues simultaneously and thoroughly. Specifically, we addressed: (1) a deep aerobrake structure concept, of interest for maximum structural efficiency and therefore reduced brake mass; (2) the ability to deliver large-envelope cargo manifests, represented in our design by a long-duration surface habitat module sized for 10 crew; and (3) re-usability of the MEV, based on in situ production of cryogenic propellant.

The vehicle shape represented by the RMEV has applications for other interesting mission modes, concepts for which have yet to be investigated in detail. Three examples are: (1) a smaller RMEV, sized commensurately with the MEV to be a modest cargo-delivery vehicle; (2) a directlanding MTV, whose retum propellant would be manufactured in situ on Mars; and (3) re-usable aerobraked "taxi" vehicles capable of performing the Earth-Mars cycler embark/debark function.
This page intentionally left blank

Cryogenic/Aerobrake (CAB) Reference Configuration

Introduction

The cryogenic/aerobrake (CAB) concept was used as the NASA 90-day Study reference vehicle. It offers concepwal continuity with the mainstream Mars transportation studies performed over the last several years. Its only major new technology development is high energy aerobraking (HEAB) for planetary capture, but the concept also requires a high-thrust cryogenic space engine. Being able to land on Mars using the CAB concept requires a successful rendezvous between separately captured vehicles in Mars orbit.

Nominal Mission Outline

- The vehicle is assembled, checked out and boarded in LEO
- The TMI burn occurs and the TMIS is jettisoned
- MTV/MEV coasts to Mars
- MTV and MEV separate 50 days prior to Mars capture
- The MEV aerocaptures robotically a day ahead of the MTV, providing lastminute verification of atmospheric conditions and targeting
- The MTV captures, followed by rendezvous in the parking orbit with the MEV
- The landing crew transfers to the MEV and checks it out
- The MEV descends to the surface, jettisoning its aerobrake prior to landing
- After surface operations, the ascent vehicle (MAV) leaves its descent stage and surface payloads, ascends to orbit and docks with the MTV for crew transfer
- The MAV is jetrisoned in Mars orbit, and the TEI burn occurs
- The MTV coasts back to Earth
- The crew transfers to a modified ACRV (MCRV), jettisons the MTV and performs a direct entry at Earth (optional: the entire MTV aerocaptures into a LEO parking orbit for refurbishment and re-use)

Vehicle Systems

The vehicle consists of three main elements: the Mars Excursion vehicle (MEV), the Mars Transfer Vehicle (MTV) and the Trans-Mars Injection Stage (TMIS).

Man Transfer Yehicie (MUV)

The MTV configuration shown consists of a transit habitat sized for 4 crew , an aerobrake, and a TEI propulsion system. The transit hab is located centrally in the aerobrake with an external airlock and an MCRV attached to the top (in the configurations shown, an Apollo-style ECCV was used to represent the MCRV). The airlock allows access to the MEV crew cab and surface habitat during all phases of the transfer mission until the MEV separation 50 days prior to Mars arrival. The MCRV is used for mission scenarios featuring direct-entry crew return; these scenarios expend the entire MTV upon return to Earth. In a reusable mode, the entire MTV would be aerocaptured back at Earth for refurbishment and re-use; a second airlock would be located in place of the MCRV. The aerobrake is of identical geometry and construction as the MEV aerobrake, but is stronger and heavier due to its larger payload mass, and does not require any engine doors. The propulsion system (TED) is divided symmetrically into two tank-stacks straddling the transit hab, like the MAV tankset configuration. The propulsion system is oriented at an angle relative to the aerobrake axis, with the two engines aimed out the rear of the aerobrake, to avoid TPS penetrations while still permitting mass-balanced operation during the burn.

Trans-Mars Injection Stage (TMIS)

The TMIS consists of a core unit with four advanced space engines (ASE), avionics and cryogenic propellant tanks, and provision for up to four "strap-on" propellant tanksets. This configuration allows propellant cross-feeding in the case of engine-out, and modular accommodation of the enire stage's performance according to the mission opportunity requirements. Keeping the engines close
together on the core stage allows tracking the CM during an engine-out condition via gimballing. This strategy avoids either opposite-shutoff (leading to long bum times and greater gravity losses), or a requirement for extra structure (a 125 m truss) between the propellant tanks and engines to allow CM tracking. The TMIS accounts for about 75% of the total IMLEO, a substantial per-mission resupply cost.

Mars Excursion Vehicle (MEV)

The reference MEV is a manned lander that can transport a crew of 4 to the surface. It consists of a surface-stay habitat module (roughly SSF-module size), an airiock, 5 t of surface-science payioad, a cryogenic descent propulsion system with four engines and bus structure, and the ascent vehicle (MAV). The MAV consists of a short-duration crew cab, and cryogenic ascent propulsion system with two engines. All propellant tanks are mass-balanced around their maneuver CMs so that no lateral CM shifting occurs. The entire MEV is packaged in a rigid, truncated-hyperboloidal aerobrake with $L / D=0.5$, to which it is attached at eight points (four bus-frame corners and four landing-gear footpads). The aerobrake is fitted with doors which open to allow the descent engines to extend and ignite prior to aerobrake separation (allowing full benefit of the brake's drag). The brake is then jettisoned as the landing gear extend prior to terminal approach and hovering touchdown.

Dominant configuration constraints for the MEV are as follows:

```
-Payload manifesting
-Surface access
-Crew visibility
Contigurous crew volumes
-Short vehicle stack
-Engine-out capabilities
On-arbit assembly
```

Payload manifesting is mainly a proximity and mass balance issue. The surface habitat and airlock, which is the bulk (80%) of the payload, require access to the ascent crew cab and the surface, as well as being mass balanced for proper flight. The science payload requires surface access for ease of unloading. Docking is
This page intentionally left blank
facilitated by placing the crew cab high in the vehicle stack. The flight deck window is located to provide viewing to the surface for landing as well as to the upper hatch for docking. Keeping crew volumes contiguous allows access during flight for check-out procedures and simulation training. The vehicle stack is kept as short as possible for aerobrake wake protection, which tends to conflict with having the center of mass (CM) as high as possible, desirable for a small engine gimbal-angle to provide minimal steering loss in an engine-out scenario. A high CM within a short stack is accomplished by placing the dense ascent LOX high in the configuration. Finally, although the dominant constraints for the MEV derive from its performance at Mars, consideration has been given to its ETO launch. It is configured to be launched in a few, large, pre-integrated systems for minimal on-orbit assembly. For example, the ascent vehicle can be launched intact in a 10 m diameter shroud, while the descent structure can be launched in 2 sections for fairly simple on-ortit assembly and integration.

The Mars vehicle LEO configuration is shown here ready for trans-Mars insertion (TMI).
The TMI stage launches the vehicle out of Earth orbit on a trans-Mars trajectory. There are four
propellant tanks and five engines in the TMI stage; it is modularized for compatibility with the
launch vehicle. The elements of the TMI stage are launched fully loaded with propellant.
The Mars excursion vehicle includes an aerobrake for Mars capture and entry/landing, a descent propulsion stage, an ascent propulsion stage with crew module for Mars descent, ascent, and
 surface operations. The Mars transfer vehicle includes its own aerobrake for Mars capture, a long-duration crew habitat for the trips to and from Mars, a propulsion system for boost out of Mars orbit to return to Earth,
 for WBS purposes. On some missions, the MTV aerobrake returns to Earth with the vehicle so that the MTV (except for the TMIS) can be captured in Earth orbit for reuse on another mission.

All crew volumes are contiguous between the MEV and MTV during TMI and coast.
The mass totals for option 1 and 5 are shown for comparison. The only difference between options 1 and 5 is that option 5 carries a surface reconnaisance vehicle into Mars orbit on the MEV (it is not shown on the chart). The surface reconnaisance vehicle is launched from the Mars parking orbit to perform robotic exploration of a future human landing site.
Cryo/Aerobraking
srstens
Mission Modes And Operations

- A core stage with four advanced engines and four "plug-in" propellant tanks. Tanks and core stage rendevous and dock automatically. Core stage provides simple plumbing and
good engine out performance.
Trades and Rationale
- NASA 90 day study baseline.
- Vehicle assembled in SSF orbit.
- TMIS abandoned after TMI burn.
- MEV/MTV separate prior to Mars aerocapture.
- Crew transfer to MEV/Aerobrake after MTV/MEV rendevous.
- MEV/Aerobrake entry. Aerobrake jettisoned prior to landing.
- Crew cab ascent after surface mission, leaving lander and surface hab.
- Crew cab left in Mars orbit after rendevous, docking and crew transfer. - TEI bum.
- Crew return to SSF after aerocapture.
This page intentionally left blank
This page intentionally leff blank

Reference

/STCAEM/sdc/3IMay90
(
MTV Reference Configuration
06K*WIE/PDS/WEVALS.

Options /Alternatives

This page intentionally left blank

Options and Alternative Configurations

Alternative Landers

As an alternative to using the $0.5 \mathrm{~L} / \mathrm{D}$ hyperboloid shaped aerobrake for a landing vehicle, investigations were made using a high (1.0+) L/D lifting body aerobrake shape and a Bi conic shape. Both of these shapes extend the crossrange capability and are candidates for a reusable Mars Excursion Vehicle (RMEV), the criteria for which is given on the next pages. It appears that the high L / D aerobrake will be better suited for a reusable system, with fewer specialized parts. The Bi-conic will impose some restrictions on cargo that high L/D aerobrake will not, such as the delivery of a 10 crew habitat to the surface. In the case of the Bi-conic the habitat would have to be either specially built to fit the available space or the entire fleet of habitats would be scared to have this shape, at additional cost of fabrication. Other constraints became evident, while the high L/D aerobrake has limited visibility of the ground during landing operations, the Bi-conic has none.

Alternate Mission Vehicles

An all-propulsive cryogenic (chemical) vehicle was evaluated for near term conjunction missions. Conjunction missions were chosen due to the significant increase in IMLEO to mount an opposition mission using an all-propuisive vehicle ($\sim 1600 \mathrm{t}$ IMLEO), while a conjunction mission would be in the range of the cryo/aerobrake mission under consideration (625-720t IMLEO). The advantage of the all-propulsive vehicle is that it has a short development time and can be ready early. The disadvantages are the limitation to the conjunction-class missions (long stay times at MARS, total trip time is long) and only the ECCV is recoverable, all other sections of the vehicle are expended in operations.

> Assumplions

Reusable MEV Sensitivities

High L/D Aerobraking Constraints

[^0]
High L/D Reusable MEV Configuration
\[

$$
\begin{aligned}
& \text { The high L/D reusable MEV is shown on the facing page. This configuration allows offloading of payload } \\
& \text { (shown here as a } 4.4 \mathrm{~m} \text { dia. hab module)by way of a ramp and track system, located at the rear of the } \\
& \text { vehicle. The ramp also acts as a body flap for aero-maneuvering. The crew cab is positioned so that the } \\
& \text { pilot has down and forward visibility until the landing area is selected. As the vehicle rotates into landing } \\
& \text { attitude, crew visibility will be limited to the surface directly below. }
\end{aligned}
$$
\]

Bi-Conic Lander/Habitat

 The Bi-conic lander/habitat is configured to be launched atop a 12 m dia. HLLV, anddelivered to Mars orbit via a separately launched TMI stage. The Bi-conic shape provides
an L/D of 1.3 at a 20 degree angle of attack, and lands using a 6 engine configuration,
split 3 forward and 3 aft. The unmanned vehicle is used in an expendable mode, and
requires 21 metric tons of propellant for landing.
The 10 crew habitat module delivered to the surface is integrated within the bi-conic,
and would not need heavy transportation equipment for deployment. The hab module
weighs 40 metric tons when landed, and would need to be outfitted on the surface.

Trades and Rationale

- Addition of MOI/TEI stage eliminates the need for a high energy aerocapture at MARS
- ECCV return for crew eliminates the need for a high
energy aerocapture at Earth
All-Propulsive Cryogenic Vehicle
T -
- ECCV return is direct entry (Apollo- style, done before)
Mission Modes and Operations
- Vehicle assembled in SSF orbit.
- TMIS discarded after TMI burn.
- MOI burn and capture prior to MEV / aerobrake entry
- Aerobrake separates from MEV prior to landing. •
- Crew cab ascent after surface mission, leaving lander, surface habitat - Crew cab left in Mars orbit after rendezvous, docking and crew transfer. - TEI burn.
- Crew return to Earth via ECCV
 Single MEV ; 5t surf cargo, crew of 4, Common tank sets for MTV stgs $d V ' s: T M I \quad d V=3900 \mathrm{~m} / \mathrm{s}, M O C=1530 \mathrm{~m} / \mathrm{s}, T E I=860$, E arr Vinf=3200,TMI, MOC,TEI eng I $\mathrm{sp}=475$, MEV eng $I \mathrm{sp}=460$

$=$

 8/9/90

Linnar
ofloaded TMI
좆줄
을
产

	ZSLE
	IIZZL
	\＃886I
	$91 L Z$
	SSVI
	EILSI

48015
会
등

N
N
N

저nn

647183
Mars
39000
14000
0
53000
15713
19884
32142
78910
－N゙オ゙్心
16335
115974
12000
24262
Cryol 460
23190
Cryol 160
30000
89452
$\begin{array}{r}7000 \\ 45800 \\ 407680 \\ \hline 453480\end{array}$
718910

Element

$\frac{\text { MTV hab mod science }}{\text { MTV crew hab module }}$
［128］TEI usable propellant

sum Total TEI propellant
［541］MOC usable propellant ［538＋539］MOC outbound boiloff LEO）
（OG7 олициан ：asvo sமипT）podoad DOJ ums RCS propellant
［118］RCS propellant correction prop ［122］Inb midcourse correction prop

［161］MOC propulsion stg total
［1313］MEV descent only aerobrake
［63］MEV ascent stage
（1）MOC／TEI Tank

MEV descent stage

［230］ECCV for crew return to LEO
［172－173＋547］TMI inert stage wt

［171］IMLEO（all masses in kg）

隹
＇s／u OESI＝DOW＇s／u 006E＝ 1 P IW，L ：S，AP
$T E I=860, E$
Revision 38171
Revision 3

\section*{Cargo Chem/aerobrake Veh for one way 2018 Conjunction Mission
 Unmanned, 2 cargo landers ($46.5 t$ surf cargo each), 10 t navigation set, no MTV propulsion stg, TMI stg lsp=475} | Element | mass (kg) |
| :--- | ---: |
| MTV Mars aerobrake | 0 |
| MTV crew hab module dry' | 0 |
| MTV consumables \& resupply | 0 |
| MTV science | 0 |
| MTV propulsion stage | 0 |
| MTV propellant load | 0 |
| MTV total | 0 |
| MEV Mars orbit capture | 15138 |
| \& desc aerobrake | 21457 |
| MEV descent stage | $\mathbf{4 6 4 5 1}$ |
| MEV ssifface cargo | 84349 |
| MEV total | 168968 |
| x2 | 0 |
| ECCV | 10000 |
| Cargo to Mars orbit only | |
| (navigation set) | |
| TMI inert stage wt | 25770 |
| TMI propellant load | $\mathbf{2 3 1 9 2 0}$ |
| TMI stage total | |
| | |
| IMLEO | |

Element	$\begin{array}{c}\text { Mars } \\ \text { Cargo } \\ \text { (desc only) }\end{array}$	$\begin{array}{c}\text { Mars } \\ \text { *Manned } \\ \text { (single stg desc/asc veh) }\end{array}$	$\begin{array}{c}\text { Lunar } \\ \text { Cargo } \\ \text { (desc only) }\end{array}$	$\begin{array}{c}\text { Lunar } \\ \text { *Manned } \\ \text { (single stg) }\end{array}$
Ascent cab	0	3500	0	3500
Stg inerts	5374	5374	5374	5374
Aeroshell	7500	7500	n/a	n/a
Surf Cargo	30000	700	3000	$* * 12612$
Asc prop	n/a	16082	n/a	5310
Desc prop	7900	5255	20658	16027
RCS prop	893	1341	893	1341
Total wt	51668	39752	56925	44164

* Manned: crew of 3 or 4 for very short surf stay time (a week or less)
** Maxium surface cargo load for manned lunar case when all tanks are full

Architecture Matrix

D615-100)6-2.

Reference Matrix to Alternative Architectures

In considering a complex task, it is useful to organize it into a heirarchy of levels. The higher levels are more important or more encompassings. while the lower levels include more detail or are more specific. Constraints (e.g., requirements and schedules) flow down from the higher levels and solutions or implementations build up from the lower levels. The first figure shows a heirarchy of six levels from national goals to performing subsystems. The following section discusses the fourth level. exploration architectures. in terms of the lower levels: element concepts and performing subsystems. Selection of preferred architectures will require the Government the National Space Council. the President, and the Congress) to first define the top three levels.

Implementation Architectures

Seven architectures have been selected for examination: four different propulsion types (Cryogenic/Aerobrake, NEP, SEP, and NTR): two variations of In-Situ Resource Utilization (ISRU) for propellants with Cryogenic/Aerobrake propulsion (Lagrange point 2 refueling and Mars surface refueling); and a cycling spacecraft concept. Three basic levels of program scope are identified: small, moderate, and ambitious.

Multiple oprions can be generated within the basic architectures, varying launch vehicle capacity, orbital node type, and mission profile and propulsion type for the various Lunar and Mars vehicles.

Aerobraking is found to be applicable to all seven architectures, placing it as a 'crirical' technology. Electric propulsion leads to the lowest reference vehicle mass, and also almost the lowest resupply mass. ISRU/Cryo leads to the lowest escimated resupply mass since most of the propellant is derived locally rather than coming from Earth.

Cost Models

Cost estimation is being performed using "paramerric" methods. This technique uses a parameter, usually weight, as an input to empirically derived equations that relate the parameter to cost. It should be recognized that the source data for the cost models is past program experience, while the hardware being estimated will be built one or two decades from now. Therefore these cost estimates should be assumed to have a standard deviation on the order of $+100 \%$. Hardware at technology readiness level 5 may be assumed to have a standard deviation in cost estimate of $+30 \%$. No revenues from sale of products, services, or rights (i.e. patent rights, data rights), or commercial investment, are assumed in the cost estimates. These might appear in a scenario such as the Energy Enterprise.

Aa an example, the cost estimate for a NEP architecture shows an average annual funding level of $\$ 8$ billion per year after inicial ramp-up.
The principal cost drivers identified include number of development projects, reuseability, mass in Earth orbit, and mission/operational flexibility.

Analysis Methods

Individual trade studies are performed within each architecture to optimize it against evaluation criteria. The principal evaluation criteria to date has been initial mass in low Earth orbit, as a proxy for cost. The results of this opimization will then be compared to each other in groups. The early Mars group will compare all-propulsive, aerobraking,

direct travel, and nuclear thermal among themselves. The electric propulsion group will compare SEP and NEP. The innovative group will compare Lunar oxygen to cycler orbits. These concepts may both be retained if it is advantageous to do so. Finally, the choice between early Mars and Late/Evolving Mars will need to be made on the basis of cost. risk. and performance, while combining the best features from each group.
Logical Types for Space Programs
Architectural planning for a space program deals with many levels of information.
A major space program like the space exploration initiative must respond directivity to
national goals in traceable ways. While we do not determine national goals, it is our
business to understand how exploration architectures can be evaluated in terms of
national goals.
National goals translate to space specific goals for. specific exploration programs such as
science emphasis or expanding human presence. These in turn can lead to progran
strategies for space-specific goals such as low risk, hight teclnology, low cost and so forth.
Finally, exploration architectures are integrated assemblages of systems, mission profiles,
and operations, necessary to satisfy program goals.

"Logical Types" for a Space Program

Each logical type sulsumes all the subordinate types
Overall Study Fiow
The study flow, as required by MSFC's statement of work, began will a set of strawman concepls, introduced others as appropriate, conducted "neckdowns", and concluded with a resulting set of concepts and associated recommendations.
As the study progressed, much discussion among the SEI community centered on "architectures". In this study, architectures were more or less synonymous with concepts, since the statement of work required that each concept be fully developed including operations, support, technology, and so forth.
We started with ten concepts as shown on the facing page. Combinations of major technologies, such as electric propulsion and aerocapture, were quickly determined to be uneconomic in view of high development costs. Further, we found that electric propulsion systems could perform both crew and cargo Mars missions if crews are transported to and from the electric system at about linar distance by a lunar transfer vehicle.

> New systems introduced included nuclear thermal rocket (NTR) and Mars direct. NLR An introduced as an option by NASA during the " 90 -day study". We introduced the Mars direct protile (everything is landed on Mars; the return propulsion system is loaded with oxygen and perhaps linel as well on Mars) in March 1989. Martin-Marietta subsequently publicized one variant of this concept.
Lunar oxygen for Mars missions was found to be uneconomic because of long payback time for the launch mass required to emplace lunar oxygen production on the Moon. Lunar oxygen has a reasonable retum on investment for lunar transportation at two or more lunar trips per year.
The cycler architecture was broadened to include semi-cyclers. I ate in the study we introduced an NTR-dash mode (described later in this briefing) closely related to the semi-cyclers.
ADVANCED CIVIL
SPICE SYSTEMS

Overall Study Flow

Program Implementation Architectures
We have selected seven program implementation architectures for architectural analysis.
These seven architectures incorporate the advanced propulsion options of principal interest
in complete evolutionary architectural scenarios for lunar and Mars exploration. The facing
page lists the features of each architecture and the rationale for selection of each.
Some of the architectures include suboptions. For example, the nuclear electric propulsion
and solar electric propulsion architectures include optional use of the electric propulsion
system for lunar cargo delivery from LEO to lunar orbit. The L2-based cryogenic
aerobraking architecture includes use of NTR and NEP velicles for LEO to L2 cargo delivery
as options, and also includes a cryogenic all-propulsive conjunction mission option.

Program Implenmentation Architectures		
Architecture	Features	Rationale
Cryogenic/aerobraking *	Cryogenic chemical propulsion and aerubraking at Mars and Eartl. LEO-based operations.	NASA 90-day study baseline
NEP	Nuclear-electric propulsion for Mars transfer; optionally for lunar cargo.	Iligh performance of nuclear electric propulsion
SEP	Solar electric propulsion for Mars Iransfer; optionally for lunar cargo.	High efficiency of solar electric propulsion; lind cost crossover for array costs.
N'TR (nuclear rocket)	Nuclear rocket propulsion for Lunar and Mars Iransfer.	lligh Isp of nuclear rocket enables avoidance of highenergy aerocaplure at Mars.
L2 Based cryogenid aerobraking	L2-based operations; use of lunar oxygen.	I 2 base gets out of I ECO debris enviromment. I.unar oxygen reduces resupply by ~ factor 2.
Direct cryogenid aerobraking	Combined M'TV/MEV refuels at Mars and IEO. "Fast" conjunction profiles.	Eliminates Mars orbit operations.
Cycler orbits	Cycler orlit stations a la 1986 Space Commission reporl	Pliminates boosting massive Mars tramsfer velicle.

There are many space-specific goals and program strategies. We believe that
transportation architectures will respond mainly to program scope. Some architectures
are best suited to small program with early goals and others best suited to long
range larger programs with ambitious goals. We have selected three representative
scopes for small, moderate and large programs as illustrated on the facing
page. These scopes permit definition of transportation requirements in terms of
numbers of people and amounts of cargo transported to particular locations on
particular schedules.
The second important feature of the scopes we intend to investigate is that they cover
a scale factor greater than ten. A man tended science station may have few people
on the Moon for short periods, or few people on Mars for short periods every other
year. Permanent science bases will involve a dozen or so people. Industrial developinent
of lunar resources on a scale of helium- 3 scenarios leads to numbers of people presently
estimated in the range of thousands by 2050 . Beginnings of humans settlement of Mars
involves numbers in the range hundreds to thousands. The $20-25$ horizon for SEI
is expected to permit growth in numbers of people only to dozens or so.

Descriptor	Small	Moderate	Anbitious
Lunar Operations	Man-tended Science station	Permanent Science base $6-12$ people	Industrial development of Iunar resources

Three Activity Levels for Architecture Evaluation
We established three levels of activity to evaluate in-space transportation options. The minimum was just enough to meet the President's objectives; in fact "retum to the Moon to stay" was interpreted as permanent facilities but not permanent human presence. The minimum program had only three missions to Mars. The median (full science) program aimed at satisfying most of the published science objectives for lunar and Mars exploration. The maximum program aimed for industrialization of the Moon, for return of practical benefits to Earth, and for the beginnings of colonization of Mars. The range of activity levels, as measured by people and matericl delivered to planetary surfaces, was about a factor of 10 . The range of Earth-to-orbit launch rates was less, since we adopted results of preliminary trade studies, selecting more advanced in-space transportation technologies as baselines for greater activity levels.

Activity levels were selected with underlying program objectives in mind:

(1) The minimum lunar program establishes astrophysical observatories on the Moon and provides a man-tending capability to maintain them. To the extent that man-tending lunar visits are not needed for the observatory system, the transportation capability can be used to explore interesting lunar sites for lunar geoscience objectives.
(2) The minimm Mars program is very similar to Apollo, i.e. six sites visited for short periods (two sites per mission and three missions); samples obtained within a few km . of each landing site. If the manned visits are preceded by suitable robotic missions, the scientific payoff for these visits can be high relative to the investment.
(3) The "full science" lunar program adds human permanence at the Moon for extensive scientific and technological exploration. Where the minimum program offers very little opportunity for lunar geoscience, this prograin offer imuch. It also permits development of in-situ resource technology for production of surface systems. The reference program also emplaced a lunar oxygen production system to serve the transportation system.
(4) The "full science" Mars program multiplies by several the crew person-days on Mars by including more missions and by more staytime per mission. This program falls short of a permanently-occupied base on Mars, but achieves surface stays greater than a year.
(5) The lunar industrialization program adopts production of helium- 3 as a strawman industrial objective and places enough facilities and infrastucture on the Moon by 2025 to return 1 GWe helium- 3 fusion fuel to Earth.
(6) The Mars settlement program moves towards Mars settement. A robust muclear electric propulsion system is fielded, with convoy tlights by 2015 . Mars population reaches 24 by 2025 , and the transportation system is capable of increasing Mars population by 24 per opportunity by 2025.

Minimum

Just enough to meet
President's objectives President's objectives Permanent lunar facilities,
not permanent human
presence

- Astrophysics observatories
- Man-tending capability
- Explore interesting sites
恣 - Three missions to Mars

$$
\begin{aligned}
& \text { - Similar to Apollo } \\
& \text { 'Two sites per mission } \\
& \text { - Samples within a few } \\
& \text { km. of landing sites }
\end{aligned}
$$

/STCAEM/grw/4Jan91
Minimum Program

> The minimum program reference averages about $1 / 2$ lunar trip per year and has only three Nas Surface stays are about $\mathbf{3 0}$ days. re man-tended. Each Mars miss Lunar and Mars in-space transportation systems are expendable.
Full Science Program
The full science program reference has about 2 lunar missions per year, to establish permanent human presence on the Moon with adequate supplies and equipment for extensive science alld exploration. Lunar oxygen for lunar transportation is introduced about mid-way through the lunar program. Six Mars missions are accomplished, with later missions staying on Mars for more than a year. The Mars missions use multiple landers, as many as four late in the program.

rim science irrograill

\section*{1 | $\substack{\text { AdVANCED CIVIL } \\ \text { SPACE SYSTEMS }}$ |
| :---: |}

/STCAEM/grw/4Jan9 I
Industrialization and Settlement Program

The industrialization and settlement program is very aggressive for both the Moon and Mars. Thousands of tons of industrial equipment are delivered to the Moon, driving lunar cargo trips up to five per year. Lunar oxygen is placed in production as early as possible. One crew trip per year leads to a population of 30 because crew stay times on the Moon increase to several years.

Initial Mars missions use a cryogenic/all-propulsive system because the aggressive nature of the scenario merited an initial Mars mission as early as possible, and the reference nuclear electric propulsion system cannot be ready in time. The NEP missions are operated in a crew rotation/resupply mode, opposition profile, with each crew staying one synodic period (about 2.2
 resources. Heavy cargo capability is provided, up to 250 I. per opportunity by 2020 . The Mars population grows to 24 , and by the end of the scenario can continue to grow by 24 or more per opportunity.
Lunar/Mars Program Comparisons
The next two charts compare the lunar and Mars program scenarios in terms of population, cumulative cargo delivered, and flight rate. The lunar population for the minimum scenario is four people for 30 to 40 days about every other year. The Mars population for the minimum scenario is 6 people on each of 3 conjunction missions, with 30 to 40 day surface stays. The full science menu scenario grows to year-long surface stays on conjunction missions. The lunar industrialization program goes to long stay times with indigenous food growth to build population. 'The Mars protosettlement program obtains continuous presence by operating the NEP on an opposition-like protile in crew rotation/resupply mode. Later in this scenario, a second NEP is operated to provide iwo trips to Mars each opportunity.
These scenarios were the "input" to the manifesting and life cycle cost analyses.

This page intentionally left blank
PREeEDING PAGE blank not filmed
Mars I'rogram Comparisons

D615-10026-2
Arehitecture/Launch Vehicle/Node Trends
Lssues

- Launch vehicle size, shroud size, and lift capacity.
- Node complexity and cost.
- On-orbit assembly complexity
- Number of launches per year
- Development cost
- Per-mission cost
Trends from Architecture Analyses
- Large launch vehicle (up to 300 t. lift) does not eliminate on-orbit assembly.
- Keys to on-orbit assembly are (1) design the vehicle to keep it simple; (2) design for automation
and robotics; (3) reusable space vehicles to reduce the frequency of assembly operations.
- Advanced in-space transportation technology reduces launch requirements enought that a
100-t., 10 -meter shroud launch vehicle is adequate.
- Ultra-large launch vehicle results in high early program costs and is much more costly than
advanced in-space transportation technology.
- Evolution and design for evolutionary transitions are the keys to affordable, efficient programs
with long-term growth.

Available Options
The facing page is a typical listing of the element options making up a total transportation
architecture for SEI missions. The options listed are all candidates for incorporation into
architectures. Trade studies have not eliminated any of these options. (The list is
representative and not necessarily complete.) The number of options on this chart for each
row of options is indicated on the far right. In most cases, any option can be combined with
any other set of options. Thus, the total possible combinations number in the millions. It is
clear that available future effort can not hope to examine all combinations. This drives us to
a strategy for architecture sensitivities analysis, to develop key trends and conclusions from
relatively few architecture combinations.
Available Options

$\mathbf{3 \times 2}$

Wet tanks	Refuel vehicles	Propellant depot	$\mathbf{4 \times 3}$
L2/lunar oxygen		5	
Fully reusable	Parlially reusable	Expend- able	$\mathbf{4 \times 3}$
Partially reusable	Expendable	3×3	
SEP	Cycler	2	

Cycler
SEP
$200+$ t. Add prop

$\begin{array}{ll}\text { NTR } & \begin{array}{l}\text { NEP/SEP } \\ \text { cargo }\end{array} \\ \text { Combined } & \begin{array}{l}\text { Fully } \\ \text { with LTV }\end{array} \\ \text { reusable }\end{array}$
$\frac{1}{\underline{\mid r}}$
SSF +
separate
LOR
lunar ox.

ETO
Node
Lunar
mode
LTV
LEV
Mars
mode
MTV
Mars
node
MEV
ETO
Node
Lunar
mode
LTV
LEV
Mars
mode
MTV
Mars
node
MEV
ETO
Node
Lunar
mode
LTV
LEV
Mars
mode
MTV
Mars
node
MEV
ETO
Node
Lunar
mode
LTV
LEV
Mars
mode
MTV
Mars
node
MEV
ETO
Node
Lunar
mode
LTV
LEV
Mars
mode
MTV
Mars
node
MEV
/STCAEM/gw/B1May90
Combined
with LEV
Top-Level Trade Table
The facing page considers mission profile, basing at Mars, and propulsion. Four important issues are central to mission profile selection: crew radiation exposure, crew time spent in zero g, the component of mission risk that increases with mission duration, and the added cost of shortening trip time. At one extreme is the notion, frequently expressed, that it
 technologies, but at considerably higher cost than for longer trips, as described later in this section of the briefing. At the other extreme, trip time is seen as much less important than minimum mass and cost; conjunction profiles should be used. Crew time in zero g can be minimized by arrtificial-g spacecraft design. Increase in risk with duration is difficult to quantify. The mission duration issue presently is concerned mainly will cosmic ray exposure.
Crew radiation exposure comes from solar proton events (flares) and galactic cosmic rays, and from minmade sources if nuclear propulsion or power are used. Unshielded energy deposition from GCRs varies from 50 to 100 milligray (5 to 10 rad) per year. The low end of the unshielded range does not constrain Mars mission architectures, but the high end exceeds the present NCRP astronaut radiation guideline of 500 millisieverts/yr (this guideline is for space shuttle and space station missions; no guidelines have been given for Mars missions). It is possible that guidelines will be reduced in the future.
live profile options are presented. Conjucntion fast transfer implies transfers much less than one year. Opposition/
swingby trajectories vary from about 440 to about 550 days. Opposition/fast profiles imply 450 days or less, without
swingby. The split sprint is a variation on the fast opposition profile in which the MEV and propellant for the return from
Mars are sent in advance on a low-energy protile.
If galactic cosmic ray exposure must be controlled, we must either provide shielding on the transfer vehicle crew habitan or reduce exposure times. Shielding the transfer vehicle habitat dramatically increases its mass, repuiring high performance propulsion such as nuclear, or favoring a cycler concept where massive habitats are emplaced on a suitable repeating trajectory and left there. To reduce exposure time, the applicable profiles are: (a) conjunction missions with fast transfers, i.e. less than 180 days, (b) fast opposition profiles, e.g. less than 1-year round trip, and (c) Mars surface rendezvous (Mars direct). The cycler/semi-cycler architectures offer shielding on the Earth-Mars leg, typically 5 inonths, and provides a 5-6 month conjunction transfer on the return trip. During the long stay at Mars, the crew must be on the surface most of the time unless a shielded Mars orbit habitat is also provided.

Fast-transfer conjunction missions may require orbit basing. A surface rendezvous mission may not be able to achieve the fast return transfer direct from Mars' surface with reasonable vehicle mass, because of the higher delta V required and because the payload launched from Mars' surface is the entire Earth return habitat rather than a lightweight, short duration crew cab. A vailable propulsion options become very limited for fast missions. At one year, the only sensible options are NTR splits, where return propellant is prepositioned at Mars on a low-energy profile, or the use of a nuclear gas-core rocket. Below one year, the gas-core rocket quickly becomes the only option.
Top-Level Trade Table

Mission Profile	Propulsion				Basing	
	$\begin{array}{\|l\|} \hline \text { Cryol } \\ \text { All-Prop } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Cryo/ } \\ \text { Aerobrake } \\ \hline \end{array}$	NTR	NEP/ SEP	Orbit	Surface
Conjunction Minimum Energy	\checkmark	No advantage over propulsive capture	\checkmark	\checkmark	\checkmark	Later
Conjunction Fast Transfer		\checkmark	\checkmark	\checkmark	No. Reason for fast trans fer is less GCR dose	\checkmark
Opposition/ Swingby	Same	\checkmark	\checkmark	Note 1	\checkmark	As a resupply mode
Opposition/ Fast	Same	Excessive IMLEO	\checkmark	Not able to make Cast trips	\checkmark	Same
Opposition/ Split Sprint		Same	\checkmark	$\begin{aligned} & \text { Cargo } \\ & \text { only } \end{aligned}$	\checkmark	Same

Note 1: NEP flies an opposition/swingby-like-profile but does not benefit from Venus swinghy.
Architecture Results for Three Activity Levels
The top-level architecture selection results for the three activity levels are slown on the facing page.
For the minimum program, a cryogenic expendable tandem-staged direct mode is the clear
economic winner. Its lower development expense causes the operational cost savings for a reusable
LOR system to have little payoff. At the median activity level, the reusable system gives about a 5%
return on investment (ROI). Our baseline program included lunar oxygen at the median level, but
the ROI is estimated only about 3%. At the high lunar activity level, reusable systems and lunar
oxygen both have strong payoff, e.g. the lunar oxygen ROI is about 10%
 on conjunction profiles. The NTR has an ROI less than 2% at this level. If natural environment radiation concerns lead to a conjunction fast transfer or opposition profile, the NTR is the preferred

 from present costs. At $\$ 500 /$ watt, the SEP has a negative $10 \% \mathrm{ROI}$, showing the great leverage of
 a problem unless low-cost SEP arrays can be produced. If electric propulsion costs are too high for a settlement-scale Mars program, the NTR/dash and Mars direct modes are viable options.

Minimum

Median (full science)

Lunar:

Lunar:
LOR crew and
tandem direct cargo,
reusable, with lunar
oxygen

settlement

Start expendable, 01 पрмо.18 әq!ssod LOR reusable,
aerobraking
 Mars:

- Nuclear rocket,
conjunction,
multiple landers
- Opposition or
conjunction fast
transfer options
- Cryo/aerobraking
backup
- SEP "dark horse" Lunar:

Expendable

Mars:

environment requires reduced trip times; then nuclear rocket
or cryo aerobrake conjunction fast transfer
/SICAEMI/grw/IJan91
Seven Architecture Recommendations
The next seven pages contain our main architecture recommendations with data illustrating key points.

N

- Invest in cryogenic storage and management technology.
 better throttling capability.
- An advanced expander engine offers about 20 seconds' Isp gain over a
modified RL-10; can demonstrate avvanced health monitoring
and maintainability features essential for Mars missions.
/STCAEM/grw/4Jan91 Nuclear rocket performance permits modest lunar program and
significant Mars exploration with about six launches per year of
100-tonne class HLLV. Nuclear rocket performance permits modest lunar program and
significant Mars exploration with about six launches per year of
100-tonne class HLLV.
- Nuclear rocket baseline offers reasonable expectation of initial Mars mission by 2010 under likely funding constraints.
- Recommended technology adyancement program:
- Full-containment ground test facilities.
/STCAEM/grw/4Jan91
$\underbrace{\text { DID }}_{\substack{\text { ADVANCED CIVIL } \\ \text { SPACE SYSTEMS }}}$
\bullet

This page intentionally left blank

Nuclear Rocket ROI Trades

/STCAEM/grw/9Jan9]
/STCAEM/grw/4]:an91

- Target decision between the two in the 1996-2000 time frame.
- NTR performance and cost uncertainties, especially test facilities and
testing, merit backup.
- Aerobraking needed for Mars landing. Technology challenges
less daunting than aerocapture, but merit technology prograni.
- Aerobraking technology keeps other options open.
> - Conjunction fast transfer
- Mars direct
- Cycler orbits
- NTR-dash profile
- Aerobraking is economic for lunar transportation at $>=$ two llights/year.
fer
cryog

Conjunction Fast Transfer

Program Implementation Architectures Relation to Aerobraking

[^1]| Program Implementaiion Arclitectures | | | | | | CTOENAE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| Architecture | Features | Aerobraking Functio | | | | |
| | | Mars cap | Mars
 land | Earlh cap/ lunar | Earlı cap/
 Mars | Earllı entry* |
| Cryogenic/aerobraking | Cryogenic chemical propulsion and aerobraking at Mars and Earth. LEO-based operations. | X | X | X | X | X |
| NEP | Nuclear-electric propulsion for Mars transfer; optionally for lunar cargo. | | X | X | | X |
| SEP | Solar electric propulsion for Mars transfer; optionally for lunar cargo. | | X | X | | X |
| NTR (nuclear rocket) | Nuclear rocket propulsion for Lunar and Mars transfer. | | X | \mathbf{X} | | \mathbf{X} |
| L2 Based cryogenid aerobraking | L2-based operations; optional use of lunar oxygen. | ** | X | X | X | X |
| Direct cryogenid aerobraking | Combined M'TV/MEV refuels at Mars and I,EO. "Fast" conjunction profiles. | X | X | X | X | |
| Cycler orbits | Cycler orbit stations a la 1986 Space Commission report | *** | X | X | X | X |
| Notes: * optional/emerg STCAEM/mha/31May90 | cy mode **opposition class only *** | V-class | crew | axi (not | a large | M'IV) |

/STCAEM/grw/4J:an9]

Cross Section
$\begin{array}{c}\text { Assembly arm rotates brake as outer panels are installed } \\ \text { for easy RMS reach and crew visual contact during operations }\end{array}$
/sicAemgwlinel

2o quəwisวaul uo unnizd

This page intentionally left blank

/STCAEM/grw/.|lan9)
Mission risks were compared in a semi-quantitative way. The methodology is rigorous and
 ballpark guesses today. We made representative estimates with an attempt to be consistent, i.e. the same type of maneuver was given the same number for all cases. Plausible differences were used, e.g. aerocapture was judged higher risk than propulsive capture. Abort modes were included where available.
The facing page shows comparative risks for crew loss and mission loss for several architectures and modes.
NTR shows the least risk because of the propulsive capture advantage, and because a free return abort was assumed, as it was for the cryo/aerobrake. The NTR/dash mode does not permit free return abort or descent abort at Mars, so some mission loss risk turns into crew loss risk. As Mars transportation matures and a safe refuge on the surface of Mars is available, the NTR/dash mode is deemed acceptable. The NTR split sprint mode also exhibits higher risk because of lack of abort modes, e.g. no free return. NEP is shown comparable to, but slightly riskier than NTR. The NEP case is sensitive to the lifetime dependability of the propulsion system; this figure is much more uncertain than NTR reliability. Mars direct has a higher mission loss risk because of its complex automated operations, but the crew loss risk is comparable to the others. The perception of crew loss risk for Mars direct is probably higher than the real risk.

STCAEM/grw/4Jan91
The facing page describes our recommended approach to man-rating and lists the systems/subsystems for which we believe man-rating is required.

Nuclear Rocket Man-Rating Approach

/STCAEM/grw/4Jan91
Nuclear коскеt ivian-кaumg approacin
ADVANCED CIVIL
SPACE SYSTEMS

91	92	93	94	95

\diamond Begin

1

| 91 92 93 94 95 | 96 97 98 99 00 | 01 02 03 04 05 | 06 07 08 09 10 | 11 12 13 14 15 | 16\|c|c|c|c| | 21 22 23 24 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Begin
 Tes | uel form tests facility require
 Reactor dd | nents and desig sign \& technold ectric furnace fi
 Begin reactor/
 Reac | 1 approach
 gy level selected el tests complet ngine tests or tests comple e
 Engine devel
 Enging
 Mars or lunt using | e; fuel \& core d pment tests con qual test progr: argo mission ar mission uuclear rocket Manned Mars | sign qualified plete III complete
 nission using nt | clear rocket | |

Technology Advancement and Advanced Development The next three charts present our current recommendations for technology advancement and
advanced development, with schedules and funding estimates. The funding level averages about $\$ 300$
million per year. If we consider the median (full science) program as representative, the
technology/advanced development program is about 0.2% of the life cycle cost of the program to
2025 , a very modest investment.

\section*{i ecnnorogy veveropment scineuuts - Overview -} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | - MTV A/B icch. dev. complete ∇ AFE flight $\quad \nabla$ LTV A/B tech. dev. complete $\quad \nabla$ MTV A/B tech. dev. complete High thrust Mars eng. AD comp. ∇

 Lum. outpost shield. concepts validation $\nabla \quad$ Mars veh. shield. concepts valid $\nabla \quad$ MTV Adv. RI.S tech. dev. complet 6. Crew Mod. \& Sys. 1. Aerobraking
2. Cryo. Eng. / Prop. 3. Cryo. Systems
4. Veh. Avionics 5. Veh. Structure 1. Aerobraking
2. Cryo. Eng. / Prop. 7. ECLSS

8. Veh. Assembly

Lun. veh. processing tests comp. $\nabla \quad \nabla^{\text {Mars veh. processing lesis comp. }}$ Lun. veh. processing tests comp. ∇ ∇ Lunar engine AD complete

$\stackrel{\bar{E}}{\stackrel{\text { F }}{*}}$	$\sum_{\infty} \sum_{\infty}^{\sum}$	$\begin{aligned} & \sum_{i n} \\ & \underset{\sim}{n} \end{aligned}$	$\sum_{N} \sum_{N}$	$\sum_{N} \sum_{N}$	$\sum_{\infty} \sum_{\infty}^{\infty}$	$\sum_{N} \sum_{N}$	$\underset{\sim}{i} \underset{N}{\sum}$
こ	¢						
응	$n \%$			\％	\bigcirc	9	$\stackrel{\sim}{2}$
\cdots	∞ 边	¢		q	n	\cdots	$n \mathrm{~m}$
∞	\bigcirc	3	을	\％	\cdots	\cdots	$n \%$
$\stackrel{ }{ }$	응	$\sqrt{6}$	$\stackrel{8}{ }$	\％	$n \sim$	$\cdots \sim$	응
\bullet	∞	in	$\stackrel{\square}{2}$	$\%$	－	no	\bigcirc
0	n n	수	in	\cdots	$\cdots=$	mo	$n \mathrm{C}$
∇	\cdots	¢下	n	$n \sim$	のミ	m	$n \bigcirc$
\cdots	앙	융	no	no	のに	$\cdots \sim$	$m 0$
\sim	00	po	$n \mathrm{o}$	no	$\cdots 0$	00	00
－	－0	00	no	~ 0	mo	00	00

Technology Category	1	2	3	4	5	6	7	8	9	10	11	Total
8 - Vehicle Assembly - Tech. - Adv. Dev.	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 5 \\ 40 \end{gathered}$	$\begin{gathered} 5 \\ 40 \end{gathered}$	40	40	40	40	10			$\begin{array}{r} 20 \mathrm{M} \\ 255 \mathrm{M} \end{array}$
9 - Orbit Launch \& Checkout - Adv. Dev.	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\left\lvert\, \begin{gathered} 5 \\ 15 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 5 \\ 16 \end{gathered}\right.$	5	10	10	10	10	5		$\begin{aligned} & 20 \mathrm{M} \\ & 85 \mathrm{M} \end{aligned}$
10 - Vehicle Flight Operations - Adv. Dev.	0	0	9	15	10	15	15	15	10	5		94 M
11-Artificial Gravity - Tech. - Adv. Dev.	0	0	0	2	5	10	10	10	10	3		50) M
12-Nuclear Propúlsion NTP - NEP -	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	10	15	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	20	20				$\begin{gathered} 85 \mathrm{M} \\ 165 \mathrm{M} \end{gathered}$
13-Solar Electric Ion Prop. Array manufac. Tech.	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{r} 10 \\ 0 \end{array}\right.$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \end{aligned}$						$\begin{aligned} & 60 \mathrm{M} \\ & 90 \mathrm{M} \end{aligned}$
14 - Electric Thrusters	0	5	10	20	20	20	10					85 M
'Tech. Development 'Iotal	23	20	367	482	461	410	380	160	276	138	30	3147 M

/STCAEM/jrm/16Jan91

I ecnnoiogy / Aavancea meveiopinent

Life Cycle Cost Model Approach
Our basic cost model kernels are parametric cost models. We use the Boeing Parametric Cost Model and the RCA Price models to estimate development and unit cost. The determination of hardware to be costed comes from what architectural elements are needed and from element commonality of the architecture. Program schedules determine requirements and timing for major facilities and for the element development and buy schedules. All of these inputs are used to estimate annual funding for each component of the program, using cost spread functions. The costs are integrated into a spread sheet life cycle cost model to obtain annual funding for complete programs.
The ground rules used in this analysis are indicated on the chart.
The ground rule for use of closed ecological life support (CELSS) and lunar oxygen comes
from economics trade studies conducted several years ago through last year.
Life Cycle Cost Model Approach
Ground Rules
Architectural Cost Drivers
Our investigations of architectures, while preliminary, indicate the importance of cost
drivers, in the order listed on the chart. The number of development projects should be
minimized through commonality and phased by evolution so that development costs are
reduced and are spread over the life cycle of the program, rather than lumped early in the
program.
Space hardware for SEI missions is expensive and should be reused if possible. As an
example, our unit cost estimate for the Mars transfer crew module is more than a billion
dollars. Reuse of this equipment motivates investment in the advanced transportation
technology needed to make it reusable.
The third point is that Earth launch mass drives Earth launch cost. Even if Earth launch cost
is reduced by ALS-class vehicles, the Earth launch cost is the largest single part of program
cost.
The final point is that design and development of systems with mission and operation
flexibility enhances commonality and minimizes the risk that changes in mission
requirements force new developments or major changes.
Architecture Cost Drivers

- Number of development projects (minimize through commonality) - System reuse (maximize)
- Earth launch mass (minimize)
- Mission and operational flexibility (m. rimize)

In-Space Iransportation IJII XL Comparisuil

Minimum Program Life Cycle Cost Spread
The minimum program life cycle cost spread peaks between five and six billions per year. The deep
valley between lunar and Mars peaks indicates that the Mars program should occur earlier in this
program. The minimum program involves relatively modest investments in surface systems and falls
well below the SEI funding wedge implied by the Augustine Committee recommendations.

/STCAEM/grw/9Jan91
Median (Full Science) Program Life Cycle Cost Spread
The median life cycle cost spread peaks at about eight billions per year. With addition of likely
surface systems costs, this program probably exceeds the Augustine guidelines during the peak
years.
The median program exceeds by a factor of several the science and exploration potential of the
minimum program. Lunar human presence grows from an occasional 45 days to permanent
presence of six people, and Mars surface time grows from about four man- years to about 30 . In
other words, a roughly 50% increase in cost leads to about an order of magnitude increase in
exploration and science potential.
CTEEINE

$$
1
$$

/STCAEM/grw/9]an91
Median (Full Science) Program Life Cycle Cost Spread
Reduced Early Lunar Program

> Our view was that getting to Mars early was more important than an early buildup to permanent lunar presence. The partially deferred lunar program represented here still achieves astrophysical observatories early, but defers permanent human presence until after the major Mars mission DDT\&E is complete.

STCAEM/grw/9Jan91
Our maximum scenario involved simultaneous industrialization of the Moon and progress towards

 private sector involvement.
What is significant in the result presented here is that investment on the order of $\$ 100$ billions over about 20 years stretches from a plausible public-sector program of science and exploration to a program also involving the private sector for industrialization and settlement. This amount of funding is more than the private sector investment in the Alaska oil pipeline by a factor of a few,

The economic potentials of lunar and/or Mars industrialization and settlement are presently not at all understood. We have made some stabs at estimating the costs. We have little or no idea as to the eventual payoffs.
1

Results of Return on Investment Analyses
The facing page summarizes results of return on investment analyses. (The ROI methodology is
 ROI" had one case always more expensive than the other. An ROI can be calculated only when funding streams cross.
The storable case has very negative ROI because while less (i.e. no) technology money is spent, more vehicle stages must be developed so that the negative cost impact of not doing the essential cryo management and engine technology is large and early. The case for reusable lunar transportation is negative for a minimum lunar program and weak for a median program; it is strong for an industrialization-class program.
The other results were discussed earlier and are included here for completeness.
Strategy for Architecture Synthesis The strategy we have adopted is illustrated on the facing page. First, we examined
propulsion systems options through trade studies to understand how they work and to
define preferred configuration operating modes. Secondly, based on the knowledge gained
through these trade studies we chose a set of architectures using combinations of systems
and modes, paying attention to integration compatibility, evolutions and commonality.
Third, we will compare and trade architectures over a range of scopes and obtain important
sensitivities and understand how architectures respond to program scope. We expect this
analysis to lead to preferred architectures for various scopes. The final step is to conduct
trades within the winning architectures to make further improvements.
All of this is guided by knowledge of the architecture cost drivers described earlier and by
the knowledge gained on how systems work together, from the trades conducted within
individual propulsion systems.
Strategy for Architecture Synthesis

The facing page compares this approach to the traditional top-down systems engineering
approach. The traditional approach shown on the right, starts with program goals,
establishes mission requirements through trades, and continues to lower levels. As usually
conducted, the traditional approach is faced with the great number of possible combinations
noted earlier. The usual outcome is that requirement decisions are made and systems
selected without trade studies.
The synthesis technique, on the left, attempts to avoid this problem by a combined top
down/bottom up approach. It is similar to a classical optimization problem.
Optimization deals with infinite numbers of paths that satisfy boundary conditions.
Optimization is a technique for generating only optimal paths. Any path that satisfies the
boundary conditions is the sought optimal path.
Nothing quite as rigorous can be done in architecture synthesis. However, by bottom up
trades, assembling systems into good" candidate architectures, and matching with ranges of
program scope, we may come close. The key is knowledge we obtain on what works well
what things are compatible and combine well to satisfy mission requirements.
The last step is to conduct trades and analyses such as life cycle cost to identify preferred
architectures, apply criteria derived from national goals program goals, to select among
preferred architectures.
The dotted line indicates that one could then enter the traditional analysis flow with
preferred architectures and their associated requirements and mission profiles, to furtier
refine systems through systems engineering.

Architecture Trade Flow

$$
\begin{aligned}
& \text { The facing page shows the low level system mission and operations trades that have been } \\
& \text { conducted or are being conducted for our seven architectures to represent the range of } \\
& \text { possible architectures for the SEI mission. Most of the trade areas have been presented in } \\
& \text { this briefing or have been presented in earlier briefings. The knowledge base in this area is } \\
& \text { fairly complete except that only very preliminary analyses have been done for the } \\
& \text { cryogenic direct mode and for cycler orbits. When these two options are completed we will } \\
& \text { be ready to finish up the architecture analysis. }
\end{aligned}
$$

STCABM/ETW/31May90
Architecture Evaluation Approach
BDEINE

STCABM/grw/31May90

Mars Summary

- More than $\mathbf{2 0}$ beneficial modes identified.

- Early Mars: Cryo all-propulsive (CAP), ECCV*, conjunction;

 NTR all-propulsive, conjunction or opposition; Cryo aerobraking opposition, ECCV;(possibly) Direct with Mars oxygen.

- High performance, late Mars or evolution:

ISRU, moon or Mars or both;
Combintations.

- Efficiency range 10:1 measured as RMLEO (resupply mass LEO).
- Reusable MEV/Mars propellant has significant leverage for
high-performance options.
- Earth Crew Capture Vehicle, an Apollo-like capsule used for Earth entry and landing or aerocapture to LEO. The rest of the vehicle is expended.

Conjunction vs. Opposition Mars Profiles

Conjunction Advantages

- Lower energy; significantly less RMLEO unless very high Isp available.
- Venus swingby complexity not necessary.
- Long stay times at Mars.
- Shorter transfer times.
- Elliptic parking orbits can be optimized.
Reusable MEV Sensitivities

I I. Requirements, Guidelines and Assumptions
This page intentionally left blank

Reference and Alternate Missions

Note: Contains material formerly in Mission Analysis

D6́15-10026-2

Mission Analysis

A reference mission profile for Mars transfer was provided by MSFC, called the Level II reference case (year 2015 opposition opportunity). We investigated this profile for other opportunities in other years and did not limit ourselves to opposition mission only. An alternative mission profile is to use a direct transfer to Mars, refueling on the Martian surface, and direct return to Earth orbit (Mars Surface Rendezvous). A third alternative is to use the Earth-Moon Lagrange point two (L2) as a departure and return node.

The reference mission profile for the year 2015 depart on May 22nd of that year and has a 30 day stay time at Mars. The total mission duration is 565 days. A 2016 profile has a shorter overall time, 434 days, but adds about one kilometer/sec to the departure velocity change ($\Delta \mathrm{V}$) relative to the 2015 mission. The stay time at Mars is held to 30 days. Mission opportunities from 2010 to 2024 are tabulated. A plot of departure date versus outbound trip time for the 2013 opportunity with a 400 day stay is typical, showing a single optimum combination that minimizes mission $\Delta \mathrm{V}$. The other orbital characteristics than epoch of departure have some effect on mission velocity requirements such as capture and departure S-vector positions, GN\&C maneuvers, etc. They have been investigated in as great a detail as the depth and length of the contract allows.

Optimum departure vectors indicate that the ability of the engines to be capable of multiple burns and therefore do broken plane trajectories to the declination launch asymptote will be a requirement. Arrival conditions at Mars for capture orbit parameters such as periapses location and lighting (capture and land in light), impacts of true anomaly and parking orbit period on the relative position of the S - vector (departure vector) for abort and departure capability and into the characteristics of the aerobrake itself for GN\&C, landing and crossrange capability.

In the reference mission, the excursion vehicle and transfer vehicle separately capture into Mars orbit. To allow a one day spacing between the captures, a velocity difference must be generated between them. To keep this ΔV low (under $100 \mathrm{~m} / \mathrm{s}$), the separation should occur about 50 days before Mars arrival.

Guidance, navigation, and control analyses can be done at different levels of detail from closed form approximations to full 6 -degree of freedom simulations. To date 3 degree of freedom analyses with variable atmosphere has allowed assessment of the errors induced by a variable atmosphere. Guidance laws are being investigated.

Aeroheating analyses were performed on the medium ($L / D=0.5$) and higher ($L / D=1.1$) lift brake concepts. With a fixed exit velocity target, flying inverted (negative L/D) extends the time for the maneuver. This is because the maneuver is from a hyperbolic velocity. A zero lift trajectory would rise quickly back out of the atmosphere. Negative lift 'holds down' the vehicle, extending the time for the aeromaneuver, thus lowering the heating rate. The heat rate itself varies widely depending on the analysis method. This is an area that requires more detailed investigation in the future. Either method leads to peak temperatures at the stagnation point in excess of 2000 K for hyperbolic excess energies (C3) of over 30 $\mathrm{km}^{2} / \mathrm{sec}^{2}$. Aeodynamic loads were estimated over the brake surface, and two structural concepts were examined. The first was a spar framework, the second was a truss framework.

A summary of this work is given below:

This summary addresses the aerobrake analyses categorized as geometric configuration for capture and landing, Mars amosphere knowledge uncertainty impacts on GN\&C, design configurations for reducing heating rates and loads, landing flight mechanics for range and crossrange requirements, structural techniques for reducing weight, and integration of technology to meet overall mission goals. The aforementioned categories will be covered in four sections: Aerocapture, Heating, Structure, and Ascent/Descent.

Aerocapture - Critical GN\&C related aerocapture issues are line-of-apside control and apoapsis altitude control. Aerocapture analyses results included in this summary show the following:

* Asymmerric roll with a finite rate provides improved line of apsides control.
*A guidance system designed for a low density atmosphere needs to be optimized for other atmospheric conditions.
* Using MarsGram, a one sigma density change results in a large difference in density variation between day and night.
* The guidance system (as related to aerocapture exit conditions) is more effected by large (wavelength $>1000 \mathrm{~km}$) horizontal sine wave density variations.
* A larger vertical wavelength (on the order of 20 km) sine wave density induces a lesser error than a smaller vertical wavelength (on the order of 5 km) sine wave density.

Heating - Mars aerocapture heating analyses results are given for stagnation point heating and for some choices of surface heaing. Heating analyses results included in this summary indicate the following:

* For the Mars aerocapture MTV, the stagnation point heating rate resulting from averaged lift-down L/D is lower than the heating rate for average lift-up L/D.
* Under similar conditions, the heating loads follow the same trend as the stagnation point heating rate.
* Along the center streamline of the hyperboloid aerobrake the predicted radiative heat transfer rate at Mars using the Park method is approximately two times that using the Tauber-Sutton method.
* The total heating rates at the stagnation point with Park ($146 \mathrm{w} / \mathrm{sq} \mathrm{cm}$) and TauberSutton ($80 \mathrm{w} / \mathrm{sq} \mathrm{cm}$) are higher than the near term (1993) radiative material capabilities of approximately $70 \mathrm{w} / \mathrm{sq} \mathrm{cm}$.
* For an averaged $L / D=0.5$ the stagnation point heating rate for Mars aerocapture is $146 \mathrm{w} / \mathrm{sq} \mathrm{cm}$; Earth aerocapture heating rate is $172 \mathrm{w} / \mathrm{sq} \mathrm{cm}$.
* The local Reynolds number along the aft streamline of the 30 m body does not exceed 10E6.

Structures - Structural analyses results demonstrate weight savings and strength improvements through advanced composites application and through spar design advantages. Included structural analyses results depict the following:
*Spar and muss configurations were developed for the 30 meter aerobrake concept.

* For the spar configuration and with current technology, the (81 mt payload) weight estimate is 41.5 klb and the MTV (153 mt payload) estimate is 66.3 klb .
* Improved material characteristics (200 ksi vs 105 ksi span strength) reduces configuration weight by greater than 15%.
* Mass savings of 30% may be achieved by improved spar design and advanced materials characteristics.
* The truss configuration provides a 15% weight savings compared to the spar configuration.
Ascent/Descent - No ascent related information is discussed in this version of the IP\&ED; a forthcoming update will contain a discussion of ascent related data.

Descent trajectory analyses results point to L / D requirements related to landing site accessibility issues. Included descent trajectory results include the following:

* For MEV with $\mathrm{L} / \mathrm{D}=1$ and descent inclination of 45 degrees, a displacement in latitude of 30 degrees may be achieved.
* An increase in L/D from 0.5 to $1.0+$ extends the range by approximately 50%.
* An aeroflare reduces the ideal delta velocity required for landing by 200 to 300 $\mathrm{m} / \mathrm{sec}(\mathrm{L} / \mathrm{D}=1)$.
* Cross range is a function of L / D with atmospheric density and dust concentrations affecting the results
Issues with large aerobrakes such as these center around on-orbit assembly and inspection, functions which consume many man-hours for the Space Shuttle on the ground. The Shuttle has the only reusable aerobrake with repetitive use and accessible data. Another issue is selection of the landing site. If the landing site requires an extensive plane change, the L/D is higher, which ripples through the packaging of the lander and the weight of the lander back to Earth launch requirements. On the other hand, using an arrival orbit tailored to the landing site also has an impact on propulsion requirements, thence to Earth launch mass. Thus selection of a landing site is required early since it affects the whole design in a complex way. Some candidate sites are listed. Either a reference site or a requirement to meet a range of sites up to some level of difficulty (for example any site less than +5 km altitude and <70 degrees latitude) needs to be given as an input requirement for further analyses.

Mars transfer operations for the reference system are illustrated here. The opposition profiles normally include a Venus swingby either going to Mars or returning to Earth. Occasionally, a Venus swingby may be used each way. (The reference 2015 mission uses an outbound swingby; there is also an alternate inbound swingby profile for this opportunity.) Venus swingbys are normally unpowered and there are no operational events at the swingby. The nominal mission sequence is as follows:

Acronymns: AB - aerobraking; MEV - Mars Excursion Vehicle; MTV - Mars transfer vehicle, includes trans-Mars injection stage as well as transfer propulsion and hab; MAV - Mars ascent vehicle; LEO - low Earth orbit; ECCV - Earth crew capture vehicle (like an Apollo command module).

STCAEMMor/12Jun90

stcaembor/l2Lun90
毋TMANGAT ESMCL

$$
\begin{aligned}
& \text { Delta V Mars to } \\
& \text { Earth (m/sec): } \\
& \text { Ascent to } \\
& \text { circular } 4100 \\
& \begin{array}{l}
\text { Injection } \\
\text { C3 = } 10
\end{array} 2373 \\
& \text { Earth aero- } \\
& \text { capture } 200 \\
& \text { Reserve } 120 \\
& \text { Total } 6793
\end{aligned}
$$

The use of the $L 2$ libration point as a transportation node was originally suggested by the Farquhar and later by Keaton. The L2 node has three advantages. (1) the delta V from LL to Mars transfer is almost $3000 \mathrm{~m} / \mathrm{sec}$ less than from low Earth orbit. As a result the vehicle is much smaller; (2) the transportation node is not in the low Earth orbit debris
environment; (3) the L. 2 node is a suitable location for using lunar oxygen in Mars mission systems.

The L2 node scheme involves a network of transportation from the Earth to L2 and back, from L2 to the lunar surface and back, and L2 to Mars and back. The facing page indicates the delta V's for each leg of the transportation network.
Transportation to the surface of the moon via $L 2$ is efficient when lunar oxygen is used for
the LEV, as efficient as the low lunar orbit node with lunar oxygen. (The LEV becomes like
the LTV in size). The disadvantage of the L2 node is that substantially greater lunar oxygen
production is required compared to the low lunar orbit node. The advantage is that any site
on the lunar surface is accessible any time and return to Earth is available at any time.
Delivery of lunar oxygen to the L2 node by rocket is surprisingly efficient.

[^2]
Reference 2015 Mission Profile
 BOEIN

(8) Boeing Case \#2

Opportunity (optimized runs)	Earth Dep C3	Mars Arr.	Mars Departure		Earth Arrival		Mars Orbit Inc. (Deg)	Earth launch DLA	Mars Arr. LVI
		Vhp	C3	$\Delta \mathrm{V}$	Vhp				
2010 Opposition 12/01/10-10/26/11, 11/25/11-8/31/12	28.69	4.93	16.1	2.32	6.99	48.9	30	4.19	-28.63
2010 Conjunction 10/26/9-10/31/10, 8/27/11-7/15/12	11.14	3.26	7.0	2.73	3.80	14.4	30	32.82	9.48
2013 Opposition _ 11/22/13-8/6/14,10/5/14-8/14/15	13.08	4.10	37.7	3.54	4.53	20.5	30	20.42	25.32
2013 Conjunction 12/3/13-9/23/14, 9/28/15-9/6/16	2.58	3.15	6.9	2.61	4.47	20.0	45	23.73	31.13
2015 Level II Requrence, 523/15 - $4 / 22 / 16.5 / 22 / 16$. $12 / 8 / 16$	20.19	7.02	30.0	4.70	8.77	77.91	30	55.92	14.51
2015 LeveLU Alternate 10/15/15-7/16/16. $8 / 15 / 16-5 / 17 / 17$	48.38	4.79	33.3	3.58	3.94	15.5	30	0.18	15.3
2015 Conjunction 12/24/13-11/17/14, 12/14/15-10/8/16	8.89	4.22	5.4	2.37	5.52	30.5	35	18.45	32.93
2015 LILRef_t 50 day 5/23/15-4/22/16, 5/22/16-1/27/17	14.19	6.93	18.0	2.37	9.47	89.7	30	55.92	15,22
2016 Boeing Nominal 2/25/16-7/31/16, 8/3/116-5/5/17	10.34	6.82	39.7	4.37	7.14	51.0	30	-35.94	-1.69
2018 Opposition 3/27/17-3/10/18, 4/24/18-12/18/18	19.71	5.96	10.9	2.58	5.94	25.4	30	17.97	22.3
2018 Conjunction $5 / 12 / 18-11 / 28 / 18,5 / 31 / 20-11 / 27 / 20$	7.86	2.97	7.9	3.41	4.02	16.2	45	-37.94	-7.81
2020 Opposition 6/4/20-12/11/20.1/10/21-1/28/22	24.40	3.89	27.8	3.77	4.28	18.3	20	15.1	-9.69
2020 Conjunction 7/20/20-1/16/21, 8/09/22-1/16/23	13.40	3.13	18.8	3.92	6.67	44.5	30	18.65	-3.40
2022.0pposition _11/1/21.9/17/22, 10/17/22.6/5/23	16.31	5.31	43.2	4.46	6.000	36.0	20.	-60.02	-4.04
2023 Coniunction 9/8/22-4/16/23, 7/9/24-5/5/25	19.03	3.18	12.3	2.66	2.86	8.81	30	50.73	23.71
2024 Opposition $9 / 20 / 23-7 / 4 / 24,8 / 4 / 24-5 / 30 / 25$	27.91	6.46	9.0	1.61	3.08	9.49	30	-19.58	-6.53
2025 Conjunction 10/17/24-6/24/25, 8/11/26-5/5/27	19.68	3.00	8.3	2.60	2.60	6.76	35	55.88	34.75

Level II Reference : $\begin{aligned} & \Delta V \text { Earth Departure }=4281 \mathrm{~m} / \mathrm{sec} \\ & \text { Data From MASE }\end{aligned} \quad \begin{aligned} & \Delta V \text { Earth Arrival }=6278 \mathrm{~m} / \mathrm{sec} \quad \text { (at LEO) } \\ & \Delta V \text { Arrival }\end{aligned}=3949 \mathrm{~m} / \mathrm{sec} \quad \Delta V$ Mars Departure $=3400 \mathrm{~m} / \mathrm{sec}$

Opportunity	C3 Earth Departure	Vhp Mars Arrival	C3 Mars Departure	Vhp Earth Arrival	Periapsis Altitude (km)	Apoapsis Radius (km)	Periapsis Radius (km)	Eccentricity	Semimajor Axis (km)
2010 Opposition	28.68	4.93	16.07	6.99	250	37188.13	3647	0.82	20415.57
2010 Conjunction	11.14	3.26	7.04	3.72					
2013 Opposition	13.07	4.10	37.68	4.53					
2013 Conjunction	9.58	3.15	6.88	4.47					
2015 Level II Reference	20.19	7.01	29.97	8.76					
2015 Level II Alternate	48.36	4.79	33.28	3.94					
2015 Conjunction	8.89	4.22	5.42	5.52	500	36932.86	3897	0.81	
$\begin{gathered} 2015 \text { L II Ref. } \\ +50 \text { day } \\ \hline \end{gathered}$	14.21	6.93	17.97	9.47	250	37182.86	3647	0.82	
2016 Boeing Nominal	10.34	6.82	39.72	7.14				0.82	
2018 Opposition	19.71	5.96	10.93	5.04		17243.37		0.65	10443.19
2018 Conjunction	7.86	2.97	12.28	4.02		37188.13		0.82	20415.57
2020 Opposition	24.39	3.89	27.83	4.28		36521.48		0.81	
2020 Conjunction	13.40	3.89	20.03	6.67		37188.13		0.82	
2022 Opposition	16.31	5.31	43.16	6.00		36521.48		0.81	
2023 Conjunction	19.03	3.18	9.31	2.86		37188.13		0.82	
2024 Opposition	27.21	6.46	2.02	3.08		37188.13		0.82	
2025 Conjunction	19.68	3.00	7.81	4.79	250	37188.13	3647	0.82	20415.57

This page intentionally left blank

	Orbit Insertion Lighting Angle, Latitude, and Approach Turning Angle for 2010 to 2025 Mars Mission Opportunities		
			STCAEM/Ph//19Mm90
Opportunity	Periapsis Lighting Angle (${ }^{\circ}$)	Periapsis Latitude (${ }^{\circ}$)	Approach Turning Angle (${ }^{\circ}$)
2010 Opposition	54.19	1.21 N	70.96
2010 Conjunction	42.20	42.51S	58.30
2013 Opposition	21.94	24.33 S	65.70
2013 Conjunction	55.01	16.40 S	57.22
2015 Level II Reference	22.57	28.22 S	78.88
2015 Level II Alternate	35.45	29.97 S	70.19
2015 Conjunction	67.75	22.12 S	67.58
2015 L II Ref. + 50 day	23.27	27.96 S	78.67
2016 Boeing Nominal	11.15	28.88 S	78.37
2018 Opposition	36.53	24.21 S	75.60
2018 Conjunction	50.52	47.65 S	55.16
2020 Opposition	13.50	15.97 S	63.94
2020 Conjunction	10.67	22.59 S	57.01
2022 Opposition	66.41	26.90S	72.90
2023 Coniunction	10.61	1.99 N	57.50
2024 Opposition	68.29	26.75 S	77.31
2025 Conjunction	15.32	22.06 S	55.55

Dala generated by the PLANET program, property of the Boeing Company.
2013 Conjunction minimum round trip $\Delta \mathrm{V}$ is approximately $11.5 \mathrm{~km} / \mathrm{sec}$ with an outbound/inbound trip time of
approximately 240 days.
900 Days Round Trip

This page intentionally left blank
Conjunction Class Minimum Energy and Fast Transfer Missions Shown in the next several chars are the data comparing the results of using a "Fast transfer" versus a minimum energy (mimimum ΔV) mission for the 2025 lime frame. As shown a price in ΔV cosis at all stages of he ripic must be paid for the reduction of time spent in transit and the reduced risk of crew exposure to Galactic Cosmic Rays. This price will be reflected in the IMI EO of the vehicle

[^3]

\[

$$
\begin{aligned}
& \text { vciny comoun } \\
& \text { limaction Mission } \\
& \hline
\end{aligned}
$$
\]

Conjunction Fast Transfers Preliminary Delta Velocity Trends

[^4]
Conjunction Fast Transfer Optimized Data

[^5]ETOEINE

Optimized Trip 'Time and Stay Time for Fixed Transler Time

Losses For Two-Burn Trans-Mars Injection

transit , or Mars TMI engine burn using the class of engesines to reach the required C3 energy for Mars transit ,
shows that it is possible to use these
with more than one TMI bum (broken plane trajectory). TMI engine bum using to use these engines to reach the required C3 energy for Mars transit ,
shows that it is possible tMI burn (broken plane trajectory). TMI engine TMI engine bum using to use these engines to reach the required C3 energy for Mars transit ,
shows that it is possible tMI burn (broken plane trajectory).

Separation ΔV vs. Days From Mars for
MEV One Day Early Entry Arrival Before the MTV vehicle arrives at Mars, it must separate with the unmanned MEV, which will
aerocapture first, before the manned MTV. The difference between the aerocapture of the unmanned
MEV and the manned MTV will be one day. To insure this separation, a separation maneuver must
be done before arrival. The cost of this separation in ΔV for is dependent on when it is done. This
curve shows that the minimum time from Mars arrival with the minimum required ΔV,(which occurs
at the knee of the curve) is 50 days out from Mars. This is for the Level II Reference mission.
Capture Trajectory Paths

[^6]

Performance Parametrics

Note: Contains material formerly in Mission Analysis
2010 Conjunction
S Vector and True Anomaly vs Parking Orbit Period

20 Degree Inclination

S vector
out of
plane

Minimum Mars departure $\Delta \mathrm{V}$ of approximately $1.2 \mathrm{~km} / \mathrm{sec}$ occurs for parking orbits with inclinations of
30° and 60° and period of 9 hours each.
Periapsis lighting angle is adequate for the parking orbits with inclinations of 30° and 60° and period of
9 hours each.
Minimum S vector out-of-plane occurs when the true anomaly at departure is closest to periapsis and the
orbital period is 9 hours.
Periapsis latitude for a $30^{\circ}, 9$ hour parking orbit provides a landing coverage for landing sites between
38° to 50° north latitude; periapsis latitude for $60^{\circ}, 9$ hour parking orbit provides landing site access to
landing sites between 5° south to greater than 20° north latitude.
(a)

This page intentionally left blank

2010 Conjunction
EDEINE

 Orbital Parameters vs Parking Orbit Period
-
sTCAEM/gtwßIMay90
BOEING
Results Obtained
Depth of penetration versus ballistic
coefficient and eniry velocity
Corridor height and g level vs. available
L/D and entry velocitles; entry conditions
Trajectory designs for aerocapture,
considering vehicle lift modulation
capability and rates
Development of guldance schemes and
laws; assessment of errors induced by
atmoshpere unpredictability
Accurate assessment of vehicle
capabilities for aerocapture; detailed
design requirements for aerobrakes
and flight control systems

[^7]Guidance, Navigation \& Control This shows another example of the trajectory design, using the OPTIC code. We are using two different GN\&C codes to cross-check results. OPTIC, developed by Boeing-Seattle, optimizes | 를 |
| :---: |
| $\frac{5}{2}$ |
| |

 with constraints. The other, The other, AEROPASS, developed by Boeing-Huntsville, optimizes sw and exercizes guidance laws. Constraints must
都
a

Guidance Schemes for Aerocapture

[^8]Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.

- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions. Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.
- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions. Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.
- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions. Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.
- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions. Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.
- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions. Requirements - minimize changes in inclination and line of nodes. Attain desired line of
apsides and apoapsis altitude.
- Maximum performance - redesign trajectory optimization and constraints every few seconds,
but requires very high computer performance.
to experienced atmosphere conditions.

Guidance Schemes for Aerocapture

Orbit Correction Analysis
The next three pages illustrate a method of correcting exit conditions with two burns, and show
some preliminary results of calculations of the delta V required for each burn as a function of the
magnitude of exit errors.
BOEING
Orbit Correction Analysis

- Burn at V2 will - raise periapsis height
- correct inclination errors
ang 2
The delta velocity is Independent on the true anomaly at first burn but is
dependent on the filight path angle error. The two flight path angle
errors examined were one degree and five degrees. Even though the delta
V's for the different flight path angles are significantly diferent. the
delta V for the second burn is not dependant on the error in the first
burn. The total correction delta v is minimized by performing the first
burn close to the periapsis where the true anomaly is zero.
In the early part of the trajectory, the roll angle is set by the gravity
loading which is an Indicat lon of the type of atmosphere encountered. In
the early to mid portlon of the trajectory, the roll angle is used to
minimize the flight path angle error which is based on the difference
between the actual filight path angle and the predetermined opt imum fight
path angle. In the latter part of the trajectory the roll angle is used
to minlmize the line of apsides error. Examples of gulded trajectory
profiles are provided for low and high density atmospheres.
Guided 'Irajectory Lixamples

/SICAIIMAev/3iMay90
For the hyperbolold vehicle it is lllustrated that the constraint can be
met with an entry filght path angle of approximately $\pm 0.75^{\circ}$. This is
illustrated for the coSpar low atmosphere.
Parking $\underset{\text { Errors }}{\text { Orbit Constraint }}$

(mili) suppy jsceody
Mars Aerocapture Trajectory - Finite Roll Rate This figure shows the effects of finite roll rates on the trajectory design. In going from left to right
and back, the lift vector may be rolled over the top, or under. Because this perturbs the vertical
path, the rest of the trajectory design must compensate by going a little deeper (roll over) or a little
less deep (roll under). These results show that the effect on the vertical path is less with the roll
under, and that the maximum deceleration is less, leading to a clear preference for "roll under".

Mars Aerocapture Trajectory Design Approach
The trajectory design approach is tailored to a roll-only control scheme. Excess lift is dissipated by
veering the trajectory to the left and to the right in a dog-leg or "slalom" maneuver. The
illustration on the left shows a nominal symmetric design, with roll angles of $107^{\circ}\left(0^{\circ}\right.$ is straight
up). This applies a net vertical lift coefficient of about -0.15 . The asymmetric design on the right
enables control of the line of apsides, so that the range of atmospheres represented by the COSPAR
low and high density atmospheres can be navigated, from the same entry conditions, to realize the
same capture orbit, within reasonable delta V budget for post-exit correction. For the low-density
atmosphere, the roll angle is greater during penetration than during exit. For the high-density
atmosphere, the reverse is true.

CTy | - COSPAR low-density atmosphere |
| :--- |
| - Fixed IJD 0.5 - Entry path angle -10° - Mproach C3 $50 \mathrm{~km} / \mathrm{Cec}$ |
| $00 \mathrm{~kg} / \mathrm{m}$ |

Mars Aerocapture - Guided Trajectory Examples

"Slalom Course" Maneuver Profiles
This simulation, with the OPTIC code, examined the effects on a trajectory design of typical
atmosphere density variations predicted by MARS-GRAM. The most significant effects were a
significant reduction in exit velocity and a large rotation of the line of apsides. No adaptive
guidance was simulated. The result shows a clear need for adaptive guidance.
Atmosphere Entry Conditions for "Slalom Course" Maneuver
An additional display of the trajectory design is shown here. Corridor height parametrics are on the
left. A typical trajectory profile for a relatively dense MARS-GRAM atmosphere is on the upper
right. Typical MARS_GRAM atmosphere desnity predictions are shown on the lower right.

(930) STowv xuve
Illustrated for day and nlght at the equator during spring equinox of the
year 2016 . The wider envelope for the equinox day profile is due to the
diurnal bulge.

A set of synthetic-density wave equations are given on the following
These wave equations were used to determine aerocapture guidance
sensitivities from density variations (worst case) that may be encountered during Mars Aerocapture.
\therefore Synthetic Density Wave Equations

[^9]\[

$$
\begin{aligned}
& \text { Using the COSPAR low atmosphere with sine wave distribution of the } \\
& \text { density, calculations were made which illustrate that for sine wave } \\
& \text { lenghts greater than } 1000 \mathrm{~km} \text { the exit velocity errors are higher than for } \\
& \text { the lower wave lengths. The } 30-40 \mathrm{~km} \text { altitude region is by itself the } \\
& \text { most critical region. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { Guided trajectories were simulated for horizontal and vertical wave } \\
& \text { lengths. The horizontal wave length varied to } 2000 \mathrm{~km} \text { wlth vertical wave } \\
& \text { lengths of } 5 \text {, } 10 \text { and } 20 \mathrm{~km} \text { The larger vertical wave length of } 20 \text { km } \\
& \text { provides a more favorable atmospheric condition as the density variation } \\
& \text { in the vertical direction does not vary as much as the lower wave lengths } \\
& \text { in the critical region. }
\end{aligned}
$$

This page intentionally left blank

Aeroheating estimation methods we are using are summarized here.
STCAEM/sLI/15Mar90
Stagnation Point Heating

- Convective (Boundary Layer Analysis Program)
- Axisymmetric Analog
-Pressure Distribution: Newtonian Impact Theory
-Laminar Flow (Re transistion $=2 \times \mathbf{1 0}^{6}$)
MTV Aerobraking Constraints

[^10]
This page intentionally left blank

L/D
high
Aerobrake - Aerodynamic characteristics of the
based on Modified Newtonian impact theory
High L/D
aeorbrake,
1

HIGH L/D AEROBRAKE

C3ETEGNGE

The stagnation point heating rates were calculated using the MARSIN code
with a two dimensional trajectory and MarsGRAM atmosphere (high density).
Te convective heat transfer was calculated for a fully catalytic wall, the
radiative heat transfer was calculated using the Tauber-Sutton method and
equilibrium flow. The stagnation point radius of curvature was 13 m . The
range of L / D varied form 1.0 to -1.0 . For each condition a fixed L / D was used.
The calculations illustrate that as L / D becomes negative the heating rate
decreases.
\%

宽

IUMI211895/AEROBRAKE STUDY/DISK 21J/141.017:00A
This page intentionally left blank
Assumed Streamlines S1, S2, S3
For an angle of attack of 20°
$L / D=0.5$

The following three charts show the pressure distribution along the
fore, aft, and side streamlines based on a modified Newtonian theory,
and unswept cylinder theory for the cylindrical lip.
$P_{s P}=$ Stagnation Point Pressure

$P_{s P}=$ Stagnation Point Pressure
GRM/2H89S/AEROBRAKE STUDY/DISK 2/N/141-0/7:00A
The following chart delineates the aerothermal conditions at the
stagnation point for maximum heating along the aerocapture trajectory.

For the hyperboloid aerobrake of approximately 30 m length, the heating
rate was calculated using the boundary layer analysis program (BLAP) for
the convective heat transfer with the radiative heat transfer being
calculated using the Park method and the Jauber-Sutton method. For the
forward stream line heating, the radiative heat transfer using the Park
method is approximately twice that of the Iauber-Sutton method. No
turbulent transition was assumed for the calculation. The heating rate at
the stagnation polnt is approximately $146 \mathrm{w} / \mathrm{cm}^{2}$ using the Park method and
approximately $80 \mathrm{w} / \mathrm{cm}^{2}$ for the Tauber-Sutton method.
2
2
2
2 - - ...

G GRM/2HE9SIAEROBRAKE STUDYIDISK 2/O/165.0111:00A
S2 111

Side Streamline Heating

S3 m

들

\qquad

jo
ssay 6
sppu
103

for
告
lations
E
number
The Reynolds ${ }^{n 1}$
approx imately 30
conditions behind
the BLAP program.
120 sec. with a v
of $30 \mathrm{~km} 2 / \mathrm{sec}$.
than one million.

Mars Transfer Vehicle
Incident Shock Layer Gas Radiation In the Base Region
Preliminary results of work performed under subcontract, by RemTech Inc. to ACSS is displayed in the following three charts. The study involved examining the base flow heating regime, which includes both convective and radiative heating for a C 3 of $30 \mathrm{~km}^{2} / \mathrm{sec}^{2} \mathrm{MTV}$ aerocapture at Mars. The purpose was to determine the region of low heating behind the MTV and thus the protective cone for packaging the crew, habitat modules, and other cargo. The trajectory used for this analysis was provided by ACSS and is displayed on page $3-9$, where the maximum stagnation point heating is $83 \mathrm{~W} / \mathrm{cm}^{2}$.
The graph below displays the base radiative heating rate as a function of time for the $\mathrm{C} 3=30$ trajectory. The equation shown on this chart gives the radiative heating rate to a surface in the base, for varying view angles. These radiative heating predictions are based on relationships derived and used for the AFE base flow heating regime. The maximum base flow heating occured at 114 seconds with a maximum radiative rate of $\sim 1.5 \mathrm{~W} / \mathrm{cm}^{2}$. This value is only 2.6% of the peak stagnation point value.

Mars Transfer Vehicle
Base Convective Heat Rates Tw $=1367$
The graph below shows the convective heating rate within the base region along the $\mathbf{C} 3=30$ aerocapture
trajectory. Maximum base convective heating occured at 114 seconds, with a value of $\sim 1.7 \mathrm{~W} / \mathrm{cm}^{2}$. For
the heating rate calculation, the assumed wall temperature (Tw) was 1367 K . Changing this Tw value by \pm
30% resulted in only a $\sim 1 \%$ change in heating rate and thus Tw was found to be of small importance in
computing the heating rate. Total heating rates for the base region are on the order of $3.2 \mathrm{~W} / \mathrm{cm}^{2}$, thus
requiring a need for some TPS on surfaces within the base.
Shown below is a graphical depiction of the wake closure, and protective low heating region for the MTV aerobrake. This shear layer angle is based on calculations made for the expansion of the flow around the lip of the MTV aerobrake. Flow field properties around the lip were estimated using the BLIMPK
 viscous region, estimated from experimental data, accounted for an additional 7° resulting in a total wake deflection angle of 38°. This preliminary estimate of the wake flow would impact the packaging of the aerobrake contents.

The following approximate temperature contours are based on the
BLAP convective and Tauber_Sutton radiative streamline heating dis-
tribution.

This page intentionally left blank
Stagnation Point Heating (Park Method)

- Radiative heating for $30<\mathrm{C}_{3}<50 \mathrm{~km}^{2} / \mathrm{sec}^{2}$

$$
\begin{array}{l}\geq 80 \% \text { of total (Park) } \\ \\ \geq \mathbf{6 5 \%} \text { of total (Tauber-Sutton) }\end{array} \text { - Stagnation temperatures for } \mathrm{C}_{3} \geq 30 \mathrm{~km}^{2} / \mathrm{sec}^{2}
$$ exceed $2000^{\circ} k$

	Park		Tauber-Sutton	
$\mathbf{C 3}$	$\mathbf{Q} \mathbf{W} / \mathbf{C M}^{2}$	$\mathrm{~T}^{\circ} \mathrm{K}$	$\mathrm{Q} \mathbf{W} / \mathrm{CM}^{2}$	$\mathrm{~T}^{\circ} \mathrm{K}$
30	146.	2383	83.	2068
40	299.	2850	170.	2474
50	481.	3210	274.	2790
1993 technology	68.	1968		

$$
\begin{aligned}
& \text { The stagnation point heating rates were calculated using the MARSRT* code } \\
& \text { with a two dimensional trajectory. The convective heat transfer was } \\
& \text { calculated for a fully catalytic wall; the radiative heat transfer was calculated } \\
& \text { using the Park method and equilibrium flow. The stagnation point radius of } \\
& \text { curvature was } 13 \mathrm{~m} \text {. The range of L/D varied from } 1.0 \text {. to }-1.0 \text {. For each } \\
& \text { condition a fixed } \mathrm{L} / \mathrm{D} \text { was used. The calculations illustrate that as L/D becomes } \\
& \text { negative, the heating rate decreases. }
\end{aligned}
$$

Two structural designs, spar and truss, were used for the hyperboloid
aerobrake. The aerobrake has a length of approximately 31 meters, width
of 28.2 meters and height of 6.5 meters. In both cases the aerobrake
accommodates an englne hatch. In the case of the truss conf iguration, the
tetrahedral truss respective points were projected on to the aerobrake
surface to accommodate the required curvature. The spar configuration
used a carbon magneslum metal matrix and the truss configuration used
graphite epoxy. In both cases an aluminum honeycomb core was employed
with a titanlum face sheet. The Mars excursion vehicle had a payload of
81 metric tons and the Mars transfer vehicle the payload was 153 metric
tons.
Design Assumptions:

soractará ;on-spar connguration

3D View

G GRM/2HB9S/AEROBRAKE STUDY/DISK 5/C/165.0/10:00A

Aeroheating Principal Findings

[^11]

- Mars Aerocapture Radiation Problems
For C3's from $30-50 \mathrm{~km}^{2} / \mathrm{sec}^{2}$, Radiative flux is $80-90 \%$ of
total heat flux.
- Stagnation Temperatures for $\mathbf{C 3}$'s $\geq \mathbf{3 0}$ are above near term reradiative
technologies. eg.
Note: 1993 reradiative
$T^{\circ} K$
2383
2850
3210
$Q\left(\mathrm{w} / \mathrm{cm}^{\wedge}\right)$)

146.
147.
148.

C3
-30
40
50

- Options
- Use of ablators for Mars Aerocapture. - Improve reradiative materials. ach C3's. - Limit the Missions to lower approach C3's. - Modify or Change the Aerobrake shapes.

- Needs

- Improved Analysis for Non-Equillibrium Radiation in CO_{2} Atmosphere Engineering Methods for treating Non-Axisymmetric blunt body flows.
Importance of Landing Site Analysis
The reasons for performing landing site analyses are indicated on the facing page. Landing site
access will be the requirements driver for Mars Excursion Vehicle aerobrake L/D and descent
profile design.
Importance of Landing Site Analysis
BOEING 06'1/9d/W3YO1S - Landing site location determines the L / D requirements to get - L/D requirements determine the configuration of the
Mars Excursion Vehicle Aerobrake

- The configuration of the aerobrake determines the load points, vehicle stress

and available wake cone area to place the lander vehicle inside of

- The wake cone, stress points,and load points determine the configuration of the
lander

[^12]Preliminary Mars Landing Sites Between $\pm \mathbf{2 0}{ }^{\circ}$ Latitude

The next three pages show a sampling of landing sites of scientific interest in the $\pm 20^{\circ}$ latitude band
on Mars. Altitudes are ealso shown, since ealitude has a strong effect on landing delta V . We are
presently designing for access to any site within this latitude range, at altitudes up to 5 km . with the
COSPAR low-desnity atmosphere. This will permit landings up to $8-9 \mathrm{~km}$ altitude with typical
atmosphere densities.

Eos Chasma (part of Valles
Marineras, with possible
access to the valley floor,
accessible places in the
valley floor -1 and -2 km)
Lassell and Ritchey Craters,
Felis Dorsa, crater field
some with flow fields,
Holden Crater
Tyrrhena Patera (massive
flow field from a single
source), crater fields,
surface cracks and
fissures, Terra Tyrrhena
area, small mounts
Pettit Crater, Nicholson
Crater, surface cracks, Orcus Patera, Cerberus Rupes, colored soils, old craters, Apollinaris Patera, Gusev Crater and flow field, edge of Elysium flow shield, Medusae Fossae, "new" craters in the Elysium flow shield
Martian
altitude
3 km
4 km
0 km
Planet coordinates
lat. long
49°
253°
180°
$-19^{\circ} \mathrm{S}$
$-16^{\circ} S$
0°
Place
South of
Eos Chasma
Hesperia
Planum
Elysium-
Amazonis
rreimminary iviars Lainunig sites
Between $+/-20^{\circ}$ Latitude
page 3

Planet coordinates
lat. long.

Place
flow area around Olympus Mons, edge of Gordii Dorsum and Eumenides Dorsum formations, crater
area east of Pettit Crater Chryse depression (-3 km), end of Kasei Vallis, Sharonov Crater,Lunae Planum; Nanedi, Shalbatanu, Simud, and Tiu Valles, end of Ares Vallis, craters, colored sands

Areas of Interest
faccessible by
rover. 1000 km
out from landing)

Ophir Chasma (part of
Valles Marineras, with
possible access to the
valley floor), Hebes
Chasma, Echus Chasma,
Juventae Chasma, Ophir
Planum, Lunae Planum,
crater field, colored soil

Hephaestus Fossae, Elysium
Fossae,Elysium Mons, Albor
Tholus, Eddie Crater with
interior formation, colored
sands
Elysium Mons, Elysium
Fossae, Ocrus Patera,
Cerberus Rupes, Lockyer
Crater, Phlegra Montes,
colored sands, craters, old
and "new"

Planet coordinates lat. long	Martian altitude	
$-2^{\circ} \mathrm{S}$	68°	1 km
$19^{\circ} \mathrm{N}$	226°	0 km
$19^{\circ} \mathrm{N}$	197.5°	$2-3 \mathrm{~km}$

Elysium
Planitia

Mars Descent Analysis Findings

~
same
Lanumg Analysis Range Effect of L/D

$$
\begin{aligned}
& 81 \mathrm{mt} \\
& 470 \mathrm{sec}
\end{aligned}
$$

$$
471 \mathrm{~m}^{2}
$$

$\mathrm{L} / \mathrm{D}=1.0$

The following plots were generated the using OTIS (Optimal
Trajectories by Implicit Simulation) program. The plots show
the filght path of a vehicle that will give the maximum crossrange
and they show the crossrange. The plots were done for a vehicle
flying at a lift to drag ratio of one and a lift to drag ratio of one-half.
Lift to Drag Ratio = $\mathbf{1 . 0}$

θ

This page intentionally left blank

Lift to Drag Ratio $=0.5$

The hyperbolic shaped vehicle analysis was carried out for a range of $1 / 0$ from 0.65 to 1.0. The reference area of the derobrake was 471 square the aerobrake weight itself
트ㄹㅡㅡㅇ " に SD ditio 든 crossrange of 1000 km may be obtalned.
Mars Landing Simulation with Aerodynamic Flare
Shown on this chart are results of an un-optimized, but typical, aerodynamic and propulsive descent.
Mars entry occurs at a 90° roll angle to obtain maximum cross-range. As the vehicle slows to below
circular velocity, roll-out in two steps maintains roughly level flight. Most of the descent is flown at
$\mathrm{L} / \mathrm{D}=1$. Prior to engine start, the L / D is briefly increased (drag decreased) to increase speed.
Then the vehicle is pitched to maximum lift coefficient at L/D about 0.5 . This causes an
aerodynamic flare, decreasing speed and increasing path angle. The result is a significant decrease
in rocket thrust and delta V for landing.
The importance of this is that it generates a requirement for pitch control, a requirement not present for aerocapture. The combination of high L/D and pitch control will lead to selection of an aerobrake shape much different from the MTV aerocapture case.

- COSPAR low-density atmosphere
- Entry mass 81L.
- Thrust 80k
- Max LD 1.1
- Ref Area $750 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { For a range of } 1 / 0 \text { from } 0.65 \text { to } 1.0 \text {, the ideal delta velocity range is } \\
& \text { from } 1400 \mathrm{~m} / \mathrm{s} \text { to } 1200 \mathrm{~m} / \mathrm{s} \text { for landing at a } 5 \mathrm{~km} \text { allitude. In the case of } \\
& \text { an aeroflare } 1 \text { ith two different reference areas of } 470 \text { and } 750 \mathrm{~m} \text { with a } \\
& \text { cutoff velocity } 0.02 \text { the Ideal delta velocity is approximately } 900 \mathrm{~m} \text { per } \\
& \text { second. This results in a delta velocity reduction due to using the } \\
& \text { aeroflare from } 200-300 \mathrm{~m} / \mathrm{s} \text { for } L / 0=1.0 \text {. }
\end{aligned}
$$

1
Ideal Delta Velocity ESA $=\mathbf{1 1 ~ k m}$
Aerobrake Drop $=8.52$
Cutoff Velocity $=\mathbf{0 . 0 2}$
Ideal Del Velocity $=918.5$
This page intentionally left blank

Levied Requirements

This page intentionally left blank

Reference Cryogenics/Aerobrake (Cryo/Aerobrake) - System Requirements

During the course of the Space Transfer Concepts and Analysis for Exploration Missions contract (STCAEM), Boeing's Advanced Civil Space Systems group (ACSS) has conducted regular review meetings in order to define and derive requirements, conditions and assumptions for systems currently being developed.

As system definition and development progresses, technical experts provide documentation and rationale for requirements that have been derived. This real-time capturing prevents requirements and their associated rationale from being lost or neglected. For example, a vehicle configurator may see the need for providing a minimum passage dimension for vehicle egress or ingress. This requirement would then be captured at an early development stage and would provide a history for the decision. This seemingly simple requirement may have large impacts on the design down the road and its traceability is important.

Derived requirements and rationale are later transfered to the Madison Research Corporation (MRC) where they are then entered into the system data base which has been developed for ACSS using ACIUS's 4th Dimension(2) software. The data base allows for easy access and traceability of requirements.

The charts that are contained within this document represent two collated copies of principal requirements and assumptions for February 2, and May 30, 1990. The systems defined include: (1) the Mars Transfer Vehicle (MTV), (2) Mars Excursion Vehicle (MEV), (3) Trans-Mars Injection Stage (TMIS), and the Earth Crew Capture Vehicle (ECCV). Each system is then broken down into subsystem headings of: (1) design integration, (2) guidance, navigation and control (GN\&C), (3) electrical power, (4) man systems, (5) structure and mechanisms, (6) propulsion, (7) ECLSS, (8) and command and data handling ($\mathrm{C} \& \mathrm{DH}$). The initials of each of the technical experts responsible for developing the supporting rationale for each of the requirements is indicated parenthetically next to each entry.

Although the majority of the derived requirements listed are directly applicable to all vehicles such as those powered by Nuciear Electric propulsion (NEP), Nuclear Thermal Rockets (NTR), Solar Electric propuision (SEP) and reference Cryo, there are some that are not. Those requirements that are only directly applicable to a specific vehicle type are indicated within the entry. The italicized entries indicate a modification to an original requirement prior to the second revision of May 30, 1990.

Defining and re-examination of derived requirements will continue through the current contract.

PREQMivis page blafio not fllamed
General Requirements

- First Mars landing in 2016 - Quarantine and medical provisions provided
- Factors of safety set for metallic/nonmetallic/pressure structures
- Failure tolerance/ maintainability requirements identified
- Cargo flight and second manned landing in 2018
- Vehicles sized to meet given mission phase ΔV budget and durations

- Manned flights to deliver crew and 25t payload to surface - Crew and 1t payload returned to LEO for each manned flight - NASA STD 3000 applicable

Level II Requirements for Mars Space Transportation
(continued)
Mars Transer Vehicle(MTV)
Mars Transfer Vehicle (MTV)

- Aerobraking to be used at Mars arrival ($\mathrm{Ve} \leq 9500 \mathrm{~m} / \mathrm{sec}$)
- Aerobraking to be used at Earth return (Ve $\leq \mathbf{1 2 5 0 0} \mathbf{~ m} / \mathrm{sec}$)
- Provide direct entry capability at Earth return ($\mathrm{Ve} \leq 14000 \mathrm{~m} / \mathrm{sec}$)
- Piloted MTV to be reusable without major maintenance for $\mathbf{5}$ missions
- EVA capability provided
- Zero-G transit
-In transit science performed outbound and inbound Mars Excursion Yehicle
- Expendable Vehicle
- Chemical propulsion (LOX/LH2)

Derived Requirements

This page intentionally left blank
STCAEM/02Fcb90/mha BOEING
MTV Derived Requirements
Design Integration

- Two (2) communications satellites deployed in Mars orbit with total mass $=3000 \mathrm{~kg}$ (GW)
- Crew module must accommodate alternative advanced propulsion options (BD)
GN\&C
- Capture trajectory entry interface for aerocapture not to exceed 6 'g' limit and to preclude an
uncontrolled skip-out (PB)
- Electrical Power
- Solar power to be used for transfer phase, batteries to be utilized for sun occultation time
while in Mars orbit (BC)

Man Systems

- Added protection to crew from Solar Proton Events (SPE) will incorporate use of a "storm
- Consumables stored will suffice for crew residence time from 443-1018 days (includes abort),
assumes $\mathbf{1 0 0 \%}$ ECLSS closure of water and oxygen, 0% closure on food and $\mathbf{. 2 5} \mathbf{~ k g}$ leakage per day (PB)
- Two (2) astronauts able to pass through major circulation paths while wearing EVA suits. (SC) Crew quarters shall provide sufficient volume for casual conversation between at least two (2) crew members (SC)

MTV Derived Requirements
 (continued)

Man Systems (continued)

- Crew visibility during all maneuvers (docking/rendezvous) (SC)
- There shall be 2 means of egress from each module for emergency escape (SC)
- Crew module to accommodate 0'g' and induced 'g' environments (SC)
- Structure and Mechanisms
- Airborne support equipment for aerobrake shall be $\mathbf{2 0 \%}$ of aerobrake mass (PB)

Design Integration

- MAV must be able to abort-to-orbit during descent phase (PB)
- Twenty-five (25) ton down payload on manned vehicles (BS)
- Protective covers provided for all mission critical systems (BS)

GN\&C

$-\mathrm{L} / \mathrm{D}$ range from 0.5 to $1.0(\mathrm{GW})$
\bullet

Deorbit from 1 sol $\times 250 \mathrm{~km}$ periapsis orbit (GW) - Currently, cross range $= \pm 500 \mathrm{~km}$ (GW) - Engine start before aerobrake drop (GW)

- Approach path angle $=15^{\circ}(\mathrm{GW})$
- Approach papture trajectory entry interface for MEV aerocapture at Mars not to exceed $\mathbf{6}^{\prime} \mathrm{g}^{\mathbf{\prime}}$ limit
on crew members and equipment and to preclude an uncontrolled skipout of the
Mars atmosphere (PB)
- Landing accuracy after aerobrake jettison will be unaided by landing beacons assuming $\mathbf{1 k m}$
cep and with beacon assuming 30 m cep (PB)
- Autonomous aerocapture capability at Mars, ~one (1) day before MTV (BS)
- Aerobrake jettisoned in controlled manner during powered descent phase (BS)

- Electrical Power Pre-descent checkout of engines to be provided (checkout extent TBD) (BD)
- One (1) meter clearance established between engine bells and surface (SC) approach to Mars (BC)
- Power for $\mathbf{5 0}$ day approach sequence to Mars shall be provided by solar arrays separate from the full MTV configuration. Arrays to be retracted 12 hours prior to Mars encounter, power shall be provided by batteries or other internal source (BC)
eclss
Capability of two (2) crew cab represses (BD)

Man Systems

- Consumable s will suffice for a crew residence time of 30-600 days dependent on mission stay time and abort scenarios, assumes 100% ECLSS closure of water and oxygen, 0% closure of the food and .15 kg leakage per day (PB)
- The maximum surface stay time is $\mathbf{6 0 0}$ days (PH)

[^13]
- Design Integration

- Flexible to support reference missions (interconnect design to support reference mission requirements (GW)
- Fully modularized to utilize ETO capacity, the amount of modularization shall be a function of the ETO vehicle chosen (PB)
- Assembly to be accomplished on-orbit, remo
- Assembly to be accomplished on-orbit, remotely and robotically (BS)

Propulsion

-
- Reference vehicle is launched "wet" with top-off (dry/wet issue to be traded) (JM)
-Structure and Mechanisms
- Thrust structure - tanks - intertanks used as primary structure (GW)
- Reference vehicle is launched "wet" with top-off (dry/wet issue to be traded) (JM)
Structure and Mechanisms
- Thrust structure - tanks - intertanks used as primary structure (GW) hardware sets (PB)
> - Design Integration - Wake closure cone behind all aerobrakes is 44° wide (BS)
- Equipment design life must account for mission duration plus one year (BS)
- All components designed for 5 missions with refurbishment (except aerobrake) (BS)
- Design for range of crew sizes, from 4 to 12 (BS)
- L/D range from 0.5 to 1.0 for aerobrake vehicles at Mars (BS)

GN\&C

$-8500 \mathrm{~m} / \mathrm{s}$ maximum entry velocity at Mars (GW)

- $100 \mathrm{~m} / \mathrm{s}$ error-correction (post aerocapture) (GW)

Propulsion

- Engine out capabilities in all mission phases (BD) Maxim gimbal angle of engines TBD (BD)
Man Systems

- Solar Proton Event (SPE) protection to be provided (MA)
- Allow for direct viewing of all docking, berthing and landing procedures (SC)
BOEING
Mars Transfer System Derived Requirements
All systems shall function up to 2 years in a dormant state and having been subjected to the

All critical function lines and redundant systems shall run non-parallel (PB)

The airborne support equipment mass for launch to Earth orbit shall be assumed to be
15% for all hardware except the aerobrake (PB)

Structure and Mechanisms
 -

 aerobrake mass (PB)- Airborne support equipment mass assumption for the aerobrake shall be $\mathbf{2 0 \%}$ of the
Aerobrake will be launched to Earth orbit in sections for on-orbit assembly as the reference case (PB)
MTV and MEV aerobrakes have common layout of attach points (BS) LEO operations. These panels will be removed and saved in LEO to be used for the next mission-opportunity. The panels will not add to the LEO debris environment (BS) - Mission vehicles will carry a robotic manipulation capability to inspect and maintain all exterior areas and systems (BS)
- Structure optimized to minimize weight, operations, complexity and development effort (BS) - Greater than 30 cm separation bet ween all major vehicle exterior systems (i.e., tanks, modules) (BS)

C\&DH

Availability when scheduled - 98%
$\%$ of the time. connectability (PH)

MTV - ECCV Derived Requirements

OOEING
STCAEM/02Feb90/mha

> GN\&C
> Capture trajectory entry interface for ECCV aerocapture or aeroentry into Earth atmosphere not to exceed $6^{\prime} g^{\prime}$ limit on crew and personnel, and to preclude an uncontrolled skip out of Earth atmosphere (PB) $-\mathrm{L} / \mathrm{D}=0.25$ (MF)
> - Structure and Mechanisms
> - Interior materials must conform to NASA standards for outgassing, fire hazards,etc. (SC)
> - Design Integration

- Assembly to be minimized to extent practical. (KS)

- Propulsion

- Passive thermal control system including zero-'g' thermodynamic vent system coupled to multiple
vapor cooled shields. (JM)
- TMIS insulating system is a continuously purged MLI over foam design optimized for minimum
ground-hold, launch, and orbital boiloff. Includes vapor cooled shield (coupled to TVS)
outside of foam. (JM)
- TMIS tanks launched late in assembly sequence to minimize orbital stay time before TMI burn (, 6
months). (JM)
- MTV tank insulation system is thick (2-4") MLI blankets. Multiple vapor cooled shields placed at
optimum points in the MLI. (JM)

Structure and Mechanisms

rrust structure - tanks - intertanks used as primary structure for cryolaerobrake only (GW)
Note: Changes to existing derived requirements dated 02 February 1990 are shown here in italics

- Design Integration
- Wake closure cone \mathbf{b}
on the velocity
Wake closure cone behind all aerobrakes is 44° wide. The total wake closure angle is centered
on the velocity vector. (BS)

- GN\&C

$-200 \mathrm{~m} / \mathrm{s}$ error correction (post aerocapture) (GW)

- Propulsion

(BD)
MOI)

STCAEM/mha/30May9

- Design Integration

- Down payload on manned vehicles
.$\sim 25 \mathrm{mt}$ down payload for reference MEV (includes habitat module) (BD)
$\sim 0.7 \mathrm{mt}$ down payload for the 'Mini-MEV' (crew habitat is provided by the ascent/descent cab) (BD)

- GN\&C

- Currently, cross range $= \pm 1000 \mathrm{~km}$ for high L/D aerobrake (GW) - Landing approach path angle $=15^{\circ}$ (GW) with beacon assuming 30 mCEP (PB)

[^14]Note: Changes to existing derived requirements dated 02 Febnuary 1990 are shown here in italics
This page intentionally left blank

Guidelines and Assumptions
 - Multi-impulse TMI and TEI is permitted, (engine restart)
(e.g., three-burn departures acceptable for TMI to ease launch declination window
problems [Level II])

- Cryogenic propulsion for Earth/Mars departures and Mars descent (cryogenic/aerobrake for Earth and Mars are selected as reference)
- Proven cryogenic storage technologies will be used
- Advanced propulsion technology options include NTR. SEP, NEP, and GCR
- MTV expendable on "difficult" opposition missions; return to Earth via ECCV
- TMIS expendable for reference system
- 100 ton cargo requirement (cargo mission) met by two (2) standard MEV's without ascent stages
- Maximum size surface payloads on piloted MEV: 6 m diameter and 13 m length

Flight Performance Requirements and Reserves

None for consumables and impulse propellant
- Consumables requirements shall include need
- Propellant reserves generated by flight perfor
- Use $\mathbf{2 \%}$ of tank capacity for liquid and vapor
- $15 \%-25 \%$ on new design/new technology, complex design, and poorly-understood requirements.

Payloads include flight support equipment

Manager's Reserye Policy, eng between launch vehicle capability and manifesting. 'WBD.

III. Operating Modes and Options

This page intentionally left blank

Reference

This page intentionally left blank
1)61:5100?6-2.

Cryo/Aerobrake - Operating Modes and Options Reference

This section contains the following:

- Operations Outline
- Operations Task Flow Description
- Operations Assumptions
- Operational Task Flow

In order to evaluate the difficulty of the mission operations a top level view of the necessary sequence of events was generated. Only the areas of on-orbit assembly and ground support were delved into to any depth. These are discussed in the support section of this document. The path itself is shown in this section and includes options at assembly (on or off Space Station), in transit outbound or inbound (with or without Venus flyby, Deep Space Burn and coast correction any combination of which may be used) and on return (depending on how much of the vehicle is recovered and where it is recovered at).

The Cryo/ Aerobrake vehicle will operate out of the LEO Space Station orbit. The completed vehicle will leave from a position co-orbiting with the Space Station and do one to three burns to attain the Declination Launch Asymptote (DLA) required for Mars transfer. The Trans-Mars Injection stage is dropped after the last burn and the transit configuration established. This, at present, is the zero-gravity transit configuration, but an artificial gravity configuration would be established at this point in flight. For any swingby, Deep Space Bum or coast correction maneuver, the arrificial gravity configuration must be despun, reconfigured to the zero-g conditions and reconfigured to the artificial gravity conditions after the maneuver has been performed.

The on-line self-check capability of the systems and subsystems will be used throughout the mission to monitor the vehicle health and indicate preventative maintenance. Due to the length of the mission (1-3 years) the vehicle must be self sufficient and capable of maintenance and repair with a limited crew (4-7 people). The length of mission time and the distance will impose limits on the communications and control of the vehicle that can be done by ground operations; the crew are on their own resources.

About 50 days prior to Mars entry the Mars Excursion Vehicle (MEV) and the Mars Transit Vehicle (MTV) will separate, with the MEV operating autonomously and entering first as a pathfinder, the two vehicle sections will aerocapture and rendezvous in orbit. If anything happens to the MEV in capture, the MTV with crew, will abort and return to Earth. After the vehicle sections are docked and the final site selection has been made, the MTV will be set to operate autonomously, the crew will transfer to the MEV, demate the MTV and MEV, perform the on orbit checkout and descend to the surface. The MEV will have the capability to perform a descent abort with the ascent section in the event of an emergency to obtain orbit. From there, a rendezvous and docking maneuver with the MTV will be done for crew transfer and Earth return.

Once on the surface, the MEV establishes contact with both the automated MTV and Earth., then proceeds to carry out the surface mission. When the surface mission is complete, the ascent section liftoff leaving the descent section of the lander and surface habitat behind. The ascent section attains orbit and docks with the MTV, the crew transfers with the return samples and all extraneous mass is jettisoned prior to the Trans-Earth -Injection Burn.

The inbound return transit proceeds like the outbound leg, with options in Venus swingby, coast maneuvers and transit flight configuration. On Earth retum, the baseline option is to have the crew and samples transfer to the Earth Crew Capsule Vehicle (ECCV) several days before Earth entry takes place, disengage from the MTV and return to Earth on a direct entry course in the style of the
This page intentionally left blank

Apollo crew capsule. Altemate capture scenarios involve capturing the ECCV into a Space Station access orbit and crew renurn through the Space Station, and full capnure of the MTV into LEO orbit
Cryo/Aerobrake Mission Operations Outline This is a top level outline of the major task sequences and their relative location for the Cryogenic fuel/Aerobrake vehicle for Mars missions. It is divided into four segments:

involving operations from hardware buildup to Trans -Mars Burn
 b) Transit Operations - operations to be performed during the outbound transit flight

 from Trans-Mars Burn through the MTV/MEV separation for Mars atmosphere aerocapturec) Mars Operations - covers the events from MEV and MTV aerocapture through the Trans -Earth Burn
d)Transit and Near Earth Operations - looks at the inbound transit return to Earth and capture operations at Earth
These segments will be further broken down into distinct top-level tasks in the Mars Operations Task Flow for the Cryo/Aerobrake.
\square

Mars Major Mission Operations

Near-Earth Operationsi

Mars Mission Operations Task Flow Cryo/Aerobrake
This is a task by task top-level operations task flow for the Cryo/Aerobrake to complete
a general Mars mission. Those tasks that are optional (may or may not be used on any given
mission) are shown with darkened background. Those operations flows that present alternatives
to the baselined flow or are alternative actions are shown with dashed flow lines.
The assumptions under which these flows were developed are these: Communications with

 self check capability will be present on all vehicle systems used for assembly and maintenance. Robotic assembly of the vehicle- MTV and MEV done at SSF/ on orbit, TMI assembly and integration, propellant top-off and final inspection and checkout done off-station. and the manned transfer vehiçle is self-suffient in repair capability
suondumss \quad.
 - Autonomous system self check capability present on all vehicle parts used for assembly and maintenance

[^15]Mars Mission Operational 'Task Flow Cryo/Aerobrake

(1)

This page intentionally left blank

Other

This page intentionally left blank

Cryo/Aerobrake - Operating Modes and Options - Other

Presented here is a launch configuration for the externally mounted, fully assembled aerobrake.
This option has been called "Ninja Turtie" launch configuration. While the initial investigation of launching the vehicle externally mounted indicated that "more work" had to be done the regard this as a viable option; some launch considerations such as shrouds and fairings were not considered in the original calculation which was based on a design sketch. The analyses also involved the launch of two aerobrakes instead of one and was, again, a preliminary analyses. We believe that this launch configuration deserves further analyses. It parallels the configuration of the Shutte and would solve the problems of on-orbit construction of the aerobrakes and severely volume limited launches
Shuttle Derived Aerobrake Launch Option In manifesting the Mars vehicle we examined alternatives to launching the aerobrake in
sections, which is a volume limited load. The result was this "turtle" or "piggyback"
configuration that may be able to take additional payload up secured to the areobrake and/or the
inline section. This is still a preliminary design which must be analyzed for launch loads and
aerodynamics.

IV. System Description of the Vehicle

This page intentionally left blank

Parts Description

This page intentionally left blank

IV. System Description

A. Part Descriptions

The first set of charts tabulates subsystem characteristics for the seven flight vehicle elements of the cryogenic/aerobrake vehicle. The following chart presents trade item decisions and rationale for subsystem choices.

The Mars excursion vehicle (MEV) is packaged into an asymmetrical aerobrake for Mars capture and landing. The shape of the brake and the configuration of the MEV are driven by the (assumed) 22 degree wake deflection inward of the velocity vector streamline. The other packaging consideration is placing the center of mass in line with the aerodynamic force vector. An altemative configuration includes a Mars surface reconnaissance (MSR) vehicle which is mounted on the aerobrake for Mars capture. The MSR vehicle lands at a different site than the manned lander, then returns a sample to the manned lander for return to Earth.

The Mars transfer vehicle and Mars excursion vehicle are docked together during the planetary transfers to gain the use of the combined volumes for crew habitation. A short duration crew module is used for return to orbit. It carries a crew of four. The MEV includes the crew module, descent and ascent stages, and a surface habitat. The MEV has a landing leg span of almost 20 m and a height overall of 14 m . Several views are provided from a computer solid model of the MEV.
An Earth crew capture vehicle is used for crew return to the Earth's surface. The configuration shown is for a crew size of five, although subsequent analysis indicates a crew of six is required to provide adequate crew skill redundancy.

Habitation Module Weight Trade Study. This study considered different module shapes for varying crew size, to determine least weight solutions. Primary and some secondary structure were considered in this study as weight discriminators. It was assumed that certain penetration-related secondary structure (airlocks, hatches, windows) and interiors (non-pressure bearing floors and walls, and equipment mounting) would not be significantly different in weight across the options. The results indicate larger diameter (i.e. more spherical) modules are lighter than the SSF design for large crew sizes.

The selected module concept has a 7.6 m diameter and a $2: 1$ aspect ratio with elliptical end domes.
Cryogenic Boiloff Code Tank Estimation. Tank characteristics as a function of operating pressure and multilayer insulation thickness were estimated. The estimates generated by the computer model agree well with the actual mass of the Space Shuttle External Tank when the External Tank capacities are used.

Relative Development Effort Comparison. Estimates of the development effort for each propulsion element in a total Lunar/Mars program were made for various combinations of propulsion. The nuclear thermal rocket yielded the lowest effort estimate on a relative scale. This is only a gross comparison, not considering the differing cost of propulsion developments.
Subsystem Summary
The following three charts contain a concise listing of the primary characteristics of
seven major subsystems for each of the seven major reference vehicle stages.
$\because \begin{aligned} & \text { ADVANCED } \\ & \text { CIVIL } \\ & \text { SPACE } \\ & \text { SYSTEMS }\end{aligned}$

Subsystems	MTV Crew Module	$\begin{gathered} \text { MTV TMI } \\ \text { Stage } \end{gathered}$	MTV TEI Stage	MEV Descent Stage	MEV Ascent Stage	MEV Crew Module	ECCV
Structures	7.6m Dia. x 9m L Al, axial tension tie internal bulkhead	Ribbed skin, Thrust struct., LOX/LH2 tanks, plumbing, etc. Prop. fract. $=0.9$	Truss tube, Thrust struct., LOX/LH2tanks, plumbing, etc. Frame struct. 5\% of TEI prop \& inert mass	Thrust struct, tanks, etc. Frame struct 10\% of inert mass. Landing legs - 3\% landed mass	Thrust struct, tanks with vac shell, etc.	4.4 m D 0.5 ellipsoidal Al shell	3.9m x 2.7 m Apollo type capsule
Thermal Control	Water/Glycol w/body mounted radiator integral w/meteoroid shield	Passive	Passive	Passive	Passive	Water/Glycol w/ ext. panel radiator \& water flash evaporator	Water/ Glycol
Aerobrake structures	Rigid, Deep shell assembled in segments, Spar ribbed: Honeycomb face sheets. 13\% cap mass.	N/A	N/A	Same dimensions as MTV aerobrake 13\% of capture mass	N/A	N/A	N/A
Thermal	Reradiative TPS	N/A	N/A	Reradiative	N/A	N/A	Ablative Shield

349

Subsystems	MTV Crew Module	MTV TMI Stage	MTV TEI Stage	MEV Descent Stage	MEV Ascent Stage	MEV Crew Module	ECCV
Avionics	SSF derived command, cntrl, \& data handling equip., GN\&C platforms, new comm. systems, health monit. aerobrake attitude control	Main propulsion controls / instrumentation	Main propulsion C\&I solar array positioning control, RMS pos. ctrl. unit, Aeroshell integrity monitor	Main propulsion C\&I, Aerobrake attitude control	Main propulsion C\&I, Cryo prop monitor sys.,	Apollo/LEM type complete flight ctrl system Onboard health monitoring equip	Apollo Command Module type
Power	15 kW , solar arrays w/ battery storage	Distribution sys.,post separation battery power	Distribution sys., Back-up fuel cells system	Distribution sys., Back-up fuel cells system	Distribution sys. Back-up fuel cells system	2.3 kW fuel cell for Des/Asc, solar arrays for surface	Battery storage
Propulsion Engines	N/A	5-200k lb adv. engines (ASE),w/eng. out cap., stage $\mathrm{T} / \mathrm{W}=0.4$, Large area ratio,lsp=475	3-34k lb w/engine out cap. Stage $\mathrm{T} / \mathrm{W}=0.2$, Large area ratio, Isp=475	$4-34 \mathrm{k} \mathrm{lb}$ w/engine out cap. Extendible/retrac. nozzles Isp $=460$	2-34k lb. w/engine out cap. Ext/ret nozzles. $I s p=460$	N/A	N/A

Subsystems	MTV Crew Module	MTV TMI Stage	MTV TEI Stage	MEV Descent Stage	MEV Ascent Stage	MEV Crew Module	ECCV
ECLSS	SSF derived with all resupplies and change-out equip. onboard. Closed on H2O and 02	N/A	N/A	N/A	N/A	Open loop Apollo type	Open loop Apollo type
Crew Accomm.	40-50 cubic meters habitat volume/person. Dedicated radiation shelter. SSF level of crew comfort; shower etc.	N/A	N/A	N/A	N/A	54 cubic meters total habitat volume, Spartan crew accom. 3-day nominal occupancy	8 cubic meters Apollo type crew accom 3 - day nominal occupancy

Mars Mission Trades \& Issues Several trade items or issues are listed with the applicable selections for the
reference vehicle given as well as the rationale behind the selection. The two boxed
trade items are examined in more detail in subsequent charts.

BOEJNG

Selection	Rationale
2 stg, aeroshell dropped during desc. 30-34k lbf, 2 asc, 4 desc Current design, low Pc, conservative Isp=460	Alternate split stg very attractive eng commonality w M dep min number of eng's w eng out cap. yet to be traded
Cryo 02/H2 MLI,vapor cooled shields,vac jacket-asc	Min mass even at 600 day surf stay Maximum passive insulation
Streched ellipsoid, bl-level 02 top, $\mathbf{H 0 2}$ mideck-asc, desc on frame	Min mass,ease of egress,SSF derived Thrust thru CG weng out
Fuel cell, Solar array, fuel cell,	3 day occupancy 30 day requirement
$3 \times 30-34 \mathrm{k}$ lbf eng's for M dep, 1 sol by 250 km periapsis SSF derived, near 100% closure Crew return via ECCV, no reuse	$\begin{aligned} & \text { Common w MEV eng's, } \\ & \text { Min Delta V } \\ & \text { Proven hardware } \\ & \text { Min IMEO } \end{aligned}$
$5 \times 150 k$ Ibf Isp=475 engines tanked delivery Single stg, no recovery	Performance, eng delivered wtank set yet to be traded yet to be traded

Issues

TEI
Propulsion
Parking orbit
3
Reuse/recovery
Mars Excursion Vehicle (MEV)

Common Short-Duration

Top/Plan View

Reference Concept Mass Analysis

(64) SS8J ןosson omissodd

Comparison of Reference Concepts
Crew Slze

For crew sizes over 6, larger-diameter concepts have an increasing weight advantage over
small-diameter cluster concepts

Module Concept Selection
> functional requirements as well as interesting and stimulating psychological envịronments.
Selection

Modified study, for	Mg2-I concept family selected for further reference use in the STCAEM

Major Features

Survey results show technical people perceive larger dlameter concepts as more spacious Barrel vault proportionately Invariant with crew (module) size, better than dome Module width has better plan aspect ratio than smaller diameters Low Intrinsic number of unique spatial units; outfitting can compensate Lowest score for circulation option boredom over long duration
> - Lightest weight (transportation cost critical for exploration vehicies) Welded-metal technology feasible here, well-understood - Prime opportunity for M\&P improvements, however

> End dome complication less than for 10 m size
> - Comonallo leas fill 10 m ane
> - Commonality In growth architectures more appropriate for surface system applications

- 7.6 m launch shroud likely avallable for early HEI
Compact habitat facillitates aerobrake integration

Perception

Cost
Cryo Boiloff Code Tank Properties
Prediction for ET Sized Tanks

Tank Mass vs. Design Pressure for

ssew yuel Overall Tank Fraction vs. Design Pressure for ET Sized Tank-sels

This page intentionally left blank

Boiloff Code Predictions -

$$
\begin{aligned}
& \text { Total Dry Mass }=35,425 \mathrm{~kg} \\
& \text { Propellant Load }=719,112 \mathrm{~kg} \\
& \text { LH2 Load }=102,618 \mathrm{~kg} \\
& \text { LOX Load }=616,493 \mathrm{~kg} \\
& \text { LH2 Tank Mass }=14,402 \mathrm{~kg} \\
& \text { LOX Tank Mass }=5695 \mathrm{~kg} \\
& \text { Tank Max. Operating Press: } \\
& \text { LH2 - } 34 \text { psi } \\
& \text { LOX - } 22 \text { psi }
\end{aligned}
$$

Overall Tankage Fraction $=4.7 \%$
LH2 Tank Fraction $=12.3 \%$
LOX Tank Fraction $=0.91 \%$
LH2/LOX Overall Tank Fraction $=\mathbf{2 . 7 2} \boldsymbol{\%}$
> supports, and para-to-ortho
> Ullage $=5 \%$
> Propellant Mass = ET Propellant Loads Mass includes vapor cooled shields,

> H2 converter, where appl.
> Tank Shape - Cylindrical tank with
$\sqrt{2}$ ellipsoidal endcones
Assumptions:
MLI Thickness = $\mathbf{2 "}^{\prime \prime}$
Diameter $=4.2 \mathrm{~m}$
External Tank Data -
Major Propulsion Element List for 2000-2030 HEI program
Primary Objective: Furnish a top level list of all major propulsion elements necessary to a 3 decade HEI
total program entailing Lunar, Mars opposition (short stay) and Mars conjunction (long stay) missions.
Secondary objective: Considering four candidate vehicle combinations (differentiated by propulsion
system choice, each of which might satisfy all the space transfer objectives of a comprehensive HEI
program) roughly evaluate or 'score' the total development effort required to bring each propulsion
system element/fechnology up to flight readiness. Having done so, sum all the element scores for each
of the candidate vehicle combinations in order to ascertain which combínation meets HEI program
objectives with least overall propulsion systems development effort. The 4 candidates are listed below:

(1) Chemical Lunar with chemical Mars opposition (zero-g) \& conjunction (art-g,tether system)

 (2) NTR Lunar, NTR Mars opposition (zero-g) \& Mars conj (art-g, vehicle rotation about its Cg , no tether) (3) Chemical Lunar, NEP Mars opposition (zero-g) \& NEP conj (art-g, tether system)
Scores: Secondary list: The all NTR set scored the lowest in total propulsion elements development effort with a score of 13 . the chemical/SEP combination and the all chemical set were about even with scores of $18 \& 19$ followed by chem/NEP at 27 . These scores are relative, and only show how the 4 vehicle sets compare to one another; They are also subjective, and the differences in overall scores may be more
pronounced, less pronounced or even change in rank depending on who is doing the evaluating. these
rankings are not presented herein as the results of a precise technical trade study, but rather the
results of a rough comparison 'methodology' with its major emphasis on a top down viewpoint in
contrast to an analysis which as its emphasis on optimizing and/or selecting propulsion systems solely
for individual missions. for individual missions.

This page intentionally left blank

This page intentionally left blank

Weights Statement

This page intentionally left blank

B. Weight Statements

Summary and detailed weight estimates are provided for the Chemical/aerobrake vehicle for the 2015 opposition mission opportunity. Assumptions made in the weight estimates include:

- Crew size of 4
- Use of Earth capare crew return vehicle
- Mission duration of 565 days.
- Improved technology (post-1990) for component weights (see technology section). The reference mass for this mission case is 800 tons in low Earth orbit

Main propulsion	1127	$4 \times 30 \mathrm{klbf}$ Adv eng's: Isp=475 sec, w extendible/retraciable nozzles
Asc frame \& struc wi	567	4% of desc stage sig wt $+2 \%$ of surf crew mod mass
Landing legs	1487	3% of fotal landed mass
RCS inert	331	Estimate from RCS prop load
Propul, frame wi growth	490	15% of total inerts
Desc propul \& frume inert	4002	

[^16]MTV hab mod consumables, resupply, and transit science dependant on mission duration, and free abort ${ }_{\infty}$ requirement. l.e. crew mod 'wet' wt will vary for different missions

This page intentionally left blank

| TMI stg - Reference MTV for 2015 Chem/Aerobrake Veh |
| :---: | :---: |
| ECCV Return, $4 \times 200 \mathrm{llbf}$ advanced space engines; Isp $=475$ sec |
| Revision 2 Sl22190 |

This page intentionally left blank

Artificial Gravity Option

This page intentionally left blank

Cryogenic/Aerobrake Vehicle Artificial Gravity Configuration

The cryo/ab artificial gravity configuration employs a tether to achieve the radius desired to spin the transfer habitat at 56 m and 4 rpm to produce 1 g . The tethers used are conductive tethers to avoid having separate power lines running in conjuction with the tether, thus complicating the reeling cycles. The conductive tether used is "ribbon" shaped to avoid entanglement during the reeling cycles, to better facilitate "crawler" operations, and because it radiates conductive heat better due to increased surface area over a circular cross-section.

The configuration is a 3 tether planar beam configuration with the crawler, solar amrays and communications laser located at the CM. The vehicle separates post-TMI with the transfer hab and MEV contiguously connected and the MTV aerobrake and TEI propellant used as countermass. The Mars to Earth configuration uses the MTV aerobrake and the empty TEI propellant tanks as countermass which results in a longer countermass radius to keep the transfer habitat at 56 m . If the MTV aerobrake is jettisoned at Mars in a nonreusable scenario, the Mars to Earth countermass radius would increase substantially to over 2 km .

The crawler/mast/power configuration at the CM of the vehicle is deployed on trusses that package into the crawler assembly. The solar array and the communications laser are on despun joints for tracking, and the entire assembly packages below the transfer habitat in the MTV. The crawler is divided into 2 sections so that one section can always be at the CM to support the deployable truss and the tether. The crawler taps into the aluminum conductor to transfer power from the solar array to the crew systems. Each crawler section has 2 small solar arrays for independent power during movement along the tether.

The cryo/ab mass penalty, when compared to a reusable 0 g version, is $\sim 15 \%$, because of the hardware and propellant required to support artificial gravity operations. The MTV aerobrake would have to increase in size from 30 m to 32 m to accommodate packaging of the tether reel, crawler, solar arrays, and communications laser below the transfer habitat. 2 despun joints are also required for the solar array and communications laser.
Artificial Gravity ($\mathbf{g}_{\text {a }}$) Assessment
Assumptions A 1 g gravity level was assumed for this study over partial g because the minimum gravity level required to
offset physiological deterioration is not known. The rotation rate was set to be no more than 4 rpm, which is
based on experimental data in the Pensacola Slow Rotation Room (1960 's) on human adaptation. The crew
compartments are contiguously pressurized during all mission phases, and the crew modules are to be oriented
with the long axis parallel to the spin vector to offset the Coriolis effect along major circulation paths.
Connections between habitation and the countermass are either tethers or a truss rather than a pressurized
tunnel because, since all crew compartments are contiguous, the is no need for an IVA transfer.

This chart shows the 3 main configurations of the vehicle in transit. The Earth to Mars phase requires a total ether length of 128 m , while the Mars to Earth phase requires a total tether length of 161 m with MTV aerobrake, and 2.15 km without MTV aerobrake. The solar array and the communications laser are located at \sum s. The plies.

$\mathrm{g}_{\mathbf{a}}$ Mass Summary
This chart shows the relative mass of the Cryo/AB and the NTR artificial gravity configurations as compared to
all the reference 0 g configurations. The Cryo/AB configuration trades very poorly in artificial gravity, whereas
the NTR configuration has only minor mass impact.
400

Mass Summary

(3y) SSEW

[^17]STCAEM/sdc/04Junc90

- Gravity level
- 1 g chosen over partial g (less than 1 g)
- Rotation rate
$-\leq 4 \mathrm{rpm}$ (4 rpm at 56 m nominally)
- Crew compartments
- contiguously pressurized throughout all mission phases
- Connection
- truss and tethers rather than a pressurized tunnel
- multiple tethers are used that are "ribbon" shaped in cross section
- Module orientation
- long axis parallel to spin vector - Gravity level
- 1 g chosen over partial g (less than 1 g)
- Rotation rate
$-\leq 4 \mathrm{rpm}(4 \mathrm{rpm}$ at 56 m nominally)
- Crew compartments
- contiguously pressurized throughout all mission phases
- Connection
- truss and tethers rather than a pressurized tunnel
- multiple tethers are used that are "ribbon" shaped in cross section
- Module orientation
- long axis parallel to spin vector - Gravity level
- 1 g chosen over partial g (less than 1 g)
- Rotation rate
$-\leq 4 \mathrm{rpm}(4 \mathrm{rpm}$ at 56 m nominally)
- Crew compartments
- contiguously pressurized throughout all mission phases
- Connection
- truss and tethers rather than a pressurized tunnel
- multiple tethers are used that are "ribbon" shaped in cross section
- Module orientation
- long axis parallel to spin vector
Assumptions
Artificial Gravity (g_{a}) Assessment

Imו
g_{a} Mass Summary
* ECCV crew refurn, M'TV aerobrake not used as return countermass $>$ Level II 2015 565d option
** Earth aerocapture, M'TV aerobrake used as refurn countermass
\# Represents a conjuntion class mission, thus the reduced mass
+ $1 / 3 \mathrm{~g}$ N'TR option
+ 1 g option - Bocing nominal $2016434 d$ option
. 3 TCAEM/sdc/OU Juncer
g_{a} Cryo/AB Mass Statement
FPACE ETSTEAS

Element	ECCV	Earth return
Aerocapture		

[^18]

[171] IMLEO 922361 $\begin{array}{ll}\text { TMI } & \text { [173] } \\ \text { stage } & \text { TMI propellanilload } \\ & \text { 172] }\end{array}$
This page intentionally left blank

1－g Art－g：See diagram of inflight spinup phases．
1－8 Art－g：See diagram of inflight spinup phases．
Each of 2 counter wts（hab mod＋MRV MTV Each of 2 counter wts（hab mod＋MRV \＆MTV＇wet＇propul stg＋AB）spun to 4 RPM
Despun for outbound midcourse corection MPS burn，then respun to 4 RPM Despun for outbound midcourse correction MPS burn，then respun to 4 RPM
MRUleft behind，MTV propul stg＇dry＇except for inb midc correction bum
Total Ant－g RCS propellant penalty

3 at 180 m each
Attached to MTV hab

－ascurn

[^19]
妾最昌昌
Mac chan M 1－8 MTV veh wi－rallonale

06KWILEPPQ／WaVDIS＇

\mathbf{g}_{a} Cryo/AB Vehicle Features

- Nominal spin rate $=4 \mathbf{r p m}$ (56 m to create $\mathbf{1 g}$)
- Conductive tether
- Sun-tracking solar arrays
- "Crawler" contingency for crew transfer from
- Nominally 4 spin-up/spin-down cycles (1 for co
- Outbound - MTV aerobrake and propul
- Inbound - Empty MTV propulsion and
(MEV expended)
- MTV aerobrake not required
it is useful as a countermass a
reusable mission modes

STCAEM/sdc/30May90

$$
\begin{aligned}
& \text { - Added mass } \\
& \text { - (3) tethers } \\
& \text { - Tether reel } \\
& \text { - Tether crawler } \\
& \text { - Added solar array } \\
& \text { - Added communications laser } \\
& \text { - Lock joints for transfer hab } \\
& \text { - Added RCS and propellant } \\
& \text { - Added TMI/TEI propellant } \\
& \text { - MTV aerobrake } \\
& \text { - } 2 \text { m larger than MEV aerobrake } \\
& \text { - needed due to packaging constraints } \\
& \text { - complicates fabrication due to different sizes } \\
& \text { - Needed for inbound countermass - not needed in } 0 \mathrm{~g} \text { option } \\
& \text { - Spin-up/spin-down cycles } \\
& \text { - Mid-course correction problems } \\
& \text { - "De-spun" joint for power and communication }
\end{aligned}
$$

This chart outlines the vehicle deployment scenario. Omitted from this chart, for the interest of simplicity, are
mid-course corrections, which would follow the same deployment scenario.

- RCS fires to accelerate end masses to 4 rpm
- Crawler is positioned at CM and deploys solar array and communications laser

- Post Mars arrival, RCS fires to stop rotation

[^20]- Tether is reeled in, maintaining slight tension
- RCS fires to slow approach to manageable STET speed
- Post berthing, Mars operations commence
 Alternative \pm - saves propellant, but increases tether mass
Cryo/AB "Crawler/Mast" Configuration

Collapsed Configuration
$\mathrm{ga}_{\mathbf{a}}$ Cryo/AB Packaging Configuration

Tether Crawler Configuration
A detail of the tether crawler is shown on this chart. The crawler is divided into 2 sections so that one secition
can always be at the CM to support the deployable truss and the tether. The crawler taps into the aluminum
conductor to transfer power from the power source to the habitation areas. Each crawler section has 2 small
solar arrays for power during movement along the tether and 2 roller motors.

This page intentionally left blank

> -Transmitting electric power through long flexible cables is standard practice on Earth
- technology lssues well understood
> - Maintaining electrical contact between the mobile "crawler" and the tether
> electric subway trains, and trolleys
> - a Solar Power Satelite concept lower power sliprings regularly
> - partlally despun spacecraft use lower porry tens of kWe
> - The Remote Manipulator System on SSF will be much like a tether crawler
> - exception is that it uses power rather than providing it
> - Technology demonstration in 1991 on Tethered Satellite System (TSS) Shuttle flight
- conductive tether with plasma contactors for electrodynamic experiment
Conductive Tethers
tethers are not a simple technology as demonstrated by the examplesgiven on the following chart. Conductive
tethers also simplify the realing process because of the reduced number of cables.

Kevlar 29

- Safety factor = $\mathbf{1 . 5}$ (using 3 tethers)
- (3) $\mathbf{1 8 0 m}$ tethers
- 161m nominal separation
- 56 m radius to transfer habitat

V. Support Systems

This page intentionally left blank

Support Systems for the Mars Cryo/Aerobrake Transfer Vehicle.

The support systems necessary for the Mars Cryo/Aerobrake Transfer Vehicle consist of the interrelated and interdependent tasks of ground, launch, and on-orbit processing. Ground processing tasks for the Mars Vehicle include interface identification and verification as well as integrated systems testing. As the interface diagrams show, each part of the Mars Vehicle is connected (mechanically, electrically, data-wise, and/or fluidwise) to almost every other part. Earth-to-orbit (ETO) launch processing is constrained by both ground and on-orbit considerations. These tasks include launch site preparation, integrating the payload (in this case, the pieces of the Mars Vehicle) with the Heavy Lift Launch Vehicle (HLLV), and manifesting. The scheduling of hardware to be launched is bounded on one side by the ground test and verification program and on the other side by the on-orbit assembly plan. The selection of Assembly Node and assembly means (robotic, EVA, mix, etc.) are part of this analysis. The systems, facilities, plans, and purposes for each of these three levels of support are included within and represent the magnitude of effort necessary before a Mars vehicle is actually ready to fly..

Ground Processing. The first level, ground-based operations, begins with the identification of system interfaces for the Cryo/Aerobrake Vehicle. Subsystem interfaces are to be performed by the manufacturer, however, once complete systems have been delivered to the launch site, it is planned to perform system to system integration in order to test and verify interfaces and system flight readiness. The recommended approach is to use flight hardware to the greatest extent possible during system test and verification. The ground processing flow to accomplish these interface tasks determine when each system(s) must be available and when each will be ready for launch. The generic ground process involves: (1) receiving and inspection of the system(s); (2) assembly of system to system; (3) verification of interfaces and testing for flight readiness; (4) disassembly of system from system; (5) storage of system for other subsequent interface tests; and (5) processing of system for launch.

Launch Processing. Launch processing and sequencing constitute the second level of support systems. Processing tasks include integrated assembly and checkout of Mars Vehicle systems with the ETO vehicle. One of the most significant impacts to the assembly and launch facilities as well as to the launch vehicle itself may be the option of launching the aerobrakes fully integrated (the "Ninja Turtle" concept). This concept holds promise for reducing on-orbit assembly problems but raises some processing and launch vehicle compatibility issues. Manifesting analyses are dependent not only upon the ground and onorbit operations but also upon the selection of the ETO launch vehicle. Several manifesting scenarios have been studied for a variety of HLLVs. In the majority of cases, the limiting factor is found to be payload volume, not mass, capacity.

On-orbit Processing. On-orbit operations, the third level of support systems, pertains to the assembly (and, for reuseable vehicles, the disassembly and refurbishment) of the Mars Cryo/Aerobrake Vehicle. The choice of Assembly Node includes factors such as location, robotic and man-tended capabilities, accessibility, micrometeoroid/debris protection, operaing systems, and on-orbit storage. An on-orbit assembly analysis has been performed for the reference vehicle (with the added constraint that the aerobrakes must be assembled in space) based upon one possible assembly plafform which may be suitable for the Cryo/Aerobrake vehicle. This platform was designed to solve two of the major problems with assembly of the vehicle in Low Earth Orbit (LEO): debris protection and aerobrake construction. The STS Extemal Tanks serve as both protection and a base upon which assembly mechanisms, storage, and vehicle integration may be performed. This is not intended to be the final solution to these problems; rather, this surdy serves to show one
PREOENNS OACE EAHK :O: FILAHED
possible solution at one possible node. The resulting analysis indicates that the main delimiter in assembly time is the launch frequency of the ETO vehicle.

Space
Mars Mission Operational Task Flow Cryo/Aerobrake

Shuttle Derived Launch Vehicle Approach
For Lunar/Mars Initiative
This is a MSFC chart showing the launch vehicles considered in Earth-to-Orbit launches. We have
done manifesting scenarios for the reference line of vehicles. These scenarios are shown in the
following two charts, indicating what is manifested, type of vehicle, the number of launches, and
the estimated payload mass per launch for the first three missions.

2015 Mars Departure	Flight\#	1	2	3	4	5	6	7-12
	Launch vehicle	Shuttle Z	Shutte C	Shuttle Z	Shutte C	Shutte Z	Shutte Z	Shuttle Z
	Manifest	MTV aerobrake, assembly equipment	Crew systems, ECCV, structure, comsats, consumables	TEIS 02 propellant, tankage	TEIS H2 propellant, tankage \& engines	MEV aerobrake, assembly equipment	Ascent vehicle , descent vehicle, surface payload	MTV - Earih departure propellant \& engines
	Mass	41.0 t	50t	911	15t	121	$75 t$	$\begin{gathered} 91 \mathrm{t} \\ \text { each launch } \end{gathered}$

2017 Mars Departure	Flight \#	1	2	3	4	5	6-9
	Launch vehicle	Shuttle Z	Shutte C	Shumle Z	Shuttle C	Shuttle C	Shutte Z
	Manifest	MEV 1 aerobrake, assembly equipment	50t payload, descent stage for MEV1	MEV 2 aerobrake, assembly equipment	50t payload, descent stage for MEV 2	MEV1-2 \& TMIS inter -connect structure, Nav kit	TMIS engines and departure propellant
	Mass	12 t	70t	12t	70t	20t	$\begin{gathered} 91 \mathrm{t} \\ \text { each launch } \end{gathered}$

2018 Mars Departure	Flight \#	1	2	3	4	5	6-11
	Launch vehicle	Shutle Z	Shuttle C	Shutte C	Shutte Z	Shuttle Z	Shulle Z
	Manifest	MTV aerobrake, assembly equipment	Crew Systems ECCV, structure, consumables	TEIS propellant tankage O2 \& H2	MEV aerobrake, assembly equipment	Ascent vehicle descent vehicle, surface payload	MTV-Earth departure propellant \& engines
	Mass	41t	50t	69 t	12t	75 t	$\begin{gathered} 85 \mathrm{t} \\ \text { each launch } \end{gathered}$

HLLV : Shroud Size- 30 meters x 10 m dia., 140 t throw weight

HLLV : Shroud Size- $\mathbf{3 0}$ meters $\boldsymbol{x} \mathbf{1 0} \mathbf{~ m}$ dia., 140 t throw weight

Mars Mission Manifests-
Cryo/aerobrake and NTR
$84-120$ t HLLV

This page intentionally left blank

HLLV 1 : Shroud Size- 30 meters $\times 10 \mathrm{~m}$ dia., 84 t throw weight
HLLV 2 : Shroud Size - 30 meters $x 7.6$ m dia., 120 throw weigh

PREGEDNG PAGE BLANK NE FHLAED
HLLV Optional Manifesting

Optional Manifesting of the four vehicle options was developed for a medium and large class
HLLV. The analysis was completed by using theoretical volumetric and total mass calculations.
STCAEM/dks/12/une90

	10 meter Dia. 30 meter long 84-120 mT class	12.5 meter Dia. 30 meter long $140-160 \mathrm{~m}$ ' class	13.75 meter Dia. 38 meter long/22 meter nose cone 200-250 mT class
Cryo/Aerobrake (opposition class)	11 missions 73 mT average	8 missions 101 mT average	5 missions 162 mT average
Solar Electric Power (opposition class)	TBD	5 missions 87.2 mT average	2 missions 218 mT average
Nuclear Electric Power (opposition class)	TBD	5 missions 108.9 mT average	3 missions 181.5 mT average
Nuclear Thermal Rocket (opposition class)	TBD	6 missions 122 mT average	4 missions 183 mT average

This is a listing of the groundrules and assumptions used to begin analyzing the sequencing and
operations for an orbit assembly facility.
note: this is a point design study

D615-10026-2 $(1-5$
Requirements for Earth Orbit Support Facility
DVANCED
VIL
YSTEMS

Grou
Groundrules - On orbit propellant fueling or launched wet propellant tanks may
Assumptions
OEING
> - Multiple (ETO) flights will be used in assembly
> - Line of sight communications are to be used
> - Extensive use of robotic and telepresent systems will be made - Minimal EVA activities $\mathbf{2 0 \%}$ of inactive weight
Two RMS systems will be used in assembly

- TWo RMS systems will
- On orbit spares will be 15% of vehicle active component weight and
- Robotic software and sensors will allow supervisory human control - Proximity operations will be viewed directly or by video

D615-10026-2

Advanced Civil Space Systems

Support Requirements and Concepts Orbital and Space Based Requirements Summary - February 23, 1990

- Pirpose
Define orbital and space-based support equipment, crew and facilities requirement/interfaces. By transportation element, for each scenario (Task 5-2). - Man Mars Vehicle Baseline - Mars Excursion Vehicle - Aerobrake - Descent System - Ascent System - Mars Surface Payload - Mars Science Payload - Mars Transfer Vehicle - Aerobrake . System - Trans Earth Injection System - Habitat Module
- Trans Mars Injection System
- Propellant Tank Set (3 Tanks Baseline)

On-Orbit Assembly Baseline BOEING
MMV assembly at ET-derived MMV Assembly Platform (MAP) Constructed prior to MMV FEL
Crew required for internal subsystem checkout, critical inspections, contingency, repair
All MMV components have standard STS grapple fixtures

RMS capability at MAP

PRMS---2 MAP mounted 30m arms
RAMS--4-30m arms (2 on each aerobrake)
PAS---2 DOF anchors to hold large subasse
ASF---Fixed anchors to store components p
MMV aerobrake TPS installed on ground except
TPS around field joints installed by PRMS
ASF---Fixed anchors to store components prior to assembly
MMV aerobrake TPS installed on ground except around field joints
MAP has line-of-sight communications with SSF
Crew accomodations
MTV habitat module provides early crew quarters
Crew transferred from SSF in ACRV/OMV when needed
SSF resource node contains workstation for MAP local control
SSF PLM/OMV used for resupply of consumables/crew provisions/MMV spares
MAP---MMV Assembly Platform
MMV---Mars Mission Vehicle
SSF---Space Station Freedom
HLLV---Heavy Lift Launch Vehicle
OMV---Orbital Maneuvering Vehicle
ET---External Tank
FEL---First Element Launch
RMS---Remote Manipulator System
PRMS---Platform Remote Manipulator System
RAMS---Remote Aerobrake Manipulator System
PAS---Platform Anchor System
ASF---Assembly Storage Fixtures
SSCC---Space Station Control Center
MMCC---Mars Mission Control Center
STS---Space Transportation System
TDRSS---Tracking and Data Relay Satellite System
Orbital Debris Environment

- SSF requirement
$\bullet 0.9955$ probability of no penetration for each module for 10 years - SSF debris shielding planned
- 0.05 in Aluminum shield
- 4.3 in spacing
U
$\sum_{\bar{u}}^{0}$
0
0

Normalized Closing Angle Density Function
500 km altitude, average 1990's environment

	Advantages	Disadvantages
Assembly Platform	Available prior to MMV FEL Large debris protected area Platform for mounting power, control, communications subsystems Space for parallel assembly tasks/temporary storage of MMV components Platform for additional RMS	Separate vehicle to control (ground/ proximity operations) Additional launches required
Integral MMV Assembly	All required subsystems already available in some form Allows thorough checkout of subsystems prior to launch	Modification of flight power, control subsystems to control vehicle during assembly phase Requires storage space at SSF

Assy Node/23/2-20-90/Cox

$$
\begin{aligned}
& \text { (М心) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { M. } \\
\cdots \\
\cdots
\end{array} \\
& \begin{array}{l}
\text { I! } 1 \times \cdots \\
\cdots \cdots
\end{array}
\end{aligned}
$$

Cruciond pale is OF PCOR QUALITY
(4s)
 -

Alter Bris debris shield with MMV---150K lbs for SSF-equivalent shield - Use MMV aerobrakes as shields---risk flight hardware

Advantages
 - One-third less weight penalty to orbit than separate shield---50K vs 150 K lbs - Provides greater protection than SSF shield design - Debris shield can be completed years before MMV assembly start - Provides experience with on-orbit assembly of large structures

 Disadvantages
 000 lbs penalty for each STS flight to orbit ET---48K lbs for 12 tanks - 1000 lbs for vent, tumble valve, range safety system modifications - 2-3000 lbs for OMS propellant
 - Additional 2000 lbs allowed for connecting structure/fill shielding for gaps
 - High orbital drag (can be flown tilted into velocity vector to minimize drag) May require on-orbit containment of SOFI
 - SOFI may become ablated, charred during ascent
 - UV degradation on-orbit
 - Outgassing
 - Requires development of power, guidance, attitude control, reboost systems

ET Debris Shield Concept for MMV
Assembly (Cont)
ET Debris Shield Assembly Sequence
First Orbiter/ET flight

EVA or RMS attachment of EPS, GNC, RCS, C\&T packages

shield
 - Subsequent Orbiter/ET flights

- Orbiter/ET rendezvous with debris shield
- Attach connecting structure to existing ET hardpoints
- Orbiter separates from ET, attach ET to debris shield
- Upgrade/relocate subsystems as debris shield buildup continues
- Complete initial configuration of 6 ET"s/final of 12 ET"s

First MMV assembly flight

- Subsequent MMV assembly flights
- HILLV/OMV rendezvous with ET debris shield/assembly platform - Stow MMV components
- Continue MMV assembly
- Upgrade/relocate subsystems as MMV buildup continues - Resupply consumables

- Abilities - 3 Stage

- HLLV Mission One (2 Stage)
- MTV Habitat Module
- MTV Habitat Module
- Mars Surface Payload
- Assembly Platform Support Equipment
- HLLV Mission Two (2 Stage)
- MEV Aerobrake Sections
- MTV Habitat Module Refurbishment/Consumables
- HLLV Mission Three (2 Stage)
- MEV Aerobrake Sections
- Assembly Platform Support Equipment
- HLLV Mission Four (2 Stage)
- MEV Lander Structure
MMV Manifesting (cont'd)
- HLLV Mission Five (2 Stage)
- MTV Aerobrake Sections
- MTV Habitat Module Consumables
- HLLV Mission Six (2 Stage)
- MTV Aerobrake Sections
- Assembly Platform Support Equipment
- Descent System
- Ascent System
- Science Payload
- Airlock
- Stairs

467

OT, O-Orbit Assembly

HLLY MISSION EQUR

BOEING

BOEING

> MMY TOP ASSEMBLY
> - Smallest unit of time is 1 man-hour
> - 16 man-hours $=1$ man-day of Assembly Duration
> BASELINE DURATIONS:
> - HLLLV Launch $=.5$ man-day
> - HLLV achieves stable orbit $=.25$ man-day
> OMV berths to components $=.25$ man-day Unstow and power up Robotics $=.06$ man-day
> - Robolic verification = .12 man-day
> - HLLV deploys components $=.06$ man-day
> OMV transfers components $=.25$ man-day
> Robolic lasks $=.06$ man-day
> $\begin{aligned} & \text { EVA/Robotic Contingency }=.5 \text { man-day } \\ & \text { Component Inspection }=.12 \text { man-day }\end{aligned}$
> Component Test $=.25$ man-day
> Subassemblies to stand-by mode $=.5$ man-day - Mechanical Fastening of components = . 18 man-day
On-Orbit Assembly

BOEING

Name	Earliest Start	Earliest Finish	Subproject	Days
HABITAT MODULE AND SURFACE PAYLOAD ASSEMBLY MISSION	2128113	6/14/13	HLLV MISSION ONE	106
INITIAL MEV AEROBRAKE ASSEMBLY MISSION	6/14/13	9/28/13	HLLV MISSION TWO	106
FINAL MEV AEROBRAKE ASSEMBLY MISSION	9/28/13	1/12/14	HLLV MISSION THREE	106
MEV DESCENT, ASCENT, SURFACE AND SCIENCE PAYLOAD ASSEMBLY	1/13/14	$4 / 29 / 14$	HLLV MISSION FOUR	106
INITIAL MTV AEROBRAKE ASSEMBLY MISSION	4/29/14	8/13/14	HLLV MISSION FIVE	106
FINAL MTV AEROBRAKE ASSEEMBLY MISSION	8/13/14	11/27114	HLLV MISSION SIX	106
MTV TEI, HABITAT MODULE ASSEMBLY AND MTV/MEV ASSEMBLED	11/27/14	$3 / 13 / 15$	HLLV MISSION SEVEN	106
TMIS CORE STACK ASSEMBLED TO MTV/MEV ASSEMBLY	3113115	6127115	HLLV MISSION EIGHT	106
TMIS PROPELLANT TANKS FIRST ASSEMBLY MISSION	6127115	10/11/15	HLLV MISSION NINE	106
TMIS PROPELLANT TANKS SECOND ASSEMBLY MISSION	$10 / 12115$	1/26/16	HLLV MISSION TEN	106
TMIS PROPELLANT TANKS FINAL ASSEMBLY MISSION	1/26/16	213116	HLLV MISSION ELEVEN	8

($)$

MEY DESCENT SYSTEM

MEY ASCENT SYSTEM

MARS SCIENCE PAYLOAD

MARS SURFACE PAYLOAD

MTY AEROBRAKE MISSION TWO

MTY TEI PROPULSION SYSTEM

MTY ASSEMBLY

MTV / MEV ASSEMBLY

On-Orbit Support Equipment ooene
Assembly scenario is to complete major assemblies robotically with crew support for contingency only.
Robotic operations will be controlled by Ground Control Center primarily, with control being "handed off" to
assembly crew during contingency operations.
Platform Remote Manipulating System (PRMS)

- Two complete systems required for MMV assembly
- Each main arm can span the entire 30M diameter of the aerobrake
- Each main arm has a "hold down" grapple to secure the working end to EVA handrails
- Each main arm has a 2.5M work arm capable of precise movements and operations
- Elbow joints feature n-pi rotational freedom and the wrist joints are compact roll-pitch-roll units
- Video cameras allow direct monitoring and machine vision from the end effector
- All hardware is bar-coded for positive machine recognition
- End effector is equipped with a 6 -axis EM antennae, which determine location and orientation relative to
EM beacons distributed across the assembly site.
- Tools and hardware required for assembly operations will be secured to the main arm, within reaching
distance of the work area
- Each arm will be capable of maneuvering 128 metric tons (proposed mobile servicing center 10-12-89)
- Each arm will be track-mounted so as to maneuver about the perimeter of the assembly area

- Electrical Power

Will be supplied by assembly platform (Solar
Dynamics)

- Provide berthing port for Logistics Module
- Provide berthing port for ACRV

SSF-Type Logistics Module

- Provide consumables storage and transportation
- TPS Installation and Inspection
- Launch Vehicle Intergration
- Robotic Operations
- Mechanical Fasteners vs. Welding
Revised On-Orbit Analysis
The following two charts summarize the results of the Revised On-Orbit Assembly Analysis.
Revisions were made because the analysis for HLLV processing was found to be in series to
On-Orbit Assembly, where as the analysis should have been in parallel.

On-Orbit Assembly Analysis

Name	Earlosi Start	Eatlesi Flonlsh		Subproject	Days
LABTIAT MODULE AND BURFACE PAYLOAD ASSEMBLY MISSIOH	1113	10131/13	ILLLY	MISSION ONE	1
IntIAL MEV AEROBAAKE ASSEMBLY MISSIOM	10/31113	1130114	ILLV	MISSION TWO	1
FIMAL MEV AEROBRAKE ASSEMBLY MISSIOH	1/30/14	5/1114	Mliv	LISSION TIHEE	8
MEV DESCENT, ASCENT, SUAFACE AMD SCIENCE PAYLOAD ASSEMBLY	5/1/14	7131114	ILLCV	MISSIOH FOUR	9
INITIAL MTV AEROBRAKE ASSEMBLY MISSIOM	7131114	10130114	ILlev	LISSION FIVE	0
FINAL MTV AEROBRAKE ASSEEMBLY MISSIOM	10130114	, 1128115	IfLLV	Mission six	91
MTV TEI, HABITAT MODULE ASSEMBLY AND MTVMEV ASSEMBLED	1129115	1130115	IILLY	MISSION SEVEN	21
IMIS CORE STACK ASSEMBLED TO MTV/UEV ASSEMBLY	1130115	7130115	H12V	MISSION EIGIIT	0
IMIS PROPELLANT TANKS FIRST ASSEMBLY MISSION	7130118	10120115	Iflev	MISSION NINE	91
TMIS PROPELLANT TANKS SECOND ASSEMBLY MISSION	10120116	1128116	IILLV	MISSION IEN	$\bullet 1$
ImIS PROPELLANT TANKS FINAL ASSEMBLY MISSION	1128116	215116	IILLV	MISSION ELEVEM	8

STCAEM/dka/29May90

D615-10026-2

- Integration
- De-integration
- Re-integration
of mission vehicles, including assembly, processing,
resupply and refurbishment
- Accessibility
- Provision of support services to mission vehicle

Purpose

Functional
Approach

Defer device-driven solutions until minimum common requirements are distilled, which cannot be satisfied by hardware already "procured" for the vehicle itself
Assembly Node Purpose and Requirements

Node Comparisons

$\underbrace{\text { Node }}_{\text {Data to Mars }}$	LEO MASE REF.	$\begin{aligned} & \text { GEO } \\ & \text { Case } 1 \end{aligned}$	$\begin{aligned} & \text { GEO* } \\ & \text { Case } 3 \end{aligned}$	LLO*	L2*
$\Delta \mathrm{V}$ to Mars (m/sec)	4281	5402	2423	1995	1315
	47031	751.5 t	191.8 t	147.7 t	87.9 t
TMI S mass	470.31	0	$<1 \mathrm{hr}$	< 1 hr	$<1 \mathrm{hr}$
Debris Env.(total time)	Continuous				
Radiation Env. total	$\sim 2 \mathrm{hrs}$	0	$<2 \mathrm{hrs}$	<2 hrs	$<2 \mathrm{hrs}$
time in Van Allen belts					GCR SPE
Radiation Environment	Trapped, SAA	Trapped, GCR, SPE	Trapped, GCR, SPE	GCR, SPE	GCR, SPE
Crew to Node $\Delta V /$	$\Delta V=10-100 \mathrm{~m} / \mathrm{sec}$ hrs-days	$\begin{aligned} & \text { SSF - } 6 \mathrm{hrs} \\ & \Delta V=4200 \mathrm{~m} / \mathrm{sec} \end{aligned}$	SSF - 6 hrs $\Delta V=4200 \mathrm{~m} / \mathrm{sec}$	SSF- 3-13days $\Delta V=4000 \mathrm{~m} / \mathrm{s}$ Moon- 2hr $\Delta \mathrm{V}=2100 \mathrm{~m} / \mathrm{s}$	SSF - 8-18 days $\Delta V=3374 \mathrm{~m} / \mathrm{s}$ Moon - 3 days $\Delta V=2900 \mathrm{~m} / \mathrm{s}$
Launch window timing	$\begin{aligned} & \text { e.s o.** } \sim 10 \mathrm{~min} \\ & \text { orbit align } \sim 5 \mathrm{~d} \\ & \text { opps } / \text { day } \sim 15-16 \\ & \text { rec }=30-60 \text { days } \end{aligned}$	e.s.o.~ $1 /$ day orbit align ~ plan ops/day = contin	ary position opp	e.s.o.@ 10 min alignment $=12 \mathrm{hr}$ rec. $=27$ days retrograde opp.	$\begin{aligned} & \text { alignment }=12 \mathrm{hr} \\ & \text { rec. }=27 \text { days } \\ & \text { retrograde opp. } \end{aligned}$
Logistics wndow	anytime	5 hr transit, 2	portunities/day	every 10 days	transit from Moon = 3 day
* denotes PEGA (powered Earth gravity assist) \quad GCR = Galatic Cosmic Radiation** engine start opportunity*** co- orbiting with SSF costs $\triangle V$ to maintain poisition relative to SSF(not continous thrust)					

.STCAEM/pb/17April90

Node Concepts	Kev Features/Advantages	Key Disadvantages
Assembly Flyer Platform	- Performs HLLV unloading, payload/crew transport, and assembly with one vehicle - Compatible with SSF - Capable of manned/robotic operations - Uses CTV for main P/A - Can serve as free flying platform between assemblies	- No additional storage - Requires vehicle to have additional control and reboost systems - Requires development and production of sophisticated man-rated space vehicle - Requires localized debris shielding
SSF Based Assembly of First Element	- Uses planned SSF growth concept - Provides quick and easy crew logistics access to initial assembly operations - Allows verification and checkout of critical systems prior to independent vehicle operations - Does not disrupt SSF operations beyond first assembly mission (remainder of assembly based from vehicle itself)-	- Impact to SSF (resources, microgravity, drag, etc.) - Eventually requires vehicle to have additional control and reboost systems - Requires localized debris shielding - No additional storage beyond first element
Tethered off-SSF Assembly Platform	- Compatible with current SSF design - Provides quick and easy crew and logistics access to entire assembly and propellant transfer operations - Microgravity and dynamic loads impacts to SSF minimized by tether - Removes hazardous operations and materials to SSF standoff distance	- Impact to SSF resources - Requires localized debris shielding - No additional storage - Requires additional reboost and control systems on SSF

Ground

Integrated Aerobrake Launch Option

> This On-Orbit Assembly of the Mars Aerobrake(s) require two 10.5 meter dia HLLV launches each and 180 days (due to 90 day ground processing time required for the HLLV). A concept which would deliver an assembled aerobrake or aerobrakes to LEO is shown in the ELO. concept utilizes a Shuttle derived In-Line vehicle to launch two aerobrakes to LEO.
Integrated Aerobrake Launch Option
The following chart shows a Shutle-C / Aerobrake Integrated Launch Option. This
option would launch a single Aerobrake to LEO along with other payload stored in
the Shuttle-C Payload Shroud.

Size Comparison SSF Launch Facility With
Aerobrake Footprint
This is a diagram of the low L/D aerobrake with its requiremented access corridor, space for
general support equipment (GSE) and assembly activities superimposed on the footprint of a
space station payload, and over four adjoining SSF payload footprints. The Space Station
facility working area is 5 of the SSF payload footprints, it will be to small for aerobrake
assembly and manipulation. A new facility will be needed.

Mars Aerobrake Assembly and Integration at the VAls

[^21]
Mars Aerobrake Launch Option

Aerobrake Launch Option

VAB Iligh Bay
The following Launch Site Impacts were derived from current facility and equipment new facilities will accommodate an Integrated Launch Option.
Launch Vehicle / Integral Aerobrake
Launch Site Impacts
boejne - Transporter required for fully assembled Aerobrake

- VAB High Bay access platforms will require modifications
- Aerobrake will prohibit use of the Rotating Service Structure without major modifications
- Fixed Service Structure swing arm extension and retraction may interfer with the Aerobrake
- Large Aerobrake cross-sectional area will impart large wind loads to the launch vehicle
- Increased loads to hold down fixtures
- Revised launch commit criteria for maximum winds at launch
We have began analyzing the necessary functions that must be preformed to the aerobrake, the
Aerobrake Preflight Operations operation and requirements. largest, most fragile and difficult to launch
give the analyses of functional flows for gro

Aerobrake Preflight Operations
(Cont)

The following chart shows the Ground Rules and Assumptions developed for Ground Assembly
Analysis of the Cryo/Aerobrake Vehicle.
(iround kuies / Assumptions
For Ground Assembly
- A System is a group of components and supporting structure that is integrated by a contractor and delivered as a unit to the processing facility (eg. MEV Aerobrake, MEV Descent Lander, Ascent System, etc.).
- System Interfaces are those which transmit data, power, or fluids across the system's boundaries and mechanically secure one system to another.
- Subsystems Interfaces are those which are internal to a System.
- Subsystem Interfaces are verified by the manufacturer prior to System integration.
- Component Interfaces are verified by the manufacturer during Subsystem Assembly.
- Interfaces verified prior to System Level Integration will be accepted with no repetition of tests.
- Flight Hardware will be used to verify System Interfaces.
- Ground facilities will simulate assembly node operations and limitations.
The following chart shows the Top Level System Interfaces of the Cryo/Aerobrake Vehicle.

MMV System Interfaces

STCAEM/dks/12June90

This page intentionally left blank
综
 IVIIVIV NyDICII MiLCiHACN GEERNE MEV System Interfaces

MMV System Interfaces
The following two charts show Cryo/Aerobrake System and Subsystem Interfaces. The
interfaces shown are major interfaces, that is, one electrical interface may represent several
electrical cables. The total number of component level interfaces has not been defined at
this point.

Assembly Node Interfaces
The following chart shows the Assembly Node interfaces to Cryo/Aerobrake. The Assembly Node
requirements and equipment interfaces were developed by the On-Orbit assembly analysis.
/STCAEM/dks/12/unc90
Assembly Node Interfaces

The following chart defines the process of Sequential Interface Verification for Ground
Processing of the Cryo/Aerobrake Vehicle.

Sequential Interface Verification
Ground Processing Functional Flow
The following three charts show the Functional Flow of Ground Processing for the
Cryo/Aerobrake Vehicle. This Flow is a top level flow that shows the requirements for sequential
interface verification.

Ground írocessing ndiminumala inw
The following chart is the summary of the Test Philosophy developed for this analysis. The
complete Philosophy and Approach was included in the May Progress Report.
/STCAEM/dks/12June90
Cryo/Aerolbrake Test Philosophy

Test Philosophy

Purpopse: | Establish criteria and overall test approach that verifies a system |
| :--- |
| is flight ready and will accomplish its mission successfully |

Goals: \quad\begin{tabular}{l}
Reduce redundant testing

Reduce man power requirements for ground processing

Reduce overall cost

Criteria: | Provide system operational history |
| :--- |

Self test software and peripheral equipment will perform
mechanical, electrical and electronic system tests and
readiness analysis in an autonomous fashion

\end{tabular}.

Redundant flight hardware (on-board systems) will be under
continuous self check
Physical interfaces will be self latching connectors
Prototype systems will be utilized when feasible for ground processing activities
Commonality of systems will be stressed
Ground Processing Facility Requirements
The following chart is a preliminary analysis of the Facility Requirements for Ground Processing of
the Cryo/Aerobrake Vehicle.
Facility Requirements
Utilize Standard Services: Cranes, Power, Communications, Clean Rooms, eic. Make Unique Hardware Portable: Special can be readily adapted to System Block changes, Multiple Systems in Flow.
Provide for Hazardous System Processing

- Equipment Requirements
Overhead Crane
Flat Floor / Air P
Flat Floor / Air Pallets
Standard Commerical Power
Uninterrupted Instrumentation Power $50+5 \%-T$ - 5 F
Environmental Control System: Humi 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone 100K Cleanliness Level
Closed Circuit Television
Facility GN2
Helium Supply
Shop Air
Fire Protection / Deluge
Shower / Eye Wash
Vacuum
Lightning Protection
Potable Water
Paging
Commerical Telephone RF System Operational Intercom System Personnel Airlock
Grounding
Transportation/Ground Handling Fixtures
This page intentionally left blank

VI. Implementation Plan

This page intentionally left blank

Technology Needs and Advanced Plans

This page intentionally left blank

Technology Issues - Cryogenic / Aerobraked Vehicle

I. Introduction

Technology issues relating to the reference vehicle are presented in this section. Some of the charts are also included in the NTR, NEP, and SEP IP\&ED documents. The focus of this section will be to bring out those issues important to the reference cryogenic vehicle from these charts, and to present a series of technology level requirements necessary for the reference vehicle. The most important technology development needs for this option are in the areas of high energy aerobraking, and cryogenic fluid storage and management

II. Technology commonality Issues

The following nine charts lay out the important technology commonality issues between the major propulsion options as well as across the seven major mission architectures identified in this study. The reference vehicle exhibits commonality, and therefore is a good "building block" for the other vehicles in several important areas. The transfer crew module is substantially the same as for all the other options. The MEV is identical across all vehicle options, except for the cryogenic propellant management and storage issues. The demands placed on the avionics system for the chemical system are similar to those for the NTR, and probably greater than those needed for the low thrust NEP and SEP options. Finally, in-space assembly issues should be similar for the reference and NTR vehicle, with the exception of the related nuclear issues associated with the NTR. Assembly issues relating to the NEP and SEP, while duplicate in some areas, will be unique in most areas.

The seven identified Lunar/Mars mission architectures verses the required component technologies, enabling and enhancing, are shown on the next set of charts and facing page text. Many of these component technology issues are common across the listed architectures. These issues are for the entire integrated architectures, and do not necessarily refer specifically to the reference vehicle. Cryogenic/aerobraked vehicles are used in most of the architectures for initial Mars missions, and for all early Lunar missions. The areas of high thrust cryogenic propulsion, and high energy aerobraking are the primary areas of technology development concern for the reference option.

III. Technology Development Concerns

As noted before, many of the identified critical and high leverage technology development issues are common across all four major vehicle options. Common critical technology issues include low-g human factors, autonomous system health monitoring, long term cryogenic storage and management (H 2 , and possibly O 2 for ECLSS), long duration ECLSS, radiation shelter material and configuration, and in-space assembly. Unique cryo/AB technology issues include high energy aerobraking, and large advanced space engine advanced development. Enhancing technologies include cryogenic refrigeration (lander tanks), $\mathrm{O} 2-\mathrm{H} 2 \mathrm{RCS}$, advanced in-space assembly techniques, higher Isp cryogenic engines, and advanced structural materials development.
This page intentionally left blank

IV. Cryo/Aerobraked Vehicle Technology Requirements

Technology performance. levels required for the reference cryogenic vehicle are outlined in the next eight charts. These are not intended to be the levels needed for a minimum vehicle, but serve mainly to document the levels required to accomplish the identified reference mission profile with the vehicle model as configured Changes to these specifications would not necessarily affect the feasibility of a chemical Mars mission, but would change the reference vehicle configuration. The list also includes operational requirements which could drive technology development or advanced development. An example of this could be the requirement of wet launched tanks, rather than filling on orbit, which would affect tank design, and possibly in-space thermal performance.

V. Cryo/Aerobraked Technology Development Schedule

The final chart in this section is a proposed technology development schedule for the nuclear electric propulsion option. The schedule shows that, given a FY ' 91 start, the SEP vehicle could be ready for a Mars mission in the 2009 timeframe. A full scale decision point is also highlighted during year 7. This is the point where a commitment should be made for full scale funding and development of the program.

System/Subsystem	Reference (Cryo-A/B)	NTR Vehicle	NEP Vehicle	SEP Vehicle
Crew Systems/Habitats Life Support, rad. prot., hab. struct., \& airlock/EVA	Long duration life support system derived from SSF proven system. LTV crew module evolves to MTV; common LEV/MEV habitat system. Mars surface habitat derived from proven Lunar design. Mars surface TCS requires additional technology advances to deal with unique heat rejection problems. All extended missions ($\mathbf{2 - 3}$ d) require solar flare radiation protection. Hab systems common across mission architecture. Shorter mission LSS sized for free return abort contingency. Minimum mass airlock could be shutte-evolved.			
Power System \& Thermal Control	Deployed solar array system; low power ($\sim 50-75 \mathrm{~kW}$). Low temp heat rejection $\left(\sim 400^{\circ} \mathrm{K}\right)$	Common to reference vehicle system	Nuc. /Rankine or Brayton cycle energy conv. sys. Very high power level (up to 200 MW). High temp heat rejection $\left(\sim 1000^{\circ} \mathrm{K}\right.$ main cycle).	Solar-electric energy conversion. High power ($\sim 10 \mathrm{MW}$ or greater) level. Moderate temperature radiators ($400-650 \mathrm{~K}$).
Propellant Management \& Storage	Long term storage of H_{2} \& O 2 for Earth \& Mars orbit, and deep space environ. necessary with minimal boiloff. Low-g fluid gaging, acquisition, and transfer highly enhancing or enabling for all missions. NTR requires common techniques for LH 2 fuel.		Argon propellant management system can be similar to LOX storage system, but without the safety constraints associated with an oxidizer.	
Propulsion System	Advanced cryogenic space engines with $>475 \mathrm{sec}$ Isp, and $\sim 30 \mathrm{klb}$ to $\sim 200 \mathrm{klb}$ thrust.	NERVA derived /advanced NTR system with higher Isp (up to 1050 sec vs. 850 sec .)	Rankine or Brayton cycle conversion system driving cluster of Ion thrusters for NEP. Same thrusters for SEP. Number of thrusters depends on available thruster size and required redundency.	
Aerobraking	Low L/D - AFE derived for Earth capture.	Not needed for Lunar NTR (propulsive capture@ Earth)	Not needed for NEP or SEP.	
Lunar Mars	Higher L/D necessary structure and TPS technology base.	Only low energy lander aerobrake needed, since entire vehicle, including MEV is propulsively captured at Mars. Can be common with earlier cryo A/B vehicle, unless crossrange constraints require higher L/D design.		
Avionics	Avionics system hardware may be common for Lunar or Mars (or L/M growth)		Avionics system required for low \& continuous thrust vehicles are lower than for Cryo A/B or NTR vehicle.	
Assembly \& Checkout	Common assembly facility \& equip. for most mission vehicles. Assembly time in LEO, and thus M/D protection level is varied. Mars vehicle requires launch \& assembly of large ($\sim \mathbf{3 0} \mathrm{m}$ vs. 20 m for Lunar) aeroshell. Nuclear vehicles (NTR \& NEP) may face political constraints on launch \& assembly of vehicle. Assembly \& operation may be necessary from nuclear safe orbit.			Severe LEO debris environ. damaging to solar arrays. Spare set of arrays may be necessary. MEV A/B launch \& assembly necded.

Required Technologles vs. Alternative Mission A set of required technologies for the seven identified alternative mission architectures outlined in
the evolotionary concepts section is presented. The purpose of this matrix is to provide a
preliminary comparison of technology development needs for the alternative architectures. The
matrix also serves to better define the architectures. From this top level matrix, a more detailed set
of technology requirements can be derived. A set of accommodating technologies can be compiled
for needs areas where options exist. Finally, the technology areas can be prioritized as enabling
and enhancing, and a return on investment performed for identified high leverage technologies.
This portion of the matrix includes most of the cryogenic management issues. Enabling
technologies are represented by the filled circle, and enhancing technologies by the open circle.
Extensive low - g cryogenic propellant launch, acquisition and transfer refers to the Mars
conjunction case, and the mass driver option, where propellant will be used for the transfer
vehicles, which will be parked in a low - g environment (Lunar or Mars orbit, or libration staging
point). The Mars cycler orbit case includes a question mark for the long term cryogenic storage
system, because the necessary thrust levels and type of propulsion system are undetermined at this
time.
Required Technologies vs. Alternative Mission Architecture

	-		-			$\underset{+}{\underline{\mathbf{n}}}$	-
	-	\bullet	-	-	-	-	-
	-	-	-	-	\bullet	\bullet	-
	-	-	-	-	-	\bullet	-
				-		-	
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	\bigcirc	-	\bigcirc	-	©.	\bullet	\bigcirc
		品曾					

Required Technologies vs. Alternative Mission
This matrix section represents the major aerobraking concems. The aerobraking energy columns for Mars and Earth capture digresses from the format in order to illustrate the energy levels, and therefore, the level of technology development needed for the various architectures. Aeroheating predictions, reusable aerobrake TPS, advanced GN\&C, and TT\&C follow along with the high and medium energy missions. Again, a question mark is shown for the Mars cycler orbit case. Reusable TPS for Earth return cannot be determined as a technology development concem until the aeroheating load at Mars can be determined for the cycler orbits. Further mission design efforts must be carried out before an estimate on this can be made.
Required Technologies vs. Alternative Mission
Architecture (Cont.)

	$\begin{gathered} \text { Eatth reumm } \\ \begin{array}{c} \text { erobrate } \\ \text { energy } \end{array} \\ \hline \end{gathered}$	Mars capture merobrake energy	Mars lander merobrate		$\begin{array}{\|} \text { Acrobrate } \\ \text { asembly and } \\ \text { teat } \end{array}$	Aecotheasing predicion (Earth and/or Mars)	Reusable erebrake TPS for Barth retum	GN \& C to protect TPS	$\left\|\begin{array}{c} \text { Advanced } \\ \text { high } \\ \text { accuracy and } \\ \text { rave TT \& C } \end{array}\right\|$	In space AR\&D / assembly
Mars NEP Alternative Architecture	Low	Low	-	-	-					-
Lunar/Mars NTR Alternative Architecture			\bullet	-	-					-
Mars SEP Alternative Architecture	Low	Low	-	-	-					-
L2 Node / Mass Driver Alternative Architecture	High	High	-	-	-	-	-	-	-	-
Mars Cycler Orbits Alternative Architecture	High	High	-	-	-	-	$?$	-	-	-
Mars Conjunction/Direct Alternative Archiltecture	Medium	Medium	\bigcirc	-	-	-	-	-	-	-
Lunar / Mars NEP Alternative Architecture	Low	Low	-	-	-					-
- Enabling - Enhancin										

Required Technologies vs. Alternative Mission
Architecture (Cont.)
This matrix area represents the major propulsion issues, with the exception of the radiation
protection system, for the baseline and alternative mission architectures. This system, which
uses the inert and can waste for radiation shielding, can be enhancing, while a GCR and ALSPE
shelter is enabling for all mission architectures. Again, due to the undefined MARS cycler orbit
trajectories, it is questionable as to the need for a large cryogenic space engine. A H2-O2 ACS/RCS
system is noted as enabling for each option, as it will be for any option over a baseline storable system.
A lunar orbital momentum storage and transfer device such as a bolo can be enhancing for all
missions, after an initial launch and assembly penalty for the massive (~ 1000 t) device.
Required Technologies vs. Alternative Mission
Architecture (Cont.)

Required Technologies vs. Alternative Mission
The final section of the matrix is not as illustrative as the others, in that all of the listed
technologies are enabling, with the exception of a closed ecological life support system, which is
significantly enhancing for all identified mission architectures.

$\begin{aligned} & \text { y } \\ & \text { B } \end{aligned}$	-	-	\bullet	-	-	\bigcirc	\bullet
	-	-	-	-	-	-	-
	-	-	-	-	-	-	\bullet
	-	-	-	-	-	-	-
	-	-	-	\bullet	-	-	-
	-	-	-	-	-	-	-
		스르를					

I. TMIS
A. Cryoge

1. The
2. Tank
3. The
4.
5. op
6.
7. Neg
n.
8. Thermal protection system - MLI over foam. (1"foam; $\sim 1 "$ MLI)
9. Tanks launched wet.
10. Thermodynamic vent coupled to a single vapor cooled shield.
11. Topoff before Earth departure.
12. ~ 6 months in LEO before use.
13. Negligible boiloff loss after topoff.
 8. Engine out capability (crossfeed propellant lines).
14. No specified engine cycle.
15. In-space changeout capability.
16. No retraction / extension required.

$$
\begin{array}{l}\text { Mars Reference Vehicle Technology } \\ \text { Requirements (cont.) }\end{array}
$$

C. Structure

1. Material - metal matrix composites, advanced alloys, and organic matrix composites.
2. Meteor/debris protection provided for tanks and plumbing.
D. Avionics
Piggybacked on MTV.
E. Power
3. Level : 1 kW
4. System: Auxiliary power units on engine pod; piggybacked on MTV for back-up.
F. Assembly
5. Off station assembly.
6. Degree of assembly: Separate tanksets / propulsion modules connected in LEO to
form propulsion stage.
II. MTV
A. Cryogenic storage system
7. Thermal protection system - MLI; 100 layers on H2 \& O2 tanks (2").
8. Tanks launched wet - no transfer other than topoff before Earth departure.
9. Thermodynamic vent coupled to a series of vapor cooled shields on the H2 tank, and
one on the O2 tank.
10. Topoff in LEO before Earth departure.
11. ~9 months in LEO before Earth departure.
12. Boiloff loss of < 10% before Mars departure.
STCAEM/jrm/GF
B. Propulsion

C. $\frac{\text { Structure }}{\text { 1. Vehicle }}$
a. Metal matrix composites / advanced alloys / organic matrix composites.
b. Micrometeoroid protection for habitat structure (shell and insulation).

D. Avionics
13. Planetary vicinity -
a. Relative velocity error $=100 \mathrm{~m} / \mathrm{s}$.
b. Relative position error $=25 \mathrm{~km}$.
14. System -
a. Relative velocity error $=100 \mathrm{~m} / \mathrm{s}$.
b. Relative angle error $=0.5^{\circ}$.

> E. Power 1. Level -15 kW . 2. System: Solar arrays with battery storage (NiCad). 3. Back up system: NA
EBENNE

Mars Reference Vehicle Technology

STCAEM/jrm/6F

F. Assembly

1. Off station assembly.
 2. Assembly level (complexity): TBD
 G. Habitat

F. Assembly

1. Off station assembly.
2. Assembly level (complexity): TBD
G. Habitat
3. ECLSS: Space Station Freedom derived system with similar degree of closure;

potable H 2 O from cabin condensate; CO2 reduction/regeneration;
Hygiene H 2 O from urine processing. CELSS to be evaluated.

2. Structure
3. Structure
a. 2219 - T8 aluminum pressure vessel.
b. Pressurized to 20 psig on launch for structural integrity.
c. Insulation \& M/D shield external to pressure shell.
d. No penetrations in end domes.
e. Radiation storm shelter provided, and configured to utilize equipment \&
supplies as partial shielding.
f. External space radiator integral with M/D shield.
4. Cabin repressurizations: $2+$ (outbound emergency could use propellant for
repress.)
5. Spares: 15% of active equipment - component level.
6. Redundancy: Two complete and separate systems for life critical systems +
spares. Component changeout capability.
7. Residence time $=535$ days.
8. Science: Transit science as allowed by individual mission.
9. EVA capability: EVA suits provided for all crew; EVA waste fluid recovery
for ECLSS. Requirements (cont.)

Mars Reference Vehicle Technology
Requirements (cont.)
D. Avionics
10. Error without beacon $=1 \mathrm{~km}$.
11. Touchdown error $=1 \mathrm{~m} / \mathrm{s}$.
12. Obstacle avoidance capability.
E. Power
13. Level: ~ 2.5 kW .
14. System: fuel cells (regenerable).
15. Back-up system: abort to orbit.
F. Assembly
16. Off station assembly.
17. Assembly level (complexity): TBD
G. Habitat
18. ECLSS: open system; stored potable H2O; LiOH CO2 adsorption.
19. Structure
a. Aluminum (2219 - T8) pressure vessel.
b. Overpressurized on launch for structural integrity.
c. Insulation and micrometeoroid protection external to pressure vessel.
d. No penetrations in end domes.
e. No radiation shelter provided in MEV.
f. External space radiator integral with micrometeoroid shield.
20. Repressurizations: 2 .
21. Spares: 15% of active equipment mass; component level.
22. Redundancy: EVA suits as backup to cabin repressurization.; no system level
ECLSS redundancy required due to low complexity open system.
23. Residence time: ~ 3 days (surface systems support surface stay).
24. Science: none.
25. EVA capability: provided for all crew; transferred from MTV.

D615-10026-2
Critical Lunar/Mars Reference Technology Development Concerns A preliminary set of critical technology development concerns was constructed for the Lunar/Mars
reference missions. Its purpose is to show a top level representation of the areas which could prove
enabling for the reference Lunar and/or Mars missions, without further concentrated research and
development, flight testing, and/or precursor missions. Aerobraking may prove enabling for most
Lunar and Mars missions, and significantly enhancing for the rest, primarily due to reduced
demands on limited Earth to orbit launch capability and lower launch costs. Aeroheating prediction
codes cannot be validated without further experimental data (flight or ground simulation data). The
degree of development needed for aerobrake TPS materials will be determined by these
predictions. Low gravity human factors, to be evaluated on SSF, may affect vehicle design
significantly. Foe example, vehicle designs must accommodate artificial - gravity until a need level
can be determined from space station based research. Finally, precise mission design, incorperating
advanced tracking, telemetry, and GN\&C must be verified to accommodate aerobraking and
automated rendezvous \& docking requirements.
Preliminary Identified Lunar/Mars Reference High Leverage Technology Issues
A preliminary set of high leverage technologies was assembled for the Lunar/Mars reference missions. These technologies are enhancing for most, and in some cases, all identified mission architectures. Aerobraking will be significantly enhancing for all Lunar and Mars missions where it is not identified as enabling. Other aerobraking issues which could prove enhancing are lightweight reradiative or ablative TPS material, and ECCV vs. aerocapture of MTV at Earth. Low -g propellant handling and low boiloff cryogenic storage are also very enhancing for any missions where it is not enabling. Advanced propulsion options such as NTR, GCR, SEP, and NEP may prove to be high leverage technology options to baseline cryogenic propulsion systems. Finally, developments in advanced materials can be significantly enhancing in a variety of areas.

Technology	Comments
Aerobraking - Mars Capture (vs. propulsive cap.)	- Aerocapture at Mars can reduce IMLEO $>50 \%$ over propulsive capture
Aerobraking - Earth Capture (vs. ECCV)	- ECCV reduces IMLEO and thermal protection system (TPS) requirements. - Reusable MTV can reduce life cycle cost.
Aeroshell TPS (reradiative vs. ablative)	- Reusable aeroshell requires rerad. TPS at Mars (or thick lightweight ablator), and ablative at Earth. - Further materials and processes advances or low energy mission may allow Earth/Mars reradiative TPS.
Advanced Long Term Cryogenic Storage Technology	- Cryogenic boiloff reduction technologies such as advanced MLI design and application, VCS, para to ortho H 2 conv., and thermal disconnect struts, can reduce IMLEO significantly with low R \& D effort - Longer missions offer greater IMLEO savings potential
Low - g Propellant Transfer	- Low - g propellant transfer technology enhancing for all Lunar/Mars mission arch., and enabling for some Lunar missions.
Efficient Cryogenic Refrigeration System	- Cryogenic refrig system can reduce vehicle mass and enhance system reliability at the expense of an increased power level.
O2-H2 ACS / RCS	- $\mathrm{O} 2-\mathrm{H} 2 \mathrm{ACS} / \mathrm{RCS}$ (Isp $=400 \mathrm{~s}$) reduces system mass over lower Isp storables
High Isp Advanced Space Engine	- High Isp advanced space engine ($\operatorname{Isp}=\mathbf{4 8 5} \mathrm{s}$) enhances all mission phases for all mission arch.
NTR Propulsion System	- NTR propulsion system for the TMI, Lunar transfer, and Mars transfer stages
Advanced In r Space Assembly Techniques	- Launch vehicle capability drives on - orbit assembly level. - Degree of on - orbit assembly capability affects vehicle configuration, ground assembly/processing, and launch manifesting.
Advanced Materials Development	- Advanced materials such as metal and organic matrix composites reduce system inert mass, strength, and/or manufacturing costs. - Some advanced M\&P may prove enabling for some mission arch. (ex:Mars/ Earth capture aerobrake)

Schedules

Technology Development Concerns and Schedules - Cryogenic All Propulsive Vehicle

Critical technology development issues relating to the reference CAP vehicle are presented in this section. Where applicable, the same charts are also included in the CAB, NTR, NEP, and SEP IP\&ED documents. The focus of this section will be to bring out the most important issues relating to the reference cryogenic all propulsive vehicle, and to present preliminary technology development schedules for these issues. The issues are presented here in outline form, beginning with the most important, with accompanying schedules wherever possible.

Cryogenic Propulsion and Fluid Management

With the absense of high energy aerobraking for the all propulsive mission, cryogenic propulsion and fluid management becomes the most important technology development concern in the area of vehicle benefits. The high Isp of a LH2-LOX system ($460-480 \mathrm{~s}$) may prove enabling for an all propulsive mission due to the massive vehicle sizes which could result from the lower Isp ($280-360 \mathrm{~s}$ with metallic gels) storable systems. The long term storage and low-g fluid management of cryogenic fluids, along with long lifetime, in-space restartable cryogenic engines are the major technology development concerns for a cryogenically fueled vehicle. Preliminary technology schedules are presented for space based cryogenic engines, and cryogenic fluid system development for both Lunar and Mars applications. The cryogenic space based engine development effort begins with the planned AETB work at LeRC, and continues on to development work for a large engine for Mars applications. The cryogenic fluid systems schedule includes Earth-based thermal control and selected management (tank pressure control, liquid acquisition device effectiveness, etc.) tests, as well as planned flight experiments to carry out system and subsystem validation tests.

Vehicle Avionics and Software

Although the technology readiness level of vehicle avionics and software is ahead of many of the other technology areas listed in some respects, the demands on the system in the areas of processing rate, accuracy, autonomous operation, and status/health monitoring will drive technology and advanced development in areas not fully defined at this point. Software requirements cannot be fully determined until the vehicle design is at a more finished stage than the current levels. A preliminary schedule for autonomous systems development is presented. The decision points for full scale development The communications system options can be more fully defined before a final vehicle design is produced, however. A technology development schedule for advanced communications is presented.

Life Support

A reliable, redundant long term life support system will be enabling for future exploration missions. The degree of closure of, and the reliability of the system are the major technology development concerns. Low-g human factors determination will also be an important technology consideration which will drive vehicle design. An integrated It includes radiatior areas of the life support technology development task are presented. development. As before the points where Lunar and Mars full scale development decisions can logically be made in the technology program are highlighted.

Aerobraking (low energy)

Low energy aerobraking will offer mission benefits in the areas of decreased demands on the descent propulsion system, and improved crossrange capability. This area presents a variety of issues for technology development including high strength to mass ratio structural materials, high temperature thermal protection systems (although not as high as for high energy aerobraking), avionics, assembly and operations, hypersonic test facilities and computer codes, and Mars atmosphere prediction. High strength structural material options include metal matrix composite, organic matrix composite, and advanced carbon-carbon elements. Other structural considerations include load distribution and attachment of payload for aerocapture, and ETO launch and assembly of large structures. Thermal protection systems issues include low mass ablative and reradiative materials, and structure/TPS integration issues. The aerobrake maneuver will place considerable demands on the vehicle avionics system with the need for real time trajectory analysis, and vehicle guidance and control. The launch and assembly of the large aerobrake structure will present ground and space assembly and ops problems which will require technology and advanced development in both the areas of design and operations. Finally, computational analysis and atmosphere prediction capability will be critical in the development of a man-rated aerobrake for Mars use. A preliminary development schedule for Lunar and Mars aerobrake technology development is presented. It includes the major milestones for both ground and flight testing. The points where a Lunar and Mars full scale development decision can be made are also highlighted on the schedule. It should be noted that this schedule was built with high energy aerobraking in mind, and will possibly be compressed to some degree if only low energy aerobraking is developed.

In-Space Assembly and Processing

The in-space assembly and processing of large space transfer vehicles will present a variety of technology advanced development challenges, particularly for the large LTV and MEV aerobrakes. As shown on the accompanying schedule, extensive ground tests must occur before any orbital work can be initiated. The vehicle designs will be driven to a large degree by the assembly facilities and technologies seen as being available during the vehicle buildup sequence.

Summary

As noted before, many of the identified critical and high leverage technology development issues are common across all 'of the major vehicle options. Common critical technology issues include low-g human factors, autonomous system health monitoring, long term cryogenic storage and management (H 2 , and possibly O 2 for ECLSS), long duration ECLSS, radiation shelter material and configuration, and in-space assembly. Unique cryo all propulsive technology issues center around large advanced space engine advanced development. Enhancing technologies include cryogenic refrigeration (lander tanks), O2-H2 RCS, advanced in-space assembly techniques, higher Isp cryogenic engines, and advanced structural materials development.

 \checkmark Lunar FSD Mars FSD \downarrow High thrust cryo engine design (for MTV)
\square Design \& analysis methodologies for AETB engine
Breadboard assy. \& constr. $\nabla \nabla$ Complete testbed-proven technology for LTV appl. Mars FSD 1 adv. development \square Advanced development \& flight test (program level) - Mars FSD \forall Lunar FSD
-

Autonomous Systems
\sum Autonomous landing req. def.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Autonomous Systems

$$
\text { Autonomous landing req. def. }
$$

- Mars FSD*
Mars FSD* ${ }^{*}$ Lunar FSD*
- Technology should not present FSD threatening problems:
ISTCAEM/jrm/4oct90

\square Adaptive GN\&C systems development \& testing
Aerobraking
Lunar \& Mars computer flow codes complete $\boldsymbol{\nabla}$ CFD code development \& analysis
\square Hypersonic wind tunnel testing
\square TPS materials \& concepts completed

\square AFE analysis
\square Structures, matl's, \& mechanisms adv. dev. ∇ Final tech. dev. complete
TPS malls. \& concepis vill \& Mars telerob. aerobrake tech. dev. (program)
Mars FSD $\quad \nabla^{\text {Tech dev. complete }}$
\checkmark Lunar FSD MTV aerobrake tech. dev.

ISTCAEM/jrm/4oct90

This page intentionally left blank

Facilities

-

Facilities

The facility needs have only been identified in this study; the extent of the impact is yet to be determined. A "bona fide" facility development plan has not been done as some of the requirements are only at a top-level needs evaluation. Therefore, the exact nature of the subsystems and their support facilities are undetermined. When these determinations havebeen made for the final NASA selected vehicle, the results must be integrated with the vehicle development schedule.
In addition to the information here, additional facility and equipment detail is shown in Ground subsection of the Support Systems section of this text. The volumes for the baseline Cryo/Aerobrake vehicle for assembly, storage, and launch processing are shown in the "Facility Requirements" chart. Processing time shown in the "Assembly Time per Mission" chart. All impacts will be to increase the processing time and working volumes required. Any facility requirements must be viewed in the light of and incorporated into the National Launch Facility Plan.

Facility Requirements

	Assembly Volume	Storage Volume	Launch Processing
1	20694.13	0	0
2	20694.13	0	0
3	42233.11	0	0
4	56989.01	0	0
5	69879.77	10129.05	0
6	54623.87	10129.05	0
7	39222.88	25031.66	4626.85
8	39222.88	25031.66	0
9	49351.93	14902.61	0
10	20694.13	25031.66	18528.75
11	20694.13	34296.04	0
12	20694.13	34296.04	0
13	20694.13	25031.66	9264.38
14	39481.26	25031.66	0
15	39481.26	25031.66	0
16	0	25031.66	16912.13
17	18528.75	25031.66	0
18	18528.75	10129.05	0
19	0	25031.66	18528.75
20	0	34296.04	0
21	0	34296.04	0
22	0	25031.66	9264.38
23	0	25031.66	0
24	0	25031.66	0
25	0	10129.05	14902.61
26	21207.95	10129.05	0
27	21207.95	30387.15	0
28	0	30387.15	21207.95
29	0	30387.15	10129.05
30	0	30387.15	10129.05
31	0	20258.1	10129.05
32	0	20258.1	10129.05
33	0	20258.1	10129.05
34	0	20258.1	10129.05
35	0	10129.05	10129.05
36	0	10129.05	10129.05

AssembIy 1 ime per Vission

This page intentionally left blank

Costs

This page intentionally left blank

Cryo Aerobrake

Programmatics

The objectives of the Programmatics task during the current phase of the study were: (1) realistic initial schedules that include initial critical path program elements; (2) initial descriptions of new or unique facilities requirements; (3) development of a stable, clear, responsive work breakdown structure (WBS) and WBS dictionary; (4) initial realistic estimates of vehicle, mission and program costs, cost uncertainties, and funding profile requirements; (5) initial risk analysis, and (6) early and continuing infusion of programmatics data into other study tasks to drive requirements/design/rade decisions.

The issues addressed during the study to date included: (1) capturing all potential long-lead program items such as precursor missions, technology advancement and advanced development, related infrastructure development, support systems and new or modified facility construction, since these are as important as cost and funding in assessing goal achievability; (2) incorporating sufficient operating margin in schedules to obtain high probability of making the relatively brief Mars launch windows; (3) the work breakdown structure must support key study goals such as commonality and (4) cost estimating accuracy and uncertainty are recurring issues in concept definition studies.

Introduction

The study flow, as required by MSFC's statement of work, began with a set of strawman concepts, introduced others as appropriate, conducted "neckdowns", and concluded with a resulting set of concepts and associated recommendations.

As the study progressed, much discussion among the SEI community centered on "architectures". In this study, architectures were more or less synonymous with concepts, since the statement of work required that each concept be fully developed including operations, support, technology, and so forth.

We started with ten concepts as shown in "Overall Study Flow" chart. After the "neckdown" was completed, significant effort was put into programmatics.

As was indicated earlier, we established three levels of activity to evaluate in-space transportation options. The minimum was just enough to meet the President's objectives; in fact "return to the Moon to stay" was interpreted as permanent facilities but not permanent human presence. The minimum program had only three missions to Mars. The median (full science) program aimed at satisfying most of the published science objecives for Lunar and Mars exploration. The maximum program aimed for industrialization of the Moon, for return of practical benefits to Earth, and for the beginnings of colonization of Mars. The range of activity levels, as measured by people and materiel delivered to planetary surfaces, was about a factor of 10 . The range of Earth-to-orbit launch rates was less, since we adopted results of preliminary trade studies, selecting more advanced in space transportation technologies as baselines for greater activity levels. The high level schedules developed for these three levels of activity are shown in the "Minimum Program", "Full Science Program" and "Industrialization and Settlement Program" charts and a comparison of them for both Lunar and Mars is shown in the "Lunar Program Comparison" and "Mars Program Comparison" charts. The Cryogenic-All propulsive systems were derived from the Cryo/Aerobrake systems be adjusting the size of the TransMars Injection Stage and eliminating the aerobrake from the materials costed.

Schedule/Network Development Methodology

A PC system called Open Plan by WST Corporation was used, which allows direct control and lower cost over a larger (mainframe) system. The network was purposely kept simple. Summary activities were used in development of the networks. When detailed to a lower level, some activities will require a different calendar than we used. One calendar with a five day work week - no holiday was used. Utilizing multicalendars on a summary network could confuse the development. The Preliminary WBS Structure Level 7 was followed for selection of work to be detailed. An example of Level 7 is: MEV Ascent Vehicle Structure/Mechanisms. We then developed a generic logic string of activities with standard durations for like activities. This logic was then applied against each WBS Level 7 element. To establish interface ties between logic strings and determination of major events, we used the Upper Level Summary Schedule and Summary Level Technology Schedule.

Goals/Purpose

There were two goals for the schedule/network development. These were:
a. Guidelines for Future Development. The schedules are a preliminary road map to follow in the development program.
b. Layout Basis Framework for Network. The networks can be used for future detail network development. This development can be in phases retaining unattended logic for areas which can be be detailed.

Status

Six preliminary networks have been developed. They are:

- Lunar minimum
- Lunar full science
- Lunar industrialization
- Mars missions
- Mars full science
- Mars settlement

These networks will be further developed as information becomes available. The technology development plan schedules are shown in the Schedules subsection of this text; an example of the standard 6 year program phase C/D schedule is shown in "Reference 6 yr. Full-Scale Development Schedule" chart. The network schedules developed during the study are available in the Final Report Costs Data Book and the WBS.

Facilities

The facility requirements and approaches are discussed in the Facilities section of this text.

Development Implementation

The integrated technology advancement and full-scale development schedules for the Cryogenic/Aerobrake is shown for the subsystems in the Schedule section of this document. The MEV is developed according to the above mentioned standard 6-year FSD schedule. The Man-rating schedules for critical systems, that must be accomplished before first flight, are given in the next six man-rating charts. The long-duration Mars Tansit Habitat, and its critical subsystems, will require operational testing in space to qualify for the Mars mission. How all development and testing is actually done depends on program interrelationships between lunar and Mars missions.

Work Breakdown Structure

The approach to developing a WBS tree and dictionary was to use the Space Station Freedom Work Package One WBS as a point of departure to capture commonality, modularity and evolution potentials. We worked with MSFC to evolve the WBS illustrated in the six WBS charts given in this section. The WBS dictionary details are provided with the WBS rree in a separate deliverable document.

Cost Data

Overall Approach

Space transfer concept cost estimates were developed through parametric and detail estimating techniques using program/scenario plans and hardware and software descriptions combined with NASA and subcontractor data. Our estimating approach simulates the aerospace development and production environment. It also reflects program
options not typical of aerospace programs. This flexibility allows assessment of innovative program planning concepts.

Several tools were employed in this analysis. For developing estimates the Boeing Parametric Cost Model (PCM) designed specifically for advanced system estimating was used. It utilizes a company-wide, uniform computerized data base containing historical data compiled since 1969. The second major tool is a Boeing developed Life Cycle Cost Model. The third tool is the Boeing developed Return on Investment (ROI) Analyses.

The approach to cost estimating was to use the PCM to establish DDT\&E and manufacturing cost of major hardware components or to use other estimates, (e.g. Nuclear Working Group estimator) if they were considered superior and then feed them to the LCC model. Variations on equipment hardware or mission alternatives can be run through the LCC and then compared for a return on invesment. This flow is illustrated in the "Costing Methodology Flow" chart. We were able to investigate alternative concepts quickly, giving system designers more data for evolving scenario/mission responsive concepts. Transportation concepts, trade studies, and "neckdown" efforts were supported by this approach.

Parametric Cost Model

PCM develops cost from the subsystem level and builds upward to obtain total program cost. Costs are estimated from physical hardware descriptions (e.g., weights and complexities) and program parameters (e.g., quantities, learning curves, and integration levels). Known costs are input directly into the estimate when available; the model assesses the necessary system engineering and system test efforts needed for integration into the program. The PCM working unit is man-hours, which allows relationships that tie physical hardware descriptions first to design engineering or basic factory labor, and then through the organizational structure to pick up functional areas such as systems engineering, test, and development shop. Using man-hours instead of dollars for estimating relationships enables more reliable estimates. The PCM features, main inputs, and results are shown in the "Boeing Paramerric Cost Model (PCM)" chart. The applicable PCM results, in constant 1990 dollars, are then put into the Life Cycle Cost Model to obtain cost spreads for the various missions/programs. The various hardware components
costed for the three different missions/programs are shown in the "LCCM Hardware Assignments" chart. As stated above, adjusments were made for the Cryogenic-All Propulsive from the Cryo/Aerobrake configuration.

The development of space hardware and components needed to accomplish the three different Lunar/Mars missions were identified. These components are grouped into three different categories defined below.

HILV(Heavy Lift Launch Vehicle) is the booster required to lift personnel, cargo and fuels into LEO and support the LEO node operations.

Propulsion Includes the space propulsion system required to transfer people, cargo and equipment out of LEO and into space. Space means Lunar, Mars and Earth destinations. Propulsion Systems also include an all-propulsive cryogenic Trans Mars Injection System (TMIS) for the Minimum Mission, the Nuclear Electric Propulsion Stage for the Settlement/Industrial Missions.

Modules Include the space systems that are required to transfer people, cargo and equipment from LEO to Lunar and Mars orbit; to de-orbit and sustain life and operations on the Lunar and Mars Surface; and, finally, to return personnel and equipment to LEO.

Cost Buildups

The PCM cost Model can be used directly to obtain complete DDT\&E cost, including production of major test articles, by entering into the manufacturing section the equivalent numbers of units for each item, including the first flight article. However, when operated in this way, PCM does not give the first unit cost. To save time, we operated PCM so as to give first unit cost, which we needed for life cycle cost analyses, and used the first unit cost to manually estimate the test hardware content of the DDT\&E program. The "wrap factors" shown in the cost buildup sheets were derived from the PCM runs as the factor that is applied to design engineering cost to obtain complete design and development costs, e.g. including non-recurring items such as systems engineering and tooling development.

Life Cycle Cost Model

The LCCM cost data is a composite of HLLV costs, launch base facilities cost estimate based on $\$ / \mathrm{sq}$. ft. and paramerric estimates derived from the Parametric Cost Model. The
principal source of information is from the PCM. All hardware cost estimates, with the exceprion of HLLV, have been developed with this model.
The LCCM consists of three individual models. One model is for the Minimum Program Scale; the second is for the Full Science Program Scale; while the third model is for the Settlement/Industrialization Program Scale. The Minimum Program meets the President's Space Exploration Initiative (SEI) objectives. These capabilities include permanent Lunar facilities but not permanent human presence and three missions to Mars. The Full Science program not only meets the President's SEI objectives but also provides for long term bases for far-ranging surface exploration. The Settlement/Industrialization program accomplishes the objectives of the Minimum and Full Science program scales and additionally returns practical benefits to Earth. These models were developed using the three architecture levels described in the Boeing manifest worksheets. Total cost for each system are tabulated by year and each year's totals feed into a summary sheet that calculates the total program cost for each level. Since the LCCM results are mission related, not just vehicle related, they are not provided here but are available in Final Report Cost Data Book. The LCCM was developed using Microsoft Excel version 2.2 for the Macintosh computer. Any Macintosh equipped with Excel 2.2 can be used to execute the model.

Return On Investment

One of the principal uses of the LCCM is to develop trades and return on investment for technology options. As shown in the "Costing Methodology Flow" chart, two separate life cycle cost models (which include DDT\&E and production cost data derived from the paramerric cost models) must be developed for each ROI case; a reference, and a case utilizing a technology option. The two life cycle cost streams are separately entered, and the ROI model is executed. The flow also illusurates that not all of the data entered into the life cycle cost model is derived from available costing software. Technical analysis must accompany this data. For example, the number of units which must be produced for the DDT\&E program must be determined. This is done at the subsystem level based on knowledge of past programs, and proposed system/subsystem tests. Since the ROI analysis is mission related, not just vehicle related, the data is not presented here but is available in the Final Report Costs Data Book .

Results

A summary of the cost data produced by the $P C M$ for the $C A B$ vehicle are given in the "Mars CAB Preliminary PCM Summary" and "Mars CAB Preliminary PCM Summary continued" charts. The PCM program was used to produce DDT\&E and production cost estimates for each of our reference Mars and lunar vehicles to the subsystem level. The DDT\&E costs generated by the PCM do not include all of the necessary hardware for the first mission vehicle. Hence all necessary additional units (prototypes,test units, lab units, etc.) were added into the vehicle cost buildups as shown in the "CAB Cost Buildup" charts. The total DDT\&E includes additional costs (e.g.. additional units in the DDT\&E program), contractor fees and the engineering wrap factor. The total DDT\&E from the cost buildup and the unit cost from the PCM are the primary vehicle cost inputs to the LCC model

Risk Analyses

Risk analyses were conducted to develop an initial risk assessment for the various architectures. This presentation of risk analysis results considers development risk, manrating requirements, and several aspects of mission and operations risk.

Development Risk

All of the architectures and technologies investigated in this study incur some degree of development risk; none are comprised entirely of fully developed technology. Development risks are correlated directly with technological uncertainties. We identified the following principal risks:

Cryogenics - High-performance insulation systems involve a great many layers of multilayer insulation (MLI), and one or more vapor-cooled shields. Analyses and experiments have indicated the efficacy of these, but demonstration that such insulation systems can be fabricated at light weight, capable of surviving launch g and acoustics loads, remains to be accomplished. In addition, there are issues associated with propellant ransfer and zero-g gauging. These, however, can be avoided for early lunar systems by proper choice of configuration and operations, e.g. the tandem-direct system recommended elsewhere in this report. This presents the opportunity to evolve these technologies with operations of initial flight systems.

Engines - There is little risk of being able to provide some sort of cryogenic engine for lunar and Mars missions. The RL- 10 could be modified to serve with little risk; deep throttling of this engine has already been demonstrated on the test stand. The risk of developing more advanced engines is also minimal. An advanced development program in this area serves mainly to reduce development cost by pioneering the critical features prior to full-scale development.

Aerocapture and aerobraking - There are six potential functions, given here in approximate ascending order of development risk: aero descent and landing of crew capsules retuming from the Moon, aerocapture to low Earth orbit of returning reusable lunar vehicles, landing of Mars excursion vehicles from Mars orbit, aero descent and landing of crew capsules returning from Mars, aerocapture to low Earth orbit of returning Mars vehicles, and
aerocapture to Mars orbit of Mars excursion and Mars transfer vehicles. The "Development Risk for Aerobraking by Function chart provides a qualitative development risk comparison for these six functions.

Aerocapture of vehicles requires large aerobrakes. For these to be efficient, low mass per unit area is required, demanding efficient structures made from very high performance materials as well as efficient, low mass thermal protection materials. By comparison, the crew capsules benefit much less from high performance structures and TPS.

Launch packaging and on-orbit assembly of large aerobrakes presents a significant development risk that has not yet been solved even in a conceptual design sense. Existing concepts package poorly or are difficult to assemble or both. While the design challenge can probably be met, aerobrake assembly is a difficult design and development challenge, representing an important area of risk.

Nuclear thermal rockets - The basic technology of nuclear thermal rockets was developed and demonstrated during the 1960 s and early 1970s. The development risk to reproduce this technology is minimal, except in testing as described below. Current studies are recommending advances in engine performance, both in specific impulse (higher reactor temperature) and in thrust-to-weight ratio (higher reactor power density). The risks in achieving these are modest inasmuch as performance targets can be adjusted to technology performance.

Reactor and engine tests during the 1960 s jetted hot, slightly radioactive hydrogen directly into the atmosphere. Stricter environmental controls since that time prohibit discharge of nuclear engine effluent into the atmosphere. Design and development of full containment test facilities presents a greater development risk than obtaining the needed performance from nuclear reactors and engines. Full- containment facilities will be required to contain all the hydrogen effluent, presumably oxidize it to water, and remove the radioactivity.

Electric Propulsion Power Management and Thrusters - Power management and thrusters are common to any electric propulsion power source (nuclear, solar, or beamed power). Unique power management development needs for electric propulsion are (1) minimum mass and long life, (2) high power compared to space experience, i.e. megawatts instead of kilowatts, (3) fast arc suppression for protection of thrusters. Minimizing mass of power distribution leads to high distribution voltage and potential problems with plasma losses,
arcing, and EMI. Thus while power management is a mature technology, the unique requirements of electric propulsion inroduce a number of development risks beyond those usually experienced in space power systems.

Electric thruster technology has been under development since the beginning of the space program. Small thrusters are now operational, such as the resistance-heat-augmented hydrazine thrusters on certain communications spacecraft. Small arc and ion thrusters are nearing operational use for satellite stationkeeping.

Space transfer demands on elecrric propulsion performance place a premium on high power in the jet per unit mass of electric propulsion system. This in turn places a premium on thruster efficiency; power in the jet, not electrical power, propels spaceships. Space transfer electric propulsion also requires specific impulse in the range 5000 to 10,000 seconds. Only ion thrusters and magnetoplasmadynamic (MPD) arc thrusters can deliver this performance. Ion thrusters have acceptable efficiency but relatively low power per unit of ion beam emitting area. MPD thruster technology can deliver the needed Isp with high power per thruster, but has not yet reached efficiencies of interest. Circular ion thrusters have been built up to 50 cm diameter, with spherical segment ion beam grids. These can absorb on the order of 50 kWe each. A 10 MWe system would need 200 operating thrusters. The development alternatives all have significant risk: (1) Advance the state of the art of MPD thrusters to achieve high efficiency; (2) Develop propulsion systems with large numbers of thrusters and control systems; or (3) Advance the stare of the art of ion thrusters to much larger size per thruster.

Nuclear power for electric propulsion - Space power reactor technology now under development (SP-100) may be adequate; needed advances are modest. Advanced power conversion systems are required to obtain power-to-mass ratios of interest. The SP-100 baseline is thermoelectric, which has no hope of meeting propulsion system performance needs. The most likely candidates are the closed Brayton (gas) cycle and the potassium Rankine (liquid/vapor) cycle. (Potassium provides the best match of liquid/vapor fluid properties to desired cycle temperatures.) Stirling cycle, thermionics, and a hightemperature thermally-driven fuel cell are possibilities. The basic technology for Brayton and Rankine cycles are mature; both are in widespread industrial use. Prototype space power Brayton and Rankine turbines have run successfully for thousands of hours in laboratories. The development risk here is that these are very complex systems; there is no experience base for coupling a space power reactor to a dynamic power conversion cycle;
there is no space power experience base at the power levels needed; and these systems, at power levels of interest for SEI space transfer application, are large enough to require inspace assembly and checkout. Space welding will be required for fluid systems assembly.

Solar power for space transfer propulsion - Solar power systems for space propulsion must attain much higher power-to-mass ratios than heretofore achieved. This implies a combination of advanced solar cells, probably multi-band-gap, and lightweight structural support systems. Required array areas are very large. Low-cost arrays, e.g. \$100/watt, are necessary for affordable system costs, and automated construction of the large area structures, arrays, and power distribution systems appears also necessary. Where the nuclear electric systems are high development risk because of complexity and the lack of experience base at relevant power levels and with the space power conversion technologies, most of the solar power risk appears as technology advancement risk. If the technology advancements can be demonstrated, development risk appears moderate.

Avionics and software - Avionics and software requirements for space transfer systems are generally within the state of the art. New capability needs are mainly in the area of vehicle and subsystem health monitoring. This is in part an integration problem, but new techniques such as expert and neural systems are likely to play an important role.

An important factor in avionics and software development is that several vehicle elements having similar requirements will be developed, some concurrently. A major reduction in cost and integration risk for avionics can be achieved by advanced development of a "standard" avionics and software suite, from which all vehicle elements would depart.

Further significant cost savings are expected from advancements in software development methods and environments.

Environmental Control and Life Support (ECLS) - The main development risk in ECLS is for the Mars transfer habitat system. Other SEI space transfer systems have short enough operating durations that shuttle and Space Station Freedom ECLS system derivatives will be adequate. The Mars transfer requirement is for a highly closed physio-chemical system capable of 3 years' safe and dependable operation without resupply from Earth. The development risk arises from the necessity to demonstrate long life operation with high confidence; this may be expensive in cost and development schedule.

Man-Rating Approach

Man-rating includes three elements: (1) Design of systems to manned flight failure tolerance standards, (2) Qualification of subsystems according to normal man-rating requirements, and (3) Flight demonstration of critical performance capabilities and functions prior to placing crews at risk. Several briefing charts follow: the first summarizes a recommended approach and lists the subsystems and elements for which man-rating is needed; subsequent charts present recommended man-rating plans.

Mission and Operations Risk

These risk categories include Earth launch, space assembly and orbital launch, launch windows, mission risk, and mitigation of ionizing radiation and zero-g risks.

Earth launch - The Earth launch risk to in-space transportation is the risk of losing a payload because of a launch failure. Assembly sequences are arranged to minimize the impact of a loss, and schedules include allowances for one make-up launch each mission opportunity.

Assembly and Orbital Launch Operations - Four sub-areas are covered: assembly, test and on-orbit checkout, debris, and inadvertent re-entry.

Assembly operations risk is reduced by verifying interfaces on the ground prior to launch of elements. Assembly operations equipment such as robot arms and manipulators will undergo space testing at the node to qualify critical capabilities and performance prior to initiating assembly operations on an acrual vehicle.

Assembly risk varies widely with space ransfer technology. Nuclear thermal rocket vehicles appear to pose minimum assembly risk; cryo/aerobraking are intermediate, and nuclear and solar electric systems pose the highest risk.

Test and on-orbit checkout must deal with consequences of test failures and equipment failures. This risk is difficult to quantify with the present state of knowledge. Indications are: (1) large space transfer systems will experience several failures or anomalies per day. Dealing with failures and anomalies must be a routine, not exceptional, part of the operations or the operations will not be able to launch space ransfer systems from orbit; (2)
vehicles must have highly capable self-test systems and must be designed for repair, remove and replace by robotics where possible and for ease of repair by people where robotics cannot do the job; (3) test and on-orbit checkout will run concurrently with propellant loading and launch countdowns. These cannot take place on Space Station Freedom. Since the most difficult part of the assembly, test and checkout job must take place off Space Station Freedom the rest of the job probably should also.

Orbital debris presents risk to on-orbit operations. Probabilities of collision are large for SEI-class space transfer systems in low Earth orbit for typical durations of a year or more. Shielding is mandatory. The shielding should be designed to be removed before orbital launch and used again on the next assembly project.

Creation of debris must also be dealt with. This means that (1) debris shielding should be designed to minimize creation of additional debris, especially particles of dangerous size, and (2) operations need to be rigorously controlled to prevent an inadvertent loss of tools and equipment that will become a debris hazard.

Inadvertent re-entry is a low but possible risk. Some of the systems, especially electric propulsion systems, can have very low ballistic coefficient and therefore rapid orbital decay rate. Any of the SEI space transfer systems will have moderately low ballistic coefficient when not loaded with propellant. While design details are not far enough along to make a quantitative assessment, parts of these vehicles would probably survive reentry to become ground impact hazards in case of inadvertent reentry. For nuclear systems, it will be necessary to provide special support systems and infrastructure to drive the probability of inadvertent reentry to extremely low levels.

Launch Windows - Launch windows for single-burn high-thrust departures from low Earth orbit are no more than a few days because regression of the parking orbit line of nodes causes relatively rapid misalignment of the orbit plane and departure vector. For lunar missions, windows recur at about 9 -day intervals.

For Mars, the recurrence is less frequent, and the interplanetary window only lasts 30 to 60 days. It is important to enable Mars launch from orbit during the entire interplanetary window. Three-impulse Mars departures make this possible; a plane change at apogee of the intermediate parking orbit provides alignment with the departure vector. Further
analysis of the three-burn scheme is needed to assess penalties and identify circumstances where it does not work.

Launch window problems are generally minimal for low-thrust (electric propulsion) systems.

Mission Risk - Comparative mission risk was analyzed by building risk trees and performing semi-quantitative analysis. The next chart presents a comparison of several mission modes; after that are the risk trees for these modes.

Ionizing Radiations and Zero G - The threat from ionizing radiations is presented elsewhere in this document. Presented here are the mitigating strategies for ionizing radiations and zero g.

Nuclear systems operations present little risk to flight crews. Studies by University of Texas at Austin showed that radiation dose to a space station crew from departing nuclear vehicles is very small provided that sensible launch and flight strategies are used. Onboard crews are protecred by suitable shielding and by arrangement of the vehicle, i.e. hardware and propellant between reactors and the crew and adequate separation distances. After nuclear engines are shut off, radiation levels drop rapidly so that maneuvers such as departure or return of a Mars excursion vehicle are not a problem. On-orbit operations around a returned nuclear vehicle are deferred until a month or two after shutdown, by which time radioactivity of the engine is greatly reduced.

Reactor disposal has not been completely studied. Options include solar system escape and parking in stable heliocentric orbits between Earth and Venus.

Crew radiation dose abatement employs "storm shelters" for solar flares, and either added shielding of the entire vehicle or fast transfers (or both) to reduce galactic cosmic ray exposure. Assessments are in progress; tradeoffs of shielding versus fast trips have yet to be completed. Expected impact for lunar missions is negligible and for Mars missions, modest.

16in!lol/mis/b:IV.)IS/

STCAI:M/grw/II.n's

91 92 93 94 95	96 97 98 99 00	01 02 03 04 05	06 07 08 09 10	11 12 13 14 15	16 17 18 19 20	21 22 23 24	25
Ground Gr	test demonstra und test demons Early shuttle fli Ground	ion of lightweig tration of insula ht tests of zero test demonstrat ralification of ta Flight measure Luna	thigh-perform ion systems int g fluids with cry on; selection of idem LTV cryo ments of LTV c mission perfor Flight demo Transfer at Flight perfor	nce insulation grity for launch o simulants, e.g system (no tran yo system perf nance of LTV f transfer and g d gauging syste demo of insulat nance levels Manned Mars	ystems environment freon auging techniqu fer or 0-g gaug mance (system yo system uging systems ns first use LT on systems at M mission with cr	es; systems g) first flight) /LEV ars mission o propellants	

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPI.ORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

SPACE TRANSFER CONCEPTS AND ANALYSIS FOR EXPLORATION MISSIONS

Main Inputs	Results		
$\begin{array}{l}\text { - Hardware Characteristics } \\ \text { - Category (e.g., primary structure, power conditioning, etc.) } \\ \text { - Weight (or Thrust) } \\ \text { - Complexity } \\ \text { - \% Off-the-Shelf } \\ \text { - Maturity } \\ \text { - Quantity } \\ \text { - Manufacturing Learning Curve }\end{array}$	$\begin{array}{l}\text { - DDT\&E and Manufacturing Estimates } \\ \text { - Based on previous Boeing programs } \\ \text { - Provides first flight unit costs }\end{array}$		
- Support Cost Factors			
- Systems Engineering			
- Management			
- Operations			
- Spares		$\left.\quad \begin{array}{l}\text { - Excludes test hardware fees }\end{array}\right\}$	- New hardware must be relatable to PCM
:---			
database to produce reasonable estimate			

Components		Lunarimars		
		Minimum	Full Scicace	Scrle
HLLV	Cargo Cartier \& Cure	X	X	X
	STME	X	X	X
	Recov PA Mod	X	X	
Propulsion	Std Avionica Sulte	X	X	X
	Adv Space Encine	X	X	X
	NTR Tanks		X	
	MOC Tank	X		X
	MOC Core	X		X
	NTR Stage		X	
	NTR Engine		X	X
	NEP Stane			
	NEP Engine			
	TMIS Engine	X		
	TMIS Tank	X		X
	TMIS Core	X		$\frac{X}{X}$
Modules	LEO Tanker	X	$\frac{X}{x}$	X
	LTV Hab	X	$\frac{\mathrm{x}}{\mathrm{x}}$	X
	LTV	X	X	X
	LEV	X	X	X
	LEV Crew hodule MTV	X		X
	MTV Crcw Module	X	X	X
	MEV	X	X	X
	RMEV			X
	minl-MEV		x	
	MEV Crew Module	X	X	X
	Lunar Aerobruke	X		
	M'TV Aerobrake			
	MEY Acroshell	X	X	X
	MCRV	X	X	X

Item	Engineering (\$Millions)	Manufacturing (\$Millions)	Total (\$Millions)
Trans Mars Injection Stage	86.379	220.784	307.163
Engines	710.078	99.868	809.946
Mars Transfer Stage	101.863	144.207	246.070
Engines	225.780	15.886	241.666
MTV Aerobrake	124.640	69.957	194.597
Mars Transfer Crew Module	1112.936	1114.365	2227.301
Science	100.651	62.517	163.167
Mars Excursion Stage	66.817	93.489	160.306
Aeroshell	112.107	56.312	168.418
Mars Excursion Vehicle Crew Cab	142.155	110.413	252.567
Modified Crew Retum Vehicle	279.935	200.650	480.585
Hardware Final Ass'y and C/O		328.266	328.266
Spares	----------	6.565	6.565
Hardware Total Costs	3063.339	2523.277	5586.613
System Engineering \& Integration	516.245	---------	516.245
Software Engineering	361.606	----------	361.606
Systems Ground Test Conduct	2121.869	---------	2121.869
Systems Flight Test Conduct	---------	----------	
Peculiar Support Equipment	979.369	125.836	1105.204
Tooling \& Special Test Equipment	----------	766.718	766.718
Task Direct Quality Assurance	----------	242.835	242.835
Logistics	156.132	----------	156.132
Líaison Engineering	268.181	------	268.181
Data	64.806	---	64.806
Training, Facilities Engineering, Safety, Graphics, Outplant,		---------.	----------
Program Management	О/H	---.-.----	-----.-.--
Support Effort Total	4468.199	1135.389	5603.582
Total Estimate	7531.539	3658.666	11190.203

Mars CAB Preliminary PCM Summary - continued
"

$\begin{array}{cc} \\ 5.80 \times \\ 0.12 \%^{5.50 x} & \text { Prelliminary PCM Hardware Cost } \\ \text { Estimates for CAB }\end{array}$

CAB Cost buildup

Page 1
CAB Cost buildup

Page 2

MIISSION FUNCTION	BRA KE SIZE	ATMOSPIIERE KNOWLEDCE \& UNCERTAINTY	TARGET FOR ENTRY: GN\&C PRECISION	IHEATIN(T/TPS	AERO PASS GN\&C PRECISION REQUIREI)
I, unar relurn Earll limiling	Small, no ass'y reguired	Accurate knowledge, low uncerl. effect	Very ligh	State-of-the-Art	State-of-the-Art
I innar relurn Liarlla tanding	Moderate requires assembly	Accurate knowledge, high uncert. effect	Very high	State-of-the-Art	Believed State-of-the-Art
Mars landing from orbit	I arge, requires assembly	Poor knowledge, low uncert. effect	Can be high, e.g. done from Mars orbit	State-of-the-Art	Believed State-of-lhe-Art
Mars return Earth landing	Small, no ass'y reguired	Accurate knowledge, moderate uncertainty effect	Very high	Very high heating rates, TPS advancement needed	Believed State-of-the-Art
Mars return aerocapture	Large, reguires assembly	Accurate knowledge, high uncert. effect	Very high	Very high heating rates, TPS advancement needed	Believed State-of-the-Art
Mars retirn alcrocaplure	Large, reguires assembly	Poor knowledge, high uncert. effect	Poor, umless nav-iids in Mars orbit	High heating rates, some TISS advancement needed	Advancements reguired

 - Parametric for Hardware Elements Each Major Elements = Devil Program - Cost/Mass Identification/Pa ta - No Contingencies (NASA to provide) - No Learning Curve for < 4 units/yr - 15\% Initial Spares +10\% of Active Mass/yr of Servis Mission Ops Support Factored Only - Mission Ops Suppored From Hardware Cost - Lumped Cost Spread (eg DD T\&E)) - SE\&I \& Management Costs Factored - Limited To Through STV Integration (eg SE\&I) - No Mission

- No Carry on - No Launch
PRICE - S for Software PRICE - H for Hardware -Ground Support - \$/FT ${ }^{2}$
Cis
First Release Scheduled for May 30, 1990

[^0]: Shown on the facing page are constraints as applied to the high L/D aerobrake, which were used to configure the reusable MEV. Aerobraking constraints include resultant force vector and protected wake cone, which
 impact the location of the MEV within the aerobrake.

[^1]: The facing page indicates uses of aerobraking for the various architectures. As noted, some In addition particular for Mars landing and for an Earth crew capture vehicle (ECCV) for direct return of the crew to Earth in cases where, for example, an NEP or SEP vehicle must spiral back down to LEO or in the case of an NTR where the vehicle captures into a highly elliptic orbit.

[^2]: Transfer from L,2 to Mars uses dual powered gravity assist, at the Moon and the Earth. This means that launches to Mars are limited to times the Moon is at proper location. The launch window problem is very similar to launching from a Earth orbit. In either case the launch window problem is difficult for opposition missions but for the much longer launch windows of conjunction missions, multiple chances are available. The return from Mars uses aeroassist to Earth and powered gravity assist from the Moon to L2.

[^3]: lin atamge of mip times and lameln dates, contome plols of total ΔV for both cases were generated. It is

[^4]: This is a comparison of the total required ΔV versus transfer time one way for aerobraked and all-propulsive vehicles. This was done for two years; the fairly easy year of 20 an areobraked vehicle. all propulsive vehicles. This was done
 of 2025 . This shows hoth the effect of the The acrobrake shows its advantage in the reduction in ΔV that must he provided. The advantage going in 2018 is evident as long as the total transfer time is less than 250) days, beyond that the rclative advamtage of using an aerobrake.

[^5]: This set of data were optimized for a fixed totaltransfer times for the 2018 "easy" opportunity and the 2025 "hard" opportumity. This information is applicable to an NTR or Cryogenic A
 Propulsive mission. The data shows the same Itend as in the data in the prececting chart all-propulsive curves. If the data is optimized for a fixed transfer time there is still all ulvantage in going in 2018 for missions with total transfer times less than 550 day

[^6]: These are pictorial descriptions of the aerocapture arrival inclination for the identified missions.
 the mission is to land at an established base site or a site off the track of
 plane change is required or the need for cross-range capability is establish.

[^7]: Analysis Type
 fixed exponential atmosphere

 ## Fixed-lift integrated trajectorles;

 2-DOF; fixed tabulated atmospheres

 - Modulated lift integrated trajectories; 3-DOF or 3-1/2 DOF; fixed
 tabulated atmosphere
 Modulated lift integrated trajectories;
 3-DOF or 3-1/2 DOF; variable
 atmosphere
 - 6-DOF integrated trajectories with simulation of vehicle filight control system; variable atmosphere

[^8]: We als adaptive guidance, and illustrates a gain-scheduling scheme presently under investigation
 plan to investigate the real-time re-optimization scheme.

[^9]: - Horizontal sine-wave density scaling

 DENS $=$ DENS $^{*}\left[1.0+0.3^{*} \operatorname{SIN}((\mathrm{Y} / \mathrm{W}) * 2 \mathrm{Pi})\right]$

 - Horizontal sine-wave density and vertical density ratio scaling

 DENS $=$ DENS $^{*}\left[1.0+0.05^{*}\right.$ SQRT $(\text { DENS30/DENS })^{*}$ SIN $\left.((Y / W) * 2 P i)\right]$

 - Horizontal sine-wave density and vertical density-ratio and sine-wave
 density scaling
 DENS $=$ DENS $^{*}\left[1.0+0.05^{*}\right.$ SQRT $\left.(\text { DENS30/DENS })^{*} \operatorname{SIN}((Y / W+H / L Z) * 2 P i)\right]$

[^10]: These
 in the
 facing page.
 rized on the
 configuration are summa
 trim at the desired L / D,
 to the MTV
 The aerobraking constraints applied
 protected wake region.

[^11]: The findings from our current analysis are that Mars capture aeroheating is a significant problem,
 unless correlations that predict less radiative heating can be verified. Several work-arounds are
 working with alternative radiation months, we crounds. nexicacy of

[^12]: - The size and shape of the aerobrake can determine the amount of packaging
 required for ETO launch and the number of launches required if it is assembled in space

[^13]: Structure and Mechanisms

 - Shall be at least two (2) functionally independently pressurized areas for emergency conditions The shall be two (2) EVA suits stored in these areas (PB)
 - Establish 30 cm clearance between all elements to allow for movement during high-stress
 maneuvers (SC)
 at rings. (SC)
 protected from damage by MAV blast during ascent start (BS)

[^14]: - Propulsion

 Engine out capabilities for ascent/descent stages (BD)
 Passive cryogenic storage system: MLI with vapor cooled shields (JM)

 - Gravity field environment eliminates need for zero-'g' acquisition and venting. (JM)
 - Vacuum jacketed ascent tanks for Mars boiloff reduction. (JM)
 - MEV propellant transferred from MTV prior to descent. (JM)

 ## - Electrical Power

 - Solar arrays to supply power following separation from MTV for ~ 50 day approach to Mars. Arrays to be retracted TBD hrs. prior to Mars descent (cryo/aerobrake). (BC)
 - Batteries or fuel cells to provide power for ascent and descent phases. (BC)

[^15]: - Robotic assembly of the vehicle - MTV and MEV done at SSF/ on orbit, TMI assembly and integration, propellant top-off and final inspection and checkout done off- station
 - Manned transfer vehicle is self-suffient in repair capability

[^16]: $380+179$ MTY crew mad of se

[^17]: ECCV crew return, MTV aerobrake not used as return countermass $>$ Level II 2015 565d option ** Earth aerocapture, MTV aerobrake used as return countermass
 $+1 / 3 \mathrm{~g}$ NTR option \longrightarrow Boeing nominal 2016 434d option
 ++1 g option \longrightarrow

[^18]: *Araifical -g system weight penalties all masses in kg Earth aerocapture configuration shown in diagram

[^19]: ［118］RCS maneuver propellant 599 Gascous $02 / \mathrm{H} 2$ propellant， $1 \mathrm{lsp}=400$ sec，MTV maneuver RCS $\mathrm{dV}=30 \mathrm{~m} / \mathrm{sec}$
 1516 delta V： $90(\mathrm{~m} / \mathrm{sec})$ ；burn done with MTV Mars dep main propulsion
 87732 LH2／O2，MR＝6：1，Mars dep dV： $3400 \mathrm{~m} / \mathrm{sec}$ usable＝prop req after outb \＆inorbit
 boiloff； 30 day boiloff period；calculated with Boeing＇s＇CRYSTORE＇program
 midcourse maneuver delta $\mathrm{V}: 120(\mathrm{~m} / \mathrm{sec})$ ；burn done w MTV main propulsion 335 day outbound trip time．
 599
 1516
 87732
 485
 7638
 5159
 103129
 142037 day outbound trip time．

 ［118］RCS maneuver propellant
 ［122］MTV inb midcourse bum prop
 ［128］Mars dep usable prop
 ［545＋546］In orbit Mars dep prop bolloff
 ［121］Outb midcourse burn prop
 ［498＋499］Outb Mars dep giop boiloff
 Sum Lof MTV propellant load
 ［118］RCS maneuver propellant
 ［122］MTV inb midcourse bum prop
 ［128］Mars dep usable prop
 ［545＋546］In orbit Mars dep prop boiloff
 ［121］Outb midcourse burn prop
 ［498＋499］Qutb Mars dep viop boiloff
 Sum Cof MTV propellant load
 ［118］RCS maneuver propellant
 ［122］MTV inb midcourse bum prop
 ［128］Mars dep usable prop
 ［545＋546］In orbit Mars dep prop bollo
 ［121］Outb midcourse burn prop
 ［498＋499］Outb Mars dep prop boiloff
 Sum Cof MTV propeliant load
 TEI
 prop
 $\&$
 \＆oll－
 off

[^20]:

[^21]: The current Vehicle Assembly Building (VAB) has a transfer aisle with the dimensions of 92.5 feet * the aerobrake is 91.8 feet,*as shown in the following chart, the Aerobrake can be transferred through the transfer aisle horizontally.

