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SUMMARY

The evolution of three-dimensional temporally evolving plane mixing layers through as many as

three pairings has been simulated numerically. Initial conditions for all simulations consisted of a few

low-wavenumber disturbances, usually derived from linear stability theory, in addition to the mean

velocity. Three-dimensional perturbations were used with amplitudes ranging from infinitesimal to

large enough to trigger a rapid transition to turbulence. Pairing is found both to inhibit the growth of

infinitesimal three-dimensional disturbances and to trigger the transition to turbulence in highly three-

dimensional flows. The mechanisms responsible for the growth of three-dimensionality as well as the

initial phases of the transition to turbulence are described. The transition to turbulence is accompanied

by the formation of thin sheets of spanwise vorticity, which undergo a secondary roll-up. Transition

also produces an increase in the degree of scalar mixing, in agreement with experimental observations

of mixing transition.

Simulations were also conducted to investigate changes in spanwise length scale that may occur

in response to the change in streamwise length scale during a pairing. The linear mechanism for this

process was found to be very slow, requiring roughly three pairings to complete a doubling of the

spanwise scale. Stronger three-dimensionality can produce more rapid scale changes but is also likely

to trigger transition to turbulence. No evidence was found for a change from an organized array of rib

vortices at one spanwise scale to a similar array at a larger spanwise scale.

1 INTRODUCTION

Free shear layers are of great technological importance because they occur in many practical

devices, especially those involving chemical reactions. However, a thorough understanding of the

hydrodynamics of free shear flows is a prerequisite to understanding the physical processes involved

in such chemically reacting systems. In Rogers and Moser (1991) (hereafter referred to as Part 1) and

in this paper, we attempt to develop such an understanding in the case of the simplest free shear flow,

the plane mixing layer. Although this flow has been extensively studied by analytical, numerical, and

experimental means, many questions remain unanswered. In particular, not enough is known about

the development of three-dimensionality and the transition to turbulence. Here numerically simulated,

temporally evolving free shear layers that undergo up to three pairings of the primary Kelvin-Helmholtz

rollers are examined to study these issues.

1.1 Pairing

Brown and Roshko (1971, 1974) observed that their experimental plane mixing layers developed

and maintained a remarkable degree of spanwise coherence. Their flow visualizations indicated that even

a turbulent mixing layer is dominated by the presence of quasi-two-dimensional, large-scale spanwise

rollers that span the entire experimental test section. This observation is counter to the classical picture

of fully turbulent flows, and its general validity was questioned. Chandrsuda et al. (1978) argued that,

in engineering applications, the presence of strong free-stream disturbances or turbulent splitter-plate

boundary layers would make the layer more incoherent. They presented smoke visualizations that

seemed to indicate a helical structure, perhaps the result of localized pairing of the Kelvin-Helmholtz
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rollers. Further investigations by others, however, supported the conclusion that the mixing layer is

largely two-dimensional, even when strong disturbances are present. Wygnanski et al. (1979) examined

the evolution of several strongly perturbed mixing layers. They concluded that strong free-stream

turbulence and turbulent splitter-plate boundary layers do not destroy the two-dimensional character of

the layer. They predicted that the apparently three-dimensional flow of Chandrsuda et al. would actually
become more two-dimensional further downstream. The dominance of the two-dimensional structures

persists even in experiments in which the splitter-plate geometry is modified (e.g., Breidenthal, 1980;

and Lasheras, Cho, and Maxworthy, 1986).

The results of Winant and Browand (1974) suggest that the primary growth in layer thickness occurs

through pairing of the two-dimensional structures, at least at the relatively low Reynolds numbers

of their experiments. This pairing process consists of the corotation and eventual amalgamation of

adjacent spanwise vortices and was found to occur several times during the downstream evolution

of the layer. Pairing has since been observed in a variety of experimental and numerical studies of

mixing layers, including in the experiments of Dimotakis and Brown (1976) at much higher Reynolds

numbers. However, not all investigators agree that pairing is primarily responsible for the layer growth.

Heman and Jimenez (1982) concluded that most of the layer growth occurred during the period between

pairings. In addition, an alternate mechanism for vortex amalgamation has been found. This mechanism,

similar to that predicted by Moore and Saffman (1975), is referred to as "tearing" or "shredding" and

is characterized by the tearing apart of a spanwise vortex by its neighboring vortices. Experiments in

which forcing is used (Yang and Karlsson, 1991) and numerical simulations (e.g., Riley and Metcalfe,

1980) have shown that this tearing occurs for a narrow range of relative phasings of the fundamental

and subharmonic disturbances. Such tearings are infrequent and occur slowly compared to the more

usual pairing amalgamation 0-leman and Jimenez, 1982). Pairing interactions can also involve more

than two spanwise vortices, with "triplings" occurring about as often as tearings (Hernan and Jimenez,

1982). Both triplings and quadruplings were observed by Brown and Roshko (1974), and by using

forcing at various frequencies, pairing interactions involving up to ten vortices have been observed (Ho

and Huang, 1982).

1.2 Three-Dimensionality

Flow visualizations of mixing layers have revealed the presence of streamwise vortex structures in

the braid regions between successive spanwise rollers (Brown and Roshko, 1974; Konrad, 1976; Bemal,

1981; Breidenthal, 1981; Jimenez, 1983). End views through the braid region of the kind shown in

Bemal and Roshko (1986) indicate that these are counterrotating pairs of streamwise vortices and that

they span the braid region between the low-speed side of one spanwise vortex and the high-speed side of

its downstream neighbor. These vortices are associated with a "wiggle," or corrugation, of the spanwise

vortices (Breidenthal, 1981). During the early evolution of the layer, not all these streamwise vortices are

found in counterrotating pairs; their initial locations are related to small upstream disturbances (Jimenez,

1983; Lasheras, Cho, and Maxworthy, 1986). However, like-sign neighbors soon pair, resulting in a

"stable configuration" of counterrotating vortices of similar strength O.,asheras, Cho, and Maxworthy,

1986; Bell and Mehta, 1989). The early evolution of these "rib" vortices during the initial Kelvin-

Helmholtz roll-up of the mixing layer was the primary focus of Part 1.



The spanwisescale of the streamwisevortices is highly variable. Stability calculationsby
PierrehumbertandWidnall (1982)showthatthemostamplifiedspanwisewavelengthassociatedwith a
periodicarrayof Stuart(1967)vorticesis abouttwo-thirdsof thefundamentaldisturbancewavelength,
but that disturbanceswith considerablylongerand shorterwavelengthshavenearly the samegrowth
rate. Corcosand Lin (1984) confirmedthis insensitivity to spanwisescalefor the more realisticCase
of an evolving two-dimensionalbaseflow. LasherasandChoi (1988) found no appreciabledifference
in growth ratefor disturbancesbetweenone-fifthand threetimesthe fundamentalwavelengthin their
experimentsusing serratedsplitter-platetrailing edges.Despitethis broadrangeof possiblespanwise
wavelengths,most"naturally evolving" mixing layersseemto havea characteristicspanwisescalethat
is closeto that predictedby PierrehumbertandWidnall (1982).

There is, however, a considerable difference of opinion regarding changes in spanwise scale that

may occur as a result of the streamwise scale changes that take place during pairings. Flow visualizations

by Bernal and Roshko (1986) indicate that their spacing remains constant through several pairings until

the completion of the so-called "mixing transition." A three-dimensional reconstruction of a pairing

event by Jimenez, Cogollos, and Bemal (1985) indicates that the number of streamwise vortices is halved

after a pairing. Jimenez (1983) postulated a mechanism for this scale change in which neighboring ribs

annihilate each other, leaving ribs at twice the original spanwise scale but with the same circulation

as before. Similarly, Huang and Ho (1990) find in their experiments that the preferred spanwise scale

doubles after both the first and second pairings.

1.3 Mixing Transition

At a certain point in the evolution of the mixing layer, the amount of mixing that occurs within the

layer increases substantially, particularly for high Schmidt numbers (Konrad, 1976; Breidenthal, 1981).

This has been termed the "mixing transition" and is associated with the formation of small-scale eddies,

or turbulence. Koochesfahani and Dimotakis (1986) used laser-induced fluorescence (LIF) to visualize

the structure within the layer both before and after the transition. The increased flow complexity after the

transition is readily apparent, as is the significant increase in amount of mixed fluid. In their experiment,

this transition occurred between Reynolds numbers of 5600 and 17,000, where this Reynolds number

is based on the velocity difference and the local visual thickness of the layer.

Huang and Ho (1990) correlate transition with the occurrence of pairings rather than with local

Reynolds number. By scaling the downstream distance with the ratio AU/U and the fundamental

disturbance wavelength Ax, they collapse data for various velocity ratios and find that transition in

their experiments is largely completed by the second pairing. In flows at lower Reynolds numbers,

this transition may be delayed until later pairings take place. The data of Huang and Ho (1990) are

consistent with observations of Winant and Browand (1974), who noted a "considerable increase in

smaller scale fluctuations at about the time of the second pairing."

Several investigators have speculated that the onset of mixing transition is related to the presence

of the streamwise vortices discussed above. Lin and Corcos (1984) suggest that it was the "collapse"

of the streamwise vorticity into compact, streamwise vortices of the type visualized in experiments that

was responsible for at least the onset of mixing transition. On the other hand, Lasheras, Cho, and

Maxworthy (1986) felt that a higher-order instability was required to explain the marked increase in
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mixing associatedwith themixing transition. In recentnumericalsimulations,MoserandRogers(1991)
identifieda mechanismby which pairing initiatesa transitionto turbulence.

1.4 Unanswered Questions

Although the pairing of three-dimensional mixing layers has been studied by many researchers,

there are many important, unanswered questions. Those addressed by the current study are described

below. The results of Rogers and Moser (1991) suggest that if oversaturation is prevented, as is the

case in pairing mixing layers, then the instability responsible for the growth of three-dimensionality

may be different from the "translative" instability described by Pierrehumbert and Widnall (1982) and

discussed further by Corcos and Lin (1984). The long-term growth of three-dimensionality through

several pairings has not been investigated, and the character of the three-dimensional instability has not

been determined. Further, previous studies have not addressed the way in which such an instability

might ultimately lead to a transition to turbulence. Neither the mechanism by which spanwise scale

changes (section 1.2) might occur nor the set of conditions under which they would occur has been

examined. Finally, the helical pairing discussed by Chandrsuda et al. (1978) and Pierrehumbert and

Widnall (1982) has not been carefully studied.

In this study, we use direct numerical simulations of mixing layers to address these issues because

they allow precise definition of the initial (o r inlet) conditions and provide a complete description of

the velocity and vorticity fields at any time. For a variety of reasons, previous numerical simulations

(see section 1.3 of Part 1 for a brief discussion of previous simulations) were unable to address the

issues discussed here. Most significantly, none of the previous computations has approached the scale

or Reynolds number of the three-dimensional multiple-pairing cases presented here (visual-thickness

Reynolds numbers up to 10,000 have been simulated). The combination of higher Reynolds numbers

and multiple pairings permits us to simulate a "naturally occurring" transition to turbulence, whereas

other researchers have used random fluctuations in their initial conditions to produce a "turbulent" layer.

Our method permits comparison with, and analysis of, the small-scale transition observed in experiments

begun from laminar splitter-plate boundary layers.

Some of the discussion in the following sections relies on results from the first portion of this study

(Part 1), which deals with the roll-up of three-dimensional mixing layers. A review of the necessary

material appears in the Appendix. Also, a brief description of the small-scale transition discussed here

appeared in Moser and Rogers (1991).

In section 2, background information on the numerical simulations used in this study is presented.

Linear stability of the pairing two-dimensional mixing layer is discussed in section 4, and nonlinear

evolutions of flows undergoing one and two pairings are presented in sections 5 and 6, respectively.

Spanwise-scale-change mechanisms are discussed in section 7, and the characteristics of the post-

transitional "turbulent" flows are described in section 8. Finally, helical pairing is discussed in section 9

and a summary is given in section 10.

Much of this work was begun in collaboration with visiting scientists at the 1988 Center for

Turbulence Research Summer School Program. In particular, we are grateful for discussions with

Professors C.-M. Ho, E Hussain, and J. Riley. In addition, we have benefited from comparisons
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with the spatially developingmixing-layerwork of Dr. J. Buell, the compressible-shear-layer work

of Prof. S. K. Lele, and from Prof. E. Broadwell's vast experience with experimental mixing layers.

Helpful comments provided by Dr. N. Mansour and Prof. S. K. Lele on a draft of this paper are also

appreciated. Some of the computations were performed on the NAS supercomputers at NASA Ames

Research Center.

2 PRELIMINARIES

The primary tool used in this study is direct numerical simulation of the time-developing mixing

layer. The time-developing mixing layer may be thought of as an approximation to the evolution of a

single set of flow structures as they are convected downstream in the more common spatially developing

layer. The roles of time and the streamwise spatial direction are thus reversed. As the velocity ratio of

the spatial layer approaches one, this approximation becomes exact (Buell, Moser, and Rogers, 1992).

Also, comparisons of spatially and temporally evolving simulations indicate that the same dynamical

mechanisms occur in both cases for velocity ratios even as low as 0.2 (Buell et al., 1992). It is

thus expected that results presented here will be relevant to spatially developing mixing layers. A

time-developing formulation was used in this study because its computational simplicity permits the

simulation of higher Reynolds numbers and smaller scales. Although only an approximation to a

spatially developing mixing layer, the temporally evolving layer is also of interest as a good model of

geophysical mixing layers that form in the absence of a splitter plate (Turner, 1973) as well as of the

stratified tilting-tank experiments of Thorpe (1968, 1971, 1973, 1985).

All the simulations described here were initialized with simple, "clean" initial conditions (see

section 2.2). It is expected that a thorough understanding of the vortex dynamics of such "clean" flows

will enable one to understand the development of mixing layers in the more general case of uncontrolled

disturbances. These flows may be considered to be "deterministic models" of the development of mixing

layers, in the same sense as flows considered in the work of Corcos and Sherman (1984), Corcos

and Lin (1984), and Lin and Corcos (1984). The initial conditions were chosen to have relatively

short spanwise wavelengths to reproduce the "standard" structures of ribs and rollers, rather than long-

spanwise-wavelength phenomena such as dislocations (Browand and Troutt, 1980, 1985) and slow

spanwise variations of the mean profile (Rogers et al., 1988).

2.1 The Governing Equations and Numerical Considerations

The simulations reported here were performed by solving the vorticity equation derived from the

incompressible Navier-Stokes equations:

+ V x (_ x U) = V2,,., (1)

where U(x, y, z, t) is the velocity vector (with components u, v, and w), and o., - V x U is the

vorticity vector. Here, U (the half velocity difference) and 6 O (the initial vorticity thickness of the layer,

see equation 4) have been used to nondimensionalize the equations and form the Reynolds number

Reo = U6°/v (v is the kinematic viscosity). This nondimensionalization is used throughout this paper.
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In addition,the evolutionof a passivescalarT is computed using the scalar equation

N- + u. VT-- V2T (2)

where the Peclet number is given by Peo = ReoSc and the Schmidt number is Sc = u/_ (7 being the

molecular diffusivity of the scalar).

Equations (1) and (2) are solved using periodic boundary conditions with periods Lx and Lz in

the streamwise (x) and spanwise (z) spatial directions. 1 In the cross-stream (y) direction, ¢0 and T-

(_ being the average mean scalar profile) go to zero as y _ 4-oo. The x- and z-dependence of the

independent variables are represented by finite Fourier series, and the v-dependence is represented by

a polynomial expansion in the mapped variable r/ = tanh(y/vo), where V0 is a mapping parameter

(usually set to be on the order of the final layer thickness). In addition, the y-dependence of the

velocity U is represented using special expansion functions that exactly represent the slow decay of

velocity perturbations far from the layer. The computational method was developed specifically for

the simulation of three-dimensional free shear layers. It is a spectral Galerkin method and exhibits

"infinite-order" accuracy of the spatial discretization. A detailed description of the method can be found

in Spalart, Moser, and Rogers (1991). The equations were advanced in time using a compact, third-

order Runge-Kutta scheme of the form proposed by Wray (personal communication, see Spalart, Moser,

and Rogers, 1991, for details). The Galerkin quadratures involving the nonlinear terms are computed

using Gauss quadrature with sufficient points to eliminate aliasing errors. As many as 192 x 212 x 128

Fourier/Jacobi modes (see Spalart et al., 1991) and 380 hours on a Cray Y-MP were required to simulate

the turbulent flows described in section 8 (e.g., TURB2P).

2.2 Specification of Initial Conditions

The self-similar solution for the streamwise velocity profile of the laminar, temporally evolving

plane mixing layer is a viscously spreading error function. Thus, an error function,

= Verf(v/'  /<5° ) (3)

is used for the initial mean streamwtse velocity profile in the simulations discussed here. Note that this

profile has a vorticity thickness
2U

_" -- (O_/OY)lm_x (4)

of _. The initial mean passive scalar profile is given by

r = 1(1 +

The magnitude of the scalar is arbitrary because equation (2) is linear in T.

(5)

In addition to the mean velocity, simple perturbations are included in the initial conditions. These

perturbations include just one or a few of the x- and z-Fourier modes of the representation. Streamwise

1Note that spanwise periodicity precludes the possibility of studying end-wall effects (i.e., side-wall boundary layers, etc.).
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and spanwise fundamental wavelengths (Ax and Az) are chosen as the most unstable wavelengths from

linear theory (Ax = 2.32_, see Monkewitz and Huerre (1982); and Az = 0.6Ax, see section 4.2),

and perturbations with these wavelengths and their subharmonics are used in the initial conditions.

To accommodate these perturbations, the computational domain must be an integer multiple of the

wavelengths in the x- and z-directions. Thus, in general, Lz = NAz and Lz = MAz. N and M are as

large as 8 for cases reported here, to accommodate the subharmonic disturbances.

To specify the initial conditions and facilitate discussion throughout this paper, it is necessary to

refer to specific wavenumbers; they will be referred to in ordered pairs

(kx x, kz z)(a, Z) = \ 2r 2r (6)

where kx and kz are the x and z wavenumbers, respectively. Thus the fundamental modes discussed

above have c_ and/or fl equal to one. In general the simulations include wavenumbers with o_ = :t:j/N

for j = 0,1,2,... (Nz - 2)/2 and Z = =t:I/M for I = 0, 1,2,... (Nz - 2)/2, where Nx and Nz are

the (even) number of Fourier modes in the x- and z-directions, respectively. Note that, because the

quantities under consideration are real, the Fourier coefficients of the (a, ,0) and the (-a,-/3) modes

are complex conjugates (denoted by t). Thus only modes with a _> 0 are considered here.

The amplitude of a given Fourier mode (of an initial perturbation or in the evolved field) can be

measured by the integrated (in y) rms velocity of the mode. Thus we define

2fzi(o_, fl)ft_ (a, _) dy

2172i(a, fl)fi_ (a,/3) + _2i(a,-_)fi_ (a,-/3)] dy

if a = 0 or/3 = O;

otherwise

(7)

Here _2i(a, fl) is the (a, fl) Fourier coefficient of the velocity component ui. Note that Aaz is only

defined for nonnegative a and/3 since it includes the contributions of all the (-l-a,-l-fl) modes. The

amplitude associated with all modes with a particular spanwise wavenumber and the amplitude of all

three-dimensional Fourier modes (/3 _ 0) are also of interest. They are denoted by Asfl and A3D,

respectively, 2 and are defined

Asfl (Ajfl) 2
J=O

A3D= (A 3)2

(8)

(9)

Note that, as a special case, As0 is the amplitude associated with all two-dimensional modes. Throughout

this paper, Aa,_, As,_, and A3D are quoted normalized by Uv/_w0 A superscript 0 (e g, A°._) will be
_' _' v -,,'" " " ap

used to denote the amplitude at t = 0, and a superscript • will indicate the amplitude normahzed by its

value at t = 0 (e.g., A*fl = Aafl/A°fl).

2The subscript s signifies a sum over streamwise wavenumbers a.



All the simulations reported here were initialized with two-dimensional spanwise vorticity pertur-

bations, which lead to the Kelvin-Helmholtz roll-up and subsequent pairings of the mixing layer. The

spanwise vorticity perturbation has the form

Wz= Z AOoT_(fa(Y) ei(k_x-¢_'°))
1 1

o_=1,,2,_...

(10)

where 7"¢.signifies the real part of a complex argument. In most cases the complex functions fa(y)

are the stability eigenfunctions for the vorticity, determined from the Orr-Sommerfeld equation for that

wavenumber (referred to as viscous eigenfunction, or VE). Each eigenfunction is normalized such that

its integrated energy is one, its real part is symmetric in y (and positive at y = 0), and its imaginary

part is antisymmetric. In some cases fa(Y) was chosen to be a Gaussian (fa(Y) = cae -_ry2, where ca

is a normalization constant chosen such that the integrated energy in the (a, 0) mode is unity when Aao

is one), which is referred to as an w-Gaussian initial condition (wG). The phase ¢10 is irrelevant to the

evolution of the flow and is set to zero for convenience. The phases Ca.0 of the subharmonics (a = 1 1

etc.) relative to the fundamental (a = 1) determine whether large-scale amalgamations occur by pairing

or tearing (see Riley and Metcalfe, 1980; Monkewitz, 1988). In all cases the optimum pairing phase

(Ca0 = 0) was selected. The amplitudes A00 vary depending on a and the case being considered. They

are reported for each case in the relevant sections.

As in Part 1, three-dimensionality was usually introduced in the simulations by including initial

perturbations in the (0,-l-f/) modes. These are referred to as streamwise invariant (STI) disturbances.

For these modes, only the streamwise vorticity component is made nonzero and the following functional
form is used:

wx= __, A°_gf_(y)sin(kzz-¢of_) (11)

fl=l,½_...

The function g_(y) is either an wG disturbance (g_(y) = c_e -roy2) or is such that the vertical velocity

v is a Gaussian (v-Gaussian or vG disturbance, gf_(y) = cz(4y 2 - 2 - k2z)e-Y2/kz). In either case, c#

is a normalization constant selected such that the integrated energy in the (0, 8) mode is unity when

A0f _ is one. An eigenfunction is not used for this mode because there are no eigenfunctions satisfying

the boundary conditions. The phase 001 is irrelevant to the flow evolution and for convenience is set to

zero. The subharmonic phases are important, and the effect of varying them is discussed in section 7.

These initial conditions were selected largely because they lead to structures of the type commonly

observed in experimental spatially developing mixing layers (see Part 1). They are also representative

of the types of disturbances expected to be present in experimental mixing layers. The two-dimensional

roll-up disturbance is likely to arise in an experimental apparatus due to the trailing edge of the splitter

plate (see section 4.2 of Ho and Huerre, 1984). Streamwise vortices are also expected, because wind-

tunnel imperfections introduce such vortices into the splitter-plate boundary layers (e.g., Jimenez, 1983).

In Part 1 it was shown that the flow evolution resulting from the STI disturbances used here is typical

of the evolutions resulting from a variety of other three-dimensional disturbances.

The simulations described in section 9 were begun from initial three-dimensional perturbations in

oblique Fourier modes rather than in the STI modes described above. Details of the initialization for

these flows are given in section 9.
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2.3 Flow Symmetries

In some cases, the initial conditions (described by eqs. (10) and (11) in section 2.2) possess two

spatial symmetries that are preserved by the Navier-Stokes equations. Whether or not these symmetries

exist depends on the spanwise subharrnonics and their phases (¢0/_). One possible symmetry is a z-plane

reflection symmetry,

wi(x,y,z) = -wi(x,y,-z + 2Zs)

 z(Z,y,z) =  z(z,y,-z + 2zs)

where i denotes x or y and

(12)

where z = Zs is a symmetry plane. If this symmetry exists, there are two such symmetry planes in the

domain, located at z = 0 and z = Lz/2 for the initial condition in equation (11). Note that both Wz

and w u are zero in these symmetry planes. The other possible symmetry is a point-reflection symmetry,

wi(x,y,z) =wi(-x + 2Xs,-y,-z + 2Zs) (13)

where (x, y, z) = (xs, 0, Zs) is a symmetry point. If this symmetry is present, there are four such

symmetry points in the domain, located at (0, 0,-_), (0, 0, _ + Az/4), (_2_, 0,-_), and (-_, 0,-_ +

Az/4) for the values of Ca0 and ¢0_ used in equations (10) and (11).

These symmetry planes and points provide well-defined reference locations in the flow. The Kelvin-

Helmholtz roller that remains after all pairings are complete is centered at x = Lz/2 (for Ca0 = 0), the

z-location of two of the symmetry points. The braid regions between the final roller and its periodic

images are centered on the other symmetry points at x = 0 (and by periodicity at x = Lz). The rib

vortices that form in the surviving braid region (see Part 1) are centered on the x = 0 symmetry points.

The reference locations described above can be used to define three special planes that will be

used to view the simulated flow fields (see fig. 1 of Part 1). Two are x-y planes: the between-ribs

plane (BP) and the rib plane (RP). The between-ribs planes are coincident with the planes of symmetry

at z = 0 and z = Lz/2 and are always located between a pair of ribs. The rib planes at z = Az/4

and (Lz/2) + Az/4 pass through the ribs (halfway between the BP's when Lz = Az) and contain the

symmetry points. Note that the BP is not well defined if the plane symmetry (eq. (12)) is broken and

that the RP is not well defined if the point symmetry (eq. (13)) is broken. The other plane used here (the

mid-braid plane, or MP) is the z---y plane through the middle of the surviving braid region. Thus for the

disturbances used here, the MP is located at x = 0 (and x = Lz by periodicity). If the point-reflection

symmetry exists, the MP contains two of the symmetry points.

The presence of these symmetries in the flows considered here simplifies the analysis of the

simulations by allowing unambiguous definitions of the special planes discussed above as well as other

items (e.g., rib circulation and rib vortex lines). Of course, laboratory mixing layers do not possess

these symmetries; therefore, flows that break one or both of the symmetries have been simulated to

confirm that the insights gained from these idealized symmetric cases are valid in general. Indeed, flows

without these symmetries evolve qualitatively as the typical symmetric flows do (see sections 7-9 and

Part 1).



3 TWO-DIMENSIONAL PAIRINGS

To determine how a three-dimensional mixing layer departs from its two-dimensional counterpart, it

is necessary to consider two-dimensional flows as a basis for comparison. In addition to determining the

amount of "three-dimensionality" present in the three-dimensional flows, such simulations also enable

one to study important phenomena that are essentially two-dimensional. The Kelvin-Helmholtz roll-up

of spanwise vorticity into rollers, the pairing of these rollers, and the depletion of spanwise vorticity

from (and subsequent reentry into) the braid region are examples of two-dimensional phenomena that

are relevant to three-dimensional flows. Two-dimensional simulations also provide a quick way to

determine the effects of varying the two-dimensional parameters (at least while the three-dimensional

disturbances are relatively weak). Changes brought about by varying the Reynolds number are described

in section 3.2. The effects of varying other two-dimensional parameters (e.g., wavelength and form of

the two-dimensional disturbances) are discussed in Part 1. Finally, the two-dimensional flows also serve

as the base flows for the three-dimensional, time-dependent linear perturbation analysis presented in

section 4. A list of the two-dimensional simulations for which data are presented is given in table 1.

3.1 Time Evolution

Contours of the spanwise vorticity at various times for a two-dimensional, single-pairing case

(2D1P) are shown in figure 1. Initially the vorticity rolls up, as described in Part 1. By t = 11, the

rollers are well developed and are beginning to pair. Both the number of rollers and the number of

braid regions are halved by this pairing process, the contents of every other braid region being absorbed

into the new paired roller. The surviving braid region continues to be depleted of spanwise vorticity as

all the vortical fluid is drawn into the paired roller. As the cores of the original spanwise rollers merge

into a new, roughly circular core, spiral arms of weaker spanwise vorticity are ejected from the paired

eddy. 3 The tips of these spiral arms develop a characteristic hook shape and are eventually drawn back

into the surviving braid region between the paired eddy and its periodic images.

The evolution of the amplitude of the fundamental and subharmonic two-dimensional disturbances

in 2D1P is depicted in figure 2. Both modes undergo periods of exponential growth at early times. As

in Part 1, the first maximum of A10 in time is taken to define the "roll-up time," rr. Analogously, the

first maximum of the subharmonic amplitude (A½0) is taken to be the "first pairing time," rpl, which

is 21.5 for this case. It should be noted that the presence of energy in subharmonic modes may alter

the energy development of the fundamental mode and thus change rr somewhat. It can be seen from

figure l(c) that at 7-pl the paired eddy is largely vertical with a short streamwise extent. At this point,

the original vortex cores have corotated by about 120 °. Note that Ho and Huang (1982) define the

pairing location in their spatially developing layer similarly, except that only the u-component is used

to determine the mode amplitude. By this definition the pairing time occurs sooner, consistent with Ho

and Huang's observation that the vortex cores have rotated by only 90 ° at the pairing time.

During the pairing, A10 undergoes several oscillations. Examination of figures l(b)--l(d) (times

corresponding to the first minimum, second maximum, and second minimum in A10, respectively)

reveals that A10 is minimum when sharp interfaces in Wz are largely horizontal and is maximum when

3This is required by energy conservation; Martel, Mora, and Jimenez (1989).
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Figure 2. Time development of two-dimensional disturbance amplitudes for 2DIP.

these interfaces are vertical. 4 Thus this oscillation is related to the rotation of the paired rollers and the

associated interfaces. In addition, the thickness of the layer (measured by 6m) has a local maximum

near rp (see fig. 3(c)) when the vertical extent of the pairing rollers is the largest (see fig. 5).

In the single roll-up cases discussed in Part 1, the roller cores eventually became elliptical, and

spanwise vorticity was advected into the braid region (oversaturation). This does not occur after the

roll-up in 2D1P because the pairing begins before oversaturation occurs. After the pairing, however, the

spiral arms of spanwise vorticity that are ejected from the paired roller are drawn into the braid region

and reintroduce spanwise vorticity there. This is evident in the evolution of -ca b shown in figure 3(a),

where this reentry of spanwise vorticity is marked by a sudden increase in -w b. The time at which this

reentry occurs is referred to as rsl (the subscript 1 signifying reentry after the first pairing) and is 29.2

for 2D1P. Note that, before the pairing, -w b becomes very small (0.02 compared to about 2 at t = 0).

After rsl, the spanwise vorticity is again drawn out of the braid region until a second reentry occurs

(at t = 7"ol = 46.5 in this case). As can be seen in figure l(f), this second reentry occurs when the

paired roller becomes elliptical and is then drawn into the braid region. This "oversaturation" is similar

to that which occurs after the roll-up in the absence of pairing. The oversaturation time is denoted by

r_, where p is the number of pairings that have occurred prior to the oversaturation. 5

When more than one pairing is allowed (cases 2D2P and 2D3P), the -w b evolution (fig. 3(a))

indicates that the spanwise vorticity reentry at rol does not occur, just as the reentry at to0 did not occur

in 2D1P. However, the reentry at rsl does occur, despite the occurrence of the subsequent pairings. In

fact, no multiple-pairing, two-dimensional initial conditions have been found that lead to the suppression

of the reentry at "rsl (or at any rs). Thus the entry of the spiral arms into the braid region is apparently

an inevitable consequence of pairing, although the timing of this reentry may be affected by subsequent

pairings (see fig. 3(a)). Similarly, there are reentries at rs2 and rs3 (rs2 ,_ 65, rs3 = 139.8), which

41n figures l(b) and 1(c), the sharp interface is clearly the boundary between the rollers undergoing pairing, while in

figure l(d) it is the "edge" of the roller core.
5The nonpairing oversaturation time, which was called ro in Part 1, will be called "ro0 here to avoid confusion with the

postpairing oversaturations.
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Figure 3. Time development of (a) mid-braid spanwise vorticity, (b) mid-braid strain rate, and (c) mo-

mentum thickness for 2DOP, 2D1P, 2D2P, and 2D3P.

occur after the second and third pairings, respectively (rp2 ,m 47, 'rp3 = !03.7). In 2D2P there is no

third pairing, but there is an oversaturation at %2 = 90.3. Presumably, there would also be a reentry in

2D3P at some time "ro3 after rs3, but this case was not run long enough to observe this. In addition to

these major reentries, there are some minor variations in --Wb after rs2 and rsa. These are caused by

the internal structure of the spiral arms, which was not present at the first pairing for Re0 = 250.

The occurrence or suppression of an oversaturation before a pairing is dependent on the timing

of that pairing. In particular, if a pairing is delayed, then oversaturation can occur before the pairing

begins to dominate the evolution. This occurs in 2D1PDEL, in which the initial A½0 is 0.01 rather than

0.03, as in the standard case. The momentum thickness (6m) and mid-braid spanwise vorticity (-_%)

and strain rate (S) are shown in figure 4 for 2D1P, 2D1PDEI.,, and 2DOP (A½0 = 0). These quantities

indicate that 2D1PDEL follows the nonpairing behavior (2DOP) longer than does 2D1P. In particular,

-Wb indicates there is a reentry of spanwise vorticity into the braid region at %0 = 20.0 before the

pairing (rpi = 26.4). This oversaturation is delayed somewhat compared to that of the nonpairing case

(2DOP, "roo = 17.5), and the amount of vorticity reentering the braid region is less. Note that, after the

pairing in 2DIPDEL, there is a second reentry of spanwise vorticity corresponding to the spiral arms,

and that "r81 - "rpl in 2DIPDEL is about the same as in 2DIP (8.0 and 7.7, respectively).

As a pairing proceeds, the dominant (streamwise) length scale of the flow doubles. The thickness

of the layer (as measured by 6m) also doubles, as is apparent in figure 3(c). This has two important

consequences. First, since the velocity scale remains the same, the time scale also doubles. For this
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reason the time between pairings approximately doubles with each pairing (see table 1). The second

consequence is that the (surviving) mid-braid strain rate (,5') is approximately halved with each pairing.

This is illustrated in figure 3(b), where the mid-braid strain-rate evolutions for 2DOP, 2D1P, 2D2P, and

2D3P are plotted. Note that the late-time plateau level of S for 2D1P is about 2.5 times lower than that

for 2DOP (0.2 versus 0.5), but that each additional pairing does halve the plateau level (approximately

0.1 for 2D2P and 0.05 for 2D3P).

To allow comparison of the layer vorticity structure after one, two, and three pairings, spanwise

vorticity contours from 2D1P, 2D2P, and 2D3P are shown in figure 5 at times near the last rp and last rs

of each case. At each pairing time the pairing rollers are in about the same relative position, indicating

that the maximum in Aa0 is a consistent measure of the pairing time in these cases. However, there

are differences among the pairing structures. With each additional pairing, the vorticity becomes more

concentrated relative to the dominant length scale in the flow (i.e., the roller spacing). The reason for

this is that with each pairing two rollers are brought together and form a paired roller with vorticity

concentrated in an area roughly twice that of the original rollers. However, for the paired roller to

be similar to the original rollers, it should have four times the area and half the peak vorticity (since

the total circulation is constant). Neither of these is the case. The only mechanism for spreading out

the vorticity in this way is viscous diffusion, which at this Reynolds number is too slow to keep pace

with the pairings. The resulting structure thus has high vorticity concentrated in a relatively small area,

with low-level vorticity filling the rest of the area one would expect to be occupied if the pairings were

self-similar. Note that at "Is, the spiral arms become weaker with each pairing and extend further around

15



'..._. _:...:'_..-... \ -:..../

(a) 2DIP at .....__.:.:.!.:.::.: ....

t=21.5=,r,:, , ,
I I I I I I I I

........--:.::'
,--"" ,,_ t_" -..":::!7"-_-P2_.

....._" ,,.,::";..,.-,:',,_i_::!__...,..,,_,:_,.._!

."'#':..... .,.¢:?'..... :::"-Y_" ..q_:...i
...:?-=:..'".,,,:r%.',_..........?:,"!/M

l ...:_..,. .., ...... / "-.:,.:_:.,÷,":..-"....;q.-" / ._ :::_ i'_._..,:!.',.,. .
:._..-" :..':'.'_:::.'.:: L':. : i /,

_ :..... E_._./._._,l..r;.:.:.:..._: ,............" ._.::."..", __ .,_.._,_'_:;._ ..- ...,,...

'_:,'_,.._:.:.., .::;_'" ...?i_:._"...;;::,,'...-"
- "_5_:_i_:"::,'":..,.."%J"'.':"....
-- ..:::::

I I I I I I I I I I I I I

.4:" ...'..... " ::...'::., : _,_ _:i
..::.:'" ':"" "..', ' .... : __.:_ .: _i

..::...... :: '::.: _:," . ._"

.-"::;"::::'""'_i_:::::"::;..... ...,:;:_

/ :0 )_',,:_., :" ..¢:.:
_ : :" : _::..,,:. - _..../ ..::.:

'..t....ii %::::'-:,."..."...............:...:?"
• ",_,_.,_:&k: ..... ,.,." .,'..:'"

(e) 2D3P at t = 104.8 _ rp3
IIIIIIIIIII1TIIII}IIIIIIIIIIIIIIIIItltlIIIIIIIIIIIIIIIIII

I17

._,..............>_..>_..
•_ ..............._,..............."._;_....

¢,*...:::._:._i_)_'__._._',:.',:::<:-,,::.....""._..
..C_"...':;:::';""',:_6.":.""=======================================

4::" .'.""." ;.'_ _ ""'":.?':'-.:'. "'::::::::::'?_....,...:...... •
,h::-":,::.-.......:_L...,.::;::::i..:::,;._,_.:.,...,<,_

./y,";." ...... _'_.!l!lt¢lilll[i_iiffdiii_it#_

_(
"....-...

:::::::!-.......i>Co) 2D1P at t = 30.4 _, "rsl
I I I I i l l I I l I I

o_t .,,..- ..
ot .-:,..".,

._0_. :.'" ..,"

,,,,.>.'._::',.;......
._"..5-."

=========================
•. : .-

..[.•'/.

:::::::::::::::::
,.,-:.....-.,_;?

_¥,@

,.::

I I

:::::::::::::::::::::

:::::::::::::::::::::::::::::::::
;:....:.. :.:" ::"

_.__ ........:."V"
.......

.:':,,:." .,.-...,..-;:,*
,.;....::::_,,.. ...,,..::.:_..

_:::_::::::...;'.;:-i:':!::2__"
I thl!!Lt:._,;:'_ t¢_ _

(d) 2D2P at t = 63.8 ,,_ "rs2
I I l I I l I I I I 'l I I I I I I I I I l l I I I I l I I

.........................Z.iiiiii!!!!;;:;::,--.-:::..............!"
............................................:.:.(_-....._.-//

.....:;.::.'...::(:::"_g .¢".'_:;.:_:'../

_ (f) 2D3P at t = 140.1 ,_ -r_3
i]I I I I t1'1'1 I"1 I I I I I I'1'1"1 I"i'l I It I I II I I I I I I t I I I I I I I I I I I I I I I I I I I I 1

Figure 5. Contours of Wz. The contour increment is (a,b) -0.10, (c,d) -0.08, and (e,f)
contours are dotted to indicate negative spanwise vorticity. Tic marks are at 6° increments.

-0.06; the

16



the roller. This is also related to the fact that the concentrated vorticity is in a relatively smaller area.

The time scale for rotation of the concentrated core does not increase as fast as does the time scale for

the evolution of the spiral arms. Thus the concentrated core turns further over by the time the spiral

arms cross the MP. Finally, with each additional pairing, there is more fine structure to the rollers. This

is expected, since the effective Reynolds number has increased and since each pairing introduces more

fine structure as the rollers move around each other (like kneading bread). .

3.2 Reynolds-Number Variation

The effects of Reynolds-number variation were examined by studying four two-dimensional

flows with initial Reynolds numbers of 100 (2DIP100), 250 (2DIP250), 500 (2DIP500), and 1000

(2DIP1000). Our primary concern is to determine the minimum Reynolds number that can be used

in three-dimensional simulations without incurring unacceptable low-Reynolds-number effects. For his-

torical reasons, the initial A10 and A½0 were different from the standard case discussed in section 3.1

(0.10 and 0.05, respectively, rather than 0.04 and 0.03; see table 1).

The evolution of A10 is shown for all four cases in figure 6. The development of the mid-braid

spanwise vorticity (-_b), the mid-braid strain rate (S), the momentum thickness (6m), and the vorticity

extrema (Wzmin) is shown in figure 7 for the same four cases. As in Part 1, these quantities indicate

a severe low-Reynolds-number effect for Reo = 100. For Reo = 250, the effects are much less but

still present. The characteristics of these low-Reynolds-number effects are similar to those discussed

in Part 1 (see section 3.2 of Part 1 for details). One Reynolds-number effect that was not discussed in

Part 1 is the presence, at Reo = 500 and Reo = 1000, of second sudden increases in -w b after rsl (a

more subtle second increase is visible for the Reo = 250 case). This effect is due to internal structure

within the spiral arms (see figs. 8(c) and 8(d)), which cannot be sustained at Reo = 100.

Contours of spanwise vorticity at t ,_ "rsl for the four Reynolds numbers are shown in figure 8.

The internal structure of the paired eddy is significantly different for the Reo = 100 case. It is reduced

in vertical extent at rpl (not shown, but see fig. 7(c)) and lacks the extra lobe of vorticity between

the developing spiral arm and the core vorticity. The developed spiral arm (fig. 8(a)) is quite diffuse

and shows no evidence of any internal structure. The Re0 = 250 case is qualitatively more like the

higher-Reynolds-number cases since it has a well-developed spiral arm (although it does lack some of

the internal structure).

The results presented here and in Part 1 suggest that Reo = 250 is large enough to eliminate the

worst low-Reynolds-number effects. An initial Reynolds number of 250 was therefore used for the

simulations described in the remainder of this paper. This marginally adequate Reynolds number was

used because the pairing simulations are significantly more computationally intensive than the nonpairing

simulations in Part 1, where the initial Reynolds number was 500.
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Figure 6. Time development of A10 for various Reynolds numbers.

EVOLUTION OF INFINITESIMAL THREE-DIMENSIONAL
PERTURBATIONS

It was seen in Part 1 that linear analysis of the type performed by Corcos and Lin (1984) provides a

good description of the three-dimensional roll-up of a mixing layer. Several similar linear computations

in which the base flow undergoes one or more pairings are described in this section. As in Corcos

and Lin (1984), we compute the evolution of three-dimensional, infinitesimal perturbations evolving on

a two-dimensional mixing layer as it rolls up and pairs. Since the base flow is time-evolving, initial

perturbations must be specified (there is no eigenvalue problem). Streamwise invariant (STI) vorticity

perturbations with various spanwise wavenumbers are used, as discussed in section 2.2.

4.1 Growth of Three-Dimensional Perturbations

The two measures of the strength of the three-dimensional perturbations used here are the amplitude

(A_D = A3D/AOD) and the streamwise circulation in the surviving MP (1-'* = rx/rO). The evolution

of both these quantities for three-dimensional perturbations with _ = 1 (where Az = 0.6Az) are shown

in figure 9. Four cases that undergo 0, 1, 2, or 3 pairings are shown (the two-dimensional base flows

are 2DOP, 2D1P, 2D2P, and 2D3P and are described in section 3). Despite the differences in the details

of their growth, the magnitudes of A_D and F_ remain similar through three pairings and three orders

of magnitude of growth. In particular, the agreement between A_D and F z after oversaturation is

excellent. 6 Also, neither A3D nor F_: grows smoothly in time. Both quantities exhibit plateaus at each

pairing time, with the plateaus for the circulations (solid curves) being particularly long. As explained

in Part 1, sudden jumps in the MP circulation are caused by the reentry of spanwise vorticity into the

braid region (Part I, section 4.2.3). In figure 9, there are circulation jumps for each such reentry; that

is, for each _'s (7"sl, _'s2, rs3, etc.) and for to. The slight variation in the timing of the circulation jumps

is due to the variation in rs caused by subsequent pairings, as explained in section 3. More significant

6Note the flow undergoing three pairings does not reach oversaturation during the time shown.
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differences in the F_ evolutions are apparent after "1"ofor each case. Flows undergoing further pairings

do not exhibit a growth in F:_ at thispoint (they are not oversaturated). As with F_:, there is very little

difference in A_D (dashed curves) among the cases until about to, well after the last pairing of each

case. Thus, by these measures, ro is the time when a flow becomes significantly affected by the lack

of further pairings.

The circulation jumps that occur prior to later pairings reach the next plateau level quickly. Those

that occur after the last pairing of each case are more irregular and protracted. This is because further

pairings draw the vorticity in the spiral arms back out of the braid region and therefore shorten the

period over which the circulation can increase. It is also apparent in figure 9 that the irregularity in the

circulation increase after the final pairing of each simulation increases with the pairing number. This is

due to the greater complexity of the perturbation and base flow as the number of pairings increases.

At each level, further pairings result in less three-dimensional energy growth and less circulation

growth than that associated with oversaturation, i.e., the A_D and F._ curves for cases with more pairings

lie below those with fewer pairings. Thus pairings inhibit the growth of three-dimensionality, although

pairings do not actually reduce three-dimensionality. This has been observed both in experiments (Huang

and Ho, 1990) and in other numerical simulations (Metcalfe et al', 1987; compare Er. in their fig. 17

to the single-pairing A_D curve in our fig. 9). Pairing produces this inhibition of three-dimensionality

by suppressing the oversaturation of the two-dimensional roller (to), thus preventing the reentry of

spanwise vorticity into the surviving braid region. Since spanwise vorticity is then essentially absent

19



.. . /f.:::-"'_'._;_.-.'-;_"

f_";', f'_"_ ....._i!_'"''"_"

..:::i;;_;:...)?-.A..;x.::.,:.g.,,.Z:.;.::_

(d)Reo = i0o0
i I ! i ! ! ! ! I ! I J f I

Figure 8. Contours of Wz at t = 28.0 _ "rsl. The contour increment is -0.1 and the contours are dotted
to indicate negative spanwise vorticity. Tic marks are at 6° increments.

from the braid region, the MP or rib circulation cannot grow. This limits the possible growth of three-

dimensionality, as discussed below. This growth limitation is only temporary, since spanwise vorticity

does ultimately reenter the braid region at _'s (see section 3).

If pairing is significantly delayed, oversaturation can occur prior to the pairing (section 3.1), re-

sulting in more growth of three-dimensionality. This is illustrated in figure 10, where AiD and F*

are shown for the nonpairing and single-pairing cases (2DOP and 2D1P) as well as the delayed-pairing

case (2D1PDEL). Because the pairing is not progressing fast enough to prevent spanwise vorticity from
entering the braid region, the circulation increases at around to0 = 20.0 in the drayed-pairing case

(by a factor of 3); there is a corresponding increase in AiD. In the delayed-pairing case, the spiral

arms form later and the corresponding jump in circulation at _'s is consequently also delayed. Inter-

estingly, the factor by which the circulation increases at _'sl is about the same in the delayed-pairing

and normal-pairing cases. After "rol (the second oversaturation to occur in the delayed-pairing case) the

growth of both AiD and F_r for the pairing cases is qualitatively similar, although the level of these

quantities in the delayed-pairing case is higher. The increased three-dimensionality resulting from the

first oversaturation ('to0) in the delayed-pairing caSe is thus permanently embedded in the flow.

Note that the circulation increase associated with the first oversaturation in the delayed-pairing case

begins somewhat before "roo= 20.0. This is because the minimum in -w/, is not a precise measure of
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Figure 10. Time development of I":_ and AiD of three-dimensional linear perturbations evolving in the

presence of a two-dimensional base flow which undergoes no pairings, a delayed pairing, or a normal

pairing (2DOP, 2D1PDEL, and 2D1P, respectively).

. when new-perturbation spanwise vorticity (required for circulation growth) crosses the MP. Spanwise

vorticity that is weaker than that still present in the MP reenters before "ro. This effect is accentuated in

this case because the competition between pairing and oversaturation causes the spanwise vorticity to

approach and cross the MP very slowly. This competition also causes the circulation to grow gradually

instead of jumping, as in the other reentries.
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Figure 11. Normalized perturbation energy density e_D as a function of z at the four times indicated in

the legend for a _ = 1 perturbation evolving on a base flow undergoing two pairings (2D2P).

The evolution of A_D can be further studied by examining the three-dimensional disturbance energy

density given by

e3D = _-z c_ uiui-- < ui >z< ui >z dz dy (14)

where <>z is the spanwise average. The amplitude A3D is related to the normalized energy density

(e_D = e3D/e0D) 7 by

A;D= _--_x foLXe;DdZ (15)

In figure 11, e_D is shown as a function of :r for the two-pairing case at several times between the first

and second pairings. At 7-pl, the energy is concentrated in the cores of the rollers. 8 As the spiral arms

enter the braid regions (see section 3), energy is transferred out of the core and into the braid regions,

causing the energy in the braid regions to grow• By rsl, the maximum energy density in the braid region

is greater (by a factor of two) than that in the cores. Also note that, at this time, the MP of the braid

region to be engulfed in the next pairing (z = 14.6) has experienced a large growth, while the surviving

MP (x = 0 and x = 4Az = 29.2) has not. This is because, at %1, the spiral arms have just crossed the

surviving MP and energy growth is just starting. The spiral arms enter pans of the braid region and

initiate circulation and energy growth before they ultimately reach the surviving MP; this causes A_D

to leave its plateau and begin growing well before _'s. Later (t = 40.4), the energy continues to grow

at all z and becomes roughly uniformly distributed in z. Finally, at the second pairing, the energy has

again grown larger in the core than in the braid region. 9 Between t = 40.4 and t = rp2, the energy

density is growing only in the roller core, since the spanwise vorticity has again been removed from

the braid region. Finally, by _'p2, A_D stops growing for a while (during the plateau regions in fig. 9).

7Note that because the initial disturbance is STI, e0D is independent of z.

8At rpl , the paired rollers are centered at z = 7.8 and 21.4. At rlo2 the single remaining roller is centered at z = 14.6.
9Note that the energy is more highly concentrated in the cores at the first pairing than at the second. This is because of

the greater complexity of the perturbations at the second pairing (see section 4.3).

22



At this point e_D in the surviving MP is constant, and the only changes occurring in the e_D profile

consist of a mild redistribution of energy in the roller core. Apparently the roller disturbances come

into some sort of temporary "equilibrium" with the braid disturbances, which can no longer grow. The

above process is repeated as another spiral-arm reentry and pairing occur.

Another consequence of the growth mechanism discussed above is that the long-term growth of

the three-dimensional perturbations in the presence of pairings is algebraic rather than exponential.

One way to see this is to consider the circulation evolution. The above discussion suggests that the

magnitude of the circulation jump that occurs at each rs should be proportional to the circulation just

before the jump because the circulation jump is governed by the spanwise vorticity disturbance brought

into the MP. The strength of this vorticity disturbance should be proportional to the circulation level

since the roller and ribs have "equilibrated." There may also be a weak dependence on the pairing

number or other details of the two-dimensional flow. This is supported by the results in figure 9, where

circulation appears to jump by a constant factor at each rs. Thus 1"z _ F_ p where Np is thethe

pairing number and Fj _ 6 is the factor by which the circulation jumps at each rs. On the other hand,

the time between jumps should scale approximately as 2Nr ', since the length and time scales roughly

double at each pairing (section 3.1). Therefore F_ ,-,.,AiD ,-., t l°g2 F_. A similar conclusion is reached

if one assumes that, since the length and time scales grow linearly with t, the average growth rate

(tr) of the perturbations varies like tr ,--, 1/t. On the other hand, the length and time scales would no

longer grow linearly if pairing were suppressed. In this case, spanwise vorticity from the oversaturated

roller continually occupies the braid region, resulting in continuous circulation growth. The growth is

then apparently exponential, in agreement with the results of Pierrehumbert and Widnall (1982), whose

model problem (the Stuart vortices) is similar to an array of oversaturated rollers. Since the long-term

growth of the three-dimensional perturbations in the presence of pairings is algebraic, the degree of

three-dimensionality one ultimately obtains in any finite time depends greatly on the magnitude of the

initial (or inlet) disturbances.

4.2 Spanwise Scale Changes

In the linear analysis presented above, only disturbances with /3 = 1 were considered. The

evolution of infinitesimal perturbations with _ < B < 4 is examined in this section. This allows

the determination of the most unstable spanwise wavelength, as well as how this wavelength changes

in time. Simulations of such spanwise scale changes in flow with finite-amplitude, three-dimensional
disturbances are discussed in section 7.

The three-dimensional disturbance amplitudes of perturbations with various spanwise wavelengths

(;_ < _ < 4) are shown in figure 12. Over most of the time period shown, the largest amplitude is

attained by the _ = 1 disturbance. This is why Az = 0.6,_z = 0.696(27r) was chosen for most of the

simulations in Part 1 and for all of the cases described in this paper.

The dotted curve (As]) in figure 12 corresponds to a slightly (33%) longer disturbance wavelength

than that of the fundamental * * exceeds that of Asl, causing(Asl). After t ,-_ 25, the growth rate of As]

As] to eventually overtake Asl. Thus, the preferred spanwise wavelength is increasing slowly as the

flow evolves. To better illustrate this, a simulation that undergoes several pairings is considered. The
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Figure 12. Time development of three-dimensional disturbance amplitudes (Asl3) of various spanwise

wavelength disturbances until just past rol = 46.5 for the single-pairing case 2DIE Note that the

* is larger than As¼*subharmonic As½ at both t = 10 and t 40 and that the harmonics As2, As3, and

As4 are in order of decreasing amplitude.

evolutions of the amplitudes of perturbations with various spanwise wavelengths through three pairings

of the two-dimensional base flow are shown in figure 13. After the second pairing ('rp2 = 47.0), A_:]

* also overtakes A_I. The first spanwise subharmonic isis larger than A_I. After r83 = 140.0, As½

then more enerlgetic than the fundamental, though both of these disturbances are less energetic than
that with/3 = $. The growth in the dominant spanwise length scale is so slo_v that a doubling of the

scale apparently requires three or four pairings. Thus linear analysis does not support the "self-similar"

picture of mixing-layer growth where each pairing is accompanied by a doubling of the characteristic

spanwise length scale. As noted in section 3.1, the roller core becomes proportionately smaller after

each pairing. The slow scale change described above is therefore consistent with the most unstable

spanwise scale being determined by the size of the roller core, rather than by the spacing between
rollers.

Disturbances with wavelengths greater than about two and a half times the spacing between span-

wise rollers are largely stable. This is apparent in figure 14, where the time development of such

long-spanwise-wavelength disturbances is compared to that of fundamental (/3 - 1) disturbances in

a nonpairing and a two-pairing base flow. A/3 = _ disturbance evolving in a nonpairing base flow

(fig. 14(a)) exhibits no growth of F:_ until _'o and no growth of A*_ (after the increase associated with

the initial buildup of wv for t < 10; see section 3.1 of Rogers and Moser, 1992) until t _ 30. Similarly,

the amplitude A_ of a/3 = _ disturbance does not grow (after the initial rise) until after two pairings

of the base flow (fig. 14Co)). Note that, for both these disturbances, both F_ and A_ ultimately grow

together (apparently exponentially) in the oversaturated state, as was the case for/3 = 1 disturbances

(section 4.1).
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two pairings (2D2P).

4.3 Structure of the Linear Perturbations

The structure of the three-dimensional perturbations is of interest since, as noted in Part 1, similar

features are present in fully nonlinear simulations well past the onset of three-dimensional nonlinearity.

The/3 = 1 perturbation streamwise vorticity at rp and rs for the first, second, and third pairings is shown

in figure 15. At each time, the streamwise vorticity associated with the ribs is clearly visible. However,

as spanwise vorticity is brought into the braid region around rs, streamwise vorticity perturbations

are formed far from the center of the layer in the braid region (fig. 16(b)). They are then brought

together by the two-dimensional strain in the braid region. This is occurring in figure 16. In the MP,

the pattern of streamwise vorticity resembles five pairs of ribs stacked on top of each other. These

, distinct regions of streamwise vorticity are eventually pressed together by the strain, allowing viscosity

to merge them so that only one region is apparent by the next pairing (fig. 15(c)). This amalgamation of

streamwise vorticity occurs by a different mechanism for finite-amplitude disturbances (see Part 1 and
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Figure 15. Contours of wx for perturbations with ]3 = 1 in the RE. Perturbations are evolving on a base

flow undergoing (a,b) one, (c,d) two, and (e,f) three pairings (2D1P, 2D2P, and 2D3P, respectively).
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t = 35.1 (a time after that in fig. 15Co)). The contour increments are (a) 3Fx/6,_ and (b) Fx/6 _ .

Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at 5° intervals.

also section 5 of this paper). Similar layered vorticity patterns form in the braid regions after further

pairings (figs. 15(d) and 15(0).

Also apparent in these figures is the streamwise vorticity in the roller cores. At the first pairing

(_-pl), the streamwise vorticity associated with each of the original unpaired rollers is visible as a

large region of negative vorticity. For each pairing, the relative magnitude of the streamwise vorticity

disturbances remaining in the prepairing cores is smaller until, at "rp3 (fig. 15(e)), there is virtually no

streamwise vorticity disturbance left in the cores. The other vorticity components are also small in the

prepairing cores at 7"p3. At the same time, the streamwise vorticity disturbances away from the core

become more complicated, with finer structure relative to the size of the roller. This change is expected,

since the effective Reynolds number is doubling with each pairing. Also, with each additional pairing

the disturbance is "folded over" (like kneaded bread), resulting in more striated disturbances. This is

especially apparent in the perturbation spanwise vorticity disturbances (Wz3D = Wz- < Wz >z), shown

for 7-p2 and 7-p3 in figure 17. It is important to recall that these very complicated perturbation flows

are a result of a linear evolution. The source of the complexity is the evolving base flow, not three-

dimensional nonlinearity. Even with these differences between the disturbances at different pairings

(disturbance levels in the cores and fineness of striations), several of the qualitative features of the

vorticity fields are the same during the second and third pairings (see figs. 15 and 17).

As noted in section 4.2, disturbances with _ = _ are largely stable until the onset of a pairing, and

those with _ = _ are largely stable until the beginning of a second pairing. Vorticity contours of these

largely stable disturbances show qualitative differences from their fundamental (_ = 1) disturbance

counterparts. 10 In figure 18 a comparison is made of the streamwise vorticity structure of the fl = 1

(fundamental) and B = _ disturbances at a time between the first and second pairings (these cases are

the same as those shown in fig. 14(b)). In addition to being much weaker, the wz structure in the/_ =

10The structures of the other unstable perturbations (e.g., B = ½) are qualitatively similar to those of the/_ = 1 ease.

27



? a) t-475 
7--i i I I I I I I I I ?I I I I I I I I I I l I II I I I

Y L.\, .... j

X X

Figure 17. Contours of perturbation spanwise vorticity (w 3D) in the RP of f3 = 1 perturbations evolving
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on a (a) two-pairing (2D2P) and (b) three-pairing (2D3P) base flow. The contour increment is 12Fx/6 _ .

Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at _o intervals.
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Figure 18. Contours of wx in the RP at t = 40.4 ('rp2 = 46.7) on a base flow undergoing two pairings

0 02 0.04F0/6 O2. Solid contours indicate positive(2D2P). The contour increments are (a) 3F_/6_o and (b)

vorticity, dotted contours indicate negative vorticity, and tic marks are at _o intervals.

case is qualitatively different, e.g., the engulfed rib vorticity is negative rather than strongly positive

and the MP contains layers of wa: that alternate in sign.

5 THREE-DIMENSIONAL PAIRINGS

In this section, the full nonlinear evolution of a mixing layer undergoing one pairing is examined.

Results from two simulations With different initial three-dimensional disturbance strengths are studied

and compared with the linear analysis discussed in sections 4.1 and 4.3. Table 2 lists some characteristics

of the initial conditions for these two simulations (LOW1P and HIGH1P) along with values of several

of the reference times defined and used in this paper; other simulations referred to later in the paper

are included in the table as well. In both simulations the initial three-dimensional perturbation is in the

spanwise fundamental (0, 1) Fourier mode (see eq. (11)).
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5.1 Weakly Three-Dimensional Pairing

In Part 1 it was found that the evolution of infinitesimal three-dimensional perturbations provided

a good approximation of finite-amplitude perturbations even after the onset of three-dimensional non-

linearity. This is also true for flows undergoing pairings. In figure 19, the evolutions of the normalized

three-dimensional amplitude AiD and the normalized circulation F_ for both the LOWlP and HIGH1P

flows are compared to those derived from linear analysis in section 4. These three simulations are begun

from initial conditions that are identical except for the strength of the three-dimensional perturbation,

with LOWIP having a weaker (by a factor of five) three-dimensional perturbation than HIGH1P (see

table 2). As can be seen in figure 19, both the amplitude and circulation of LOW1P evolve nearly

as predicted by linear analysis, with some slight differences occurring during and after the pairing. In

contrast, the stronger perturbation of HIGH1P results in some departure from linear analysis as soon as

t=5.

Despite the good agreement between linear analysis and the LOW1P simulation, there are some

nonlinear effects at, and beyond, the first pairing, n In figures 20 and 21, the streamwise vorticity and

the three-dimensional spanwise vorticity Wz3D of both LOW1P and the corresponding linear analysis are

shown for times near 7"pl and "rsl. At rpl there is little difference in wz between the linear and nonlinear

computations. All the same features are present, though some details of shape and level are slightly

different. In contrast, the three-dimensional spanwise vorticity in the BP is significantly different at _'pl.

The nonlinear evolution of the "cups" (discussed in Part 1), which are visible in figure 21(b) as the two

intense regions of negative perturbation, has resulted in the divergence of the solutions. It is remarkable

that the streamwise vorticity and the integrated diagnostics (e.g., AiD and 1"_:) are not significantly

affected. Also note that the linear perturbations have the following symmetry:

w i (x, y, z) = wi (- x + 2X s , -y , z) where i denotes z or y, and (16)

 z(X- x,, y - y,, z) = + z,,-y + y ,z) (17)

where (Xs, Ys) = (0, 0) or (-_f, 0). This symmetry is preserved by the linearized equations, but not by

the Navier-Stokes equations. Thus the symmetry is not apparent in figure 21(b).

By rsl, differences due to nonlinear effects in the LOW1P flow are more pronounced. The ribs

begin a marginal collapse, which results in wider streamwise vorticity contours in the braid region

(fig. 20(d)). The collapse parameter L is shown in figure 19(c). This parameter is based on the results

of Lin and Corcos (1984) and is discussed in depth in Part 1. In the LOW1P flow, £ reaches a plateau

level that is just below the collapse criterion level (13.1) by rpl. The marginal collapse observed in

this flow is thus in agreement with the predictions of Lin and Cortes (1984). The structure of the

streamwise vorticity in the paired roller of LOWlP has also begun to diverge from the linear results.

There is no longer a correspondence between all regions of positive and negative vorticity for the two

cases. Contours of wz3D are again different in the linear and nonlinear eases. In particular, at this time

the relative magnitude of the _3D perturbation is somewhat lower in LOW1P than in the linear case,

The strength of the three-dimensional spanwise vorticity can be measured by Wz3D, which is defined

analogously to the amplitude A3D (the spanwise vorticity is used instead of the velocity in eq. (7)).

11 Note that the same level of three-dimensionality in nonpairing flows resulted in no discernible differences until after

too (see Part 1).
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Figure 19. Time development of (a) A_D, (b) 1-'._, and (c) the Lin and Corcos collapse parameter 12 for

various levels of initial three-dimensionality. Note L = 0 for linear analysis.

v0/,so 2.5The spanwise vorticity amplitude Wz3 D normalized by _z_v_ is 48% lower in the LOW1P case

(5.80 for LOWIP and 8.57 from linear analysis). At later times this discrepancy in the strength of

the spanwise vorticity perturbation gets larger, as can be seen in figures 21(e) and 21(0. At this time

(t = 40.0) the normalized Wz3D is 6.36 for LOWIP and 14.65, according to linear analysis. Note

that, at this time, the discrepancies in the magnitudes of the other vorticity components and the velocity

components are less than 8%. The above results suggest that the spanwise vorticity perturbations are

the first to encounter significant nonlinearity and to saturate, but that this occurs without significantly

affecting the other vorticity components. As noted above, the development of the cups is responsible
for this difference.

5.2 Highly Three-Dimensional Pairing

The HIGH1P flow described in this section results from an initial STI disturbance of the same

amplitude as that used in the ROLLUP case described in Part 1 (a factor of five larger than in LOW1P).

As expected, the early evolution of HIGH1P is very similar to that of its nonpairing counterpart. In

particular, the prepairing evolution of HIGH1P is characterized by the same "cups" and collapsed

"ribs" that were described in detail in Part 1 (compare fig. 22 with fig. 10 of Part 1). A quantitative

comparison between the evolution of vorticity extrema, mid-braid spanwise vorticity, mid-braid strain

rate, and momentum thickness in the HIGH1P and HIGHOP (corresponding nonpairing flow) is given

in figures 22 and 23. The differences between the two flows become significant by 7"00 = 15.9 of

HIGHOP. Despite this similarity, comparison of figure 22 with figure 10 in Part 1 reveals two effects
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Figure 20. Contours of cox in the RP. The base flow for the linear analysis is 2D1E Contour level is
0 02

1.5rz/6 _ . Negative contours are dotted.

of the impending pairing. First, the ribs that will be engulfed (center of the 2:-domain) are perceptibly

different from the surviving ribs (edges of the z-domain). In particular, they are more closely aligned

with the streamwise direction in the pairing flow (resulting in larger values of coz and smaller values

of coy in fig. 23). Second, the two rollers in the domain are closer together than in the nonpairing case,

indicating that the pairing has begun.

As with the nonpairing flows discussed in Part 1, HIGH1P is highly three-dimensional and un-

dergoes significant three-dimensional nonlinear evolution (see fig. 19). In fact, the three-dimensional

amplitude (A3D) exceeds Aso for most of the evolution (fig. 25(a)). The three-dimensionality also af-

fects the two-dimensional modes (fig. 25Co)). Note that the peak in the subharmonic amplitude (A½0) is

broader and is delayed relative to the two-dimensional case. Also, in the two-dimensional case the am-

plitude of the fundamental oscillates as the pairing rollers corotate (section 3.1). Such large oscillations

are not evident in HIGH1P because the pairing rollers lose their identity before rpl (see below). Despite

the strong three-dimensionality of this flow, the circulation of the rib vortices (l"z) is well predicted by
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Figure 22. Surfaces of constant vorticity magnitude and vortex lines at t = 14.6 in HIGHIE

Cross-hatched surfaces represent Wz = -4.0 and solid surfaces show V/Wz2 + wv2 = 4.0. The "fib"

structures include wz and wy of the same sign; this sign alternates in z (negative for the closest fib).

Note that periodicity has been used to extend the domain in the spanwise direction and that the same

vortex lines go through both of the counterrotating fib vortex pairs (concealed by the rib surface contour).
0

Tic marks are at 6_ intervals.

the linear computations until rsl (see fig. 19(c)), as are the plateau levels of mid-braid vorticity and

strain rate (--Wb and S; see fig. 24). Thus, the plateau level of the Lin and Corcos (1984) collapse

parameter (see eq. (A-3)) can be well predicted in this flow by scaling the linear results (fig. 24(d)).

As was discussed in Moser and Rogers (1991), pairing of the cups and ribs ultimately results in

a transition to turbulence. This process is depicted in more detail for HIGH1P in figures 26 and 27,

where the spanwise vorticity in the BP (between-ribs plane) and RP (rib plane) is shown. There

are several key features of this development that were noted in Moser and Rogers (1991). First the

cups are torn apart (fig. 26(c)), and then the spanwise vorticity in the BP reorganizes into thin sheets

(fig. 26(d)) that subsequently undergo secondary roll-ups (fig. 26(e)). During the same time, the

relatively simple prepairing spanwise vorticity pattern in the RP (figs. 27(a) and 27(b)) is transformed

into an apparently turbulent vorticity distribution (fig. 27(f)), with many small-scale granular regions of

both signs of spanwise vorticity. The flow rapidly becomes too complex to allow a detailed description

of the development of all its features, but the analysis presented below does yield some insight into the

processes underlying this transition.
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thickness, and (d) the Lin and Corcos collapse parameter. In (d), the curve labeled linear was obtained
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As in Part 1, the point symmetry (eq. (13)) (present in HIGH1P) allows the vortex lines associated

with the ribs to be unambiguously defined since the rib vortices are constrained to be centered at the

symmetry points. In HIGHIP there are symmetry points in both the surviving and engulfing braid

region, so both sets of rib vortex lines can be tracked. HIGH1P also satisfies the plane symmetry

(eq. (12)), which requires that w, wz, and o:z be zero in the between-ribs plane (BP). The equation

governing the spanwise vorticity in the BP is thus particularly simple:

&Oz OWz &Oz Ow 1 [ 02_Oz 02wz _ 1 02Wz
o--/-+ '_--_-_+ _'--ff;-_= + + + o: (18)
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Figure 25. Time development of disturbance amplitudes for HIGH1P and the corresponding

two-dimensional case (2D1P).

"O.,zOw) and theThis is the two-dimensional vorticity equation except for the single stretching term _ -OF

I 1 02toz x
spanwise diffusion term _//-_ _).

5.2.1 Evolution of rib vortex lines- It is apparent from figure 22 that, at t = 14.6, the vortex

lines passing through the ribs leave the RP and are twisted around each other near a horseshoe tip that

connects one rib vortex to its neighbor. This distortion gives rise to the positive spanwise vorticity

regions in the rib plane at this time (fig. 27(a)). Such distortion of rib vortex lines was seen to be

the major source of positive spanwise vorticity in the absence of pairings (Part 1). Rib vortex lines at

t = 19.3 are shown in figure 28. The vortex lines for both the surviving ribs and the engulfed ribs are

highly distorted, with large excursions out of the rib plane. Note that, at several points, the vortex lines

through neighboring engulfed fibs are coming very close together. This proximity allows viscosity to

reconnect the vortex lines, yielding a different topology at a later time. This has already begun to occur,

as is evidenced by the small regions of positive spanwise vorticity in the BP at this time (fig. 26(b)).

Initially, the spanwise vorticity was all negative in this plane. According to equation (18), the only way

that positive spanwise vorticity can arise in the BP is by viscous diffusion in the spanwise direction. At

several locations this diffusion results in viscous reconnection of the vortex lines. The positive regions

of spanwise vorticity shown in figure 26(b) are located where the engulfed rib vortex lines shown in

figure 28 are pinched together. It is interesting to note that, in this very complicated flow, the topology

of the vortex lines associated with the major structures is still largely that of the initial vortex sheet,

i.e., there has been almost no vortex reconnection to form closed vortex loops or vortex lines running

counter to the mean flow across the entire spanwise domain.

Where the rib vortex lines cross the rib plane, there must be a region of nonzero spanwise vorticity.

The correspondence of features in the spanwise vorticity contours with fib vortex line crossings is shown

in figure 27(b). Note that almost all the regions of nonzero spanwise vorticity are associated with the

crossing of rib vortex lines. The major exceptions are the four long, thin regions of particularly strong

vorticity associated with the cup structures. There are also two small positive regions near the center

of the roller that are associated with the "sub-fib" structure discussed in Part 1. The spanwise vorticity

pattern in the between plane can also be understood in terms of the cups and wisps associated with

the rib and sub-rib vortex lines (see Part 1). Thus, the features of the mixing layer at this time are

manifestations of the structures present in the nonpaired layer.
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Figure 26. Contours of wz in the z = 0 BP of HIGH1P. The contour increments are (a,b,f) 4-0.6

and (c,d,e) 4-0.8 (approximately 0 0 0 01.65Fx/6_ and 2.20Fx/6_, respectively). Negative contour levels are

dotted. Regions of positive spanwise vorticity are shaded, y = 0 is at the long tic mark, not the center

of the domain. The secondary roll-up marked with a box in (e) and the plane given by the vertical line

in (d) will be further investigated later. Tic marks are at 6° increments.
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Figure 27. Contours of _vz in the z = Azl4 RP of HIGH1P. The contour increments are (a,b,f) -t-0.6

and (c,d,e) =1=0.8 (approximately 1.65F°/60 and 0 02.20Fx/6_, respectively). Negative contour levels are

dotted. Regions of positive spanwise vorticity are shaded. In Co) the heavy dark lines are fib vortex

lines; they are dashed when the vortex line is behind the RP. Tic marks are at 6° increments.
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(a)

Figure 28. Vortex lines that pass through or near the symmetry points in the surviving (solid) and

engulfed (dotted) ribs for HIGH1P at t = 19.3: (a) top view and (b) side view. Tic marks are at 6O
increments.

The correspondence of vorticity structures to the prepairing ribs and cups does not persist for long.

By t = 23.5 ,,_ rpl, the vorticity in the roller can no longer be described in terms of these original

structures. Vortex lines through (and near) the symmetry point in the middle of the paired roller (fig. 29)

no longer have the large excursions shown in figure 28, indicating that the topology of the vorticity

has changed as a result of viscous reconnection. Thus, at this time, the vortex lines passing through

the engulfed-rib symmetry point can no longer be identified as the engulfed rib. The cup structures are

also not identifiable at this time, so the only persisting major features of the prepairing mixing layer

are the surviving ribs. Vortex lines representing the surviving ribs at t = 23.5 _ "rvl, t = 27.3 _ 7"sl,

and t = 31.1 are shown in figures 29 and 30. At rpl, the main rib vortex lines are wrapped into the

pairing roller, although they extend far above and below the roller. At the point of greatest excursion

(in Z/) of the vortex lines, lines from neighboring ribs are being pinched together, allowing viscosity to

reconnect them. This has been largely completed by rsl (fig. 30). At this time, the rib vortex lines

again connect to the neighboring ribs far from the rollers through the wisp of spanwise vorticity shown

in figure 26(d).

It is this wisp of spanwise vorticity that crosses the MP at _'sl, leading to the circulation jump

at that time. Thus, as in Part 1, the circulation jump at "rsl occurs because the rib vortices are pulled

over (or under) the roller into the neighboring braid region. When the vortex lines are pulled all the

way through the MP (at about t = 30; fig. 30(b) is just after this), the circulation should have tripled,
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Figure 29. Vortex lines that pass through or near the symmetry points in the surviving (solid) and

engulfed (dotted) ribs for HIGH1P at t = 23.5 m rpl: (a) top view and (b) side view. Only one set

(right side) of surviving ribs is included in (a). Tic marks are at 6O increments.

since then vortex lines from three sets of ribs cross the MP (the original rib and the ribs from periodic

images up- and downstream). The actual maximum circulation jump (from 2.05 before rsl to 6.33 at

t = 30, see fig. 19('o)) is slightly more than a factor of three; thus, some core vortex lines must also

have crossed the MP.

At t = 30, the mid-braid circulation (fig. 19Co)) reaches a maximum and begins a rapid decline.

Like the circulation jump, this also is caused by spanwise vorticity entering the braid region, but in

this case the vortex lines associated with it are kinked in a sense opposite to that of the rib lines. The

spanwise vorticity structure that causes the circulation decline is apparent in figure 26(e) (the long, thin

sheet of spanwise vorticity in the lower left portion of the domain). It is not surprising that these vortex

lines are kinked in the opposite sense of the fibs, since most of the prepairing core vortex lines are

kinked in this way.

5.2.2 Formation and evolution of vortex sheets- The thin sheets of spanwise vorticity that form

in the BP become very long and wide compared to their thicknesses. For example, the boxed region

in figure 26(e) has been magnified in figure 31(a), along with a z-y cross section through the right

roller in that region. Since this is essentially a two-dimensional vortex sheet, it is no surprise that it

is undergoing a Kelvin-Helmholtz roll-up, as noted in Moser and Rogers (1991). The velocity profile

averaged in x over the extent of the box in figure 31(a) is shown in figure 32. The average velocity
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(a)

Co)

Figure 30. Vortex lines that pass through or near the symmetry points in the surviving (solid) and

engulfed (dotted) ribs for HIGHIP at (a) t = 27.3 _ rsl and (b) t = 31.1. Tic marks are at 6O

increments.
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Figure 31. Contours of tOz. The contour increment is +0.8 and negative contours are dotted. Regions of

positive Wz are shaded and tic marks are at _o increments. The domain is 7 < z < 11, -3 < F < -1,

and 0 < z < )_z.

jump across this mini-mixing layer is approximately 0.8, and the vorticity thickness is approximately

0.27.12 The most unstable wavelength of such a shear layer is about 2.0, which is in good agreement

with the spacing between the forming rollers in figure 31(a). This secondary roll-up of the internal shear

layer continues until, by t = 35, individual rollers have developed (the two rollers in the bottom of the

domain of fig. 26(0 ) . At this time there are also other internal shear layers that are beginning to roll

up (see fig. 26(0 ). The formation of thin, internal shear layers in the BP and their subsequent roll-up

increases the complexity of the flow and contributes to the cascade to small scales and the development
of turbulence.

According to equation (18), the only way that spanwise vorticity can be amplified in the BP is by

stretching in the z direction. This stretching must therefore be responsible for the formation of the thin

sheets of spanwise vorticity discussed above. In the case of the thin sheet that is shown rolling up in

the box in figure 26(e), this strain is primarily due to the surviving rib vortices. At t = 27.3 _ rsl,

when the vortex sheet is forming (see fig. 26(d)), the surviving rib vortices and some core streamwise

vorticity form a stagnation point in the BP near the position of the forming vortex sheet (see fig. 33).

Note that the large regions of streamwise vorticity at the bottom of the domain in figure 33CO) are the

surviving rib vortices. This quadrupole produces a persistent, coherent strain that produces the thin

sheets of spanwise vorticity. Other thin sheets that form in the roller core are similarly produced by

coherent strain in the BP, but the complexity of the core precludes associating these coherent strain

regions with known structures. In the more complex flows described in section 6, the formation of thin

sheets and their secondary roll-up is a prominent feature of the BP spanwise vorticity.

6 MULTIPLE PAIRINGS

It was observed in section 5.2 that if a mixing layer is sufficiently three-dimensional, a transition

to turbulence can be initiated by a pairing. To allow such a transition to be completed, flows with

two pairings have been simulated. In addition, we wish to determine if, for flows with weaker three-

dimensionality, a transition might be triggered by the second pairing. This might be expected, since

the level of three-dimensionality increases after the first pairing (see section 4.1). Three cases with

12The unaveraged velocity jump across the internal shear layer is as high as 1.3 at the right roll-up in figure 31(a).
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Figure 32. Streamwise velocity profile as a function of y in the BP, averaged over the :r-domain defined

by the box in figure 26(e) and figure 31(a).

different initial levels of three-dimensionality were simulated (LOW2P, MID2P, and HIGH2P). LOW2P

has an initial circulation comparable to that of LOW1P, HIGH2P has an initial circulation comparable

to HIGH1P, and MID2P is intermediate between these two (see table 2). For historical reasons, initial

disturbances for these cases have different functional forms than those of the flows discussed in the

previous sections. These differences in form were shown in Part 1 to cause no qualitative, and only

slight quantitative, differences in the evolution of flow.

6.1 Weakly Three-Dimensional Double Pairings

Since the LOW2P flow has initial three-dimensionality similar to that of LOW1P, it is expected to

be equally well predicted by linear analysis (see section 5.1). This is indeed the case, as can be seen

in figures 34(a) and 34(b), where the normalized three-dimensional amplitude A_D and the normalized

circulation 1-'z are plotted. As with LOW1P, there are only insignificant departures from linearity before

7"pl = 21.1; however, both the timing of the circulation jump at rsl _ 33 and the new plateau level

reached after the jump in LOW2P are noticeably different from those derived through linear analysis. In

addition, A3D begins to diverge from the linear evolution at rp2 = 40.0. In the MID2P flow, 1"* exhibits

a larger departure from linear analysis after rsl, and A3D begins to diverge from the linear evolution

sooner (at rpl = 21.1). In contrast, HIGH2P diverges from the linear A3D evolution by about t = 5.

Further evidence of the low level of the LOW2P three-dimensionality is provided by the Lin and Corcos

collapse parameter (L) and the momentum thickness evolution (figs. 34(c) and 34(d)). In LOW2P, the

rib-collapse criterion is not satisfied until t ,_, 25, well after the first pairing, even though collapse of

the ribs is one of the first nonlinear processes to occur (see sectign 5.1). The momentum-thickness

evolution of LOW2P is similar to that of the corresponding two-dimensional flow.

Also in agreement with the behavior of LOW1P, the LOW2P vorticity structures show only limited

effects of nonlinearity. At t = 54.7 ,_ _'s2, the fibs in LOW2P have collapsed, in agreement with the
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Figure 33. The HIGHIP flow in the z-_/plane passing through the vertical line in figure 26(d). The

contour increment is +0.8, negative contours are dotted, and in (a), regions of positive spanwise vorticity

are shaded. The _/-domain depicted is from -4 to -1. Tic marks are at 6o increments.

theory of Lin and Corcos (1984). Because of the collapse, the regions of rib streamwise vorticity shown

in figure 35(d) are thicker than those associated with the linear results shown in figure 35(1:,). Also,

the thin layers of perturbation spanwise vorticity present in the linear case (fig. 350)) are eliminated

from the braid region in LOW2P. The structure of the core of LOWP2 is qualitatively similar to the

corresponding linear-analysis results, although the details are different. Notably absent from LOW2P are

the isolated, thin shear layers that formed in HIGH1P and led to secondary Kelvin-Helmholtz roll-ups

(this was determined by examining the total wz as well as w3D).

In the MID2P case at this time (t - 54.7 _ "rs2), there are more signs of nonlinear development

(figs. 35(e) and 35(0). The_ribs are more strongly _llapsed and, relative tO the initial strength of the

three-dimensional perturbation, the perturbation spanwise vorticity is weaker. In addition, the pertur-

bations in the core have a more compact structure than those predicted by linear analysis and those in

LOW2E
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The initial three-dimensionality of MID2P is approximately 2.5 times weaker than that of HIGH1P

or HIGH2P. As a consequence, transition is not initiated at the first pairing of MID2P. However, the

three-dimensionality of MID2P increases by a factor of two or more between the first and second

pairings, as measured by A3D and l"z (fig. 34). Thus transition could conceivably be initiated at the

second pairing. Contours of spanwise vorticity 13 in both the BP and the RP of MID2P at t = 39.1 _ rr,9.

and t = 54.7 _ rs2 are shown in figure 36. While some of the features in these figures show some

similarity to those of the HIGH1P flow shown in figures 26 and 27 (e.g., the formation of some thin

filaments of spanwise vorticity in the BP), MID2P is deafly not undergoing a transition to small-scale

turbulence at this time. There is no indication of secondary roll-ups forming on the thin sheets of

spanwise vorticity, and the spanwise vorticity in the RP remains fairly organized.

There are several possible reasons for the lack of transition in MID2P at the second pairing. First,

the aspect ratio of the three-dimensional disturbances (ratio of spanwise scale to streamwise scale of the

flow) is smaller by a factor of two at rp2 than at rpl because no spanwise scale change has been allowed.

This imposed small aspect ratio could inhibit the transition (although it will be seen in section 7.3 that

the flow evolution changes very little in a spanwise domain four times as large unless strong (0,/3)

subharmonics are included in the initial condition). Second, A3D is not a particularly good basis of

comparison when the thicknesses of the mixing layers being compared are substantially different (e.g.,

HIGH1P at rpl versus MID2P at rp2). This is because there is an implied length scale in the definition

of A3D (see section 2.2). A better measure in this case is A3D/X/-_m, which is plotted in figure 37

13Not the perturbation spanwise vortieity shown in figure 35.
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for MID2P and HIGH1E14By this measure,thethree-dimensionalityof MID2P at rp2 is weaker by a

factor of 1.8 than that of HIGH1P at rpl. Finally, there may be some subtle difference between MID2P

and HIGH1P since MID2P has undergone a previous pairing. For example, in MID2P the roller cores

have already paired once and therefore do not have the simple cup structures of unpaired rollers.

The MID2P flow is sufficiently three-dimensional for the rib vortex lines to be pulled all the.way

over the double-paired roller. This is illustrated in figure 38. As in HIGH1P, the rib vortex lines become

distorted and are brought together with those of neighboring ribs, allowing them to viscously reconnect.

This has started to occur in figure 38(a) (t = 59.7). Note that the reeonnection does not pinch off

the heads of the hairpin vortices, as was the case in HIGH1P. Instead, each rib reconnects with its

other neighbor (fig. 38(b)), which makes the head of the resulting hairpins have spanwise vorticity of

opposite sign (positive). The sense (or direction in z) of the rib vortex lines has thus been reversed.

This reconnection results in a region of strong positive spanwise vorticity in the BP (fig. 39). This

positive vorticity is sheet-like at t = 65.0, but by t = 76.1 (fig. 39(b)) it is concentrated in a very

compact "roller." The rib vortex line reconnection depicted in figure 38 is neither the first nor the last

to occur in MIDP2. At t _ 35 (before the reconnection shown in fig. 38), the rib vortex lines reconnect

as in HIGH1P, preserving the sense of the rib vortex lines. After the reconnection shown in figure 38,

further reconnections occur, some of which change the sign of the vorticity in the tip region connecting

the ribs and some of which preserve it.

6.2 Highly Three-Dimensional Double Pairing

As with HIGH1P, transition to small-scale turbulence is initiated at the first pairing (rpl) in HIGH2E

This can be observed in figures 40 and 41, where spanwise vorticity in the BP and RP of HIGH2P

at four times (two of which are within the period illustrated in figs. 26 and 27) are shown. Clearly,

the same interaction of the cups in the pairing rollers is occurring, leading to the formation of thin

shear layers, secondary roll-ups in the BP, and small-scale granularity in the RP (see section 5.2). As

the second pairing proceeds, the complex, transitioning rollers are brought together. The structures in

each roller can then interact, increasing the complexity of the double-paired roller. By t = 39.1 _ rp2

(figs. 40(c) and 41(c)), the prepairing structure is no longer discernible. Thin sheets and secondary

roll-ups in the BP, and small-scale granularity in the RP, which characterize the flow at rpl, are also

present at rp2. Later (t -- 52.1; see figs. 40(d) and 41(d)), secondary roll-ups continue and there is

enhanced turbulence activity in the braid region, especially in the RP, while the turbulence in the core

appears to be decaying.

The onset of turbulence is accompanied by the continuous entry of spanwise vorticity into the

braid region (see figs. 40 and 41), even before rio2. Thus the process described in section 3.1, by which

pairing leads to reentry of spanwise vorticity into the braid region, is no longer relevant. There is no

rs2 in this case (see table 2). Also, since the braid region is turbulent, the circulation Fz can no longer

be taken to be the rib circulation.

AS would be expected for a turbulent flow, many features of HIGH2P are qualitatively different

from those of nontransitional flows. For example, a comparison of the spanwise vorticity of HIGH2P

and MID2P at t = 39.1 ,_, rp2 (see figs. 36, 40, and 41) reveals no similarity; HIGH2P is clearly

14The momentum thicknesses for HIGHIP and MID2P are plotted in figure 23(c) and figure 34(d), respectively.
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Figure 38. Top view of vortex lines that pass through or near the symmetry points in the surviving

ribs for MID2P at (a) t = 59.7 and Co) t = 65.0. The domain has been periodically extended in the

spanwise direction to show two pairs of ribs. Tic marks are at 6° intervals.
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Figure 39. Contours of Wz in the BP of MID2E Vortex lines shown in figure 38(b) pass through the

region of intense positive vorticity in (a). The contour increment is 4-0.3 and the peak level of positive

Wz is 2.80 in (a) and 4.53 in Co). Regions of positive vorticity are shaded and negative contours are

dotted. Tic marks are at 6° intervals.
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(c) -I-0.5, and _d) 4-0.3. Regions of positive vorticity are shaded and negative contours are dotted. Tic
marks are at 6_ intervals.

turbulent, while MID2P is not. The structures of the passive scalar fields present in these flows are also

qualitatively different (fig. 42). s_Iar interfaces in HIGH2P are highly distorted with many small-scale

features, while those in MID2P are smooth and regular. This suggests that a flow visualization of

HIGH2P based on passive markers would appear turbulent. There has also been more molecular mixing

of the scalar in the HIGH2P flow than in MID2P (see section 8). Finally, the presence of turbulence

produces a steadier growth of the mixing layer than in the nontransitional flows (see fig. 34(d)). The

oscillations in the thickness of the layer (caused by the pairings) have been largely eliminated, consistent

with the monotonic growth expected of a fully turbulent layer. The characteristics of post-transitional

turbulent mixing layers will be examined further in section 8.

7 SPANWISE SCALE CHANGE

In the flows discussed in the preceding sections, the spanwise scale was constrained to be Az =

0.6_:r. This scale was selected based on the linear analysis of section 4.2, which suggested that this

was the wavelength of the fastest-growing disturbance. Also, it was found that the linear mechanism

by which the dominant spanwise wavelength could change was very slow. However, this observation
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Figure 41. Contours of Wz in the RP of HIGH2E The contour increments are (a) 4-0.6, (b) 4-0.8,
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27 X

Figure 42. Contours of the passive scalar in the BP at t = 39.1 _ rp2. The contour increment is 0.08,

from 0.02 (bottom) to 0.98 (top), and tic marks are at 60 increments.
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is different from the (nonlinear) experimental results of Huang and Ho (1990), which suggest that the

dominant spanwise scale should double after each pairing. In this section we investigate nonlinear

mechanisms that could hasten a scale change. In p_irticular we would like to determine the cause of the

discrepancy between the experimental results of Huang and Ho (1990) and those of Bernal and Roshko

(1986), who found that a spanwise scale change did not occur until the transition to turbulence. In

addition, the extent to which the results discussed in the previous sections are affected by the spanwise

scale restraint is examined.

Most of the flows discussed below are identical to those discussed in the previous sections, except

that the spanwise subharmonic modes (0, ½) and, in some cases, (0, _) are initialized (see table 2).

When including these subharmonic modes, the phase of the subharmonies relative to the fundamental

disturbance must be specified. Since there is no streamwise vorticity in the (0,0) mode, the range over

which the subharmonic phase (_bo½; see eq. (11)) can be varied without including redundant cases is

from 0 to 7r/4. The endpoints of this range represent extreme phasings, which have special properties

discussed in section 7.2. For the second subharmonic, the nonredundant range of _b0¼ is 0 to _'/2. The

values of _b0B and the initial disturbance amplitudes A0_ are listed in table 2 for each of the flows

presented below.

Following the reasoning used in section 4.2, the dominant spanwise scale (Az) is defined to be the

wavelength ,kz/_ (fi -_ 0) associated with the maximum amplitude As_. By this definition Az = ,kz

initially for all cases discussed here except for the TURB2P flow (described in detail in section 8), in

which Az = 4,_z at t = 0. A scale change is said to occur when Az changes. Since the simulations

have a finite spanwise domain not more than four times larger than )_z, there are only a few discrete

wavelengths near ,_z that can be represented in the simulation. Thus any scale changes that occur, must

occur at discrete times. There can be no gradual change in Az. The time _'sc is defined to be the time

at which such a scale change occurs. Note that scale change as defined here reflects a change in the

energy in spanwise Fourier modes. Such a scale change does not necessarily imply a change from an

array of rib vortices at one spacing to similar rib vortices at another spacing (see section 7.2).

7.1 Nonlinear Scale Change

The evolution of As1 and As½ for the PH01P, PH_IP, and PH_0P simulations (see table 2) is

shown in figure 43(a). A scale change occurs in each of these cases (even the nonpairing case, PH_0P)

at times "rsc of 31.5, 29.4, and 28.9, respectively. Scale change occurs first in the nonpairing case

because the pairing suppresses the growth of As½. In the pairing cases, the two phasings have different

scale-change times because at t _ 20, the growth of As½ is delayed for PH01P. An intermediate phasing

case (PH_ 1P) was also simulated (not shown in fig. 43); it had a scale-change time intermediate between

that of PH01P and PH_ 1P (_'se = 20.9).

The occurrence of scale change in these nonlinear cases is in contrast to the predictions of linear

analysis in section 4.2, which indicate that such a scale change should not occur until after several

pairings. This suggests that the scale change in these cases is essentially nonlinear. In figure 44,

* from PH_IP and PH_0P are compared with the corresponding linear results. The most
Asa and As½

important difference between the linear and nonlinear cases is that the nonlinear/3 = 1 mode has
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saturated, as was observed in section 5.2. That is, Asz does not grow beyond t = 20 and the growth

prior to this time is less. This saturation occurs in the nonpairing case as well, even though the linear-

analysis perturbations are undergoing post-to0 exponential growth (see section 4.1). In contrast, A_
.6

does not stop growing, although it does evolve nonlinearly. As_ even exceeds the linear results around

t = 30 in the pairing case. Thus it is the nonlinear saturation of the fundamental (/3 = 1) coupled

with the continued growth of the subharmonic (/3 = ½) that allows the spanwise scale to change. To

confirm this, we examine WMID2P (fig. 43(b)), which has weaker initial three-dimensional disturbances

that therefore saturate later. The scale change occurs much later in this case (after the second pairing,

rsc = 61.0), and only after Asl has saturated.

7.2 Spanwlse Scale-Change Mechanisms

To understand the mechanisms by which the spanwise scale changes, we must first examine the

physical consequences of the different phasings of the subharmonies. When subharmonic (0,/3) modes

are added, the resulting rib vortices are no longer of uniform strength. The initial patterns of rib-

strength variation for ¢0½ of 0, _, and _ are shown in figures 45(a), 45(d), and 45(g). The ¢0½ = 0

phase results in ribs of two strengths, arranged with a strong pair and a weak pair next to each other
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(fig. 45(a)).This arrangement preserves the spanwise reflection symmetry (eq. (12)). The other extreme

phasing (,;b0½ = _) produces ribs of three strengths: a strong and weak rib of the same sign and two

opposite-signed, medium-strength ribs (fig. 45(d)). With this phasing, the point-reflection symmetry

(eq. (13)) is preserved, with the symmetry points located in the middle of the strongest and weakest

ribs. Intermediate phasings (e.g., _b0½ = _, fig. 45(g)) result in a rib pattern intermediate between the

above extremes, and have no symmetries.

Once the spanwise vorticity is largely removed from the MP, it might be expected that the MP

rib locations would be largely determined by the net induced motion of each rib vortex on the rest of
the ribs. The simulation results indicate that this is indeed the case and that the rib locations can be

well predicted by such simple arguments. 15 In PH01P, the strong rib pair drives itself upward (for the

sign shown in fig. 45(a)) and the weak rib pair moves downward. Once away from the centerline, the

weaker ribs drive the strong pair together while being separated by the induced motion of the stronger

ribs (figs. 45(b) and 45(c)). All of the ribs are prevented from moving too far from the centerline by

the compressive strain component associated with the primary roller vortices. In PH_ 1P the rib motion

is dominated by the strongest rib, which remains fixed at the same location by flow symmetry "(as does

the weakest rib). The two intermediate-strength ribs rotate around the strongest rib and, because of the

induced motion of the weakest rib, spiral inwards (figs. 45(e) and 45(t")). As can be seen in figures 45(c),

45(f), and 45(i), this self-induced rib motion continues for some time after "rsl despite the presence of

additional vorticity in the MP. By t = 35 the intermediate-strength ribs in PH_IP (negative wx in

fig. 45(f)) are directly above and below the strongest (positive) rib vortex. At this point, however, many

new regions of significant tvx are present in the MP; shortly after this the flow appears "turbulent,"

with little evidence of the original rib vortices. As expected, the PH_ 1P evolution (figs. 45(g)--45(i))
is intermediate between that of the other two extreme cases.

The above rib behavior suggests two possible mechanisms for a spanwise scale change. The first

(mechanism I), associated with 4,0½ = 0, may result from viscous annihilation of the strong vortex pair,

which is being compressed together. The second (mechanism II), suggested by the _0½ = _; results,

occurs when the inwardly spiraling, intermediate-strength vortices viscously combine with the strongest

rib and leave a weak rib with the same sign as the intermediate-strength pair. Both of these mechanisms

depend on viscosity to be carried to completion and are therefore slow. In practice, even flows resulting

from large (0,/3) initial disturbances will not complete this process before -rs1.16 Also both scale-

change mechanisms result in weak rib pairs with twice the initial spanwise spacing. Thus, if this kind

of scale change were carded to completion it would result in a reduction of three-dimensionality. It is

instructive to note that mechanism H (associated with _b0½ = _[) results in Fourier-mode energies that

indicate spanwise scale change long before the complete viscous combination of the three stronger ribs

has occurred. In particular, when the intermediate-strength rib pair is situated directly above and below

the strongest rib (fig. 45(f)), the spanwise variation is primarily accounted for by the (a, ½) modes. In

this state As½ > Asl (see fig. 43(a)). Caution must therefore be used in drawing conclusions about the

structures present in a flow based on the occurrence of the scale change given by Fourier-mode energies.

15Note that an array of uniform-strength ribs do not move from their MP locations at _/= 0 (see section 5).

16Weaker initial disturbances that do not result in collapsed ribs show minimal fib movement prior to rsl.
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To allow the scale change to proceed further, a flow undergoing two pairings was simulated

(TURB2P, see table 2). A second spanwise subharmonic was also included to allow a second scale

change. The subharmonic phases (_0½ - _ and qS0¼ - ._) were chosen to get a very irregular initial

rib-strength distribution with no symmetries. In this flow A3D is larger than Aso for most of the flow

evolution (fig. 46(a)). A plot of As¢ for various spanwise lengths is shown in figure 46(b). As can be

seen from this figure, a scale change occurs at about the same time as in the previous cases (rse =. 32),

but both the _ = ½ and /_ = ;_ modes exceed the fundamental at the same time. Contours of the

streamwise vorticity and the passive scalar in the surviving mid-braid plane at this time are shown in

figure 47. The rib vortices have moved by mutual induction as discussed above, and it appears that

both scale-change mechanisms I and II are occurring at the same time. Shortly after this time, this flow

becomes turbulent and it is no longer possible to identify rib vortices in the ME This turbulent flow is
discussed in detail in section 8.

As noted above, the flow evolution in the MP becomes more complicated when vorticity reenters

this plane at %1 (or at too in the absence of pairing). Although it appears that the reentry of spanwise

vorticity did not play an important role in the scale changes discussed above, the restructuring of the

MP vorticity after "rsl could provide an additional mechanism for changing the characteristic spanwise

scale. However, many of the flows examined in the preceding sections become "turbulent" after rsl,

so that clearly defined ribs are not present to visually determine the spanwise scale (although Az is still

well defined).

To study the impact that reentry of vorticity into the braid region could have on scale change,

we consider WMID2P, a flow with weaker initial perturbations. Figure 48 shows MP contours of

wz at six different times during the evolution of WMID2P. By t = 20 the rib vortices are collapsed.

Just after rsl = 32 (fig. 48(a)), additional streamwise vorticity is visible away from the centerline.

This vorticity becomes stronger by rp2 = 40.1 (fig. 48(b)) and then (because it has the same sign as

the rib vorticity at the same spanwise location) "recollapses" into the ribs, resulting in stronger rib

vortices, which are again compact and near the centerline (fig. 48(c)). Note that, except for z = 0 and

z = Lz/2, the BP's are not symmetry planes and streamwise vorticity can cross through them. After

%2 = 54 (fig. 48(d)) another reentry of vorticity into the MP occurs. This time, however, wz of both

signs is generated above and below many of the ribs. The recollapse is thus more complicated, but

the compressive component of the strain associated with the primary rollers again drives the vorticity

towards the centerline (fig. 48(f)), where some of it is wound into the ribs. Since there was a marked

subharmonic component to the reentering vorticity, it can change the relative strengths of the ribs. At

t = 61.3 ,_ rsc (fig. 48(e)) mechanism I, described above, is active, as evidenced by the two pairs of rib

vortices that are compressed together and dropping below the centerline (one on the domain boundary).

Indeed, 11 time units later (fig. 48(f)), there appear to be only two pairs of significant rib vortices,

approximately equally spaced and slightly above the centerline. Viscous effects have weakened the

remaining ribs, whose remnants are still visible in figure 48(0. Although the actual scale change in

the WMID2P flow occurred by mechanism I, the "recollapse" may be responsible for speeding up the

process by enhancing the nonuniformity of the ribs.

It is perhaps surprising that scale change (as defined here) occurs even in the absence of pairing

(see section 7.1). This scale change is not predicted by linear analysis (see fig. 14(a)). At early times

(before to0 = 15.4), the PH_0P flow evolves in the same way as the PH_IP flow, since the initial
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Figure 47. Contours of wx and the passive scalar (T) in the surviving MP of the TURB2P simulation

at t = 32.2 (rsl = 29.2). The contour increment is -1-1.0 in (a) and is 0.08 (from 0.02 to 0.098) in (b).

Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at _ intervals.

three-dimensional perturbations are identical (see fig. 43(a)). By t = 30 (well beyond to0) the flow has

been "oversaturated" for a long time and much vorticity has reentered the braid region, greatly increasing
the complexity of the flow (see fig. 49). Because of this, the flow appears "turbulent." Although there

are no well-defined ribs in the MP, it is clear that a single large-scale structure (/3 = ½) dominates
the MP. This scale change is a result of the reentry of turbulent vorticity into the braid region. It is
apparently unrelated to the two scale-change mechanisms discussed above. 17

7.3 Comparison With Narrow-Spanwise-Domaln Results

The flows discussed in sections 5 and 6 were precluded from undergoing a scale change because

the largest possible spanwise wavelength corresponded to _ = 1. The extent to which these simulations

are affected by this constraint is therefore of great interest. Our main concern is how robust the results

of sections 5 and 6 are, that is, whether low-amplitude spanwise subharmonic modes produce any large

changes in the flow evolution. To test this, two simulations (WMID2P and WHIGH2P, see table 2) with

weak spanwise subharmonics were examined.

It should be noted that, without the spanwise subharmonics, the WMID2P and WHIGH2P flows

would be identical to the MID2P and HIGH2P flows (discussed in section 6), respectively. Comparisons
of WMID2P with MID2P and of WHIGH2P with HIGI-I2P thus allow one to determine the extent to

which the constraints on spanwise scales in MID2P and HIGH2P are modifying the flow.

17Although As½ > Asl after rsc = 28.9, A0½ remains significantly smaller than A01. It is thus quite possible that

strcamwise-averaged measures of scale change, such as that used by Huang and Ho (1990), would not indicate any scale

change in this flow.
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(e) 4-0.35, and (f) 4-0.4. In (c) there is an extra contour at 4-0.1 to show the vorticity crossing the BP's.

Solid contours indicate positive vorticity, dotted contours indicate negative vorticity, and tic marks are

at _ intervals.

The evolutions of the initialized two-dimensional and STI modes in the WHIGH2P and HIGH2P

simulations are compared in figure 50. Differences in A10 are noticeable after t _ 25, well after rr.

Similarly, differences in A½0 occur after t _ 40, well after _'r,1. The amplitude A_ 0 in both simulations

is very similar throughout the time considered. The amplitude Aso also agrees well throughout the flow

development (fig. 51(a)) because, by the time the individual Aa,0 amplitudes differ, they make only

a small contribution to Aso. Perhaps more surprising is that A3D also differs by 6% at most and is

virtually identical up to t = 35. In WHIGH2P a scale change occurs at rsc = 48.1 (fig. 50(b)) that

cannot occur in HIGH2P. The differences between the evolutions of the WMID2P and MID2P flows

are even less than the differences between WHIGH2P and HIGH2P.

Comparisons of other flow statistics (such as mid-braid strain rate, mid-braid vorticity level, rib

circulation, layer thickness, and vorticity extrema) and flow-field contour plots also indicate similar

flow evolution between both pairs of simulations, particularly for t < 40. These results confirm that

a spanwise scale change triggered by weak spanwise subharmonics is slow. Thus, strong spanwise

subharmonics are needed for flow evolution to vary significantly from that discussed in section 6.
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Figure 50. Time development of (a) Aa0 and Co) As¢ for WHIGH2P and HIGH2E In (a) the curves

that peak at t = "rr = 11.2 are AlO, those that peak at t = "rpl -- 20.4 are AL0, and those that peak at

t = "rp2 = 38.5 are A¼0. In (b) As1 > A.1 > A.1 at t = 0. (Note A.1 = A.1 = 0 for HIGH2E)
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MID2P. At t = 40 the upper curves are Aso and the lower curves are A3D.

8 CHARACTER OF THE POST-TRANSITION FLOW

Several of the flows discussed in the preceding sections undergo a transition to turbulence. However,

most of these were constrained in some artificial way. For example, HIGH2P was constrained by the

exclusion of spanwise subharmonics and the imposition of symmetries in the initial condition. While

these constraints help to analyze the transition process, they produce an unnatural turbulence. One

case (TURB2P) was designed to eliminate all symmetries and most constraints. The disorder in the

resulting flow is similar to that in experimental mixing layers. For example, the MP passive scalar

contours shown in figure 47 are similar to the flow-visualization pictures of Bemal and Roshko (1986).

In this section, the character of this turbulence will be extensively documented to provide a basis for

comparisons with experimental measurements and with future simulations begun from turbulent initial

conditions. The flow at t = 39.8 is chosen for this purpose because it contains "healthy turbulence"

and yet is before _'p2 = 47.1 and therefore far from being oversaturated. It is thus not affected by the

absence of a further pairing.

At t = 32.2 (fig. 47) TURB2P is undergoing a transition similar to that described in section 6.2

for the HIGH2P flow. However, there is a subtle difference. Because of the strong subharrnonic STI

disturbances and their relative phasings, the ribs do not remain at fixed locations in the braid region.

Consequently, well-defined "rib planes" and "between-ribs planes" do not exist. The distinction between

higher-order roll-ups of thin vortex sheets in the BP's and the granular patterns in the RP's is thus largely

absent. The flow appears to contain a combination of both these features at all spanwise locations (see

fig.52).

While x-V contour plots of tOz in the HIGH2P (figs. 40 and 41) and TURB2P (fig. 52) flows

are qualitatively similar (with the exception noted above regarding the RP and BP features), the x-z

planes appear significantly more "turbulent" in TURB2P. Much of the increased complexity is due to

the elimination of the symmetries given in equations (12) and (13). Vorticity contours in the centerline

z-z plane of the TURB2P flow are shown in figure 53 at times before and after the transition. The loss

of regularity is obvious. 18

18Note that there is still some evidence of engulfed ribs at x = L:r./2 in figure 53(d).
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+0.5. Regions of positive vorticity are shaded and negative contours are dotted. Tic marks are at 6°
intervals.

The F-dependence of several horizontally averaged statistics is shown in figure 54. Both the mean

velocity_ and mean scalar profiles are roughly symmetric around the layer centerline. The mean velocity

(U) is almost an error function (an error function of the same thickness is plotted in fig. 54(a) for

reference). The mean scalar (_V-')profile is more nearly piecewise-linear. This suggests that a constant-

eddy-viscosity model might be adequate for the transport of momentum, but not of the scalar. At this

time (t = 39.8) both mean gradients are negligible beyond ]_] _ 8.

The rms velocity fluctuations (u/, v t, and w _) and the Reynolds stress (-_'_) are shown in fig-

ure 54(b). At t ,._ 10 (not shown), all rms velocities have a well-defined single peak at the centerline.

By t = 39.8, however, they are approximately constant over the central portion of the mixing layer

(about -4 < y < 4). The rms velocity fluctuations all decay slowly in _/. This is due to the slowly

decaying potential velocity fluctuations. Two-dimensional fluctuations dominate the potential velocity

far from the vortical part of the layer, resulting in a lower level of w / compared to u t and v t for large

V. The potential velocity fluctuations do not contribute to the Reynolds stress (-_-_); thus the Reynolds

and shown instress decays rapidly in _/.19 Like the rms velocities, the rms vorticities (denoted by w i

fig. 54(d)) are roughly constant over the region -4 < _ < 4 (profiles are even flatter at later times)

after exhibiting single peaks at the centerline early in the layer development.

At t = 39.8, the Reynolds stress correlation coefficient -_"_/(utv _) is just over 0.6 in the central

portion of the layer. Later in time (t = 50), -_'_ changes sign over at least part of the layer (the middle

at this time). This is associated with the completion of the second pairing (_'p2 = 47.1). The reversal

in sign of the Reynolds stress -_:'_ is associated with counter-gradient momentum flux and has been

observed in other temporally developing (e.g., Riley and Metcalfe, 1980; Metcalfe et al., 1987) as well

as forced, spatially developing (Oster and Wygnanski, 1982; Lowery and Reynolds, 1986; Lele, 1989)

mixing layers. It is particularly prevalent in two-dimensional flows. Riley and Metcalfe and Metcalfe

et al. attributed this change in sign to oversaturation. While it is true that the first pairing (unless

19The scalar fluctuations, the vorticity fluctuations, and the scalar.fluxes also do not exhibit slowly decaying potential
tails. All these quantities are essentially zero where the mean gradient is zero.
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Figure 53. Contours of _vz and _vx in the centerline z-x plane of TURB2P. The contour increment is

4-0.5 except in (d), where it is 4-1.0. Shaded regions indicate regions of positive o.,z (o[)posite in sign

to the mean vorticity), dotted contours indicate negative vorticity, and tic marks are at 6_ intervals.
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Figure 54. Profiles in y of various x-z averaged statistics for TURB2P at t = 39.8.

substantially delayed) will prevent this change in sign of the Reynolds stress, further pairings do not, in

general, happen fast enough to eliminate a period of counter-gradient momentum flux after each pairing.

Strong three-dimensionality can change this, however, and both the TURB2P and WHIGH2P flows do

not exhibit such a change in sign (or the accompanying reduction in momentum thickness) after the first

pairing (as does the WMID2P flow). It is unclear whether the change in sign observed in all three of

these flows after the second pairing could be prevented by a third pairing.

The rms scalar fluctuation profile (note that 0 is used here for T - T and that 0 t is its rms value)

is double-peaked (fig. 54(c)), a feature that becomes more pronounced after the first pairing. Because

of the mean shear, the scalar flux vector has both streamwise and vertical components (uO and vO),

even though there is no streamwise mean scalar gradient. The correlation coefficients -_/(u'O t) and

-_/(v'O') at t = 38.9 are roughly 0.4 and -0.5, respectively.

The profiles of _, the x-z averaged dissipation rate of turbulent kinetic energy, at t = 39.8 in

TURB2P and at t = 40.1 in WMID2P are shown in figure 55(a). The time evolution of the y-integral

of these profiles (et) is shown in figure 55(b) for the same two flows. The presence of many small-scale

structures in the TURB2P flow (e.g., figs. 53(b) and 53(d)) results in a significantly higher rate of kinetic

energy dissipation. As a result, the integrated turbulent kinetic energy is smaller in TURB2P than in

WMID2P after 'rpl.20

20In WMID2P the "production" of turbulent kinetic energy actually becomes negative for a period after each pairing.

Thus, while the kinetic energy is roughly constant in TURB2P after t = rpl, it increases and oscillates in WMID2P,
remaining above the TURB2P level for t > rpl.
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The quantities shown above can be used to form a turbulent time scale qW/_ = (ur2 + vr2 + wr2)/_.

This time scale is roughly constant in the core of the layer and is about 45 at t - 39.8. The turbulence

Reynolds number, Re T = _2/(_u), is about 3000 in the middle of the layer at this time.

One-dimensional spectra of q2 and e at y = 0 in TURB2P at t = 39.8 are shown in figure 56.

These spectra indicate that the flow is well resolved, since there isat least a two-decade falloff in the

dissipation spectra. Also, the fact that this is a low-Reynolds-number turbulent flow is evident since

there is no discernible inertial range. Finally, it is clear that the size of the streamwise domain constrains

the flow evolution, since the streamwise q2 spectrum does not plateau at low wavenumbers. This is

expected, since at t = 39.8 the second and final pairing in this flow has begun.

In addition to an increased rate of kinetic energy dissipation, the small-scale turbulence provides

more thorough "mixing." A zero-heat-release, fast chemical reaction can be studied using the passive

scalar carded in the simulations (Burke and Schumann, 1928; Zeldovich, 1950; Toor, 1962). The ratio

of the amount of reaction product to the reaction product that would be present if there were no scalar

fluctuations is a measure of the degree of scalar mixing (Konrad, 1976). This ratio is denoted by .A4

here and is given by

f__ 7:'(T(t)) - = O))dy7a(T(t
.A4 = oo (19)

f_¢ - = o))dy
00

where T'(T) = 1 - I2T - II is the product concentration, an overline indicates the average over x and

z, and the second term in each integrand eliminates the contribution of the initial scalar profile. In

figure 57 the evolution of this ratio for TURB2P and WMID2P is shown (the evolution for WHIGH2P

is shown in Moser and Rogers, 1991). Note that the ratio is initially 1.0 since there are no scalar

fluctuations at t = 0. The late-time plateau level of the transitional TURB2P flow is 0.18 greater than

that of the nontransitional WMID2P flow. This difference is close to the value of 0.15 measured by

Konrad (1976) in his experiments at a similar Schmidt number (0.7 compared to our 1.0).

The probability density function (pdf) of wz is qualitatively different in the transitional and the

nontransitional flows. As can be seen in figure 58, WMID2P, WHIGH2P, and TURB2P all exhibit
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Figure 57. Time development of the "mixedness" parameter .M.

roughly exponential decay of P(wz) as I zl becomes large. There are, however, two distinct differences

between the transitional and nontransitional flows. In the nontransitional case (WMID2P), there is little

positive Wz (opposite in sign to the mean vorticity) and there are significant amounts of irrotational fluid

(or at least fluid with Wz _ 0) near the centerline of the layer. In contrast, the pdf of Wz in the TURB2P

flow is more symmetric and has a much smaller peak at Wz = 0. The pdf for the WHIGH2P flow is

intermediate in both these respects. These results suggest a possible transition criterion based on the

level of positive Wz present in the flow. Such a criterion was proposed by Moser and Rogers (1991).

9 "HELICAL" PAIRING

Flow visualizations by Chandrsuda, Mehta, Weir, and Bradshaw (1978) indicated that there were

strong spanwise variations in the Kelvin-Helmholtz rollers. This seemed to be the result of pairing

occurring at some spanwise locations sooner than at others, resulting in rollers that appeared to be

"twisted." This has led some investigators to speculate that the pairin_ is "helical." Pierrehumbert and

Widnall (1982) have suggested that a pair of disturbances in the (½, +_) modes (oblique subharmonics)
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could lead to such localized pairing. When properly phased relative to the two-dimensional (1,0)

disturbance, such an oblique subharmonic disturbance kinks two neighboring rollers such that any

single roller will be closer to its downstream neighbor over part of its spanwise extent and closer to

its upstream neighbor over the rest. Pierrehumbert and Widnall felt that nearby portions of the Kelvin-

Helmholtz rollers would pair, resulting in a highly three-dimensional, twisted pattern similar to that

observed by Chandrsuda et al.

In this section, several flows initialized with such oblique subharmonic modes are described. The

parameters are given in table 3. The streamwise vorticity of the three-dimensional disturbance is given

by

wz = - _ A°f_ 7"C(g_(y)e i(kxx ¢_)) sin(kzz) (20)
_=1,½

where gf_(y) = c#(4y 2- 2-(k2z +k2z))e -ys/(k 2 +k2z)½ (v-Gaussian profile or vG), and the normalization

constant c# is selected such that the integrated energy in the (½,/3) mode is unity when A½_ is one. The

wz component of the disturbance is set to make the vorticity solenoidal. The initial three-dimensional

disturbance contained no wy, although wy develops rapidly to amplitudes comparable to Wx. As with the

oblique-mode cases in section 4.4 of Part 1, the relative phasing between the oblique modes and two-

dimensional disturbances is important. Two extreme phasings were used. The first (¢½ ½ = -7r/2) results

in kinked rollers, as suggested by Pierrehumbert and Widnall (1982). The other phasing (_½½ = 0)

results in bulging rollers (i.e., alternating regions of thicker and thinner rollers) where the bulges of

neighboring rollers are out of phase.
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Table 3. Parametersof the "helical" pairing simulations. Disturbanceprofiles are vG, Ca0 = 0,

Reo = 250, Pr = 0.7, ,_z = 1.16(2r), and _z = 0.6_z for all cases.

Simulation A10 A½0 A,, A½1 ¢½½ ¢½1 "rr "rpl
x 102 x 102 x ?0_2 x 102

KINKOP 12.12 8.72 -,_ 10.5

KINKIP 12.12 2.00 8.72 -,_ 10.3 25.1
BULGOP 12.12 8.72 0 10.6

BULG1P 12.12 2.00 8.72 0 10.2 24.2

NBULGOP 12.12 1.74 6.73 0 0 10.3

NBULGIP 12.12 4.00 1.74 6.73 0 0 9.6 20.9

9.1 "Kinked" Roller Phasing

The kinked-phasing flow KINKOP did not undergo "helical" pairing and remained largely two-

dimensional throughout its evolution. Portions of the rollers that were close to each other were initially

displaced vertically, similar to rollers that do pair, but did not continue to rotate around each other and

coalesce into a paired roller. The developed flow thus consisted of two kinked Kelvin-Helmholtz rollers,

with the direction of the kink varying in time. Much of the flow evolution was similar to the OBLOUT

simulation described in Part 1. In particular, the MP wz and w v distributions are antisymmetric in y,

implying that Fz = 0 throughout the flow evolution. As in OBLOUT, rib "dipoles" form in the RP

and move toward another fib "dipole" of opposite sign, forming a quadrupole centered in a BP, which

decays due to viscosity (in the larger computational domain used here, one quadrupole forms in the

center of the domain, the other on the boundary, as in OBLOUT). Because no sustained rib vortices

form in this flow, streamwise (and normal) vorticity is located predominantly in the roller core where

the roller is kinked. The associated three-dimensionality is thus weak, and A3D < Aso throughout the
flow evolution.

Note that, with only (1, 0) and (½, +½) disturbances, no nonlinear interaction can transfer energy

to the (½, 0) mode. Because of this, the two rollers in the domain can never pair with each other along

their entire span. In experiments, some energy will certainly be present in two-dimensional subharmonic

modes, and therefore the above simulation was repeated with an initially small amount of energy in the

first two-dimensional subharmonic (KINK1P). This flow was virtually identical to KINKOP until -rpl,

when the two kinked rollers paired along the entire span (with wz distributions similar to those of the

two-dimensional pairing discussed in section 3). It is thus apparent that, to induce pairing irregularities

along the span of the flow, either a different type of initial condition or a wider spanwise length scale
is needed.

Up to about rsl in KINK1P, the paired roller described above remains similar to its two-dimensional

counterpart. Beyond rsl, however, there is evidence of stronger three-dimensionality. In particular, the

central portion of the roller core becomes largely irrotational at some spanwise locations (alternate BP's),

producing hoop-shaped structures similar to those observed in the OBLOUT simulation described in
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Part 1.21 Presumablyat still later times this could lead to strongerthree-dimensionality,as it doesin
OBLOUT.

9.2 "Bulging" Roller Phasing

For the bulging case, BULGOP, sustained ribs (whose sign is the same as that given by the initial

condition) form in the braid region and collapse for the disturbance amplitudes considered here (F ° =

0.354). As in the OBLIN simulation of Part 1, the rib vortices are oblique when they collapse and

become S-shaped at late time. Because the disturbance is subharmonic in x, these ribs alternate in sign

in the streamwise direction. The wz distribution in the roller core is opposite in sign to the adjacent rib

and thus contains both positive and negative regions (it is antisymmetric in y in the CP), not unlike the

pattern shown in figure 40(c) of Part 1 for the OBLOUT simulation.

The evolution of spanwise vorticity in the BP of BULGOP is illustrated in figure 59. Because the

rib streamwise vorticity alternates in sign in the streamwise direction, the spanwise vorticity in the right

roller is stretched (and amplified), whereas that in the left roller is weakened by "compression." Thus,

even though the left roller has the stronger Wz initially, the right roller exhibits significantly stronger Wz

by t = 5.3 (fig. 59(a)). By t = 8.7 (fig. 59(b)) the roll-up is nearly complete (rr = 10.6). The left roller

is "large" and the right roller is "small" (note the opposite is true in the other BP). At this point the nature

of the vortex stretching is changing. In particular, the double-lobed pattern of core wx, described in the

previous paragraph, has developed. Because of this, stretching (and amplification of Wz) is occurring

in the central core of the left roller and in the region where the ribs meet the core in the right roller.

As with OBLOUT, the stretching is occurring on both sides of the right roller at the same spanwise

location (as expected from the wz distribution). This results in the formation of a "hoop" structure. The

beginnings of this hoop are just visible in figure 59(b). (The Wz in the central core contour is weaker

than that in the surrounding annulus.) By t = 14.5, there is a well-defined hoop surrounding virtually

irrotational fluid (fig. 59(c)). At this time the left roller is oversaturated, resupplying spanwise vorticity

to the adjacent braid regions. However, this oversaturated roller is quite different from those described

in Part 1. It appears more like a postpairing roller, with spiral arms separate from the core vorticity.

The "wisps" of Wz that form these spiral arms contain the vortex lines that connect neighboring fibs,

as they do in the typical roll-up evolution described in Part 1. By t = 19.6 (fig. 59(d)), the left roller

has shed much of its spanwise vorticity to its neighbors, and the hoop of the right roller has collapsed.

By t = 22.1 (fig. 59(e)), the left roller also collapses, and it is the right roller that appears "large." At

t = 24.3 (fig. 59(f)), the right roller begins to reform a hoop and a second oversaturation is occurring,

this time with vorticity from the right roller reentering the braid region. The left roller has completely

collapsed and now consists of two higher-order roll-ups of the type described in Part 1 (for the OBLOUT

case) and in section 5.2 of this paper. The Wz levels associated with these higher-order roll-ups are

very high (up to -19.8), and in figure 59(0 it was necessary to contour them with levels different from

those used for the right roller (which would not even show up at the lowest contour level used for the

higher-order roll-ups). At this point the flow appears to be beginning a transition to a more "turbulent"

state, with many small-scale structures appearing in the vorticity field (see also fig. 61(d)).

21 it is interesting to note that hoop structures form in OBLOUT from (1, 0) and (1, 4-1) disturbances and in this simulation

from (½,0) and (½,4-½) disturbances after a pairing.
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Figure 59. Contours of _Vz in the z = 0 BP of BULGOP. The contour increment is -0.3 except for the

left roller in (f) where the contour increment is -2.0 (all wz in the right "roller" is thus weaker than

the first contour level used for the left "roller"). Tic marks are at 6° intervals.

The evolution of the rib circulation in the MP of BULGOP is shown in figure 60 (note that the rib

circulations in both braid regions of the domain are equal in magnitude and opposite in sign for this

case). Its behavior is qualitatively different from that of the other simulations described in this paper in

that Fx changes sign at t = 14.7 and again at t = 24.7. As in the other simulations, I':r initially grows,

reaching a value of 2.3 (6.5 times F °) at t = 11.7. At this time 0-o0), the first oversaturation described

above occurs. Unlike the standard cases, the vorticity that reenters the braid regions is associated with

rib vortices that are opposite in sign to the ribs already present in each braid region (again because

the initial disturbance is subharmonic in x). Because of this, the circulation is reduced rather than

augmented. By t = 21.7, Fx reaches a minimum of -3.3. At this point a second oversaturation occurs.

As can be seen by tracking the origin of the "reentering vorticity" in figure 59(0, this second reentry of

vorticity into the braid region contains wisp vorticity that connects rib vortices from two braid regions

away. The associated _vx is thus of the same sign as that present initially, and l'x begins to increase

again.
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Figure 60. Time development of the mid-braid strearnwise circulation Fx in BULGOP

(Fx(x = Ax) = -Fx(x = 0)) and BULG1P.

The reentry of opposite-signed wz into the MP can be seen directly in figure 61. At t = 11.7,

l"x reaches a maximum and the rib vorticity is largely collapsed (fig. 61(b)). After ToO, wx that is

opposite in sign to that of each rib vortex reenters the MP. By t = 19.6 (fig. 61(c)) four regions of

such opposite-signed wz are present in each half of the spanwise domain. At t = 24.3 (after the second

reentry) four more regions of wz, with the same sign as the original rib vortex, are present in the MP

(fig. 61(d)). Note that, despite the changing sign of l"x, the original collapsed rib vortex retains its

identity, with little change in circulation. It also appears that, by t = 24.3, a reduction in the spanwise

rib-spacing scale has occurred. In particular, in figure 61(d) three pairs of roughly equal-spaced, roughly

equal-strength counterrotating rib vortices are apparent where only one was present initially. This is a

result of the ribs alternating in sign in the streamwise direction, as discussed above.

Similar to the case KINK1P described in section 9.1, a pairing, bulging case (BULG1P) was

simulated. Again, because A½0 is initially small, the pairing is delayed, and the flow changes very little

until after "Jr (A½0 > A10 for t > 15.6).

The evolutions of r 'MP1 the value of l"z in the mid-braid region located at x = 0 (left boundary inZ '

fig. 59), and -xpMP2, the mid-braid region located at x = Az (the center of fig. 59), are shown in figure 60

for BULG1P. Until "rr = 10.2, the evolutions are similar to those of BULGOP. As expected, the pairing

disturbance breaks the symmetry that ensures that F Mpl = -F MI'2. Because the pairing brings the two

rollers closer together, reentry of vorticity into MP2 occurs sooner than (and reentry into MP1 occurs

later than) in BULGOP. For the same reason, F MPI and FMP2 decrease in magnitude later and earlier,

respectively, compared to BULGOP. At later times FMl'2 is in the core of the paired roller (no longer

an MP); its behavior is irregular. The second change in sign of F Mpl is also delayed by the pairing.

Unlike in KINK1P, the paired roller in BULG1P does not resemble a two-dimensional paired roller.

In fact, the BP Wz contours at about rpl = 24.2 are qualitatively similar to those of HIGH1P at "rr,1

(compare fig. 62(a) with fig. 62(c)). Thus, even with the initial disturbances considered here, pairing in
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Figure 61. Contours of w= in the x = 0 MP of BULGOE The contour increments are (a) +0.1,

(b) +0.4,and (c,d) -/-0.8. Dotted contours indicate negative vorticity and tic marks are at $o intervals.

a flow with collapsed ribs can trigger transition. It should also be noted that the pairing has suppressed

the formation of the second "hoop" structure observed in figure 59(f) and, to a large extent, the spanwise

scale reduction (fig. 61).

The spanwise scale reduction observed in figure 61 suggests that initial disturbances with smaller

spanwise wavelengths might be more unstable. To verify this, two more "bulging"-phased simulations

were made (NBULGOP and NBULG1P), with the bulk of the three-dimensional energy placed in the

(½, -4-1) modes, that is, in modes with half the spanwise wavelength of the cases described above. This

results in two pairs of fib vortices in the computational domain. A smaller amount of energy was also
1 1

put into the (3,-b_) modes to create ribs of unequal strength (breaking the symmetry between the rib

paL). It should be noted that the presence of these=_b oblique subharmonic modes makes energy

transfer into the two-dimensional subharmonic possible through nonlinear interactions. Nevertheless,
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A½0 is over an order of magnitude smaller than A10 and A½1 throughout the evolution of NBULGOP,

and pairing does not occur.

The evolution of these two flows is similar to the other "bulging"-phased cases described above.

Sustained ribs (of unequal strength and therefore with different collapse times) form, and their sign

alternates between successive rollers. They are first oblique and later S-shaped. The roller core again

contains both signs of to:r, and because of this, "hoops" develop. In these flows twice as many hoops

form in the domain because of the reduced spanwise rib spacing (fig. 63). Details of the flow evolution,

such as the timing of the hoops' appearance and collapse and the peak vorticity levels attained, are

slightly different for these narrow rib-spacing cases. Despite this, NBULG1P (fig. 62CO)) qualitatively

resembles BULG1P (fig. 62(a)) as well as the transitional cases of section 5.2.

10 SUMMARY AND DISCUSSION

The simulations described in the previous sections provide a detailed description of three-

dimensional mixing layers undergoing pairings of the primary Kelvin-Helmholtz rollers and, in some

cases, transition to turbulence. The early time evolution through the first Kelvin-Helmholtz roll-up

was described in Part 1 (summarized here in the Appendix). In this section, the effects of pairing on

three-dimensional mixing layers are summarized, and the results are compared with conclusions reached

in earlier studies.

10.1 Pairing and Transition

Several important features of the evolution of three-dimensional mixing layers are governed by the

development of the two-dimensional Kelvin-Helmholtz rollers and can therefore be understood in the

context of a two-dimensional flow with a three-dimensional small disturbance. As pairing proceeds,

two rollers eorotate and eventually amalgamate into a larger, paired roller. During a pairing, the braid
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Figure 63. Surface of constant spanwise vorticity (Wz = -2.0) at t = 11.6 in NBULGOP 0q'BULG1P

is very similar at this time). Tic marks are at 6° intervals.

region between the pairing rollers (including the rib vortices in three-dimensional flows) is engulfed.

The braid region on the other side of each roller survives and becomes a braid region between the paired

rollers. By pulling the rollers away from the surviving braid region, pairing (if initiated soon enough)

prevents "oversaturation" (described in Part 1) and the associated reentry of spanwise vorticity into the

surviving braid region. Pairing therefore prevents (or delays) the rapid, apparently exponential, growth

of three-dimensionality associated with oversaturation. As the two rollers are drawn together and begin

to coalesce, spiral arms of vorticity are ejected from the paired roller. These spiral arms reenter the

surviving braid region shortly after the pairing is completed. This reentry of vorticity results in a period

of rapid growth of three-dimensionality, which is arrested as the spanwise vorticity is again drawn out

of the braid region. Unlike oversaturation, the reentry of spanwise vorticity associated with the spiral

arms cannot be suppressed by further pairings. Thus, after each pairing there is a period of three-

dimensionality growth that results in an increase in three-dimensionality by an approximately constant

factor for each pairing (see section 4.1). Once pairings have ceased, the final paired roller eventually

oversaturates, as described in Part 1, with a resulting exponential growth of three-dimensionality.

The prevention of oversaturation by pairing is the reason that pairing inhibits the growth of three-

dimensionality (Metcalfe et al., 1987; Huang and Ho, 1990). Oversaturation results in spanwise vorticity

entering the braid region and remaining there. Three-dimensional perturbations then grow continuously.

In contrast, continued pairings result in discrete periods of growth of three-dimensionality as each

pairing throws spanwise vorticity into the surviving braid region. The time between pairings, and

75



thereforethe time betweentheseperiodsof growth, approximatelydoubleswith eachpairing. This
resultsin algebraic long-termgrowth of three-dimensionalityrather than the exponentialgrowth that
occursduring oversaturation.

If pairing is not initiated fastenough,oversaturation and its associated exponential growth of three-

dimensionality can occur prior to the pairing. Because the growth of three-dimensionality during and

after the pairing is similar for all pairings, delayed pairing results in more three-dimensionality. This is

relevant to forced experimental mixing layers because forcing tends to suppress pairing.

The results of Part 1 suggested that the translative instability responsible for the growth of three-

dimensionality in an oversaturated mixing layer is not associated with an isolated portion of the flow

(i.e., braid region or core), since it produces continuous growth of both rib circulation and roller kinking.

The growth of three-dimensionality in a mixing layer prior to oversaturation is also not limited to a

particular region of the flow. This was determined by examining the evolution of three-dimensional

perturbations through several pairings. The period of three-dimensionality growth that occurs after each

pairing is initiated by the entry of the spiral arms of spanwise vorticity into the braid region. This

allows the rib vortices to suddenly increase their circulation. Later, as the next pairing begins, the

level of three-dimensionality in the core also grows. Finally, as the next pairing nears completion, the

three-dimensional disturbances come into a rough equilibrium until the next spiral arms initiate another

period of growth. Clearly, both the braid regions and the roller cores are involved in the growth of

three-dimensionality, and the instability must be considered to be one of the flow as a whole.

It is also interesting to note that it is apparently impossible for a two-dimensional mixing layer to

undergo a sequence of self-similar pairings (i.e., a pairing in which the paired roller is similar to the

original unpaired rollers). At high Reynolds numbers, vorticity does not diffuse fast enough to maintain

a self-similar configuration. Thus, with each pairing the region of vorticity concentration in the roller

gets smaller relative to the distance between rollers.

Pairing in a weakly three-dimensional mixing layer is well described by the linear evolution of a

three-dimensional perturbation, as discussed above. However, pairing in more strongly three-dimensional

layers results in significant nonlinearities and, in some cases, the beginnings of the transition to tur-

bulence. In section 5 the details of the initial portion of such a transition are described. In this case

transition is triggered by a pairing in a flow that is significantly three-dimensional (i.e., contains strong

"cups" and collapsed "ribs"), although still organized into a few large-scale structures. By the time the

pairing is complete, the layer has become disorganized and the origins of many vortical structures can

no longer be traced back to their organized prepairing counterparts. After the pairing, vortex stretching

increases the complexity of the flow. Remnants of the original rib vortices, together with newly created

vortices in the core, generate thin vortex sheets; these sheets are unstable and undergo higher-order

roll-ups, further increasing the complexity of the flow by generating small scales.

When the transitioning flow described above undergoes a further pairing, an apparently fully turbu-

lent mixing layer results. Such flows bear a strong resemblance to experimental turbulent mixing layers

and show many characteristics of turbulent flows in general (see section 8). The level of the mixedness,

parameter .M (defined in eq. (19)), in these flows is about 0.18 higher than the corresponding level in

flows that have not undergone transition. This increase is similar to the increase in mixedness observed

experimentally (Konrad, 1976).
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The pairing-inducedtransitiondescribed in section 5 has many characteristics in common with

experimentally observed transition. The experiments of Hu_ing and Ho (1990) also indicated that the

timing of the transition was related to the occurrence of pairings and that the flow was fully turbulent

by the completion of the second pairing. The small scales in their flow were found to first appear

predominantly in the roller core at spanwise locations where ribs were located. This is consistent with

the results presented here, which show significantly more small-scale structure in the roller core portion

of the rib plane than elsewhere in the flow (fig. 41).

Other possible transition mechanisms (besides the pairing-induced one considered above) also exist.

In particular, a few simulations described here and in Part 1 that do not undergo any pairings appear

to be transitional. In such flows, transition results from either extremely large initial three-dimensional

disturbances or from a long development in the oversaturated state. In the HIROLL flow of Part 1, the

initial three-dimensional disturbance strength was four times that of the baseline ROLLUP case in Part 1

and of the HIGH1P simulation here (note that these flows have structures similar to those observed in

experiments). This initial level of three-dimensionality is so high that significant nonlinear behavior

results before the roll-up is complete. By the time the flow reaches oversaturation, it is apparently

turbulent (Part 1, fig. 22), with thin vortex sheets undergoing higher-order roll-ups in the BP and with

small-scale granular vorticity structures in the RP.

Transition, perhaps of a different character, can also result from long flow development in the

oversaturated state. The PH_0P flow does not undergo any pairings, is begun from three-dimensional

disturbances of only moderate strength, and yet is also apparently turbulent by t = 30.0 (fig. 49). In

this flow, it is difficult to examine BP's for thin vortex sheets and higher-order roll-ups and RP's for

small-scale granular vorticity structures, because the presence of spanwise subharmonics in this flow

makes the BP's and RP's poorly defined (this is also the case for the TURB2P flow). For the strengths

and relative phasings of the spanwise subharmonics used in this flow, the ribs move considerably from

their initial locations in both the spanwise and cross-stream directions.

The flows described above all contain collapsed rib vortices prior to transition. The OBLOUT flow

of Part 1 does not develop sustained collapsed ribs and therefore must become turbulent in a different

manner or remain organized. Interestingly, vortex stretching does produce thin vortex sheets that undergo

higher-order roll-ups in this flow. Even so, the flow is still largely organized as the flow oversaturates,

and the three-dimensional amplitude A3D is still much less than that of the two-dimensional modes

Aso. If transition is to occur in this flow, it seems that further development (past t = 20.0) in the

oversaturated state is necessary.

10.2 Spanwise Scale Change

There has been some controversy regarding the evolution of the characteristic spanwise scale in

mixing layers. From flow visualizations, Bernal and Roshko (1986) concluded that the initial "streak"

(rib) spacing was formed by the first pairing and that this characteristic spanwise spacing was maintained

through one or two additional pairings until the end of the mixing transition, when it increased. The rib

locations also became uncoupled from the locations of the initial ribs at this point (these initial locations

being determined by imperfections on, or upstream of, the splitter plate). In contrast to this, Huang

and Ho (1990) determined that the dominant spanwise scale in their mixing layers doubled with each
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pairing in a self-similar manner. This was determined by applying a maximum-entropy technique to

spanwise profiles of the mean streamwise velocity and by taking the spanwise scale to be the location

of the peak in the maximum-entropy spectra.

The results presented in this paper indicate that a doubling of the spanwise length scale does not

occur after each pairing. In fact, in the limit of weak three-dimensional disturbances (where the linear

analysis of section 4.2 applies), a doubling does not occur until after three or four pairings. This is not

surprising since the two-dimensional base flow does not evolve self-similarly. As the magnitude of the

three-dimensional disturbance is increased, however, scale change can proceed more rapidly.

In many of the flows considered here, the spacing of the rib vortices up to and beyond the first

pairing is determined largely by the initial condition. When the ribs are nearly equally spaced and of

nearly equal strength, their net induced motion on each other is small. It is thus not surprising that

such flows exhibit little tendency to change spanwise scale. By using more irregular initial vorticity

distributions, more significant changes in the rib locations can be realized (fig. 47). Such flows may

appear to have a larger characteristic spanwise scale than in the initial condition, although the same

number of rib vortices are present in the domain. At the Reynolds numbers considered here, viscous

diffusion does not act fast enough to reduce the number of ribs in the domain.

The reentry of vorticity into the braid region (either during oversaturation or from the spiral arms)

can also play an important role in the scale-change process. It provides a means to augment or reduce

different rib circulations by different amounts. This greater variability in rib strength can, in turn, lead

to greater net induced rib motion and apparent scale change. This process is illustrated in figure 48.

Vorticity enters the braid region away from the centerline, "recollapses" into the existing rib vortices

owing to the compressive component of the two-dimensional strain field, and results in stronger ribs in

a more irregular pattern. This process repeats with the reentry of the spiral arms associated with the

second pairing, although the recollapse process is much more disorganized.

In transitional flows, reentry of vorticity into the braid region results in complicated mid-braid

vorticity distributions, and it is then difficult to define rib locations (these ribs may be quite different

from their organized pretransition counterparts). Defining a characteristic spanwise scale can be difficult

in these cases. Here we define Az to be the spanwise wavelength associated with the Fourier amplitude

AsB that is the largest. By this definition, the PH_0P flow undergoes a doubling of Az at t = 28.9.

Indeed, at t = 30.0, a mid-braid plane cut reveals one dominant structure (fig. 49). This structure,

however, is not a single pair of organized ribs with twice the spacing of the initial rib vortex pairs, but

rather an apparently turbulent blob of small-scale vortices.

Instead of using the Fourier amplitude As# to define Az, we could have used the amplitude A0#.

This definition more closely mimics the scale-change diagnostic of Huang and Ho (1990), who examined

the time-averaged streamwise velocity as a function of z. Using this scale change measure, scale changes

occur later than by the previous definition, especially for transitional cases. For example, for TURB2P

the spanwise scale would double at t = 49.1 rather than quadruple at "rsc = 32.0. There is less difference

in nontransitional cases (e.g., scale change at t = 67.6 versus 61.0 in WMID2P).
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The searchfor a mechanism whereby organized ribs and rollers become organized ribs and rollers

with twice the original streamwise and spanwise spacings after a pairing appears to be fruitless. Presum-

ably such a process does not occur in mixing layers. Weak ribs remain close to their initial locations

and do not change scale, and strong ribs lead to transition, resulting in a "statistical" scale change

with disorganized structure. Even when the ribs are of intermediate strength, it does not appear that

their number can be reduced prior to transition. Possible mechanisms for such a reduction identified

in section 7.2 ultimately rely on viscous annihilation, a process that is slow at the Reynolds numbers
considered here.

Several factors must be considered when comparing the results presented here with those of exper-

iments. In flow-visualization experiments, it is not always clear that the visualization method is actually

portraying the vorticity. Vortical structures may not always be well defined by their footprint in dye or

smoke. In turbulent flows, the "streak spacing" observed in flow visualizations is probably not associated

with organized rib vortices like those in pretransitional flows. In addition, even the more irregular initial

streamwise vorticity distributions used here are probably more organized than those in most experiments.

In particular, the initial conditions used here, even when strong spanwise subharmonics were used, all

contained disturbances that were strongest at the domain centerline and that alternated in sign in the

spanwise direction. Experiments have suggested the amalgamation of like-sign rib vortices prior to the

development of a "stable configuration" consisting of pairs of opposite-sign rib vortices, e.g., Lasheras,

Cho, and Maxworthy (1986); Bell and Mehta (1989). In addition, the contour-dynamics calculations

of Pullin and Jacobs (1986) indicate that, at high Reynolds numbers, it is possible for a "wide" region

of streamwise vorticity to collapse into several like-sign rib vortices, these vortices later undergoing

their own pairing (see also Jacobs and Pullin, 1989). Thus apparent scale changes in experimental flow

visualization may be different from the type discussed here.

In conclusion, the results presented here do not support the conclusion that scale changes are locked

to pairings of the spanwise rollers; the ratio between the spanwise and streamwise length scales does

not remain constant. In fact, the data of Huang and Ho (1990) do not provide completely convincing

support for this conclusion either. First, they have observed this behavior through only two pairings

of the spanwise rollers. Second, the doubling of the spanwise length scale after the first pairing is

questionable in their data. The maximum-entropy spectrum in their figure 9(b) (first pairing) does

indeed peak at twice the wavelength of the same quantity in their figure 9(a) (post roll-up); but, as they

note, the peak at the original spacing is almost as large. In addition, this scale change is not really

visible in their spanwise profiles of streamwise velocity at the first pairing. The spanwise profiles of

streamwise velocity in their figure 5(a) do seem to indicate a quadrupling of the spanwise scale after the

second pairing. However, since transition is largely completed by their second pairing, this observation

is consistent with the current results and those of Bernal and Roshko (1986).

10.3 Helical Pairing

Pierrehumbert and Widnall (1982) have proposed that "helical" pairing, suggested by the exper-

imental work of Chandrsuda et al. (1978), may be the result of oblique subharmonic disturbances.

Such disturbances would tend to kink the Kelvin-Helmholtz rollers such that part of each roller would

be closer to its downstream neighbor, while other portions would be closer to the roller upstream.
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PierrehumbertandWidnall felt that this configuration could lead to localized pairing at locations where

the rollers were close, resulting in an apparently helical pattern.

The results presented in section 9.1 indicate that the presence of oblique subharmonic modes is not,

by itself, enough to ensure localized pairing of the Kelvin-Helmholtz rollers, at least for the spanwise

wavelengths considered here. It does result in kinked Kelvin-Helmholtz rollers, but these rollers do not

pair at any spanwise location. The addition of a weak two-dimensional subharmonic disturbance leads

to eventual pairing of the same two rollers along their entire span, but not to localized pairing. Similar

results were obtained by Sandham and Reynolds (1989) for a compressible mixing layer. It appears that

the disorganized mixing layer studied by Chandrsuda et al. (1978) may have been the result of inlet

disturbances more complicated than a single pair of oblique subharmonic modes.
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APPENDIX

RESULTS FROM PART 1

The presentation of many of the results in this paper assumes familiarity with the evolution of

three-dimensional Kelvin-Helmholtz roll-ups as presented in Part 1. Here a summary of the results

of Part 1 is presented. This summary includes both a brief description of the vortical structures that

develop as the layer rolls up and definitions of terms and quantities given in Part 1 that are used in

Part 2.

In Part 1 a "typical" roll-up evolution that resulted from the standard set of initial conditions used

here (see section 2.2), as well as many other initial conditions, was identified. The typical Kelvin-

Helrnholtz roll-up produces the well-known spanwise vortices (rollers) and the familiar array of pre-

dominately streamwise rib vortices (ribs) that extend from below one roller to above its downstream

neighbor. The rib vortices alternate in sign in the spanwise direction and are roughly aligned with the

extensional strain in the region between the rollers (the braid region). The ribs are formed from vortex

lines that are kinked in the streamwise direction and become stretched by the extensional strain in the

braid region. In the core of the rollers, vortex lines become kinked in the opposite direction, resulting

in streamwise vorticity with sign opposite that in the rib at the same spanwise location. The ribs and

the oppositely signed streamwise vorticity in the roller produce a strain where the ribs pass over the

top (or under the bottom) of the roller. This strain alternately (in the spanwise direction) stretches and

compresses the spanwise vorticity at the top and bottom of the roller. This results in cup-shaped regions

(cups) of intense spanwise vorticity in the roller, these cups being located between the rib vortices and

alternating from the top to the bottom of the roller in the span (see fig. 10 of Part 1). The experiments

of Nygaard and Glezer (1991) suggest that similar structures occur in experimental mixing layers. On

the opposite side of the roller from each cup is a "wisp" of weaker spanwise vorticity (see fig. 15 of

Part 1). This wisp contains the vortex lines that loop from one rib to its neighbor.

To a large extent, the strength of the cups and the degree of three-dimensionality in the mixing

layer can be determined from the strength of the ribs. The best measure of rib strength is rib circulation,

here denoted by Fz. It is defined as

[),=12 iy:>o x=12l":r Jy=-oo ./z=0 wx dzdy = - =-oo v dy z=0 (A-l)

where z = 0 is taken to be one of the planes of symmetry defined in equation (12), that is, a BP (between-

ribs plane). Throughout this paper the rib circulation is measured at :r-locations corresponding to the

MP (midbraid plane). 22 A superscript 0 and • will be used to denote, respectively, the circulation at

t = 0 and the circulation normalized by its value at t = 0. By manipulating the Navier-Stokes equations,

the governing equation for l"z can be obtained (for simplicity, the inviscid case is considered here):

OFx oo IAz/2 ex_ IAz/2

= = (u_z-z) dtliz=0 (A-2)

Equation (A-2) implies that there must be spanwise vorticity in the MP for Fx to grow. Indeed, in

Part 1 it was observed that the rib circulation stopped growing as the spanwise vorticity was drawn out

22FMP was used to denote the MP circulation in Part 1.
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of the braid region by the forming roller. It was then precluded from further growth until some event

(oversaturation in Part 1) brought spanwise vorticity back into the MP. This is of great importance in

the pairing of three-dimensional mixing layers (see section 4).

The rib circulation is also important in determining whether the ribs collapse into compact, nearly

axisymmetric vortices as described by Lin and Corcos (1984). In Part 1 it was found that the Lin. and

Corcos criterion was an accurate predictor of rib collapse in the mixing layer. A collapse parameter/_

was defined based on a curve fit to the curve in figure 9 of Lin and Corcos, resulting in the collapse
criterion:

Fz

£- vp(S,_z2)1_p > 13.1 (A-3)

where p = 0.6825 is the curve fit parameter and ,.q is the maximum two-dimensional (i.e., averaged in

z) principal strain rate in the MP. Collapse of the fibs is a nonlinear phenomenon, and it was shown in

Part 1 to be one of the first three-dimensional nonlinearities to occur. It was also found that fib collapse

was a prerequisite for the formation of strong cups, as described above. 23

Finally, two further definitions from Part 1 are given here. One is that of the momentum thickness

(6m) defined by

6m = I f=oo(1__2)dy (A-4)

The other is that of the mid-braid vorticity ('Wb). For mixing layers with negative mean vorticity (like

those considered here), w b is the minimum (most negative) of the spanwise-averaged spanwise vorticity

in the MP. The mid-braid vorticity is an indicator of the amount of spanwise vorticity in the braid region

and is a necessary ingredient for rib circulation growth, as mentioned above.

23Though cup formation is nonlinear, the mechanism leading to the strain that produces the cups is linear with respect to

the two-dimensional evolving base flow (see section 5.3 of Part 1).
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